xref: /openbmc/linux/drivers/net/ipa/ipa_endpoint.c (revision 7e60e389)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_clock.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 #define IPA_REPLENISH_BATCH	16
29 
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
32 
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35 
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
38 
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
40 #define IPA_AGGR_TIME_LIMIT			500	/* microseconds */
41 
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 	IPA_STATUS_OPCODE_PACKET		= 0x01,
45 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
46 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
47 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
48 };
49 
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 	/* 0 means no exception */
53 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
54 };
55 
56 /* Status element provided by hardware */
57 struct ipa_status {
58 	u8 opcode;		/* enum ipa_status_opcode */
59 	u8 exception;		/* enum ipa_status_exception */
60 	__le16 mask;
61 	__le16 pkt_len;
62 	u8 endp_src_idx;
63 	u8 endp_dst_idx;
64 	__le32 metadata;
65 	__le32 flags1;
66 	__le64 flags2;
67 	__le32 flags3;
68 	__le32 flags4;
69 };
70 
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
73 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
74 
75 #ifdef IPA_VALIDATE
76 
77 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
78 			    const struct ipa_gsi_endpoint_data *all_data,
79 			    const struct ipa_gsi_endpoint_data *data)
80 {
81 	const struct ipa_gsi_endpoint_data *other_data;
82 	struct device *dev = &ipa->pdev->dev;
83 	enum ipa_endpoint_name other_name;
84 
85 	if (ipa_gsi_endpoint_data_empty(data))
86 		return true;
87 
88 	if (!data->toward_ipa) {
89 		if (data->endpoint.filter_support) {
90 			dev_err(dev, "filtering not supported for "
91 					"RX endpoint %u\n",
92 				data->endpoint_id);
93 			return false;
94 		}
95 
96 		return true;	/* Nothing more to check for RX */
97 	}
98 
99 	if (data->endpoint.config.status_enable) {
100 		other_name = data->endpoint.config.tx.status_endpoint;
101 		if (other_name >= count) {
102 			dev_err(dev, "status endpoint name %u out of range "
103 					"for endpoint %u\n",
104 				other_name, data->endpoint_id);
105 			return false;
106 		}
107 
108 		/* Status endpoint must be defined... */
109 		other_data = &all_data[other_name];
110 		if (ipa_gsi_endpoint_data_empty(other_data)) {
111 			dev_err(dev, "DMA endpoint name %u undefined "
112 					"for endpoint %u\n",
113 				other_name, data->endpoint_id);
114 			return false;
115 		}
116 
117 		/* ...and has to be an RX endpoint... */
118 		if (other_data->toward_ipa) {
119 			dev_err(dev,
120 				"status endpoint for endpoint %u not RX\n",
121 				data->endpoint_id);
122 			return false;
123 		}
124 
125 		/* ...and if it's to be an AP endpoint... */
126 		if (other_data->ee_id == GSI_EE_AP) {
127 			/* ...make sure it has status enabled. */
128 			if (!other_data->endpoint.config.status_enable) {
129 				dev_err(dev,
130 					"status not enabled for endpoint %u\n",
131 					other_data->endpoint_id);
132 				return false;
133 			}
134 		}
135 	}
136 
137 	if (data->endpoint.config.dma_mode) {
138 		other_name = data->endpoint.config.dma_endpoint;
139 		if (other_name >= count) {
140 			dev_err(dev, "DMA endpoint name %u out of range "
141 					"for endpoint %u\n",
142 				other_name, data->endpoint_id);
143 			return false;
144 		}
145 
146 		other_data = &all_data[other_name];
147 		if (ipa_gsi_endpoint_data_empty(other_data)) {
148 			dev_err(dev, "DMA endpoint name %u undefined "
149 					"for endpoint %u\n",
150 				other_name, data->endpoint_id);
151 			return false;
152 		}
153 	}
154 
155 	return true;
156 }
157 
158 static u32 aggr_byte_limit_max(enum ipa_version version)
159 {
160 	if (version < IPA_VERSION_4_5)
161 		return field_max(aggr_byte_limit_fmask(true));
162 
163 	return field_max(aggr_byte_limit_fmask(false));
164 }
165 
166 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
167 				    const struct ipa_gsi_endpoint_data *data)
168 {
169 	const struct ipa_gsi_endpoint_data *dp = data;
170 	struct device *dev = &ipa->pdev->dev;
171 	enum ipa_endpoint_name name;
172 	u32 limit;
173 
174 	/* Not sure where this constraint come from... */
175 	BUILD_BUG_ON(sizeof(struct ipa_status) % 4);
176 
177 	if (count > IPA_ENDPOINT_COUNT) {
178 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
179 			count, IPA_ENDPOINT_COUNT);
180 		return false;
181 	}
182 
183 	/* The aggregation byte limit defines the point at which an
184 	 * aggregation window will close.  It is programmed into the
185 	 * IPA hardware as a number of KB.  We don't use "hard byte
186 	 * limit" aggregation, which means that we need to supply
187 	 * enough space in a receive buffer to hold a complete MTU
188 	 * plus normal skb overhead *after* that aggregation byte
189 	 * limit has been crossed.
190 	 *
191 	 * This check ensures we don't define a receive buffer size
192 	 * that would exceed what we can represent in the field that
193 	 * is used to program its size.
194 	 */
195 	limit = aggr_byte_limit_max(ipa->version) * SZ_1K;
196 	limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
197 	if (limit < IPA_RX_BUFFER_SIZE) {
198 		dev_err(dev, "buffer size too big for aggregation (%u > %u)\n",
199 			IPA_RX_BUFFER_SIZE, limit);
200 		return false;
201 	}
202 
203 	/* Make sure needed endpoints have defined data */
204 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
205 		dev_err(dev, "command TX endpoint not defined\n");
206 		return false;
207 	}
208 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
209 		dev_err(dev, "LAN RX endpoint not defined\n");
210 		return false;
211 	}
212 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
213 		dev_err(dev, "AP->modem TX endpoint not defined\n");
214 		return false;
215 	}
216 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
217 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
218 		return false;
219 	}
220 
221 	for (name = 0; name < count; name++, dp++)
222 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
223 			return false;
224 
225 	return true;
226 }
227 
228 #else /* !IPA_VALIDATE */
229 
230 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
231 				    const struct ipa_gsi_endpoint_data *data)
232 {
233 	return true;
234 }
235 
236 #endif /* !IPA_VALIDATE */
237 
238 /* Allocate a transaction to use on a non-command endpoint */
239 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
240 						  u32 tre_count)
241 {
242 	struct gsi *gsi = &endpoint->ipa->gsi;
243 	u32 channel_id = endpoint->channel_id;
244 	enum dma_data_direction direction;
245 
246 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
247 
248 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
249 }
250 
251 /* suspend_delay represents suspend for RX, delay for TX endpoints.
252  * Note that suspend is not supported starting with IPA v4.0.
253  */
254 static bool
255 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
256 {
257 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
258 	struct ipa *ipa = endpoint->ipa;
259 	bool state;
260 	u32 mask;
261 	u32 val;
262 
263 	/* Suspend is not supported for IPA v4.0+.  Delay doesn't work
264 	 * correctly on IPA v4.2.
265 	 *
266 	 * if (endpoint->toward_ipa)
267 	 * 	assert(ipa->version != IPA_VERSION_4.2);
268 	 * else
269 	 * 	assert(ipa->version == IPA_VERSION_3_5_1);
270 	 */
271 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
272 
273 	val = ioread32(ipa->reg_virt + offset);
274 	/* Don't bother if it's already in the requested state */
275 	state = !!(val & mask);
276 	if (suspend_delay != state) {
277 		val ^= mask;
278 		iowrite32(val, ipa->reg_virt + offset);
279 	}
280 
281 	return state;
282 }
283 
284 /* We currently don't care what the previous state was for delay mode */
285 static void
286 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
287 {
288 	/* assert(endpoint->toward_ipa); */
289 
290 	/* Delay mode doesn't work properly for IPA v4.2 */
291 	if (endpoint->ipa->version != IPA_VERSION_4_2)
292 		(void)ipa_endpoint_init_ctrl(endpoint, enable);
293 }
294 
295 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
296 {
297 	u32 mask = BIT(endpoint->endpoint_id);
298 	struct ipa *ipa = endpoint->ipa;
299 	u32 offset;
300 	u32 val;
301 
302 	/* assert(mask & ipa->available); */
303 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
304 	val = ioread32(ipa->reg_virt + offset);
305 
306 	return !!(val & mask);
307 }
308 
309 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
310 {
311 	u32 mask = BIT(endpoint->endpoint_id);
312 	struct ipa *ipa = endpoint->ipa;
313 
314 	/* assert(mask & ipa->available); */
315 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
316 }
317 
318 /**
319  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
320  * @endpoint:	Endpoint on which to emulate a suspend
321  *
322  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
323  *  with an open aggregation frame.  This is to work around a hardware
324  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
325  *  generated when it should be.
326  */
327 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
328 {
329 	struct ipa *ipa = endpoint->ipa;
330 
331 	if (!endpoint->data->aggregation)
332 		return;
333 
334 	/* Nothing to do if the endpoint doesn't have aggregation open */
335 	if (!ipa_endpoint_aggr_active(endpoint))
336 		return;
337 
338 	/* Force close aggregation */
339 	ipa_endpoint_force_close(endpoint);
340 
341 	ipa_interrupt_simulate_suspend(ipa->interrupt);
342 }
343 
344 /* Returns previous suspend state (true means suspend was enabled) */
345 static bool
346 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
347 {
348 	bool suspended;
349 
350 	if (endpoint->ipa->version != IPA_VERSION_3_5_1)
351 		return enable;	/* For IPA v4.0+, no change made */
352 
353 	/* assert(!endpoint->toward_ipa); */
354 
355 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
356 
357 	/* A client suspended with an open aggregation frame will not
358 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
359 	 * ipa_endpoint_suspend_aggr() handle this.
360 	 */
361 	if (enable && !suspended)
362 		ipa_endpoint_suspend_aggr(endpoint);
363 
364 	return suspended;
365 }
366 
367 /* Enable or disable delay or suspend mode on all modem endpoints */
368 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
369 {
370 	u32 endpoint_id;
371 
372 	/* DELAY mode doesn't work correctly on IPA v4.2 */
373 	if (ipa->version == IPA_VERSION_4_2)
374 		return;
375 
376 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
377 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
378 
379 		if (endpoint->ee_id != GSI_EE_MODEM)
380 			continue;
381 
382 		/* Set TX delay mode or RX suspend mode */
383 		if (endpoint->toward_ipa)
384 			ipa_endpoint_program_delay(endpoint, enable);
385 		else
386 			(void)ipa_endpoint_program_suspend(endpoint, enable);
387 	}
388 }
389 
390 /* Reset all modem endpoints to use the default exception endpoint */
391 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
392 {
393 	u32 initialized = ipa->initialized;
394 	struct gsi_trans *trans;
395 	u32 count;
396 
397 	/* We need one command per modem TX endpoint.  We can get an upper
398 	 * bound on that by assuming all initialized endpoints are modem->IPA.
399 	 * That won't happen, and we could be more precise, but this is fine
400 	 * for now.  We need to end the transaction with a "tag process."
401 	 */
402 	count = hweight32(initialized) + ipa_cmd_tag_process_count();
403 	trans = ipa_cmd_trans_alloc(ipa, count);
404 	if (!trans) {
405 		dev_err(&ipa->pdev->dev,
406 			"no transaction to reset modem exception endpoints\n");
407 		return -EBUSY;
408 	}
409 
410 	while (initialized) {
411 		u32 endpoint_id = __ffs(initialized);
412 		struct ipa_endpoint *endpoint;
413 		u32 offset;
414 
415 		initialized ^= BIT(endpoint_id);
416 
417 		/* We only reset modem TX endpoints */
418 		endpoint = &ipa->endpoint[endpoint_id];
419 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
420 			continue;
421 
422 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
423 
424 		/* Value written is 0, and all bits are updated.  That
425 		 * means status is disabled on the endpoint, and as a
426 		 * result all other fields in the register are ignored.
427 		 */
428 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
429 	}
430 
431 	ipa_cmd_tag_process_add(trans);
432 
433 	/* XXX This should have a 1 second timeout */
434 	gsi_trans_commit_wait(trans);
435 
436 	return 0;
437 }
438 
439 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
440 {
441 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
442 	u32 val = 0;
443 
444 	/* FRAG_OFFLOAD_EN is 0 */
445 	if (endpoint->data->checksum) {
446 		if (endpoint->toward_ipa) {
447 			u32 checksum_offset;
448 
449 			val |= u32_encode_bits(IPA_CS_OFFLOAD_UL,
450 					       CS_OFFLOAD_EN_FMASK);
451 			/* Checksum header offset is in 4-byte units */
452 			checksum_offset = sizeof(struct rmnet_map_header);
453 			checksum_offset /= sizeof(u32);
454 			val |= u32_encode_bits(checksum_offset,
455 					       CS_METADATA_HDR_OFFSET_FMASK);
456 		} else {
457 			val |= u32_encode_bits(IPA_CS_OFFLOAD_DL,
458 					       CS_OFFLOAD_EN_FMASK);
459 		}
460 	} else {
461 		val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE,
462 				       CS_OFFLOAD_EN_FMASK);
463 	}
464 	/* CS_GEN_QMB_MASTER_SEL is 0 */
465 
466 	iowrite32(val, endpoint->ipa->reg_virt + offset);
467 }
468 
469 /**
470  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
471  * @endpoint:	Endpoint pointer
472  *
473  * We program QMAP endpoints so each packet received is preceded by a QMAP
474  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
475  * packet size field, and we have the IPA hardware populate both for each
476  * received packet.  The header is configured (in the HDR_EXT register)
477  * to use big endian format.
478  *
479  * The packet size is written into the QMAP header's pkt_len field.  That
480  * location is defined here using the HDR_OFST_PKT_SIZE field.
481  *
482  * The mux_id comes from a 4-byte metadata value supplied with each packet
483  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
484  * value that we want, in its low-order byte.  A bitmask defined in the
485  * endpoint's METADATA_MASK register defines which byte within the modem
486  * metadata contains the mux_id.  And the OFST_METADATA field programmed
487  * here indicates where the extracted byte should be placed within the QMAP
488  * header.
489  */
490 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
491 {
492 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
493 	struct ipa *ipa = endpoint->ipa;
494 	u32 val = 0;
495 
496 	if (endpoint->data->qmap) {
497 		size_t header_size = sizeof(struct rmnet_map_header);
498 		enum ipa_version version = ipa->version;
499 
500 		/* We might supply a checksum header after the QMAP header */
501 		if (endpoint->toward_ipa && endpoint->data->checksum)
502 			header_size += sizeof(struct rmnet_map_ul_csum_header);
503 		val |= ipa_header_size_encoded(version, header_size);
504 
505 		/* Define how to fill fields in a received QMAP header */
506 		if (!endpoint->toward_ipa) {
507 			u32 offset;	/* Field offset within header */
508 
509 			/* Where IPA will write the metadata value */
510 			offset = offsetof(struct rmnet_map_header, mux_id);
511 			val |= ipa_metadata_offset_encoded(version, offset);
512 
513 			/* Where IPA will write the length */
514 			offset = offsetof(struct rmnet_map_header, pkt_len);
515 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
516 			if (version == IPA_VERSION_4_5)
517 				offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
518 
519 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
520 			val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
521 		}
522 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
523 		val |= HDR_OFST_METADATA_VALID_FMASK;
524 
525 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
526 		/* HDR_A5_MUX is 0 */
527 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
528 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
529 	}
530 
531 	iowrite32(val, ipa->reg_virt + offset);
532 }
533 
534 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
535 {
536 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
537 	u32 pad_align = endpoint->data->rx.pad_align;
538 	struct ipa *ipa = endpoint->ipa;
539 	u32 val = 0;
540 
541 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
542 
543 	/* A QMAP header contains a 6 bit pad field at offset 0.  The RMNet
544 	 * driver assumes this field is meaningful in packets it receives,
545 	 * and assumes the header's payload length includes that padding.
546 	 * The RMNet driver does *not* pad packets it sends, however, so
547 	 * the pad field (although 0) should be ignored.
548 	 */
549 	if (endpoint->data->qmap && !endpoint->toward_ipa) {
550 		val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
551 		/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
552 		val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
553 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
554 	}
555 
556 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
557 	if (!endpoint->toward_ipa)
558 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
559 
560 	/* IPA v4.5 adds some most-significant bits to a few fields,
561 	 * two of which are defined in the HDR (not HDR_EXT) register.
562 	 */
563 	if (ipa->version == IPA_VERSION_4_5) {
564 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
565 		if (endpoint->data->qmap && !endpoint->toward_ipa) {
566 			u32 offset;
567 
568 			offset = offsetof(struct rmnet_map_header, pkt_len);
569 			offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
570 			val |= u32_encode_bits(offset,
571 					       HDR_OFST_PKT_SIZE_MSB_FMASK);
572 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
573 		}
574 	}
575 	iowrite32(val, ipa->reg_virt + offset);
576 }
577 
578 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
579 {
580 	u32 endpoint_id = endpoint->endpoint_id;
581 	u32 val = 0;
582 	u32 offset;
583 
584 	if (endpoint->toward_ipa)
585 		return;		/* Register not valid for TX endpoints */
586 
587 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
588 
589 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
590 	if (endpoint->data->qmap)
591 		val = cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
592 
593 	iowrite32(val, endpoint->ipa->reg_virt + offset);
594 }
595 
596 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
597 {
598 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
599 	u32 val;
600 
601 	if (!endpoint->toward_ipa)
602 		return;		/* Register not valid for RX endpoints */
603 
604 	if (endpoint->data->dma_mode) {
605 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
606 		u32 dma_endpoint_id;
607 
608 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
609 
610 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
611 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
612 	} else {
613 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
614 	}
615 	/* All other bits unspecified (and 0) */
616 
617 	iowrite32(val, endpoint->ipa->reg_virt + offset);
618 }
619 
620 /* Compute the aggregation size value to use for a given buffer size */
621 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
622 {
623 	/* We don't use "hard byte limit" aggregation, so we define the
624 	 * aggregation limit such that our buffer has enough space *after*
625 	 * that limit to receive a full MTU of data, plus overhead.
626 	 */
627 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
628 
629 	return rx_buffer_size / SZ_1K;
630 }
631 
632 /* Encoded values for AGGR endpoint register fields */
633 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
634 {
635 	if (version < IPA_VERSION_4_5)
636 		return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
637 
638 	return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
639 }
640 
641 /* Encode the aggregation timer limit (microseconds) based on IPA version */
642 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
643 {
644 	u32 gran_sel;
645 	u32 fmask;
646 	u32 val;
647 
648 	if (version < IPA_VERSION_4_5) {
649 		/* We set aggregation granularity in ipa_hardware_config() */
650 		limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
651 
652 		return u32_encode_bits(limit, aggr_time_limit_fmask(true));
653 	}
654 
655 	/* IPA v4.5 expresses the time limit using Qtime.  The AP has
656 	 * pulse generators 0 and 1 available, which were configured
657 	 * in ipa_qtime_config() to have granularity 100 usec and
658 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
659 	 * otherwise fall back to pulse generator 1.
660 	 */
661 	fmask = aggr_time_limit_fmask(false);
662 	val = DIV_ROUND_CLOSEST(limit, 100);
663 	if (val > field_max(fmask)) {
664 		/* Have to use pulse generator 1 (millisecond granularity) */
665 		gran_sel = AGGR_GRAN_SEL_FMASK;
666 		val = DIV_ROUND_CLOSEST(limit, 1000);
667 	} else {
668 		/* We can use pulse generator 0 (100 usec granularity) */
669 		gran_sel = 0;
670 	}
671 
672 	return gran_sel | u32_encode_bits(val, fmask);
673 }
674 
675 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
676 {
677 	u32 val = enabled ? 1 : 0;
678 
679 	if (version < IPA_VERSION_4_5)
680 		return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
681 
682 	return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
683 }
684 
685 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
686 {
687 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
688 	enum ipa_version version = endpoint->ipa->version;
689 	u32 val = 0;
690 
691 	if (endpoint->data->aggregation) {
692 		if (!endpoint->toward_ipa) {
693 			bool close_eof;
694 			u32 limit;
695 
696 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
697 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
698 
699 			limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
700 			val |= aggr_byte_limit_encoded(version, limit);
701 
702 			limit = IPA_AGGR_TIME_LIMIT;
703 			val |= aggr_time_limit_encoded(version, limit);
704 
705 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
706 
707 			close_eof = endpoint->data->rx.aggr_close_eof;
708 			val |= aggr_sw_eof_active_encoded(version, close_eof);
709 
710 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
711 		} else {
712 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
713 					       AGGR_EN_FMASK);
714 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
715 			/* other fields ignored */
716 		}
717 		/* AGGR_FORCE_CLOSE is 0 */
718 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
719 	} else {
720 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
721 		/* other fields ignored */
722 	}
723 
724 	iowrite32(val, endpoint->ipa->reg_virt + offset);
725 }
726 
727 /* Return the Qtime-based head-of-line blocking timer value that
728  * represents the given number of microseconds.  The result
729  * includes both the timer value and the selected timer granularity.
730  */
731 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
732 {
733 	u32 gran_sel;
734 	u32 val;
735 
736 	/* IPA v4.5 expresses time limits using Qtime.  The AP has
737 	 * pulse generators 0 and 1 available, which were configured
738 	 * in ipa_qtime_config() to have granularity 100 usec and
739 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
740 	 * otherwise fall back to pulse generator 1.
741 	 */
742 	val = DIV_ROUND_CLOSEST(microseconds, 100);
743 	if (val > field_max(TIME_LIMIT_FMASK)) {
744 		/* Have to use pulse generator 1 (millisecond granularity) */
745 		gran_sel = GRAN_SEL_FMASK;
746 		val = DIV_ROUND_CLOSEST(microseconds, 1000);
747 	} else {
748 		/* We can use pulse generator 0 (100 usec granularity) */
749 		gran_sel = 0;
750 	}
751 
752 	return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
753 }
754 
755 /* The head-of-line blocking timer is defined as a tick count.  For
756  * IPA version 4.5 the tick count is based on the Qtimer, which is
757  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
758  * each tick represents 128 cycles of the IPA core clock.
759  *
760  * Return the encoded value that should be written to that register
761  * that represents the timeout period provided.  For IPA v4.2 this
762  * encodes a base and scale value, while for earlier versions the
763  * value is a simple tick count.
764  */
765 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
766 {
767 	u32 width;
768 	u32 scale;
769 	u64 ticks;
770 	u64 rate;
771 	u32 high;
772 	u32 val;
773 
774 	if (!microseconds)
775 		return 0;	/* Nothing to compute if timer period is 0 */
776 
777 	if (ipa->version == IPA_VERSION_4_5)
778 		return hol_block_timer_qtime_val(ipa, microseconds);
779 
780 	/* Use 64 bit arithmetic to avoid overflow... */
781 	rate = ipa_clock_rate(ipa);
782 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
783 	/* ...but we still need to fit into a 32-bit register */
784 	WARN_ON(ticks > U32_MAX);
785 
786 	/* IPA v3.5.1 through v4.1 just record the tick count */
787 	if (ipa->version < IPA_VERSION_4_2)
788 		return (u32)ticks;
789 
790 	/* For IPA v4.2, the tick count is represented by base and
791 	 * scale fields within the 32-bit timer register, where:
792 	 *     ticks = base << scale;
793 	 * The best precision is achieved when the base value is as
794 	 * large as possible.  Find the highest set bit in the tick
795 	 * count, and extract the number of bits in the base field
796 	 * such that that high bit is included.
797 	 */
798 	high = fls(ticks);		/* 1..32 */
799 	width = HWEIGHT32(BASE_VALUE_FMASK);
800 	scale = high > width ? high - width : 0;
801 	if (scale) {
802 		/* If we're scaling, round up to get a closer result */
803 		ticks += 1 << (scale - 1);
804 		/* High bit was set, so rounding might have affected it */
805 		if (fls(ticks) != high)
806 			scale++;
807 	}
808 
809 	val = u32_encode_bits(scale, SCALE_FMASK);
810 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
811 
812 	return val;
813 }
814 
815 /* If microseconds is 0, timeout is immediate */
816 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
817 					      u32 microseconds)
818 {
819 	u32 endpoint_id = endpoint->endpoint_id;
820 	struct ipa *ipa = endpoint->ipa;
821 	u32 offset;
822 	u32 val;
823 
824 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
825 	val = hol_block_timer_val(ipa, microseconds);
826 	iowrite32(val, ipa->reg_virt + offset);
827 }
828 
829 static void
830 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
831 {
832 	u32 endpoint_id = endpoint->endpoint_id;
833 	u32 offset;
834 	u32 val;
835 
836 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
837 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
838 	iowrite32(val, endpoint->ipa->reg_virt + offset);
839 }
840 
841 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
842 {
843 	u32 i;
844 
845 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
846 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
847 
848 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
849 			continue;
850 
851 		ipa_endpoint_init_hol_block_timer(endpoint, 0);
852 		ipa_endpoint_init_hol_block_enable(endpoint, true);
853 	}
854 }
855 
856 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
857 {
858 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
859 	u32 val = 0;
860 
861 	if (!endpoint->toward_ipa)
862 		return;		/* Register not valid for RX endpoints */
863 
864 	/* DEAGGR_HDR_LEN is 0 */
865 	/* PACKET_OFFSET_VALID is 0 */
866 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
867 	/* MAX_PACKET_LEN is 0 (not enforced) */
868 
869 	iowrite32(val, endpoint->ipa->reg_virt + offset);
870 }
871 
872 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
873 {
874 	u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
875 	struct ipa *ipa = endpoint->ipa;
876 	u32 val;
877 
878 	val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
879 	iowrite32(val, ipa->reg_virt + offset);
880 }
881 
882 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
883 {
884 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
885 	u32 seq_type = endpoint->seq_type;
886 	u32 val = 0;
887 
888 	if (!endpoint->toward_ipa)
889 		return;		/* Register not valid for RX endpoints */
890 
891 	/* Sequencer type is made up of four nibbles */
892 	val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK);
893 	val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK);
894 	/* The second two apply to replicated packets */
895 	val |= u32_encode_bits((seq_type >> 8) & 0xf, HPS_REP_SEQ_TYPE_FMASK);
896 	val |= u32_encode_bits((seq_type >> 12) & 0xf, DPS_REP_SEQ_TYPE_FMASK);
897 
898 	iowrite32(val, endpoint->ipa->reg_virt + offset);
899 }
900 
901 /**
902  * ipa_endpoint_skb_tx() - Transmit a socket buffer
903  * @endpoint:	Endpoint pointer
904  * @skb:	Socket buffer to send
905  *
906  * Returns:	0 if successful, or a negative error code
907  */
908 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
909 {
910 	struct gsi_trans *trans;
911 	u32 nr_frags;
912 	int ret;
913 
914 	/* Make sure source endpoint's TLV FIFO has enough entries to
915 	 * hold the linear portion of the skb and all its fragments.
916 	 * If not, see if we can linearize it before giving up.
917 	 */
918 	nr_frags = skb_shinfo(skb)->nr_frags;
919 	if (1 + nr_frags > endpoint->trans_tre_max) {
920 		if (skb_linearize(skb))
921 			return -E2BIG;
922 		nr_frags = 0;
923 	}
924 
925 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
926 	if (!trans)
927 		return -EBUSY;
928 
929 	ret = gsi_trans_skb_add(trans, skb);
930 	if (ret)
931 		goto err_trans_free;
932 	trans->data = skb;	/* transaction owns skb now */
933 
934 	gsi_trans_commit(trans, !netdev_xmit_more());
935 
936 	return 0;
937 
938 err_trans_free:
939 	gsi_trans_free(trans);
940 
941 	return -ENOMEM;
942 }
943 
944 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
945 {
946 	u32 endpoint_id = endpoint->endpoint_id;
947 	struct ipa *ipa = endpoint->ipa;
948 	u32 val = 0;
949 	u32 offset;
950 
951 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
952 
953 	if (endpoint->data->status_enable) {
954 		val |= STATUS_EN_FMASK;
955 		if (endpoint->toward_ipa) {
956 			enum ipa_endpoint_name name;
957 			u32 status_endpoint_id;
958 
959 			name = endpoint->data->tx.status_endpoint;
960 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
961 
962 			val |= u32_encode_bits(status_endpoint_id,
963 					       STATUS_ENDP_FMASK);
964 		}
965 		/* STATUS_LOCATION is 0, meaning status element precedes
966 		 * packet (not present for IPA v4.5)
967 		 */
968 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
969 	}
970 
971 	iowrite32(val, ipa->reg_virt + offset);
972 }
973 
974 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
975 {
976 	struct gsi_trans *trans;
977 	bool doorbell = false;
978 	struct page *page;
979 	u32 offset;
980 	u32 len;
981 	int ret;
982 
983 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
984 	if (!page)
985 		return -ENOMEM;
986 
987 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
988 	if (!trans)
989 		goto err_free_pages;
990 
991 	/* Offset the buffer to make space for skb headroom */
992 	offset = NET_SKB_PAD;
993 	len = IPA_RX_BUFFER_SIZE - offset;
994 
995 	ret = gsi_trans_page_add(trans, page, len, offset);
996 	if (ret)
997 		goto err_trans_free;
998 	trans->data = page;	/* transaction owns page now */
999 
1000 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
1001 		doorbell = true;
1002 		endpoint->replenish_ready = 0;
1003 	}
1004 
1005 	gsi_trans_commit(trans, doorbell);
1006 
1007 	return 0;
1008 
1009 err_trans_free:
1010 	gsi_trans_free(trans);
1011 err_free_pages:
1012 	__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1013 
1014 	return -ENOMEM;
1015 }
1016 
1017 /**
1018  * ipa_endpoint_replenish() - Replenish the Rx packets cache.
1019  * @endpoint:	Endpoint to be replenished
1020  * @count:	Number of buffers to send to hardware
1021  *
1022  * Allocate RX packet wrapper structures with maximal socket buffers
1023  * for an endpoint.  These are supplied to the hardware, which fills
1024  * them with incoming data.
1025  */
1026 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count)
1027 {
1028 	struct gsi *gsi;
1029 	u32 backlog;
1030 
1031 	if (!endpoint->replenish_enabled) {
1032 		if (count)
1033 			atomic_add(count, &endpoint->replenish_saved);
1034 		return;
1035 	}
1036 
1037 
1038 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
1039 		if (ipa_endpoint_replenish_one(endpoint))
1040 			goto try_again_later;
1041 	if (count)
1042 		atomic_add(count, &endpoint->replenish_backlog);
1043 
1044 	return;
1045 
1046 try_again_later:
1047 	/* The last one didn't succeed, so fix the backlog */
1048 	backlog = atomic_inc_return(&endpoint->replenish_backlog);
1049 
1050 	if (count)
1051 		atomic_add(count, &endpoint->replenish_backlog);
1052 
1053 	/* Whenever a receive buffer transaction completes we'll try to
1054 	 * replenish again.  It's unlikely, but if we fail to supply even
1055 	 * one buffer, nothing will trigger another replenish attempt.
1056 	 * Receive buffer transactions use one TRE, so schedule work to
1057 	 * try replenishing again if our backlog is *all* available TREs.
1058 	 */
1059 	gsi = &endpoint->ipa->gsi;
1060 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
1061 		schedule_delayed_work(&endpoint->replenish_work,
1062 				      msecs_to_jiffies(1));
1063 }
1064 
1065 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1066 {
1067 	struct gsi *gsi = &endpoint->ipa->gsi;
1068 	u32 max_backlog;
1069 	u32 saved;
1070 
1071 	endpoint->replenish_enabled = true;
1072 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
1073 		atomic_add(saved, &endpoint->replenish_backlog);
1074 
1075 	/* Start replenishing if hardware currently has no buffers */
1076 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
1077 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
1078 		ipa_endpoint_replenish(endpoint, 0);
1079 }
1080 
1081 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1082 {
1083 	u32 backlog;
1084 
1085 	endpoint->replenish_enabled = false;
1086 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
1087 		atomic_add(backlog, &endpoint->replenish_saved);
1088 }
1089 
1090 static void ipa_endpoint_replenish_work(struct work_struct *work)
1091 {
1092 	struct delayed_work *dwork = to_delayed_work(work);
1093 	struct ipa_endpoint *endpoint;
1094 
1095 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1096 
1097 	ipa_endpoint_replenish(endpoint, 0);
1098 }
1099 
1100 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1101 				  void *data, u32 len, u32 extra)
1102 {
1103 	struct sk_buff *skb;
1104 
1105 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1106 	if (skb) {
1107 		skb_put(skb, len);
1108 		memcpy(skb->data, data, len);
1109 		skb->truesize += extra;
1110 	}
1111 
1112 	/* Now receive it, or drop it if there's no netdev */
1113 	if (endpoint->netdev)
1114 		ipa_modem_skb_rx(endpoint->netdev, skb);
1115 	else if (skb)
1116 		dev_kfree_skb_any(skb);
1117 }
1118 
1119 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1120 				   struct page *page, u32 len)
1121 {
1122 	struct sk_buff *skb;
1123 
1124 	/* Nothing to do if there's no netdev */
1125 	if (!endpoint->netdev)
1126 		return false;
1127 
1128 	/* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
1129 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1130 	if (skb) {
1131 		/* Reserve the headroom and account for the data */
1132 		skb_reserve(skb, NET_SKB_PAD);
1133 		skb_put(skb, len);
1134 	}
1135 
1136 	/* Receive the buffer (or record drop if unable to build it) */
1137 	ipa_modem_skb_rx(endpoint->netdev, skb);
1138 
1139 	return skb != NULL;
1140 }
1141 
1142 /* The format of a packet status element is the same for several status
1143  * types (opcodes).  Other types aren't currently supported.
1144  */
1145 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1146 {
1147 	switch (opcode) {
1148 	case IPA_STATUS_OPCODE_PACKET:
1149 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1150 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1151 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1152 		return true;
1153 	default:
1154 		return false;
1155 	}
1156 }
1157 
1158 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1159 				     const struct ipa_status *status)
1160 {
1161 	u32 endpoint_id;
1162 
1163 	if (!ipa_status_format_packet(status->opcode))
1164 		return true;
1165 	if (!status->pkt_len)
1166 		return true;
1167 	endpoint_id = u32_get_bits(status->endp_dst_idx,
1168 				   IPA_STATUS_DST_IDX_FMASK);
1169 	if (endpoint_id != endpoint->endpoint_id)
1170 		return true;
1171 
1172 	return false;	/* Don't skip this packet, process it */
1173 }
1174 
1175 /* Return whether the status indicates the packet should be dropped */
1176 static bool ipa_status_drop_packet(const struct ipa_status *status)
1177 {
1178 	u32 val;
1179 
1180 	/* Deaggregation exceptions we drop; all other types we consume */
1181 	if (status->exception)
1182 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1183 
1184 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1185 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1186 
1187 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1188 }
1189 
1190 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1191 				      struct page *page, u32 total_len)
1192 {
1193 	void *data = page_address(page) + NET_SKB_PAD;
1194 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1195 	u32 resid = total_len;
1196 
1197 	while (resid) {
1198 		const struct ipa_status *status = data;
1199 		u32 align;
1200 		u32 len;
1201 
1202 		if (resid < sizeof(*status)) {
1203 			dev_err(&endpoint->ipa->pdev->dev,
1204 				"short message (%u bytes < %zu byte status)\n",
1205 				resid, sizeof(*status));
1206 			break;
1207 		}
1208 
1209 		/* Skip over status packets that lack packet data */
1210 		if (ipa_endpoint_status_skip(endpoint, status)) {
1211 			data += sizeof(*status);
1212 			resid -= sizeof(*status);
1213 			continue;
1214 		}
1215 
1216 		/* Compute the amount of buffer space consumed by the
1217 		 * packet, including the status element.  If the hardware
1218 		 * is configured to pad packet data to an aligned boundary,
1219 		 * account for that.  And if checksum offload is is enabled
1220 		 * a trailer containing computed checksum information will
1221 		 * be appended.
1222 		 */
1223 		align = endpoint->data->rx.pad_align ? : 1;
1224 		len = le16_to_cpu(status->pkt_len);
1225 		len = sizeof(*status) + ALIGN(len, align);
1226 		if (endpoint->data->checksum)
1227 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1228 
1229 		/* Charge the new packet with a proportional fraction of
1230 		 * the unused space in the original receive buffer.
1231 		 * XXX Charge a proportion of the *whole* receive buffer?
1232 		 */
1233 		if (!ipa_status_drop_packet(status)) {
1234 			u32 extra = unused * len / total_len;
1235 			void *data2 = data + sizeof(*status);
1236 			u32 len2 = le16_to_cpu(status->pkt_len);
1237 
1238 			/* Client receives only packet data (no status) */
1239 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1240 		}
1241 
1242 		/* Consume status and the full packet it describes */
1243 		data += len;
1244 		resid -= len;
1245 	}
1246 }
1247 
1248 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1249 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1250 				     struct gsi_trans *trans)
1251 {
1252 }
1253 
1254 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1255 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1256 				     struct gsi_trans *trans)
1257 {
1258 	struct page *page;
1259 
1260 	ipa_endpoint_replenish(endpoint, 1);
1261 
1262 	if (trans->cancelled)
1263 		return;
1264 
1265 	/* Parse or build a socket buffer using the actual received length */
1266 	page = trans->data;
1267 	if (endpoint->data->status_enable)
1268 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1269 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1270 		trans->data = NULL;	/* Pages have been consumed */
1271 }
1272 
1273 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1274 				 struct gsi_trans *trans)
1275 {
1276 	if (endpoint->toward_ipa)
1277 		ipa_endpoint_tx_complete(endpoint, trans);
1278 	else
1279 		ipa_endpoint_rx_complete(endpoint, trans);
1280 }
1281 
1282 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1283 				struct gsi_trans *trans)
1284 {
1285 	if (endpoint->toward_ipa) {
1286 		struct ipa *ipa = endpoint->ipa;
1287 
1288 		/* Nothing to do for command transactions */
1289 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1290 			struct sk_buff *skb = trans->data;
1291 
1292 			if (skb)
1293 				dev_kfree_skb_any(skb);
1294 		}
1295 	} else {
1296 		struct page *page = trans->data;
1297 
1298 		if (page)
1299 			__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1300 	}
1301 }
1302 
1303 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1304 {
1305 	u32 val;
1306 
1307 	/* ROUTE_DIS is 0 */
1308 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1309 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1310 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1311 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1312 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1313 
1314 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1315 }
1316 
1317 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1318 {
1319 	ipa_endpoint_default_route_set(ipa, 0);
1320 }
1321 
1322 /**
1323  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1324  * @endpoint:	Endpoint to be reset
1325  *
1326  * If aggregation is active on an RX endpoint when a reset is performed
1327  * on its underlying GSI channel, a special sequence of actions must be
1328  * taken to ensure the IPA pipeline is properly cleared.
1329  *
1330  * Return:	0 if successful, or a negative error code
1331  */
1332 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1333 {
1334 	struct device *dev = &endpoint->ipa->pdev->dev;
1335 	struct ipa *ipa = endpoint->ipa;
1336 	struct gsi *gsi = &ipa->gsi;
1337 	bool suspended = false;
1338 	dma_addr_t addr;
1339 	u32 retries;
1340 	u32 len = 1;
1341 	void *virt;
1342 	int ret;
1343 
1344 	virt = kzalloc(len, GFP_KERNEL);
1345 	if (!virt)
1346 		return -ENOMEM;
1347 
1348 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1349 	if (dma_mapping_error(dev, addr)) {
1350 		ret = -ENOMEM;
1351 		goto out_kfree;
1352 	}
1353 
1354 	/* Force close aggregation before issuing the reset */
1355 	ipa_endpoint_force_close(endpoint);
1356 
1357 	/* Reset and reconfigure the channel with the doorbell engine
1358 	 * disabled.  Then poll until we know aggregation is no longer
1359 	 * active.  We'll re-enable the doorbell (if appropriate) when
1360 	 * we reset again below.
1361 	 */
1362 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1363 
1364 	/* Make sure the channel isn't suspended */
1365 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1366 
1367 	/* Start channel and do a 1 byte read */
1368 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1369 	if (ret)
1370 		goto out_suspend_again;
1371 
1372 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1373 	if (ret)
1374 		goto err_endpoint_stop;
1375 
1376 	/* Wait for aggregation to be closed on the channel */
1377 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1378 	do {
1379 		if (!ipa_endpoint_aggr_active(endpoint))
1380 			break;
1381 		msleep(1);
1382 	} while (retries--);
1383 
1384 	/* Check one last time */
1385 	if (ipa_endpoint_aggr_active(endpoint))
1386 		dev_err(dev, "endpoint %u still active during reset\n",
1387 			endpoint->endpoint_id);
1388 
1389 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1390 
1391 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1392 	if (ret)
1393 		goto out_suspend_again;
1394 
1395 	/* Finally, reset and reconfigure the channel again (re-enabling the
1396 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1397 	 * complete the channel reset sequence.  Finish by suspending the
1398 	 * channel again (if necessary).
1399 	 */
1400 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1401 
1402 	msleep(1);
1403 
1404 	goto out_suspend_again;
1405 
1406 err_endpoint_stop:
1407 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1408 out_suspend_again:
1409 	if (suspended)
1410 		(void)ipa_endpoint_program_suspend(endpoint, true);
1411 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1412 out_kfree:
1413 	kfree(virt);
1414 
1415 	return ret;
1416 }
1417 
1418 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1419 {
1420 	u32 channel_id = endpoint->channel_id;
1421 	struct ipa *ipa = endpoint->ipa;
1422 	bool special;
1423 	int ret = 0;
1424 
1425 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1426 	 * is active, we need to handle things specially to recover.
1427 	 * All other cases just need to reset the underlying GSI channel.
1428 	 */
1429 	special = ipa->version == IPA_VERSION_3_5_1 &&
1430 			!endpoint->toward_ipa &&
1431 			endpoint->data->aggregation;
1432 	if (special && ipa_endpoint_aggr_active(endpoint))
1433 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1434 	else
1435 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1436 
1437 	if (ret)
1438 		dev_err(&ipa->pdev->dev,
1439 			"error %d resetting channel %u for endpoint %u\n",
1440 			ret, endpoint->channel_id, endpoint->endpoint_id);
1441 }
1442 
1443 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1444 {
1445 	if (endpoint->toward_ipa)
1446 		ipa_endpoint_program_delay(endpoint, false);
1447 	else
1448 		(void)ipa_endpoint_program_suspend(endpoint, false);
1449 	ipa_endpoint_init_cfg(endpoint);
1450 	ipa_endpoint_init_hdr(endpoint);
1451 	ipa_endpoint_init_hdr_ext(endpoint);
1452 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1453 	ipa_endpoint_init_mode(endpoint);
1454 	ipa_endpoint_init_aggr(endpoint);
1455 	ipa_endpoint_init_deaggr(endpoint);
1456 	ipa_endpoint_init_rsrc_grp(endpoint);
1457 	ipa_endpoint_init_seq(endpoint);
1458 	ipa_endpoint_status(endpoint);
1459 }
1460 
1461 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1462 {
1463 	struct ipa *ipa = endpoint->ipa;
1464 	struct gsi *gsi = &ipa->gsi;
1465 	int ret;
1466 
1467 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1468 	if (ret) {
1469 		dev_err(&ipa->pdev->dev,
1470 			"error %d starting %cX channel %u for endpoint %u\n",
1471 			ret, endpoint->toward_ipa ? 'T' : 'R',
1472 			endpoint->channel_id, endpoint->endpoint_id);
1473 		return ret;
1474 	}
1475 
1476 	if (!endpoint->toward_ipa) {
1477 		ipa_interrupt_suspend_enable(ipa->interrupt,
1478 					     endpoint->endpoint_id);
1479 		ipa_endpoint_replenish_enable(endpoint);
1480 	}
1481 
1482 	ipa->enabled |= BIT(endpoint->endpoint_id);
1483 
1484 	return 0;
1485 }
1486 
1487 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1488 {
1489 	u32 mask = BIT(endpoint->endpoint_id);
1490 	struct ipa *ipa = endpoint->ipa;
1491 	struct gsi *gsi = &ipa->gsi;
1492 	int ret;
1493 
1494 	if (!(ipa->enabled & mask))
1495 		return;
1496 
1497 	ipa->enabled ^= mask;
1498 
1499 	if (!endpoint->toward_ipa) {
1500 		ipa_endpoint_replenish_disable(endpoint);
1501 		ipa_interrupt_suspend_disable(ipa->interrupt,
1502 					      endpoint->endpoint_id);
1503 	}
1504 
1505 	/* Note that if stop fails, the channel's state is not well-defined */
1506 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1507 	if (ret)
1508 		dev_err(&ipa->pdev->dev,
1509 			"error %d attempting to stop endpoint %u\n", ret,
1510 			endpoint->endpoint_id);
1511 }
1512 
1513 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1514 {
1515 	struct device *dev = &endpoint->ipa->pdev->dev;
1516 	struct gsi *gsi = &endpoint->ipa->gsi;
1517 	bool stop_channel;
1518 	int ret;
1519 
1520 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1521 		return;
1522 
1523 	if (!endpoint->toward_ipa) {
1524 		ipa_endpoint_replenish_disable(endpoint);
1525 		(void)ipa_endpoint_program_suspend(endpoint, true);
1526 	}
1527 
1528 	/* IPA v3.5.1 doesn't use channel stop for suspend */
1529 	stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1530 	ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
1531 	if (ret)
1532 		dev_err(dev, "error %d suspending channel %u\n", ret,
1533 			endpoint->channel_id);
1534 }
1535 
1536 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1537 {
1538 	struct device *dev = &endpoint->ipa->pdev->dev;
1539 	struct gsi *gsi = &endpoint->ipa->gsi;
1540 	bool start_channel;
1541 	int ret;
1542 
1543 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1544 		return;
1545 
1546 	if (!endpoint->toward_ipa)
1547 		(void)ipa_endpoint_program_suspend(endpoint, false);
1548 
1549 	/* IPA v3.5.1 doesn't use channel start for resume */
1550 	start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1551 	ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
1552 	if (ret)
1553 		dev_err(dev, "error %d resuming channel %u\n", ret,
1554 			endpoint->channel_id);
1555 	else if (!endpoint->toward_ipa)
1556 		ipa_endpoint_replenish_enable(endpoint);
1557 }
1558 
1559 void ipa_endpoint_suspend(struct ipa *ipa)
1560 {
1561 	if (!ipa->setup_complete)
1562 		return;
1563 
1564 	if (ipa->modem_netdev)
1565 		ipa_modem_suspend(ipa->modem_netdev);
1566 
1567 	ipa_cmd_tag_process(ipa);
1568 
1569 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1570 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1571 }
1572 
1573 void ipa_endpoint_resume(struct ipa *ipa)
1574 {
1575 	if (!ipa->setup_complete)
1576 		return;
1577 
1578 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1579 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1580 
1581 	if (ipa->modem_netdev)
1582 		ipa_modem_resume(ipa->modem_netdev);
1583 }
1584 
1585 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1586 {
1587 	struct gsi *gsi = &endpoint->ipa->gsi;
1588 	u32 channel_id = endpoint->channel_id;
1589 
1590 	/* Only AP endpoints get set up */
1591 	if (endpoint->ee_id != GSI_EE_AP)
1592 		return;
1593 
1594 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1595 	if (!endpoint->toward_ipa) {
1596 		/* RX transactions require a single TRE, so the maximum
1597 		 * backlog is the same as the maximum outstanding TREs.
1598 		 */
1599 		endpoint->replenish_enabled = false;
1600 		atomic_set(&endpoint->replenish_saved,
1601 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1602 		atomic_set(&endpoint->replenish_backlog, 0);
1603 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1604 				  ipa_endpoint_replenish_work);
1605 	}
1606 
1607 	ipa_endpoint_program(endpoint);
1608 
1609 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1610 }
1611 
1612 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1613 {
1614 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1615 
1616 	if (!endpoint->toward_ipa)
1617 		cancel_delayed_work_sync(&endpoint->replenish_work);
1618 
1619 	ipa_endpoint_reset(endpoint);
1620 }
1621 
1622 void ipa_endpoint_setup(struct ipa *ipa)
1623 {
1624 	u32 initialized = ipa->initialized;
1625 
1626 	ipa->set_up = 0;
1627 	while (initialized) {
1628 		u32 endpoint_id = __ffs(initialized);
1629 
1630 		initialized ^= BIT(endpoint_id);
1631 
1632 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1633 	}
1634 }
1635 
1636 void ipa_endpoint_teardown(struct ipa *ipa)
1637 {
1638 	u32 set_up = ipa->set_up;
1639 
1640 	while (set_up) {
1641 		u32 endpoint_id = __fls(set_up);
1642 
1643 		set_up ^= BIT(endpoint_id);
1644 
1645 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1646 	}
1647 	ipa->set_up = 0;
1648 }
1649 
1650 int ipa_endpoint_config(struct ipa *ipa)
1651 {
1652 	struct device *dev = &ipa->pdev->dev;
1653 	u32 initialized;
1654 	u32 rx_base;
1655 	u32 rx_mask;
1656 	u32 tx_mask;
1657 	int ret = 0;
1658 	u32 max;
1659 	u32 val;
1660 
1661 	/* Find out about the endpoints supplied by the hardware, and ensure
1662 	 * the highest one doesn't exceed the number we support.
1663 	 */
1664 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1665 
1666 	/* Our RX is an IPA producer */
1667 	rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1668 	max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1669 	if (max > IPA_ENDPOINT_MAX) {
1670 		dev_err(dev, "too many endpoints (%u > %u)\n",
1671 			max, IPA_ENDPOINT_MAX);
1672 		return -EINVAL;
1673 	}
1674 	rx_mask = GENMASK(max - 1, rx_base);
1675 
1676 	/* Our TX is an IPA consumer */
1677 	max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1678 	tx_mask = GENMASK(max - 1, 0);
1679 
1680 	ipa->available = rx_mask | tx_mask;
1681 
1682 	/* Check for initialized endpoints not supported by the hardware */
1683 	if (ipa->initialized & ~ipa->available) {
1684 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1685 			ipa->initialized & ~ipa->available);
1686 		ret = -EINVAL;		/* Report other errors too */
1687 	}
1688 
1689 	initialized = ipa->initialized;
1690 	while (initialized) {
1691 		u32 endpoint_id = __ffs(initialized);
1692 		struct ipa_endpoint *endpoint;
1693 
1694 		initialized ^= BIT(endpoint_id);
1695 
1696 		/* Make sure it's pointing in the right direction */
1697 		endpoint = &ipa->endpoint[endpoint_id];
1698 		if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) {
1699 			dev_err(dev, "endpoint id %u wrong direction\n",
1700 				endpoint_id);
1701 			ret = -EINVAL;
1702 		}
1703 	}
1704 
1705 	return ret;
1706 }
1707 
1708 void ipa_endpoint_deconfig(struct ipa *ipa)
1709 {
1710 	ipa->available = 0;	/* Nothing more to do */
1711 }
1712 
1713 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1714 				  const struct ipa_gsi_endpoint_data *data)
1715 {
1716 	struct ipa_endpoint *endpoint;
1717 
1718 	endpoint = &ipa->endpoint[data->endpoint_id];
1719 
1720 	if (data->ee_id == GSI_EE_AP)
1721 		ipa->channel_map[data->channel_id] = endpoint;
1722 	ipa->name_map[name] = endpoint;
1723 
1724 	endpoint->ipa = ipa;
1725 	endpoint->ee_id = data->ee_id;
1726 	endpoint->seq_type = data->endpoint.seq_type;
1727 	endpoint->channel_id = data->channel_id;
1728 	endpoint->endpoint_id = data->endpoint_id;
1729 	endpoint->toward_ipa = data->toward_ipa;
1730 	endpoint->data = &data->endpoint.config;
1731 
1732 	ipa->initialized |= BIT(endpoint->endpoint_id);
1733 }
1734 
1735 void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1736 {
1737 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1738 
1739 	memset(endpoint, 0, sizeof(*endpoint));
1740 }
1741 
1742 void ipa_endpoint_exit(struct ipa *ipa)
1743 {
1744 	u32 initialized = ipa->initialized;
1745 
1746 	while (initialized) {
1747 		u32 endpoint_id = __fls(initialized);
1748 
1749 		initialized ^= BIT(endpoint_id);
1750 
1751 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1752 	}
1753 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1754 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1755 }
1756 
1757 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1758 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1759 		      const struct ipa_gsi_endpoint_data *data)
1760 {
1761 	enum ipa_endpoint_name name;
1762 	u32 filter_map;
1763 
1764 	if (!ipa_endpoint_data_valid(ipa, count, data))
1765 		return 0;	/* Error */
1766 
1767 	ipa->initialized = 0;
1768 
1769 	filter_map = 0;
1770 	for (name = 0; name < count; name++, data++) {
1771 		if (ipa_gsi_endpoint_data_empty(data))
1772 			continue;	/* Skip over empty slots */
1773 
1774 		ipa_endpoint_init_one(ipa, name, data);
1775 
1776 		if (data->endpoint.filter_support)
1777 			filter_map |= BIT(data->endpoint_id);
1778 	}
1779 
1780 	if (!ipa_filter_map_valid(ipa, filter_map))
1781 		goto err_endpoint_exit;
1782 
1783 	return filter_map;	/* Non-zero bitmask */
1784 
1785 err_endpoint_exit:
1786 	ipa_endpoint_exit(ipa);
1787 
1788 	return 0;	/* Error */
1789 }
1790