xref: /openbmc/linux/drivers/net/ipa/ipa_endpoint.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 
25 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
26 
27 #define IPA_REPLENISH_BATCH	16
28 
29 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
30 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
31 
32 /* The amount of RX buffer space consumed by standard skb overhead */
33 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
34 
35 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
36 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
37 
38 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
39 #define IPA_AGGR_TIME_LIMIT_DEFAULT		1000	/* microseconds */
40 
41 /** enum ipa_status_opcode - status element opcode hardware values */
42 enum ipa_status_opcode {
43 	IPA_STATUS_OPCODE_PACKET		= 0x01,
44 	IPA_STATUS_OPCODE_NEW_FRAG_RULE		= 0x02,
45 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
46 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
47 	IPA_STATUS_OPCODE_LOG			= 0x10,
48 	IPA_STATUS_OPCODE_DCMP			= 0x20,
49 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
50 };
51 
52 /** enum ipa_status_exception - status element exception type */
53 enum ipa_status_exception {
54 	/* 0 means no exception */
55 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
56 	IPA_STATUS_EXCEPTION_IPTYPE		= 0x04,
57 	IPA_STATUS_EXCEPTION_PACKET_LENGTH	= 0x08,
58 	IPA_STATUS_EXCEPTION_FRAG_RULE_MISS	= 0x10,
59 	IPA_STATUS_EXCEPTION_SW_FILT		= 0x20,
60 	/* The meaning of the next value depends on whether the IP version */
61 	IPA_STATUS_EXCEPTION_NAT		= 0x40,		/* IPv4 */
62 	IPA_STATUS_EXCEPTION_IPV6CT		= IPA_STATUS_EXCEPTION_NAT,
63 };
64 
65 /* Status element provided by hardware */
66 struct ipa_status {
67 	u8 opcode;		/* enum ipa_status_opcode */
68 	u8 exception;		/* enum ipa_status_exception */
69 	__le16 mask;
70 	__le16 pkt_len;
71 	u8 endp_src_idx;
72 	u8 endp_dst_idx;
73 	__le32 metadata;
74 	__le32 flags1;
75 	__le64 flags2;
76 	__le32 flags3;
77 	__le32 flags4;
78 };
79 
80 /* Field masks for struct ipa_status structure fields */
81 
82 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
83 
84 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
85 
86 #define IPA_STATUS_FLAGS1_FLT_LOCAL_FMASK	GENMASK(0, 0)
87 #define IPA_STATUS_FLAGS1_FLT_HASH_FMASK	GENMASK(1, 1)
88 #define IPA_STATUS_FLAGS1_FLT_GLOBAL_FMASK	GENMASK(2, 2)
89 #define IPA_STATUS_FLAGS1_FLT_RET_HDR_FMASK	GENMASK(3, 3)
90 #define IPA_STATUS_FLAGS1_FLT_RULE_ID_FMASK	GENMASK(13, 4)
91 #define IPA_STATUS_FLAGS1_RT_LOCAL_FMASK	GENMASK(14, 14)
92 #define IPA_STATUS_FLAGS1_RT_HASH_FMASK		GENMASK(15, 15)
93 #define IPA_STATUS_FLAGS1_UCP_FMASK		GENMASK(16, 16)
94 #define IPA_STATUS_FLAGS1_RT_TBL_IDX_FMASK	GENMASK(21, 17)
95 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
96 
97 #define IPA_STATUS_FLAGS2_NAT_HIT_FMASK		GENMASK_ULL(0, 0)
98 #define IPA_STATUS_FLAGS2_NAT_ENTRY_IDX_FMASK	GENMASK_ULL(13, 1)
99 #define IPA_STATUS_FLAGS2_NAT_TYPE_FMASK	GENMASK_ULL(15, 14)
100 #define IPA_STATUS_FLAGS2_TAG_INFO_FMASK	GENMASK_ULL(63, 16)
101 
102 #define IPA_STATUS_FLAGS3_SEQ_NUM_FMASK		GENMASK(7, 0)
103 #define IPA_STATUS_FLAGS3_TOD_CTR_FMASK		GENMASK(31, 8)
104 
105 #define IPA_STATUS_FLAGS4_HDR_LOCAL_FMASK	GENMASK(0, 0)
106 #define IPA_STATUS_FLAGS4_HDR_OFFSET_FMASK	GENMASK(10, 1)
107 #define IPA_STATUS_FLAGS4_FRAG_HIT_FMASK	GENMASK(11, 11)
108 #define IPA_STATUS_FLAGS4_FRAG_RULE_FMASK	GENMASK(15, 12)
109 #define IPA_STATUS_FLAGS4_HW_SPECIFIC_FMASK	GENMASK(31, 16)
110 
111 #ifdef IPA_VALIDATE
112 
113 static void ipa_endpoint_validate_build(void)
114 {
115 	/* The aggregation byte limit defines the point at which an
116 	 * aggregation window will close.  It is programmed into the
117 	 * IPA hardware as a number of KB.  We don't use "hard byte
118 	 * limit" aggregation, which means that we need to supply
119 	 * enough space in a receive buffer to hold a complete MTU
120 	 * plus normal skb overhead *after* that aggregation byte
121 	 * limit has been crossed.
122 	 *
123 	 * This check just ensures we don't define a receive buffer
124 	 * size that would exceed what we can represent in the field
125 	 * that is used to program its size.
126 	 */
127 	BUILD_BUG_ON(IPA_RX_BUFFER_SIZE >
128 		     field_max(AGGR_BYTE_LIMIT_FMASK) * SZ_1K +
129 		     IPA_MTU + IPA_RX_BUFFER_OVERHEAD);
130 
131 	/* I honestly don't know where this requirement comes from.  But
132 	 * it holds, and if we someday need to loosen the constraint we
133 	 * can try to track it down.
134 	 */
135 	BUILD_BUG_ON(sizeof(struct ipa_status) % 4);
136 }
137 
138 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
139 			    const struct ipa_gsi_endpoint_data *all_data,
140 			    const struct ipa_gsi_endpoint_data *data)
141 {
142 	const struct ipa_gsi_endpoint_data *other_data;
143 	struct device *dev = &ipa->pdev->dev;
144 	enum ipa_endpoint_name other_name;
145 
146 	if (ipa_gsi_endpoint_data_empty(data))
147 		return true;
148 
149 	if (!data->toward_ipa) {
150 		if (data->endpoint.filter_support) {
151 			dev_err(dev, "filtering not supported for "
152 					"RX endpoint %u\n",
153 				data->endpoint_id);
154 			return false;
155 		}
156 
157 		return true;	/* Nothing more to check for RX */
158 	}
159 
160 	if (data->endpoint.config.status_enable) {
161 		other_name = data->endpoint.config.tx.status_endpoint;
162 		if (other_name >= count) {
163 			dev_err(dev, "status endpoint name %u out of range "
164 					"for endpoint %u\n",
165 				other_name, data->endpoint_id);
166 			return false;
167 		}
168 
169 		/* Status endpoint must be defined... */
170 		other_data = &all_data[other_name];
171 		if (ipa_gsi_endpoint_data_empty(other_data)) {
172 			dev_err(dev, "DMA endpoint name %u undefined "
173 					"for endpoint %u\n",
174 				other_name, data->endpoint_id);
175 			return false;
176 		}
177 
178 		/* ...and has to be an RX endpoint... */
179 		if (other_data->toward_ipa) {
180 			dev_err(dev,
181 				"status endpoint for endpoint %u not RX\n",
182 				data->endpoint_id);
183 			return false;
184 		}
185 
186 		/* ...and if it's to be an AP endpoint... */
187 		if (other_data->ee_id == GSI_EE_AP) {
188 			/* ...make sure it has status enabled. */
189 			if (!other_data->endpoint.config.status_enable) {
190 				dev_err(dev,
191 					"status not enabled for endpoint %u\n",
192 					other_data->endpoint_id);
193 				return false;
194 			}
195 		}
196 	}
197 
198 	if (data->endpoint.config.dma_mode) {
199 		other_name = data->endpoint.config.dma_endpoint;
200 		if (other_name >= count) {
201 			dev_err(dev, "DMA endpoint name %u out of range "
202 					"for endpoint %u\n",
203 				other_name, data->endpoint_id);
204 			return false;
205 		}
206 
207 		other_data = &all_data[other_name];
208 		if (ipa_gsi_endpoint_data_empty(other_data)) {
209 			dev_err(dev, "DMA endpoint name %u undefined "
210 					"for endpoint %u\n",
211 				other_name, data->endpoint_id);
212 			return false;
213 		}
214 	}
215 
216 	return true;
217 }
218 
219 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
220 				    const struct ipa_gsi_endpoint_data *data)
221 {
222 	const struct ipa_gsi_endpoint_data *dp = data;
223 	struct device *dev = &ipa->pdev->dev;
224 	enum ipa_endpoint_name name;
225 
226 	ipa_endpoint_validate_build();
227 
228 	if (count > IPA_ENDPOINT_COUNT) {
229 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
230 			count, IPA_ENDPOINT_COUNT);
231 		return false;
232 	}
233 
234 	/* Make sure needed endpoints have defined data */
235 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
236 		dev_err(dev, "command TX endpoint not defined\n");
237 		return false;
238 	}
239 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
240 		dev_err(dev, "LAN RX endpoint not defined\n");
241 		return false;
242 	}
243 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
244 		dev_err(dev, "AP->modem TX endpoint not defined\n");
245 		return false;
246 	}
247 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
248 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
249 		return false;
250 	}
251 
252 	for (name = 0; name < count; name++, dp++)
253 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
254 			return false;
255 
256 	return true;
257 }
258 
259 #else /* !IPA_VALIDATE */
260 
261 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
262 				    const struct ipa_gsi_endpoint_data *data)
263 {
264 	return true;
265 }
266 
267 #endif /* !IPA_VALIDATE */
268 
269 /* Allocate a transaction to use on a non-command endpoint */
270 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
271 						  u32 tre_count)
272 {
273 	struct gsi *gsi = &endpoint->ipa->gsi;
274 	u32 channel_id = endpoint->channel_id;
275 	enum dma_data_direction direction;
276 
277 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
278 
279 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
280 }
281 
282 /* suspend_delay represents suspend for RX, delay for TX endpoints.
283  * Note that suspend is not supported starting with IPA v4.0.
284  */
285 static bool
286 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
287 {
288 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
289 	struct ipa *ipa = endpoint->ipa;
290 	bool state;
291 	u32 mask;
292 	u32 val;
293 
294 	/* Suspend is not supported for IPA v4.0+.  Delay doesn't work
295 	 * correctly on IPA v4.2.
296 	 *
297 	 * if (endpoint->toward_ipa)
298 	 * 	assert(ipa->version != IPA_VERSION_4.2);
299 	 * else
300 	 * 	assert(ipa->version == IPA_VERSION_3_5_1);
301 	 */
302 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
303 
304 	val = ioread32(ipa->reg_virt + offset);
305 	/* Don't bother if it's already in the requested state */
306 	state = !!(val & mask);
307 	if (suspend_delay != state) {
308 		val ^= mask;
309 		iowrite32(val, ipa->reg_virt + offset);
310 	}
311 
312 	return state;
313 }
314 
315 /* We currently don't care what the previous state was for delay mode */
316 static void
317 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
318 {
319 	/* assert(endpoint->toward_ipa); */
320 
321 	(void)ipa_endpoint_init_ctrl(endpoint, enable);
322 }
323 
324 /* Returns previous suspend state (true means it was enabled) */
325 static bool
326 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
327 {
328 	/* assert(!endpoint->toward_ipa); */
329 
330 	return ipa_endpoint_init_ctrl(endpoint, enable);
331 }
332 
333 /* Enable or disable delay or suspend mode on all modem endpoints */
334 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
335 {
336 	bool support_suspend;
337 	u32 endpoint_id;
338 
339 	/* DELAY mode doesn't work correctly on IPA v4.2 */
340 	if (ipa->version == IPA_VERSION_4_2)
341 		return;
342 
343 	/* Only IPA v3.5.1 supports SUSPEND mode on RX endpoints */
344 	support_suspend = ipa->version == IPA_VERSION_3_5_1;
345 
346 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
347 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
348 
349 		if (endpoint->ee_id != GSI_EE_MODEM)
350 			continue;
351 
352 		/* Set TX delay mode, or for IPA v3.5.1 RX suspend mode */
353 		if (endpoint->toward_ipa)
354 			ipa_endpoint_program_delay(endpoint, enable);
355 		else if (support_suspend)
356 			(void)ipa_endpoint_program_suspend(endpoint, enable);
357 	}
358 }
359 
360 /* Reset all modem endpoints to use the default exception endpoint */
361 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
362 {
363 	u32 initialized = ipa->initialized;
364 	struct gsi_trans *trans;
365 	u32 count;
366 
367 	/* We need one command per modem TX endpoint.  We can get an upper
368 	 * bound on that by assuming all initialized endpoints are modem->IPA.
369 	 * That won't happen, and we could be more precise, but this is fine
370 	 * for now.  We need to end the transaction with a "tag process."
371 	 */
372 	count = hweight32(initialized) + ipa_cmd_tag_process_count();
373 	trans = ipa_cmd_trans_alloc(ipa, count);
374 	if (!trans) {
375 		dev_err(&ipa->pdev->dev,
376 			"no transaction to reset modem exception endpoints\n");
377 		return -EBUSY;
378 	}
379 
380 	while (initialized) {
381 		u32 endpoint_id = __ffs(initialized);
382 		struct ipa_endpoint *endpoint;
383 		u32 offset;
384 
385 		initialized ^= BIT(endpoint_id);
386 
387 		/* We only reset modem TX endpoints */
388 		endpoint = &ipa->endpoint[endpoint_id];
389 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
390 			continue;
391 
392 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
393 
394 		/* Value written is 0, and all bits are updated.  That
395 		 * means status is disabled on the endpoint, and as a
396 		 * result all other fields in the register are ignored.
397 		 */
398 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
399 	}
400 
401 	ipa_cmd_tag_process_add(trans);
402 
403 	/* XXX This should have a 1 second timeout */
404 	gsi_trans_commit_wait(trans);
405 
406 	return 0;
407 }
408 
409 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
410 {
411 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
412 	u32 val = 0;
413 
414 	/* FRAG_OFFLOAD_EN is 0 */
415 	if (endpoint->data->checksum) {
416 		if (endpoint->toward_ipa) {
417 			u32 checksum_offset;
418 
419 			val |= u32_encode_bits(IPA_CS_OFFLOAD_UL,
420 					       CS_OFFLOAD_EN_FMASK);
421 			/* Checksum header offset is in 4-byte units */
422 			checksum_offset = sizeof(struct rmnet_map_header);
423 			checksum_offset /= sizeof(u32);
424 			val |= u32_encode_bits(checksum_offset,
425 					       CS_METADATA_HDR_OFFSET_FMASK);
426 		} else {
427 			val |= u32_encode_bits(IPA_CS_OFFLOAD_DL,
428 					       CS_OFFLOAD_EN_FMASK);
429 		}
430 	} else {
431 		val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE,
432 				       CS_OFFLOAD_EN_FMASK);
433 	}
434 	/* CS_GEN_QMB_MASTER_SEL is 0 */
435 
436 	iowrite32(val, endpoint->ipa->reg_virt + offset);
437 }
438 
439 /**
440  * We program QMAP endpoints so each packet received is preceded by a QMAP
441  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
442  * packet size field, and we have the IPA hardware populate both for each
443  * received packet.  The header is configured (in the HDR_EXT register)
444  * to use big endian format.
445  *
446  * The packet size is written into the QMAP header's pkt_len field.  That
447  * location is defined here using the HDR_OFST_PKT_SIZE field.
448  *
449  * The mux_id comes from a 4-byte metadata value supplied with each packet
450  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
451  * value that we want, in its low-order byte.  A bitmask defined in the
452  * endpoint's METADATA_MASK register defines which byte within the modem
453  * metadata contains the mux_id.  And the OFST_METADATA field programmed
454  * here indicates where the extracted byte should be placed within the QMAP
455  * header.
456  */
457 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
458 {
459 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
460 	u32 val = 0;
461 
462 	if (endpoint->data->qmap) {
463 		size_t header_size = sizeof(struct rmnet_map_header);
464 
465 		/* We might supply a checksum header after the QMAP header */
466 		if (endpoint->toward_ipa && endpoint->data->checksum)
467 			header_size += sizeof(struct rmnet_map_ul_csum_header);
468 		val |= u32_encode_bits(header_size, HDR_LEN_FMASK);
469 
470 		/* Define how to fill fields in a received QMAP header */
471 		if (!endpoint->toward_ipa) {
472 			u32 off;	/* Field offset within header */
473 
474 			/* Where IPA will write the metadata value */
475 			off = offsetof(struct rmnet_map_header, mux_id);
476 			val |= u32_encode_bits(off, HDR_OFST_METADATA_FMASK);
477 
478 			/* Where IPA will write the length */
479 			off = offsetof(struct rmnet_map_header, pkt_len);
480 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
481 			val |= u32_encode_bits(off, HDR_OFST_PKT_SIZE_FMASK);
482 		}
483 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
484 		val |= HDR_OFST_METADATA_VALID_FMASK;
485 
486 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
487 		/* HDR_A5_MUX is 0 */
488 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
489 		/* HDR_METADATA_REG_VALID is 0 (TX only) */
490 	}
491 
492 	iowrite32(val, endpoint->ipa->reg_virt + offset);
493 }
494 
495 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
496 {
497 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
498 	u32 pad_align = endpoint->data->rx.pad_align;
499 	u32 val = 0;
500 
501 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
502 
503 	/* A QMAP header contains a 6 bit pad field at offset 0.  The RMNet
504 	 * driver assumes this field is meaningful in packets it receives,
505 	 * and assumes the header's payload length includes that padding.
506 	 * The RMNet driver does *not* pad packets it sends, however, so
507 	 * the pad field (although 0) should be ignored.
508 	 */
509 	if (endpoint->data->qmap && !endpoint->toward_ipa) {
510 		val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
511 		/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
512 		val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
513 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
514 	}
515 
516 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
517 	if (!endpoint->toward_ipa)
518 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
519 
520 	iowrite32(val, endpoint->ipa->reg_virt + offset);
521 }
522 
523 
524 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
525 {
526 	u32 endpoint_id = endpoint->endpoint_id;
527 	u32 val = 0;
528 	u32 offset;
529 
530 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
531 
532 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
533 	if (!endpoint->toward_ipa && endpoint->data->qmap)
534 		val = cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
535 
536 	iowrite32(val, endpoint->ipa->reg_virt + offset);
537 }
538 
539 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
540 {
541 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
542 	u32 val;
543 
544 	if (endpoint->toward_ipa && endpoint->data->dma_mode) {
545 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
546 		u32 dma_endpoint_id;
547 
548 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
549 
550 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
551 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
552 	} else {
553 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
554 	}
555 	/* Other bitfields unspecified (and 0) */
556 
557 	iowrite32(val, endpoint->ipa->reg_virt + offset);
558 }
559 
560 /* Compute the aggregation size value to use for a given buffer size */
561 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
562 {
563 	/* We don't use "hard byte limit" aggregation, so we define the
564 	 * aggregation limit such that our buffer has enough space *after*
565 	 * that limit to receive a full MTU of data, plus overhead.
566 	 */
567 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
568 
569 	return rx_buffer_size / SZ_1K;
570 }
571 
572 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
573 {
574 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
575 	u32 val = 0;
576 
577 	if (endpoint->data->aggregation) {
578 		if (!endpoint->toward_ipa) {
579 			u32 aggr_size = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
580 			u32 limit;
581 
582 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
583 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
584 			val |= u32_encode_bits(aggr_size,
585 					       AGGR_BYTE_LIMIT_FMASK);
586 			limit = IPA_AGGR_TIME_LIMIT_DEFAULT;
587 			val |= u32_encode_bits(limit / IPA_AGGR_GRANULARITY,
588 					       AGGR_TIME_LIMIT_FMASK);
589 			val |= u32_encode_bits(0, AGGR_PKT_LIMIT_FMASK);
590 			if (endpoint->data->rx.aggr_close_eof)
591 				val |= AGGR_SW_EOF_ACTIVE_FMASK;
592 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
593 		} else {
594 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
595 					       AGGR_EN_FMASK);
596 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
597 			/* other fields ignored */
598 		}
599 		/* AGGR_FORCE_CLOSE is 0 */
600 	} else {
601 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
602 		/* other fields ignored */
603 	}
604 
605 	iowrite32(val, endpoint->ipa->reg_virt + offset);
606 }
607 
608 /* A return value of 0 indicates an error */
609 static u32 ipa_reg_init_hol_block_timer_val(struct ipa *ipa, u32 microseconds)
610 {
611 	u32 scale;
612 	u32 base;
613 	u32 val;
614 
615 	if (!microseconds)
616 		return 0;	/* invalid delay */
617 
618 	/* Timer is represented in units of clock ticks. */
619 	if (ipa->version < IPA_VERSION_4_2)
620 		return microseconds;	/* XXX Needs to be computed */
621 
622 	/* IPA v4.2 represents the tick count as base * scale */
623 	scale = 1;			/* XXX Needs to be computed */
624 	if (scale > field_max(SCALE_FMASK))
625 		return 0;		/* scale too big */
626 
627 	base = DIV_ROUND_CLOSEST(microseconds, scale);
628 	if (base > field_max(BASE_VALUE_FMASK))
629 		return 0;		/* microseconds too big */
630 
631 	val = u32_encode_bits(scale, SCALE_FMASK);
632 	val |= u32_encode_bits(base, BASE_VALUE_FMASK);
633 
634 	return val;
635 }
636 
637 static int ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
638 					     u32 microseconds)
639 {
640 	u32 endpoint_id = endpoint->endpoint_id;
641 	struct ipa *ipa = endpoint->ipa;
642 	u32 offset;
643 	u32 val;
644 
645 	/* XXX We'll fix this when the register definition is clear */
646 	if (microseconds) {
647 		struct device *dev = &ipa->pdev->dev;
648 
649 		dev_err(dev, "endpoint %u non-zero HOLB period (ignoring)\n",
650 			endpoint_id);
651 		microseconds = 0;
652 	}
653 
654 	if (microseconds) {
655 		val = ipa_reg_init_hol_block_timer_val(ipa, microseconds);
656 		if (!val)
657 			return -EINVAL;
658 	} else {
659 		val = 0;	/* timeout is immediate */
660 	}
661 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
662 	iowrite32(val, ipa->reg_virt + offset);
663 
664 	return 0;
665 }
666 
667 static void
668 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
669 {
670 	u32 endpoint_id = endpoint->endpoint_id;
671 	u32 offset;
672 	u32 val;
673 
674 	val = u32_encode_bits(enable ? 1 : 0, HOL_BLOCK_EN_FMASK);
675 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
676 	iowrite32(val, endpoint->ipa->reg_virt + offset);
677 }
678 
679 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
680 {
681 	u32 i;
682 
683 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
684 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
685 
686 		if (endpoint->ee_id != GSI_EE_MODEM)
687 			continue;
688 
689 		(void)ipa_endpoint_init_hol_block_timer(endpoint, 0);
690 		ipa_endpoint_init_hol_block_enable(endpoint, true);
691 	}
692 }
693 
694 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
695 {
696 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
697 	u32 val = 0;
698 
699 	/* DEAGGR_HDR_LEN is 0 */
700 	/* PACKET_OFFSET_VALID is 0 */
701 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
702 	/* MAX_PACKET_LEN is 0 (not enforced) */
703 
704 	iowrite32(val, endpoint->ipa->reg_virt + offset);
705 }
706 
707 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
708 {
709 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
710 	u32 seq_type = endpoint->seq_type;
711 	u32 val = 0;
712 
713 	/* Sequencer type is made up of four nibbles */
714 	val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK);
715 	val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK);
716 	/* The second two apply to replicated packets */
717 	val |= u32_encode_bits((seq_type >> 8) & 0xf, HPS_REP_SEQ_TYPE_FMASK);
718 	val |= u32_encode_bits((seq_type >> 12) & 0xf, DPS_REP_SEQ_TYPE_FMASK);
719 
720 	iowrite32(val, endpoint->ipa->reg_virt + offset);
721 }
722 
723 /**
724  * ipa_endpoint_skb_tx() - Transmit a socket buffer
725  * @endpoint:	Endpoint pointer
726  * @skb:	Socket buffer to send
727  *
728  * Returns:	0 if successful, or a negative error code
729  */
730 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
731 {
732 	struct gsi_trans *trans;
733 	u32 nr_frags;
734 	int ret;
735 
736 	/* Make sure source endpoint's TLV FIFO has enough entries to
737 	 * hold the linear portion of the skb and all its fragments.
738 	 * If not, see if we can linearize it before giving up.
739 	 */
740 	nr_frags = skb_shinfo(skb)->nr_frags;
741 	if (1 + nr_frags > endpoint->trans_tre_max) {
742 		if (skb_linearize(skb))
743 			return -E2BIG;
744 		nr_frags = 0;
745 	}
746 
747 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
748 	if (!trans)
749 		return -EBUSY;
750 
751 	ret = gsi_trans_skb_add(trans, skb);
752 	if (ret)
753 		goto err_trans_free;
754 	trans->data = skb;	/* transaction owns skb now */
755 
756 	gsi_trans_commit(trans, !netdev_xmit_more());
757 
758 	return 0;
759 
760 err_trans_free:
761 	gsi_trans_free(trans);
762 
763 	return -ENOMEM;
764 }
765 
766 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
767 {
768 	u32 endpoint_id = endpoint->endpoint_id;
769 	struct ipa *ipa = endpoint->ipa;
770 	u32 val = 0;
771 	u32 offset;
772 
773 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
774 
775 	if (endpoint->data->status_enable) {
776 		val |= STATUS_EN_FMASK;
777 		if (endpoint->toward_ipa) {
778 			enum ipa_endpoint_name name;
779 			u32 status_endpoint_id;
780 
781 			name = endpoint->data->tx.status_endpoint;
782 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
783 
784 			val |= u32_encode_bits(status_endpoint_id,
785 					       STATUS_ENDP_FMASK);
786 		}
787 		/* STATUS_LOCATION is 0 (status element precedes packet) */
788 		/* The next field is present for IPA v4.0 and above */
789 		/* STATUS_PKT_SUPPRESS_FMASK is 0 */
790 	}
791 
792 	iowrite32(val, ipa->reg_virt + offset);
793 }
794 
795 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
796 {
797 	struct gsi_trans *trans;
798 	bool doorbell = false;
799 	struct page *page;
800 	u32 offset;
801 	u32 len;
802 	int ret;
803 
804 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
805 	if (!page)
806 		return -ENOMEM;
807 
808 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
809 	if (!trans)
810 		goto err_free_pages;
811 
812 	/* Offset the buffer to make space for skb headroom */
813 	offset = NET_SKB_PAD;
814 	len = IPA_RX_BUFFER_SIZE - offset;
815 
816 	ret = gsi_trans_page_add(trans, page, len, offset);
817 	if (ret)
818 		goto err_trans_free;
819 	trans->data = page;	/* transaction owns page now */
820 
821 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
822 		doorbell = true;
823 		endpoint->replenish_ready = 0;
824 	}
825 
826 	gsi_trans_commit(trans, doorbell);
827 
828 	return 0;
829 
830 err_trans_free:
831 	gsi_trans_free(trans);
832 err_free_pages:
833 	__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
834 
835 	return -ENOMEM;
836 }
837 
838 /**
839  * ipa_endpoint_replenish() - Replenish the Rx packets cache.
840  *
841  * Allocate RX packet wrapper structures with maximal socket buffers
842  * for an endpoint.  These are supplied to the hardware, which fills
843  * them with incoming data.
844  */
845 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count)
846 {
847 	struct gsi *gsi;
848 	u32 backlog;
849 
850 	if (!endpoint->replenish_enabled) {
851 		if (count)
852 			atomic_add(count, &endpoint->replenish_saved);
853 		return;
854 	}
855 
856 
857 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
858 		if (ipa_endpoint_replenish_one(endpoint))
859 			goto try_again_later;
860 	if (count)
861 		atomic_add(count, &endpoint->replenish_backlog);
862 
863 	return;
864 
865 try_again_later:
866 	/* The last one didn't succeed, so fix the backlog */
867 	backlog = atomic_inc_return(&endpoint->replenish_backlog);
868 
869 	if (count)
870 		atomic_add(count, &endpoint->replenish_backlog);
871 
872 	/* Whenever a receive buffer transaction completes we'll try to
873 	 * replenish again.  It's unlikely, but if we fail to supply even
874 	 * one buffer, nothing will trigger another replenish attempt.
875 	 * Receive buffer transactions use one TRE, so schedule work to
876 	 * try replenishing again if our backlog is *all* available TREs.
877 	 */
878 	gsi = &endpoint->ipa->gsi;
879 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
880 		schedule_delayed_work(&endpoint->replenish_work,
881 				      msecs_to_jiffies(1));
882 }
883 
884 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
885 {
886 	struct gsi *gsi = &endpoint->ipa->gsi;
887 	u32 max_backlog;
888 	u32 saved;
889 
890 	endpoint->replenish_enabled = true;
891 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
892 		atomic_add(saved, &endpoint->replenish_backlog);
893 
894 	/* Start replenishing if hardware currently has no buffers */
895 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
896 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
897 		ipa_endpoint_replenish(endpoint, 0);
898 }
899 
900 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
901 {
902 	u32 backlog;
903 
904 	endpoint->replenish_enabled = false;
905 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
906 		atomic_add(backlog, &endpoint->replenish_saved);
907 }
908 
909 static void ipa_endpoint_replenish_work(struct work_struct *work)
910 {
911 	struct delayed_work *dwork = to_delayed_work(work);
912 	struct ipa_endpoint *endpoint;
913 
914 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
915 
916 	ipa_endpoint_replenish(endpoint, 0);
917 }
918 
919 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
920 				  void *data, u32 len, u32 extra)
921 {
922 	struct sk_buff *skb;
923 
924 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
925 	if (skb) {
926 		skb_put(skb, len);
927 		memcpy(skb->data, data, len);
928 		skb->truesize += extra;
929 	}
930 
931 	/* Now receive it, or drop it if there's no netdev */
932 	if (endpoint->netdev)
933 		ipa_modem_skb_rx(endpoint->netdev, skb);
934 	else if (skb)
935 		dev_kfree_skb_any(skb);
936 }
937 
938 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
939 				   struct page *page, u32 len)
940 {
941 	struct sk_buff *skb;
942 
943 	/* Nothing to do if there's no netdev */
944 	if (!endpoint->netdev)
945 		return false;
946 
947 	/* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
948 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
949 	if (skb) {
950 		/* Reserve the headroom and account for the data */
951 		skb_reserve(skb, NET_SKB_PAD);
952 		skb_put(skb, len);
953 	}
954 
955 	/* Receive the buffer (or record drop if unable to build it) */
956 	ipa_modem_skb_rx(endpoint->netdev, skb);
957 
958 	return skb != NULL;
959 }
960 
961 /* The format of a packet status element is the same for several status
962  * types (opcodes).  The NEW_FRAG_RULE, LOG, DCMP (decompression) types
963  * aren't currently supported
964  */
965 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
966 {
967 	switch (opcode) {
968 	case IPA_STATUS_OPCODE_PACKET:
969 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
970 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
971 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
972 		return true;
973 	default:
974 		return false;
975 	}
976 }
977 
978 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
979 				     const struct ipa_status *status)
980 {
981 	u32 endpoint_id;
982 
983 	if (!ipa_status_format_packet(status->opcode))
984 		return true;
985 	if (!status->pkt_len)
986 		return true;
987 	endpoint_id = u32_get_bits(status->endp_dst_idx,
988 				   IPA_STATUS_DST_IDX_FMASK);
989 	if (endpoint_id != endpoint->endpoint_id)
990 		return true;
991 
992 	return false;	/* Don't skip this packet, process it */
993 }
994 
995 /* Return whether the status indicates the packet should be dropped */
996 static bool ipa_status_drop_packet(const struct ipa_status *status)
997 {
998 	u32 val;
999 
1000 	/* Deaggregation exceptions we drop; others we consume */
1001 	if (status->exception)
1002 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1003 
1004 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1005 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1006 
1007 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1008 }
1009 
1010 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1011 				      struct page *page, u32 total_len)
1012 {
1013 	void *data = page_address(page) + NET_SKB_PAD;
1014 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1015 	u32 resid = total_len;
1016 
1017 	while (resid) {
1018 		const struct ipa_status *status = data;
1019 		u32 align;
1020 		u32 len;
1021 
1022 		if (resid < sizeof(*status)) {
1023 			dev_err(&endpoint->ipa->pdev->dev,
1024 				"short message (%u bytes < %zu byte status)\n",
1025 				resid, sizeof(*status));
1026 			break;
1027 		}
1028 
1029 		/* Skip over status packets that lack packet data */
1030 		if (ipa_endpoint_status_skip(endpoint, status)) {
1031 			data += sizeof(*status);
1032 			resid -= sizeof(*status);
1033 			continue;
1034 		}
1035 
1036 		/* Compute the amount of buffer space consumed by the
1037 		 * packet, including the status element.  If the hardware
1038 		 * is configured to pad packet data to an aligned boundary,
1039 		 * account for that.  And if checksum offload is is enabled
1040 		 * a trailer containing computed checksum information will
1041 		 * be appended.
1042 		 */
1043 		align = endpoint->data->rx.pad_align ? : 1;
1044 		len = le16_to_cpu(status->pkt_len);
1045 		len = sizeof(*status) + ALIGN(len, align);
1046 		if (endpoint->data->checksum)
1047 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1048 
1049 		/* Charge the new packet with a proportional fraction of
1050 		 * the unused space in the original receive buffer.
1051 		 * XXX Charge a proportion of the *whole* receive buffer?
1052 		 */
1053 		if (!ipa_status_drop_packet(status)) {
1054 			u32 extra = unused * len / total_len;
1055 			void *data2 = data + sizeof(*status);
1056 			u32 len2 = le16_to_cpu(status->pkt_len);
1057 
1058 			/* Client receives only packet data (no status) */
1059 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1060 		}
1061 
1062 		/* Consume status and the full packet it describes */
1063 		data += len;
1064 		resid -= len;
1065 	}
1066 }
1067 
1068 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1069 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1070 				     struct gsi_trans *trans)
1071 {
1072 }
1073 
1074 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1075 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1076 				     struct gsi_trans *trans)
1077 {
1078 	struct page *page;
1079 
1080 	ipa_endpoint_replenish(endpoint, 1);
1081 
1082 	if (trans->cancelled)
1083 		return;
1084 
1085 	/* Parse or build a socket buffer using the actual received length */
1086 	page = trans->data;
1087 	if (endpoint->data->status_enable)
1088 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1089 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1090 		trans->data = NULL;	/* Pages have been consumed */
1091 }
1092 
1093 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1094 				 struct gsi_trans *trans)
1095 {
1096 	if (endpoint->toward_ipa)
1097 		ipa_endpoint_tx_complete(endpoint, trans);
1098 	else
1099 		ipa_endpoint_rx_complete(endpoint, trans);
1100 }
1101 
1102 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1103 				struct gsi_trans *trans)
1104 {
1105 	if (endpoint->toward_ipa) {
1106 		struct ipa *ipa = endpoint->ipa;
1107 
1108 		/* Nothing to do for command transactions */
1109 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1110 			struct sk_buff *skb = trans->data;
1111 
1112 			if (skb)
1113 				dev_kfree_skb_any(skb);
1114 		}
1115 	} else {
1116 		struct page *page = trans->data;
1117 
1118 		if (page)
1119 			__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1120 	}
1121 }
1122 
1123 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1124 {
1125 	u32 val;
1126 
1127 	/* ROUTE_DIS is 0 */
1128 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1129 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1130 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1131 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1132 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1133 
1134 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1135 }
1136 
1137 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1138 {
1139 	ipa_endpoint_default_route_set(ipa, 0);
1140 }
1141 
1142 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
1143 {
1144 	u32 mask = BIT(endpoint->endpoint_id);
1145 	struct ipa *ipa = endpoint->ipa;
1146 	u32 offset;
1147 	u32 val;
1148 
1149 	/* assert(mask & ipa->available); */
1150 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
1151 	val = ioread32(ipa->reg_virt + offset);
1152 
1153 	return !!(val & mask);
1154 }
1155 
1156 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
1157 {
1158 	u32 mask = BIT(endpoint->endpoint_id);
1159 	struct ipa *ipa = endpoint->ipa;
1160 
1161 	/* assert(mask & ipa->available); */
1162 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
1163 }
1164 
1165 /**
1166  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1167  * @endpoint:	Endpoint to be reset
1168  *
1169  * If aggregation is active on an RX endpoint when a reset is performed
1170  * on its underlying GSI channel, a special sequence of actions must be
1171  * taken to ensure the IPA pipeline is properly cleared.
1172  *
1173  * @Return:	0 if successful, or a negative error code
1174  */
1175 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1176 {
1177 	struct device *dev = &endpoint->ipa->pdev->dev;
1178 	struct ipa *ipa = endpoint->ipa;
1179 	struct gsi *gsi = &ipa->gsi;
1180 	bool suspended = false;
1181 	dma_addr_t addr;
1182 	bool legacy;
1183 	u32 retries;
1184 	u32 len = 1;
1185 	void *virt;
1186 	int ret;
1187 
1188 	virt = kzalloc(len, GFP_KERNEL);
1189 	if (!virt)
1190 		return -ENOMEM;
1191 
1192 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1193 	if (dma_mapping_error(dev, addr)) {
1194 		ret = -ENOMEM;
1195 		goto out_kfree;
1196 	}
1197 
1198 	/* Force close aggregation before issuing the reset */
1199 	ipa_endpoint_force_close(endpoint);
1200 
1201 	/* Reset and reconfigure the channel with the doorbell engine
1202 	 * disabled.  Then poll until we know aggregation is no longer
1203 	 * active.  We'll re-enable the doorbell (if appropriate) when
1204 	 * we reset again below.
1205 	 */
1206 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1207 
1208 	/* Make sure the channel isn't suspended */
1209 	if (endpoint->ipa->version == IPA_VERSION_3_5_1)
1210 		suspended = ipa_endpoint_program_suspend(endpoint, false);
1211 
1212 	/* Start channel and do a 1 byte read */
1213 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1214 	if (ret)
1215 		goto out_suspend_again;
1216 
1217 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1218 	if (ret)
1219 		goto err_endpoint_stop;
1220 
1221 	/* Wait for aggregation to be closed on the channel */
1222 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1223 	do {
1224 		if (!ipa_endpoint_aggr_active(endpoint))
1225 			break;
1226 		msleep(1);
1227 	} while (retries--);
1228 
1229 	/* Check one last time */
1230 	if (ipa_endpoint_aggr_active(endpoint))
1231 		dev_err(dev, "endpoint %u still active during reset\n",
1232 			endpoint->endpoint_id);
1233 
1234 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1235 
1236 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1237 	if (ret)
1238 		goto out_suspend_again;
1239 
1240 	/* Finally, reset and reconfigure the channel again (re-enabling the
1241 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1242 	 * complete the channel reset sequence.  Finish by suspending the
1243 	 * channel again (if necessary).
1244 	 */
1245 	legacy = ipa->version == IPA_VERSION_3_5_1;
1246 	gsi_channel_reset(gsi, endpoint->channel_id, legacy);
1247 
1248 	msleep(1);
1249 
1250 	goto out_suspend_again;
1251 
1252 err_endpoint_stop:
1253 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1254 out_suspend_again:
1255 	if (suspended)
1256 		(void)ipa_endpoint_program_suspend(endpoint, true);
1257 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1258 out_kfree:
1259 	kfree(virt);
1260 
1261 	return ret;
1262 }
1263 
1264 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1265 {
1266 	u32 channel_id = endpoint->channel_id;
1267 	struct ipa *ipa = endpoint->ipa;
1268 	bool special;
1269 	bool legacy;
1270 	int ret = 0;
1271 
1272 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1273 	 * is active, we need to handle things specially to recover.
1274 	 * All other cases just need to reset the underlying GSI channel.
1275 	 *
1276 	 * IPA v3.5.1 enables the doorbell engine.  Newer versions do not.
1277 	 */
1278 	legacy = ipa->version == IPA_VERSION_3_5_1;
1279 	special = !endpoint->toward_ipa && endpoint->data->aggregation;
1280 	if (special && ipa_endpoint_aggr_active(endpoint))
1281 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1282 	else
1283 		gsi_channel_reset(&ipa->gsi, channel_id, legacy);
1284 
1285 	if (ret)
1286 		dev_err(&ipa->pdev->dev,
1287 			"error %d resetting channel %u for endpoint %u\n",
1288 			ret, endpoint->channel_id, endpoint->endpoint_id);
1289 }
1290 
1291 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1292 {
1293 	if (endpoint->toward_ipa) {
1294 		if (endpoint->ipa->version != IPA_VERSION_4_2)
1295 			ipa_endpoint_program_delay(endpoint, false);
1296 		ipa_endpoint_init_hdr_ext(endpoint);
1297 		ipa_endpoint_init_aggr(endpoint);
1298 		ipa_endpoint_init_deaggr(endpoint);
1299 		ipa_endpoint_init_seq(endpoint);
1300 	} else {
1301 		if (endpoint->ipa->version == IPA_VERSION_3_5_1)
1302 			(void)ipa_endpoint_program_suspend(endpoint, false);
1303 		ipa_endpoint_init_hdr_ext(endpoint);
1304 		ipa_endpoint_init_aggr(endpoint);
1305 	}
1306 	ipa_endpoint_init_cfg(endpoint);
1307 	ipa_endpoint_init_hdr(endpoint);
1308 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1309 	ipa_endpoint_init_mode(endpoint);
1310 	ipa_endpoint_status(endpoint);
1311 }
1312 
1313 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1314 {
1315 	struct ipa *ipa = endpoint->ipa;
1316 	struct gsi *gsi = &ipa->gsi;
1317 	int ret;
1318 
1319 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1320 	if (ret) {
1321 		dev_err(&ipa->pdev->dev,
1322 			"error %d starting %cX channel %u for endpoint %u\n",
1323 			ret, endpoint->toward_ipa ? 'T' : 'R',
1324 			endpoint->channel_id, endpoint->endpoint_id);
1325 		return ret;
1326 	}
1327 
1328 	if (!endpoint->toward_ipa) {
1329 		ipa_interrupt_suspend_enable(ipa->interrupt,
1330 					     endpoint->endpoint_id);
1331 		ipa_endpoint_replenish_enable(endpoint);
1332 	}
1333 
1334 	ipa->enabled |= BIT(endpoint->endpoint_id);
1335 
1336 	return 0;
1337 }
1338 
1339 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1340 {
1341 	u32 mask = BIT(endpoint->endpoint_id);
1342 	struct ipa *ipa = endpoint->ipa;
1343 	struct gsi *gsi = &ipa->gsi;
1344 	int ret;
1345 
1346 	if (!(ipa->enabled & mask))
1347 		return;
1348 
1349 	ipa->enabled ^= mask;
1350 
1351 	if (!endpoint->toward_ipa) {
1352 		ipa_endpoint_replenish_disable(endpoint);
1353 		ipa_interrupt_suspend_disable(ipa->interrupt,
1354 					      endpoint->endpoint_id);
1355 	}
1356 
1357 	/* Note that if stop fails, the channel's state is not well-defined */
1358 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1359 	if (ret)
1360 		dev_err(&ipa->pdev->dev,
1361 			"error %d attempting to stop endpoint %u\n", ret,
1362 			endpoint->endpoint_id);
1363 }
1364 
1365 /**
1366  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
1367  * @endpoint_id:	Endpoint on which to emulate a suspend
1368  *
1369  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
1370  *  with an open aggregation frame.  This is to work around a hardware
1371  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
1372  *  generated when it should be.
1373  */
1374 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
1375 {
1376 	struct ipa *ipa = endpoint->ipa;
1377 
1378 	/* assert(ipa->version == IPA_VERSION_3_5_1); */
1379 
1380 	if (!endpoint->data->aggregation)
1381 		return;
1382 
1383 	/* Nothing to do if the endpoint doesn't have aggregation open */
1384 	if (!ipa_endpoint_aggr_active(endpoint))
1385 		return;
1386 
1387 	/* Force close aggregation */
1388 	ipa_endpoint_force_close(endpoint);
1389 
1390 	ipa_interrupt_simulate_suspend(ipa->interrupt);
1391 }
1392 
1393 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1394 {
1395 	struct device *dev = &endpoint->ipa->pdev->dev;
1396 	struct gsi *gsi = &endpoint->ipa->gsi;
1397 	bool stop_channel;
1398 	int ret;
1399 
1400 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1401 		return;
1402 
1403 	if (!endpoint->toward_ipa)
1404 		ipa_endpoint_replenish_disable(endpoint);
1405 
1406 	/* IPA v3.5.1 doesn't use channel stop for suspend */
1407 	stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1408 	if (!endpoint->toward_ipa && !stop_channel) {
1409 		/* Due to a hardware bug, a client suspended with an open
1410 		 * aggregation frame will not generate a SUSPEND IPA
1411 		 * interrupt.  We work around this by force-closing the
1412 		 * aggregation frame, then simulating the arrival of such
1413 		 * an interrupt.
1414 		 */
1415 		(void)ipa_endpoint_program_suspend(endpoint, true);
1416 		ipa_endpoint_suspend_aggr(endpoint);
1417 	}
1418 
1419 	ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
1420 	if (ret)
1421 		dev_err(dev, "error %d suspending channel %u\n", ret,
1422 			endpoint->channel_id);
1423 }
1424 
1425 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1426 {
1427 	struct device *dev = &endpoint->ipa->pdev->dev;
1428 	struct gsi *gsi = &endpoint->ipa->gsi;
1429 	bool start_channel;
1430 	int ret;
1431 
1432 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1433 		return;
1434 
1435 	/* IPA v3.5.1 doesn't use channel start for resume */
1436 	start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1437 	if (!endpoint->toward_ipa && !start_channel)
1438 		(void)ipa_endpoint_program_suspend(endpoint, false);
1439 
1440 	ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
1441 	if (ret)
1442 		dev_err(dev, "error %d resuming channel %u\n", ret,
1443 			endpoint->channel_id);
1444 	else if (!endpoint->toward_ipa)
1445 		ipa_endpoint_replenish_enable(endpoint);
1446 }
1447 
1448 void ipa_endpoint_suspend(struct ipa *ipa)
1449 {
1450 	if (ipa->modem_netdev)
1451 		ipa_modem_suspend(ipa->modem_netdev);
1452 
1453 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1454 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1455 }
1456 
1457 void ipa_endpoint_resume(struct ipa *ipa)
1458 {
1459 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1460 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1461 
1462 	if (ipa->modem_netdev)
1463 		ipa_modem_resume(ipa->modem_netdev);
1464 }
1465 
1466 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1467 {
1468 	struct gsi *gsi = &endpoint->ipa->gsi;
1469 	u32 channel_id = endpoint->channel_id;
1470 
1471 	/* Only AP endpoints get set up */
1472 	if (endpoint->ee_id != GSI_EE_AP)
1473 		return;
1474 
1475 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1476 	if (!endpoint->toward_ipa) {
1477 		/* RX transactions require a single TRE, so the maximum
1478 		 * backlog is the same as the maximum outstanding TREs.
1479 		 */
1480 		endpoint->replenish_enabled = false;
1481 		atomic_set(&endpoint->replenish_saved,
1482 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1483 		atomic_set(&endpoint->replenish_backlog, 0);
1484 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1485 				  ipa_endpoint_replenish_work);
1486 	}
1487 
1488 	ipa_endpoint_program(endpoint);
1489 
1490 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1491 }
1492 
1493 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1494 {
1495 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1496 
1497 	if (!endpoint->toward_ipa)
1498 		cancel_delayed_work_sync(&endpoint->replenish_work);
1499 
1500 	ipa_endpoint_reset(endpoint);
1501 }
1502 
1503 void ipa_endpoint_setup(struct ipa *ipa)
1504 {
1505 	u32 initialized = ipa->initialized;
1506 
1507 	ipa->set_up = 0;
1508 	while (initialized) {
1509 		u32 endpoint_id = __ffs(initialized);
1510 
1511 		initialized ^= BIT(endpoint_id);
1512 
1513 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1514 	}
1515 }
1516 
1517 void ipa_endpoint_teardown(struct ipa *ipa)
1518 {
1519 	u32 set_up = ipa->set_up;
1520 
1521 	while (set_up) {
1522 		u32 endpoint_id = __fls(set_up);
1523 
1524 		set_up ^= BIT(endpoint_id);
1525 
1526 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1527 	}
1528 	ipa->set_up = 0;
1529 }
1530 
1531 int ipa_endpoint_config(struct ipa *ipa)
1532 {
1533 	struct device *dev = &ipa->pdev->dev;
1534 	u32 initialized;
1535 	u32 rx_base;
1536 	u32 rx_mask;
1537 	u32 tx_mask;
1538 	int ret = 0;
1539 	u32 max;
1540 	u32 val;
1541 
1542 	/* Find out about the endpoints supplied by the hardware, and ensure
1543 	 * the highest one doesn't exceed the number we support.
1544 	 */
1545 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1546 
1547 	/* Our RX is an IPA producer */
1548 	rx_base = u32_get_bits(val, BAM_PROD_LOWEST_FMASK);
1549 	max = rx_base + u32_get_bits(val, BAM_MAX_PROD_PIPES_FMASK);
1550 	if (max > IPA_ENDPOINT_MAX) {
1551 		dev_err(dev, "too many endpoints (%u > %u)\n",
1552 			max, IPA_ENDPOINT_MAX);
1553 		return -EINVAL;
1554 	}
1555 	rx_mask = GENMASK(max - 1, rx_base);
1556 
1557 	/* Our TX is an IPA consumer */
1558 	max = u32_get_bits(val, BAM_MAX_CONS_PIPES_FMASK);
1559 	tx_mask = GENMASK(max - 1, 0);
1560 
1561 	ipa->available = rx_mask | tx_mask;
1562 
1563 	/* Check for initialized endpoints not supported by the hardware */
1564 	if (ipa->initialized & ~ipa->available) {
1565 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1566 			ipa->initialized & ~ipa->available);
1567 		ret = -EINVAL;		/* Report other errors too */
1568 	}
1569 
1570 	initialized = ipa->initialized;
1571 	while (initialized) {
1572 		u32 endpoint_id = __ffs(initialized);
1573 		struct ipa_endpoint *endpoint;
1574 
1575 		initialized ^= BIT(endpoint_id);
1576 
1577 		/* Make sure it's pointing in the right direction */
1578 		endpoint = &ipa->endpoint[endpoint_id];
1579 		if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) {
1580 			dev_err(dev, "endpoint id %u wrong direction\n",
1581 				endpoint_id);
1582 			ret = -EINVAL;
1583 		}
1584 	}
1585 
1586 	return ret;
1587 }
1588 
1589 void ipa_endpoint_deconfig(struct ipa *ipa)
1590 {
1591 	ipa->available = 0;	/* Nothing more to do */
1592 }
1593 
1594 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1595 				  const struct ipa_gsi_endpoint_data *data)
1596 {
1597 	struct ipa_endpoint *endpoint;
1598 
1599 	endpoint = &ipa->endpoint[data->endpoint_id];
1600 
1601 	if (data->ee_id == GSI_EE_AP)
1602 		ipa->channel_map[data->channel_id] = endpoint;
1603 	ipa->name_map[name] = endpoint;
1604 
1605 	endpoint->ipa = ipa;
1606 	endpoint->ee_id = data->ee_id;
1607 	endpoint->seq_type = data->endpoint.seq_type;
1608 	endpoint->channel_id = data->channel_id;
1609 	endpoint->endpoint_id = data->endpoint_id;
1610 	endpoint->toward_ipa = data->toward_ipa;
1611 	endpoint->data = &data->endpoint.config;
1612 
1613 	ipa->initialized |= BIT(endpoint->endpoint_id);
1614 }
1615 
1616 void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1617 {
1618 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1619 
1620 	memset(endpoint, 0, sizeof(*endpoint));
1621 }
1622 
1623 void ipa_endpoint_exit(struct ipa *ipa)
1624 {
1625 	u32 initialized = ipa->initialized;
1626 
1627 	while (initialized) {
1628 		u32 endpoint_id = __fls(initialized);
1629 
1630 		initialized ^= BIT(endpoint_id);
1631 
1632 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1633 	}
1634 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1635 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1636 }
1637 
1638 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1639 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1640 		      const struct ipa_gsi_endpoint_data *data)
1641 {
1642 	enum ipa_endpoint_name name;
1643 	u32 filter_map;
1644 
1645 	if (!ipa_endpoint_data_valid(ipa, count, data))
1646 		return 0;	/* Error */
1647 
1648 	ipa->initialized = 0;
1649 
1650 	filter_map = 0;
1651 	for (name = 0; name < count; name++, data++) {
1652 		if (ipa_gsi_endpoint_data_empty(data))
1653 			continue;	/* Skip over empty slots */
1654 
1655 		ipa_endpoint_init_one(ipa, name, data);
1656 
1657 		if (data->endpoint.filter_support)
1658 			filter_map |= BIT(data->endpoint_id);
1659 	}
1660 
1661 	if (!ipa_filter_map_valid(ipa, filter_map))
1662 		goto err_endpoint_exit;
1663 
1664 	return filter_map;	/* Non-zero bitmask */
1665 
1666 err_endpoint_exit:
1667 	ipa_endpoint_exit(ipa);
1668 
1669 	return 0;	/* Error */
1670 }
1671