1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/device.h> 9 #include <linux/slab.h> 10 #include <linux/bitfield.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_data.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_cmd.h" 20 #include "ipa_mem.h" 21 #include "ipa_modem.h" 22 #include "ipa_table.h" 23 #include "ipa_gsi.h" 24 #include "ipa_power.h" 25 26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) 27 28 #define IPA_REPLENISH_BATCH 16 29 30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */ 31 #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */ 32 33 /* The amount of RX buffer space consumed by standard skb overhead */ 34 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 35 36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ 37 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ 38 39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 40 #define IPA_AGGR_TIME_LIMIT 500 /* microseconds */ 41 42 /** enum ipa_status_opcode - status element opcode hardware values */ 43 enum ipa_status_opcode { 44 IPA_STATUS_OPCODE_PACKET = 0x01, 45 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, 46 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, 47 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, 48 }; 49 50 /** enum ipa_status_exception - status element exception type */ 51 enum ipa_status_exception { 52 /* 0 means no exception */ 53 IPA_STATUS_EXCEPTION_DEAGGR = 0x01, 54 }; 55 56 /* Status element provided by hardware */ 57 struct ipa_status { 58 u8 opcode; /* enum ipa_status_opcode */ 59 u8 exception; /* enum ipa_status_exception */ 60 __le16 mask; 61 __le16 pkt_len; 62 u8 endp_src_idx; 63 u8 endp_dst_idx; 64 __le32 metadata; 65 __le32 flags1; 66 __le64 flags2; 67 __le32 flags3; 68 __le32 flags4; 69 }; 70 71 /* Field masks for struct ipa_status structure fields */ 72 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) 73 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) 74 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) 75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) 76 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) 77 78 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 79 const struct ipa_gsi_endpoint_data *all_data, 80 const struct ipa_gsi_endpoint_data *data) 81 { 82 const struct ipa_gsi_endpoint_data *other_data; 83 struct device *dev = &ipa->pdev->dev; 84 enum ipa_endpoint_name other_name; 85 86 if (ipa_gsi_endpoint_data_empty(data)) 87 return true; 88 89 if (!data->toward_ipa) { 90 if (data->endpoint.filter_support) { 91 dev_err(dev, "filtering not supported for " 92 "RX endpoint %u\n", 93 data->endpoint_id); 94 return false; 95 } 96 97 return true; /* Nothing more to check for RX */ 98 } 99 100 if (data->endpoint.config.status_enable) { 101 other_name = data->endpoint.config.tx.status_endpoint; 102 if (other_name >= count) { 103 dev_err(dev, "status endpoint name %u out of range " 104 "for endpoint %u\n", 105 other_name, data->endpoint_id); 106 return false; 107 } 108 109 /* Status endpoint must be defined... */ 110 other_data = &all_data[other_name]; 111 if (ipa_gsi_endpoint_data_empty(other_data)) { 112 dev_err(dev, "DMA endpoint name %u undefined " 113 "for endpoint %u\n", 114 other_name, data->endpoint_id); 115 return false; 116 } 117 118 /* ...and has to be an RX endpoint... */ 119 if (other_data->toward_ipa) { 120 dev_err(dev, 121 "status endpoint for endpoint %u not RX\n", 122 data->endpoint_id); 123 return false; 124 } 125 126 /* ...and if it's to be an AP endpoint... */ 127 if (other_data->ee_id == GSI_EE_AP) { 128 /* ...make sure it has status enabled. */ 129 if (!other_data->endpoint.config.status_enable) { 130 dev_err(dev, 131 "status not enabled for endpoint %u\n", 132 other_data->endpoint_id); 133 return false; 134 } 135 } 136 } 137 138 if (data->endpoint.config.dma_mode) { 139 other_name = data->endpoint.config.dma_endpoint; 140 if (other_name >= count) { 141 dev_err(dev, "DMA endpoint name %u out of range " 142 "for endpoint %u\n", 143 other_name, data->endpoint_id); 144 return false; 145 } 146 147 other_data = &all_data[other_name]; 148 if (ipa_gsi_endpoint_data_empty(other_data)) { 149 dev_err(dev, "DMA endpoint name %u undefined " 150 "for endpoint %u\n", 151 other_name, data->endpoint_id); 152 return false; 153 } 154 } 155 156 return true; 157 } 158 159 static u32 aggr_byte_limit_max(enum ipa_version version) 160 { 161 if (version < IPA_VERSION_4_5) 162 return field_max(aggr_byte_limit_fmask(true)); 163 164 return field_max(aggr_byte_limit_fmask(false)); 165 } 166 167 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 168 const struct ipa_gsi_endpoint_data *data) 169 { 170 const struct ipa_gsi_endpoint_data *dp = data; 171 struct device *dev = &ipa->pdev->dev; 172 enum ipa_endpoint_name name; 173 u32 limit; 174 175 if (count > IPA_ENDPOINT_COUNT) { 176 dev_err(dev, "too many endpoints specified (%u > %u)\n", 177 count, IPA_ENDPOINT_COUNT); 178 return false; 179 } 180 181 /* The aggregation byte limit defines the point at which an 182 * aggregation window will close. It is programmed into the 183 * IPA hardware as a number of KB. We don't use "hard byte 184 * limit" aggregation, which means that we need to supply 185 * enough space in a receive buffer to hold a complete MTU 186 * plus normal skb overhead *after* that aggregation byte 187 * limit has been crossed. 188 * 189 * This check ensures we don't define a receive buffer size 190 * that would exceed what we can represent in the field that 191 * is used to program its size. 192 */ 193 limit = aggr_byte_limit_max(ipa->version) * SZ_1K; 194 limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 195 if (limit < IPA_RX_BUFFER_SIZE) { 196 dev_err(dev, "buffer size too big for aggregation (%u > %u)\n", 197 IPA_RX_BUFFER_SIZE, limit); 198 return false; 199 } 200 201 /* Make sure needed endpoints have defined data */ 202 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 203 dev_err(dev, "command TX endpoint not defined\n"); 204 return false; 205 } 206 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 207 dev_err(dev, "LAN RX endpoint not defined\n"); 208 return false; 209 } 210 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 211 dev_err(dev, "AP->modem TX endpoint not defined\n"); 212 return false; 213 } 214 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 215 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 216 return false; 217 } 218 219 for (name = 0; name < count; name++, dp++) 220 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 221 return false; 222 223 return true; 224 } 225 226 /* Allocate a transaction to use on a non-command endpoint */ 227 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 228 u32 tre_count) 229 { 230 struct gsi *gsi = &endpoint->ipa->gsi; 231 u32 channel_id = endpoint->channel_id; 232 enum dma_data_direction direction; 233 234 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 235 236 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 237 } 238 239 /* suspend_delay represents suspend for RX, delay for TX endpoints. 240 * Note that suspend is not supported starting with IPA v4.0. 241 */ 242 static bool 243 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 244 { 245 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); 246 struct ipa *ipa = endpoint->ipa; 247 bool state; 248 u32 mask; 249 u32 val; 250 251 /* Suspend is not supported for IPA v4.0+. Delay doesn't work 252 * correctly on IPA v4.2. 253 */ 254 if (endpoint->toward_ipa) 255 WARN_ON(ipa->version == IPA_VERSION_4_2); 256 else 257 WARN_ON(ipa->version >= IPA_VERSION_4_0); 258 259 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; 260 261 val = ioread32(ipa->reg_virt + offset); 262 state = !!(val & mask); 263 264 /* Don't bother if it's already in the requested state */ 265 if (suspend_delay != state) { 266 val ^= mask; 267 iowrite32(val, ipa->reg_virt + offset); 268 } 269 270 return state; 271 } 272 273 /* We currently don't care what the previous state was for delay mode */ 274 static void 275 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) 276 { 277 WARN_ON(!endpoint->toward_ipa); 278 279 /* Delay mode doesn't work properly for IPA v4.2 */ 280 if (endpoint->ipa->version != IPA_VERSION_4_2) 281 (void)ipa_endpoint_init_ctrl(endpoint, enable); 282 } 283 284 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 285 { 286 u32 mask = BIT(endpoint->endpoint_id); 287 struct ipa *ipa = endpoint->ipa; 288 u32 offset; 289 u32 val; 290 291 WARN_ON(!(mask & ipa->available)); 292 293 offset = ipa_reg_state_aggr_active_offset(ipa->version); 294 val = ioread32(ipa->reg_virt + offset); 295 296 return !!(val & mask); 297 } 298 299 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 300 { 301 u32 mask = BIT(endpoint->endpoint_id); 302 struct ipa *ipa = endpoint->ipa; 303 304 WARN_ON(!(mask & ipa->available)); 305 306 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); 307 } 308 309 /** 310 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 311 * @endpoint: Endpoint on which to emulate a suspend 312 * 313 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 314 * with an open aggregation frame. This is to work around a hardware 315 * issue in IPA version 3.5.1 where the suspend interrupt will not be 316 * generated when it should be. 317 */ 318 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 319 { 320 struct ipa *ipa = endpoint->ipa; 321 322 if (!endpoint->data->aggregation) 323 return; 324 325 /* Nothing to do if the endpoint doesn't have aggregation open */ 326 if (!ipa_endpoint_aggr_active(endpoint)) 327 return; 328 329 /* Force close aggregation */ 330 ipa_endpoint_force_close(endpoint); 331 332 ipa_interrupt_simulate_suspend(ipa->interrupt); 333 } 334 335 /* Returns previous suspend state (true means suspend was enabled) */ 336 static bool 337 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) 338 { 339 bool suspended; 340 341 if (endpoint->ipa->version >= IPA_VERSION_4_0) 342 return enable; /* For IPA v4.0+, no change made */ 343 344 WARN_ON(endpoint->toward_ipa); 345 346 suspended = ipa_endpoint_init_ctrl(endpoint, enable); 347 348 /* A client suspended with an open aggregation frame will not 349 * generate a SUSPEND IPA interrupt. If enabling suspend, have 350 * ipa_endpoint_suspend_aggr() handle this. 351 */ 352 if (enable && !suspended) 353 ipa_endpoint_suspend_aggr(endpoint); 354 355 return suspended; 356 } 357 358 /* Enable or disable delay or suspend mode on all modem endpoints */ 359 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 360 { 361 u32 endpoint_id; 362 363 /* DELAY mode doesn't work correctly on IPA v4.2 */ 364 if (ipa->version == IPA_VERSION_4_2) 365 return; 366 367 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { 368 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; 369 370 if (endpoint->ee_id != GSI_EE_MODEM) 371 continue; 372 373 /* Set TX delay mode or RX suspend mode */ 374 if (endpoint->toward_ipa) 375 ipa_endpoint_program_delay(endpoint, enable); 376 else 377 (void)ipa_endpoint_program_suspend(endpoint, enable); 378 } 379 } 380 381 /* Reset all modem endpoints to use the default exception endpoint */ 382 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 383 { 384 u32 initialized = ipa->initialized; 385 struct gsi_trans *trans; 386 u32 count; 387 388 /* We need one command per modem TX endpoint. We can get an upper 389 * bound on that by assuming all initialized endpoints are modem->IPA. 390 * That won't happen, and we could be more precise, but this is fine 391 * for now. End the transaction with commands to clear the pipeline. 392 */ 393 count = hweight32(initialized) + ipa_cmd_pipeline_clear_count(); 394 trans = ipa_cmd_trans_alloc(ipa, count); 395 if (!trans) { 396 dev_err(&ipa->pdev->dev, 397 "no transaction to reset modem exception endpoints\n"); 398 return -EBUSY; 399 } 400 401 while (initialized) { 402 u32 endpoint_id = __ffs(initialized); 403 struct ipa_endpoint *endpoint; 404 u32 offset; 405 406 initialized ^= BIT(endpoint_id); 407 408 /* We only reset modem TX endpoints */ 409 endpoint = &ipa->endpoint[endpoint_id]; 410 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 411 continue; 412 413 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 414 415 /* Value written is 0, and all bits are updated. That 416 * means status is disabled on the endpoint, and as a 417 * result all other fields in the register are ignored. 418 */ 419 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 420 } 421 422 ipa_cmd_pipeline_clear_add(trans); 423 424 /* XXX This should have a 1 second timeout */ 425 gsi_trans_commit_wait(trans); 426 427 ipa_cmd_pipeline_clear_wait(ipa); 428 429 return 0; 430 } 431 432 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 433 { 434 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); 435 enum ipa_cs_offload_en enabled; 436 u32 val = 0; 437 438 /* FRAG_OFFLOAD_EN is 0 */ 439 if (endpoint->data->checksum) { 440 enum ipa_version version = endpoint->ipa->version; 441 442 if (endpoint->toward_ipa) { 443 u32 checksum_offset; 444 445 /* Checksum header offset is in 4-byte units */ 446 checksum_offset = sizeof(struct rmnet_map_header); 447 checksum_offset /= sizeof(u32); 448 val |= u32_encode_bits(checksum_offset, 449 CS_METADATA_HDR_OFFSET_FMASK); 450 451 enabled = version < IPA_VERSION_4_5 452 ? IPA_CS_OFFLOAD_UL 453 : IPA_CS_OFFLOAD_INLINE; 454 } else { 455 enabled = version < IPA_VERSION_4_5 456 ? IPA_CS_OFFLOAD_DL 457 : IPA_CS_OFFLOAD_INLINE; 458 } 459 } else { 460 enabled = IPA_CS_OFFLOAD_NONE; 461 } 462 val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK); 463 /* CS_GEN_QMB_MASTER_SEL is 0 */ 464 465 iowrite32(val, endpoint->ipa->reg_virt + offset); 466 } 467 468 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) 469 { 470 u32 offset; 471 u32 val; 472 473 if (!endpoint->toward_ipa) 474 return; 475 476 offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id); 477 val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK); 478 479 iowrite32(val, endpoint->ipa->reg_virt + offset); 480 } 481 482 static u32 483 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) 484 { 485 u32 header_size = sizeof(struct rmnet_map_header); 486 487 /* Without checksum offload, we just have the MAP header */ 488 if (!endpoint->data->checksum) 489 return header_size; 490 491 if (version < IPA_VERSION_4_5) { 492 /* Checksum header inserted for AP TX endpoints only */ 493 if (endpoint->toward_ipa) 494 header_size += sizeof(struct rmnet_map_ul_csum_header); 495 } else { 496 /* Checksum header is used in both directions */ 497 header_size += sizeof(struct rmnet_map_v5_csum_header); 498 } 499 500 return header_size; 501 } 502 503 /** 504 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register 505 * @endpoint: Endpoint pointer 506 * 507 * We program QMAP endpoints so each packet received is preceded by a QMAP 508 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte 509 * packet size field, and we have the IPA hardware populate both for each 510 * received packet. The header is configured (in the HDR_EXT register) 511 * to use big endian format. 512 * 513 * The packet size is written into the QMAP header's pkt_len field. That 514 * location is defined here using the HDR_OFST_PKT_SIZE field. 515 * 516 * The mux_id comes from a 4-byte metadata value supplied with each packet 517 * by the modem. It is *not* a QMAP header, but it does contain the mux_id 518 * value that we want, in its low-order byte. A bitmask defined in the 519 * endpoint's METADATA_MASK register defines which byte within the modem 520 * metadata contains the mux_id. And the OFST_METADATA field programmed 521 * here indicates where the extracted byte should be placed within the QMAP 522 * header. 523 */ 524 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 525 { 526 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); 527 struct ipa *ipa = endpoint->ipa; 528 u32 val = 0; 529 530 if (endpoint->data->qmap) { 531 enum ipa_version version = ipa->version; 532 size_t header_size; 533 534 header_size = ipa_qmap_header_size(version, endpoint); 535 val = ipa_header_size_encoded(version, header_size); 536 537 /* Define how to fill fields in a received QMAP header */ 538 if (!endpoint->toward_ipa) { 539 u32 offset; /* Field offset within header */ 540 541 /* Where IPA will write the metadata value */ 542 offset = offsetof(struct rmnet_map_header, mux_id); 543 val |= ipa_metadata_offset_encoded(version, offset); 544 545 /* Where IPA will write the length */ 546 offset = offsetof(struct rmnet_map_header, pkt_len); 547 /* Upper bits are stored in HDR_EXT with IPA v4.5 */ 548 if (version >= IPA_VERSION_4_5) 549 offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK); 550 551 val |= HDR_OFST_PKT_SIZE_VALID_FMASK; 552 val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK); 553 } 554 /* For QMAP TX, metadata offset is 0 (modem assumes this) */ 555 val |= HDR_OFST_METADATA_VALID_FMASK; 556 557 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ 558 /* HDR_A5_MUX is 0 */ 559 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 560 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ 561 } 562 563 iowrite32(val, ipa->reg_virt + offset); 564 } 565 566 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 567 { 568 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); 569 u32 pad_align = endpoint->data->rx.pad_align; 570 struct ipa *ipa = endpoint->ipa; 571 u32 val = 0; 572 573 val |= HDR_ENDIANNESS_FMASK; /* big endian */ 574 575 /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet 576 * driver assumes this field is meaningful in packets it receives, 577 * and assumes the header's payload length includes that padding. 578 * The RMNet driver does *not* pad packets it sends, however, so 579 * the pad field (although 0) should be ignored. 580 */ 581 if (endpoint->data->qmap && !endpoint->toward_ipa) { 582 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; 583 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 584 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; 585 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 586 } 587 588 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 589 if (!endpoint->toward_ipa) 590 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); 591 592 /* IPA v4.5 adds some most-significant bits to a few fields, 593 * two of which are defined in the HDR (not HDR_EXT) register. 594 */ 595 if (ipa->version >= IPA_VERSION_4_5) { 596 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ 597 if (endpoint->data->qmap && !endpoint->toward_ipa) { 598 u32 offset; 599 600 offset = offsetof(struct rmnet_map_header, pkt_len); 601 offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK); 602 val |= u32_encode_bits(offset, 603 HDR_OFST_PKT_SIZE_MSB_FMASK); 604 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ 605 } 606 } 607 iowrite32(val, ipa->reg_virt + offset); 608 } 609 610 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 611 { 612 u32 endpoint_id = endpoint->endpoint_id; 613 u32 val = 0; 614 u32 offset; 615 616 if (endpoint->toward_ipa) 617 return; /* Register not valid for TX endpoints */ 618 619 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); 620 621 /* Note that HDR_ENDIANNESS indicates big endian header fields */ 622 if (endpoint->data->qmap) 623 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); 624 625 iowrite32(val, endpoint->ipa->reg_virt + offset); 626 } 627 628 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 629 { 630 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); 631 u32 val; 632 633 if (!endpoint->toward_ipa) 634 return; /* Register not valid for RX endpoints */ 635 636 if (endpoint->data->dma_mode) { 637 enum ipa_endpoint_name name = endpoint->data->dma_endpoint; 638 u32 dma_endpoint_id; 639 640 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; 641 642 val = u32_encode_bits(IPA_DMA, MODE_FMASK); 643 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); 644 } else { 645 val = u32_encode_bits(IPA_BASIC, MODE_FMASK); 646 } 647 /* All other bits unspecified (and 0) */ 648 649 iowrite32(val, endpoint->ipa->reg_virt + offset); 650 } 651 652 /* Compute the aggregation size value to use for a given buffer size */ 653 static u32 ipa_aggr_size_kb(u32 rx_buffer_size) 654 { 655 /* We don't use "hard byte limit" aggregation, so we define the 656 * aggregation limit such that our buffer has enough space *after* 657 * that limit to receive a full MTU of data, plus overhead. 658 */ 659 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 660 661 return rx_buffer_size / SZ_1K; 662 } 663 664 /* Encoded values for AGGR endpoint register fields */ 665 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit) 666 { 667 if (version < IPA_VERSION_4_5) 668 return u32_encode_bits(limit, aggr_byte_limit_fmask(true)); 669 670 return u32_encode_bits(limit, aggr_byte_limit_fmask(false)); 671 } 672 673 /* Encode the aggregation timer limit (microseconds) based on IPA version */ 674 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit) 675 { 676 u32 gran_sel; 677 u32 fmask; 678 u32 val; 679 680 if (version < IPA_VERSION_4_5) { 681 /* We set aggregation granularity in ipa_hardware_config() */ 682 limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); 683 684 return u32_encode_bits(limit, aggr_time_limit_fmask(true)); 685 } 686 687 /* IPA v4.5 expresses the time limit using Qtime. The AP has 688 * pulse generators 0 and 1 available, which were configured 689 * in ipa_qtime_config() to have granularity 100 usec and 690 * 1 msec, respectively. Use pulse generator 0 if possible, 691 * otherwise fall back to pulse generator 1. 692 */ 693 fmask = aggr_time_limit_fmask(false); 694 val = DIV_ROUND_CLOSEST(limit, 100); 695 if (val > field_max(fmask)) { 696 /* Have to use pulse generator 1 (millisecond granularity) */ 697 gran_sel = AGGR_GRAN_SEL_FMASK; 698 val = DIV_ROUND_CLOSEST(limit, 1000); 699 } else { 700 /* We can use pulse generator 0 (100 usec granularity) */ 701 gran_sel = 0; 702 } 703 704 return gran_sel | u32_encode_bits(val, fmask); 705 } 706 707 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled) 708 { 709 u32 val = enabled ? 1 : 0; 710 711 if (version < IPA_VERSION_4_5) 712 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true)); 713 714 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false)); 715 } 716 717 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 718 { 719 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); 720 enum ipa_version version = endpoint->ipa->version; 721 u32 val = 0; 722 723 if (endpoint->data->aggregation) { 724 if (!endpoint->toward_ipa) { 725 bool close_eof; 726 u32 limit; 727 728 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); 729 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); 730 731 limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE); 732 val |= aggr_byte_limit_encoded(version, limit); 733 734 limit = IPA_AGGR_TIME_LIMIT; 735 val |= aggr_time_limit_encoded(version, limit); 736 737 /* AGGR_PKT_LIMIT is 0 (unlimited) */ 738 739 close_eof = endpoint->data->rx.aggr_close_eof; 740 val |= aggr_sw_eof_active_encoded(version, close_eof); 741 742 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ 743 } else { 744 val |= u32_encode_bits(IPA_ENABLE_DEAGGR, 745 AGGR_EN_FMASK); 746 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); 747 /* other fields ignored */ 748 } 749 /* AGGR_FORCE_CLOSE is 0 */ 750 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ 751 } else { 752 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); 753 /* other fields ignored */ 754 } 755 756 iowrite32(val, endpoint->ipa->reg_virt + offset); 757 } 758 759 /* Return the Qtime-based head-of-line blocking timer value that 760 * represents the given number of microseconds. The result 761 * includes both the timer value and the selected timer granularity. 762 */ 763 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds) 764 { 765 u32 gran_sel; 766 u32 val; 767 768 /* IPA v4.5 expresses time limits using Qtime. The AP has 769 * pulse generators 0 and 1 available, which were configured 770 * in ipa_qtime_config() to have granularity 100 usec and 771 * 1 msec, respectively. Use pulse generator 0 if possible, 772 * otherwise fall back to pulse generator 1. 773 */ 774 val = DIV_ROUND_CLOSEST(microseconds, 100); 775 if (val > field_max(TIME_LIMIT_FMASK)) { 776 /* Have to use pulse generator 1 (millisecond granularity) */ 777 gran_sel = GRAN_SEL_FMASK; 778 val = DIV_ROUND_CLOSEST(microseconds, 1000); 779 } else { 780 /* We can use pulse generator 0 (100 usec granularity) */ 781 gran_sel = 0; 782 } 783 784 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK); 785 } 786 787 /* The head-of-line blocking timer is defined as a tick count. For 788 * IPA version 4.5 the tick count is based on the Qtimer, which is 789 * derived from the 19.2 MHz SoC XO clock. For older IPA versions 790 * each tick represents 128 cycles of the IPA core clock. 791 * 792 * Return the encoded value that should be written to that register 793 * that represents the timeout period provided. For IPA v4.2 this 794 * encodes a base and scale value, while for earlier versions the 795 * value is a simple tick count. 796 */ 797 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds) 798 { 799 u32 width; 800 u32 scale; 801 u64 ticks; 802 u64 rate; 803 u32 high; 804 u32 val; 805 806 if (!microseconds) 807 return 0; /* Nothing to compute if timer period is 0 */ 808 809 if (ipa->version >= IPA_VERSION_4_5) 810 return hol_block_timer_qtime_val(ipa, microseconds); 811 812 /* Use 64 bit arithmetic to avoid overflow... */ 813 rate = ipa_core_clock_rate(ipa); 814 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); 815 /* ...but we still need to fit into a 32-bit register */ 816 WARN_ON(ticks > U32_MAX); 817 818 /* IPA v3.5.1 through v4.1 just record the tick count */ 819 if (ipa->version < IPA_VERSION_4_2) 820 return (u32)ticks; 821 822 /* For IPA v4.2, the tick count is represented by base and 823 * scale fields within the 32-bit timer register, where: 824 * ticks = base << scale; 825 * The best precision is achieved when the base value is as 826 * large as possible. Find the highest set bit in the tick 827 * count, and extract the number of bits in the base field 828 * such that high bit is included. 829 */ 830 high = fls(ticks); /* 1..32 */ 831 width = HWEIGHT32(BASE_VALUE_FMASK); 832 scale = high > width ? high - width : 0; 833 if (scale) { 834 /* If we're scaling, round up to get a closer result */ 835 ticks += 1 << (scale - 1); 836 /* High bit was set, so rounding might have affected it */ 837 if (fls(ticks) != high) 838 scale++; 839 } 840 841 val = u32_encode_bits(scale, SCALE_FMASK); 842 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); 843 844 return val; 845 } 846 847 /* If microseconds is 0, timeout is immediate */ 848 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 849 u32 microseconds) 850 { 851 u32 endpoint_id = endpoint->endpoint_id; 852 struct ipa *ipa = endpoint->ipa; 853 u32 offset; 854 u32 val; 855 856 /* This should only be changed when HOL_BLOCK_EN is disabled */ 857 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); 858 val = hol_block_timer_val(ipa, microseconds); 859 iowrite32(val, ipa->reg_virt + offset); 860 } 861 862 static void 863 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable) 864 { 865 u32 endpoint_id = endpoint->endpoint_id; 866 u32 offset; 867 u32 val; 868 869 val = enable ? HOL_BLOCK_EN_FMASK : 0; 870 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); 871 iowrite32(val, endpoint->ipa->reg_virt + offset); 872 /* When enabling, the register must be written twice for IPA v4.5+ */ 873 if (enable && endpoint->ipa->version >= IPA_VERSION_4_5) 874 iowrite32(val, endpoint->ipa->reg_virt + offset); 875 } 876 877 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 878 { 879 u32 i; 880 881 for (i = 0; i < IPA_ENDPOINT_MAX; i++) { 882 struct ipa_endpoint *endpoint = &ipa->endpoint[i]; 883 884 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) 885 continue; 886 887 ipa_endpoint_init_hol_block_enable(endpoint, false); 888 ipa_endpoint_init_hol_block_timer(endpoint, 0); 889 ipa_endpoint_init_hol_block_enable(endpoint, true); 890 } 891 } 892 893 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 894 { 895 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); 896 u32 val = 0; 897 898 if (!endpoint->toward_ipa) 899 return; /* Register not valid for RX endpoints */ 900 901 /* DEAGGR_HDR_LEN is 0 */ 902 /* PACKET_OFFSET_VALID is 0 */ 903 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 904 /* MAX_PACKET_LEN is 0 (not enforced) */ 905 906 iowrite32(val, endpoint->ipa->reg_virt + offset); 907 } 908 909 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) 910 { 911 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id); 912 struct ipa *ipa = endpoint->ipa; 913 u32 val; 914 915 val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group); 916 iowrite32(val, ipa->reg_virt + offset); 917 } 918 919 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 920 { 921 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); 922 u32 val = 0; 923 924 if (!endpoint->toward_ipa) 925 return; /* Register not valid for RX endpoints */ 926 927 /* Low-order byte configures primary packet processing */ 928 val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK); 929 930 /* Second byte configures replicated packet processing */ 931 val |= u32_encode_bits(endpoint->data->tx.seq_rep_type, 932 SEQ_REP_TYPE_FMASK); 933 934 iowrite32(val, endpoint->ipa->reg_virt + offset); 935 } 936 937 /** 938 * ipa_endpoint_skb_tx() - Transmit a socket buffer 939 * @endpoint: Endpoint pointer 940 * @skb: Socket buffer to send 941 * 942 * Returns: 0 if successful, or a negative error code 943 */ 944 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 945 { 946 struct gsi_trans *trans; 947 u32 nr_frags; 948 int ret; 949 950 /* Make sure source endpoint's TLV FIFO has enough entries to 951 * hold the linear portion of the skb and all its fragments. 952 * If not, see if we can linearize it before giving up. 953 */ 954 nr_frags = skb_shinfo(skb)->nr_frags; 955 if (1 + nr_frags > endpoint->trans_tre_max) { 956 if (skb_linearize(skb)) 957 return -E2BIG; 958 nr_frags = 0; 959 } 960 961 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 962 if (!trans) 963 return -EBUSY; 964 965 ret = gsi_trans_skb_add(trans, skb); 966 if (ret) 967 goto err_trans_free; 968 trans->data = skb; /* transaction owns skb now */ 969 970 gsi_trans_commit(trans, !netdev_xmit_more()); 971 972 return 0; 973 974 err_trans_free: 975 gsi_trans_free(trans); 976 977 return -ENOMEM; 978 } 979 980 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 981 { 982 u32 endpoint_id = endpoint->endpoint_id; 983 struct ipa *ipa = endpoint->ipa; 984 u32 val = 0; 985 u32 offset; 986 987 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 988 989 if (endpoint->data->status_enable) { 990 val |= STATUS_EN_FMASK; 991 if (endpoint->toward_ipa) { 992 enum ipa_endpoint_name name; 993 u32 status_endpoint_id; 994 995 name = endpoint->data->tx.status_endpoint; 996 status_endpoint_id = ipa->name_map[name]->endpoint_id; 997 998 val |= u32_encode_bits(status_endpoint_id, 999 STATUS_ENDP_FMASK); 1000 } 1001 /* STATUS_LOCATION is 0, meaning status element precedes 1002 * packet (not present for IPA v4.5) 1003 */ 1004 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */ 1005 } 1006 1007 iowrite32(val, ipa->reg_virt + offset); 1008 } 1009 1010 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint) 1011 { 1012 struct gsi_trans *trans; 1013 bool doorbell = false; 1014 struct page *page; 1015 u32 offset; 1016 u32 len; 1017 int ret; 1018 1019 page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE)); 1020 if (!page) 1021 return -ENOMEM; 1022 1023 trans = ipa_endpoint_trans_alloc(endpoint, 1); 1024 if (!trans) 1025 goto err_free_pages; 1026 1027 /* Offset the buffer to make space for skb headroom */ 1028 offset = NET_SKB_PAD; 1029 len = IPA_RX_BUFFER_SIZE - offset; 1030 1031 ret = gsi_trans_page_add(trans, page, len, offset); 1032 if (ret) 1033 goto err_trans_free; 1034 trans->data = page; /* transaction owns page now */ 1035 1036 if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) { 1037 doorbell = true; 1038 endpoint->replenish_ready = 0; 1039 } 1040 1041 gsi_trans_commit(trans, doorbell); 1042 1043 return 0; 1044 1045 err_trans_free: 1046 gsi_trans_free(trans); 1047 err_free_pages: 1048 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 1049 1050 return -ENOMEM; 1051 } 1052 1053 /** 1054 * ipa_endpoint_replenish() - Replenish endpoint receive buffers 1055 * @endpoint: Endpoint to be replenished 1056 * @add_one: Whether this is replacing a just-consumed buffer 1057 * 1058 * The IPA hardware can hold a fixed number of receive buffers for an RX 1059 * endpoint, based on the number of entries in the underlying channel ring 1060 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many 1061 * more receive buffers can be supplied to the hardware. Replenishing for 1062 * an endpoint can be disabled, in which case requests to replenish a 1063 * buffer are "saved", and transferred to the backlog once it is re-enabled 1064 * again. 1065 */ 1066 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one) 1067 { 1068 struct gsi *gsi; 1069 u32 backlog; 1070 1071 if (!endpoint->replenish_enabled) { 1072 if (add_one) 1073 atomic_inc(&endpoint->replenish_saved); 1074 return; 1075 } 1076 1077 while (atomic_dec_not_zero(&endpoint->replenish_backlog)) 1078 if (ipa_endpoint_replenish_one(endpoint)) 1079 goto try_again_later; 1080 if (add_one) 1081 atomic_inc(&endpoint->replenish_backlog); 1082 1083 return; 1084 1085 try_again_later: 1086 /* The last one didn't succeed, so fix the backlog */ 1087 backlog = atomic_inc_return(&endpoint->replenish_backlog); 1088 1089 if (add_one) 1090 atomic_inc(&endpoint->replenish_backlog); 1091 1092 /* Whenever a receive buffer transaction completes we'll try to 1093 * replenish again. It's unlikely, but if we fail to supply even 1094 * one buffer, nothing will trigger another replenish attempt. 1095 * Receive buffer transactions use one TRE, so schedule work to 1096 * try replenishing again if our backlog is *all* available TREs. 1097 */ 1098 gsi = &endpoint->ipa->gsi; 1099 if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id)) 1100 schedule_delayed_work(&endpoint->replenish_work, 1101 msecs_to_jiffies(1)); 1102 } 1103 1104 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 1105 { 1106 struct gsi *gsi = &endpoint->ipa->gsi; 1107 u32 max_backlog; 1108 u32 saved; 1109 1110 endpoint->replenish_enabled = true; 1111 while ((saved = atomic_xchg(&endpoint->replenish_saved, 0))) 1112 atomic_add(saved, &endpoint->replenish_backlog); 1113 1114 /* Start replenishing if hardware currently has no buffers */ 1115 max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id); 1116 if (atomic_read(&endpoint->replenish_backlog) == max_backlog) 1117 ipa_endpoint_replenish(endpoint, false); 1118 } 1119 1120 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 1121 { 1122 u32 backlog; 1123 1124 endpoint->replenish_enabled = false; 1125 while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0))) 1126 atomic_add(backlog, &endpoint->replenish_saved); 1127 } 1128 1129 static void ipa_endpoint_replenish_work(struct work_struct *work) 1130 { 1131 struct delayed_work *dwork = to_delayed_work(work); 1132 struct ipa_endpoint *endpoint; 1133 1134 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 1135 1136 ipa_endpoint_replenish(endpoint, false); 1137 } 1138 1139 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 1140 void *data, u32 len, u32 extra) 1141 { 1142 struct sk_buff *skb; 1143 1144 skb = __dev_alloc_skb(len, GFP_ATOMIC); 1145 if (skb) { 1146 skb_put(skb, len); 1147 memcpy(skb->data, data, len); 1148 skb->truesize += extra; 1149 } 1150 1151 /* Now receive it, or drop it if there's no netdev */ 1152 if (endpoint->netdev) 1153 ipa_modem_skb_rx(endpoint->netdev, skb); 1154 else if (skb) 1155 dev_kfree_skb_any(skb); 1156 } 1157 1158 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 1159 struct page *page, u32 len) 1160 { 1161 struct sk_buff *skb; 1162 1163 /* Nothing to do if there's no netdev */ 1164 if (!endpoint->netdev) 1165 return false; 1166 1167 WARN_ON(len > SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE - NET_SKB_PAD)); 1168 1169 skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE); 1170 if (skb) { 1171 /* Reserve the headroom and account for the data */ 1172 skb_reserve(skb, NET_SKB_PAD); 1173 skb_put(skb, len); 1174 } 1175 1176 /* Receive the buffer (or record drop if unable to build it) */ 1177 ipa_modem_skb_rx(endpoint->netdev, skb); 1178 1179 return skb != NULL; 1180 } 1181 1182 /* The format of a packet status element is the same for several status 1183 * types (opcodes). Other types aren't currently supported. 1184 */ 1185 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 1186 { 1187 switch (opcode) { 1188 case IPA_STATUS_OPCODE_PACKET: 1189 case IPA_STATUS_OPCODE_DROPPED_PACKET: 1190 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 1191 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 1192 return true; 1193 default: 1194 return false; 1195 } 1196 } 1197 1198 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, 1199 const struct ipa_status *status) 1200 { 1201 u32 endpoint_id; 1202 1203 if (!ipa_status_format_packet(status->opcode)) 1204 return true; 1205 if (!status->pkt_len) 1206 return true; 1207 endpoint_id = u8_get_bits(status->endp_dst_idx, 1208 IPA_STATUS_DST_IDX_FMASK); 1209 if (endpoint_id != endpoint->endpoint_id) 1210 return true; 1211 1212 return false; /* Don't skip this packet, process it */ 1213 } 1214 1215 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, 1216 const struct ipa_status *status) 1217 { 1218 struct ipa_endpoint *command_endpoint; 1219 struct ipa *ipa = endpoint->ipa; 1220 u32 endpoint_id; 1221 1222 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) 1223 return false; /* No valid tag */ 1224 1225 /* The status contains a valid tag. We know the packet was sent to 1226 * this endpoint (already verified by ipa_endpoint_status_skip()). 1227 * If the packet came from the AP->command TX endpoint we know 1228 * this packet was sent as part of the pipeline clear process. 1229 */ 1230 endpoint_id = u8_get_bits(status->endp_src_idx, 1231 IPA_STATUS_SRC_IDX_FMASK); 1232 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 1233 if (endpoint_id == command_endpoint->endpoint_id) { 1234 complete(&ipa->completion); 1235 } else { 1236 dev_err(&ipa->pdev->dev, 1237 "unexpected tagged packet from endpoint %u\n", 1238 endpoint_id); 1239 } 1240 1241 return true; 1242 } 1243 1244 /* Return whether the status indicates the packet should be dropped */ 1245 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, 1246 const struct ipa_status *status) 1247 { 1248 u32 val; 1249 1250 /* If the status indicates a tagged transfer, we'll drop the packet */ 1251 if (ipa_endpoint_status_tag(endpoint, status)) 1252 return true; 1253 1254 /* Deaggregation exceptions we drop; all other types we consume */ 1255 if (status->exception) 1256 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; 1257 1258 /* Drop the packet if it fails to match a routing rule; otherwise no */ 1259 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1260 1261 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1262 } 1263 1264 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 1265 struct page *page, u32 total_len) 1266 { 1267 void *data = page_address(page) + NET_SKB_PAD; 1268 u32 unused = IPA_RX_BUFFER_SIZE - total_len; 1269 u32 resid = total_len; 1270 1271 while (resid) { 1272 const struct ipa_status *status = data; 1273 u32 align; 1274 u32 len; 1275 1276 if (resid < sizeof(*status)) { 1277 dev_err(&endpoint->ipa->pdev->dev, 1278 "short message (%u bytes < %zu byte status)\n", 1279 resid, sizeof(*status)); 1280 break; 1281 } 1282 1283 /* Skip over status packets that lack packet data */ 1284 if (ipa_endpoint_status_skip(endpoint, status)) { 1285 data += sizeof(*status); 1286 resid -= sizeof(*status); 1287 continue; 1288 } 1289 1290 /* Compute the amount of buffer space consumed by the packet, 1291 * including the status element. If the hardware is configured 1292 * to pad packet data to an aligned boundary, account for that. 1293 * And if checksum offload is enabled a trailer containing 1294 * computed checksum information will be appended. 1295 */ 1296 align = endpoint->data->rx.pad_align ? : 1; 1297 len = le16_to_cpu(status->pkt_len); 1298 len = sizeof(*status) + ALIGN(len, align); 1299 if (endpoint->data->checksum) 1300 len += sizeof(struct rmnet_map_dl_csum_trailer); 1301 1302 if (!ipa_endpoint_status_drop(endpoint, status)) { 1303 void *data2; 1304 u32 extra; 1305 u32 len2; 1306 1307 /* Client receives only packet data (no status) */ 1308 data2 = data + sizeof(*status); 1309 len2 = le16_to_cpu(status->pkt_len); 1310 1311 /* Have the true size reflect the extra unused space in 1312 * the original receive buffer. Distribute the "cost" 1313 * proportionately across all aggregated packets in the 1314 * buffer. 1315 */ 1316 extra = DIV_ROUND_CLOSEST(unused * len, total_len); 1317 ipa_endpoint_skb_copy(endpoint, data2, len2, extra); 1318 } 1319 1320 /* Consume status and the full packet it describes */ 1321 data += len; 1322 resid -= len; 1323 } 1324 } 1325 1326 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ 1327 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, 1328 struct gsi_trans *trans) 1329 { 1330 } 1331 1332 /* Complete transaction initiated in ipa_endpoint_replenish_one() */ 1333 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, 1334 struct gsi_trans *trans) 1335 { 1336 struct page *page; 1337 1338 ipa_endpoint_replenish(endpoint, true); 1339 1340 if (trans->cancelled) 1341 return; 1342 1343 /* Parse or build a socket buffer using the actual received length */ 1344 page = trans->data; 1345 if (endpoint->data->status_enable) 1346 ipa_endpoint_status_parse(endpoint, page, trans->len); 1347 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1348 trans->data = NULL; /* Pages have been consumed */ 1349 } 1350 1351 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1352 struct gsi_trans *trans) 1353 { 1354 if (endpoint->toward_ipa) 1355 ipa_endpoint_tx_complete(endpoint, trans); 1356 else 1357 ipa_endpoint_rx_complete(endpoint, trans); 1358 } 1359 1360 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1361 struct gsi_trans *trans) 1362 { 1363 if (endpoint->toward_ipa) { 1364 struct ipa *ipa = endpoint->ipa; 1365 1366 /* Nothing to do for command transactions */ 1367 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1368 struct sk_buff *skb = trans->data; 1369 1370 if (skb) 1371 dev_kfree_skb_any(skb); 1372 } 1373 } else { 1374 struct page *page = trans->data; 1375 1376 if (page) 1377 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 1378 } 1379 } 1380 1381 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1382 { 1383 u32 val; 1384 1385 /* ROUTE_DIS is 0 */ 1386 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); 1387 val |= ROUTE_DEF_HDR_TABLE_FMASK; 1388 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); 1389 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); 1390 val |= ROUTE_DEF_RETAIN_HDR_FMASK; 1391 1392 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); 1393 } 1394 1395 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1396 { 1397 ipa_endpoint_default_route_set(ipa, 0); 1398 } 1399 1400 /** 1401 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1402 * @endpoint: Endpoint to be reset 1403 * 1404 * If aggregation is active on an RX endpoint when a reset is performed 1405 * on its underlying GSI channel, a special sequence of actions must be 1406 * taken to ensure the IPA pipeline is properly cleared. 1407 * 1408 * Return: 0 if successful, or a negative error code 1409 */ 1410 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1411 { 1412 struct device *dev = &endpoint->ipa->pdev->dev; 1413 struct ipa *ipa = endpoint->ipa; 1414 struct gsi *gsi = &ipa->gsi; 1415 bool suspended = false; 1416 dma_addr_t addr; 1417 u32 retries; 1418 u32 len = 1; 1419 void *virt; 1420 int ret; 1421 1422 virt = kzalloc(len, GFP_KERNEL); 1423 if (!virt) 1424 return -ENOMEM; 1425 1426 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1427 if (dma_mapping_error(dev, addr)) { 1428 ret = -ENOMEM; 1429 goto out_kfree; 1430 } 1431 1432 /* Force close aggregation before issuing the reset */ 1433 ipa_endpoint_force_close(endpoint); 1434 1435 /* Reset and reconfigure the channel with the doorbell engine 1436 * disabled. Then poll until we know aggregation is no longer 1437 * active. We'll re-enable the doorbell (if appropriate) when 1438 * we reset again below. 1439 */ 1440 gsi_channel_reset(gsi, endpoint->channel_id, false); 1441 1442 /* Make sure the channel isn't suspended */ 1443 suspended = ipa_endpoint_program_suspend(endpoint, false); 1444 1445 /* Start channel and do a 1 byte read */ 1446 ret = gsi_channel_start(gsi, endpoint->channel_id); 1447 if (ret) 1448 goto out_suspend_again; 1449 1450 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1451 if (ret) 1452 goto err_endpoint_stop; 1453 1454 /* Wait for aggregation to be closed on the channel */ 1455 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1456 do { 1457 if (!ipa_endpoint_aggr_active(endpoint)) 1458 break; 1459 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1460 } while (retries--); 1461 1462 /* Check one last time */ 1463 if (ipa_endpoint_aggr_active(endpoint)) 1464 dev_err(dev, "endpoint %u still active during reset\n", 1465 endpoint->endpoint_id); 1466 1467 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1468 1469 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1470 if (ret) 1471 goto out_suspend_again; 1472 1473 /* Finally, reset and reconfigure the channel again (re-enabling 1474 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1475 * complete the channel reset sequence. Finish by suspending the 1476 * channel again (if necessary). 1477 */ 1478 gsi_channel_reset(gsi, endpoint->channel_id, true); 1479 1480 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1481 1482 goto out_suspend_again; 1483 1484 err_endpoint_stop: 1485 (void)gsi_channel_stop(gsi, endpoint->channel_id); 1486 out_suspend_again: 1487 if (suspended) 1488 (void)ipa_endpoint_program_suspend(endpoint, true); 1489 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1490 out_kfree: 1491 kfree(virt); 1492 1493 return ret; 1494 } 1495 1496 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1497 { 1498 u32 channel_id = endpoint->channel_id; 1499 struct ipa *ipa = endpoint->ipa; 1500 bool special; 1501 int ret = 0; 1502 1503 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1504 * is active, we need to handle things specially to recover. 1505 * All other cases just need to reset the underlying GSI channel. 1506 */ 1507 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && 1508 endpoint->data->aggregation; 1509 if (special && ipa_endpoint_aggr_active(endpoint)) 1510 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1511 else 1512 gsi_channel_reset(&ipa->gsi, channel_id, true); 1513 1514 if (ret) 1515 dev_err(&ipa->pdev->dev, 1516 "error %d resetting channel %u for endpoint %u\n", 1517 ret, endpoint->channel_id, endpoint->endpoint_id); 1518 } 1519 1520 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1521 { 1522 if (endpoint->toward_ipa) 1523 ipa_endpoint_program_delay(endpoint, false); 1524 else 1525 (void)ipa_endpoint_program_suspend(endpoint, false); 1526 ipa_endpoint_init_cfg(endpoint); 1527 ipa_endpoint_init_nat(endpoint); 1528 ipa_endpoint_init_hdr(endpoint); 1529 ipa_endpoint_init_hdr_ext(endpoint); 1530 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1531 ipa_endpoint_init_mode(endpoint); 1532 ipa_endpoint_init_aggr(endpoint); 1533 ipa_endpoint_init_deaggr(endpoint); 1534 ipa_endpoint_init_rsrc_grp(endpoint); 1535 ipa_endpoint_init_seq(endpoint); 1536 ipa_endpoint_status(endpoint); 1537 } 1538 1539 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1540 { 1541 struct ipa *ipa = endpoint->ipa; 1542 struct gsi *gsi = &ipa->gsi; 1543 int ret; 1544 1545 ret = gsi_channel_start(gsi, endpoint->channel_id); 1546 if (ret) { 1547 dev_err(&ipa->pdev->dev, 1548 "error %d starting %cX channel %u for endpoint %u\n", 1549 ret, endpoint->toward_ipa ? 'T' : 'R', 1550 endpoint->channel_id, endpoint->endpoint_id); 1551 return ret; 1552 } 1553 1554 if (!endpoint->toward_ipa) { 1555 ipa_interrupt_suspend_enable(ipa->interrupt, 1556 endpoint->endpoint_id); 1557 ipa_endpoint_replenish_enable(endpoint); 1558 } 1559 1560 ipa->enabled |= BIT(endpoint->endpoint_id); 1561 1562 return 0; 1563 } 1564 1565 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1566 { 1567 u32 mask = BIT(endpoint->endpoint_id); 1568 struct ipa *ipa = endpoint->ipa; 1569 struct gsi *gsi = &ipa->gsi; 1570 int ret; 1571 1572 if (!(ipa->enabled & mask)) 1573 return; 1574 1575 ipa->enabled ^= mask; 1576 1577 if (!endpoint->toward_ipa) { 1578 ipa_endpoint_replenish_disable(endpoint); 1579 ipa_interrupt_suspend_disable(ipa->interrupt, 1580 endpoint->endpoint_id); 1581 } 1582 1583 /* Note that if stop fails, the channel's state is not well-defined */ 1584 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1585 if (ret) 1586 dev_err(&ipa->pdev->dev, 1587 "error %d attempting to stop endpoint %u\n", ret, 1588 endpoint->endpoint_id); 1589 } 1590 1591 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1592 { 1593 struct device *dev = &endpoint->ipa->pdev->dev; 1594 struct gsi *gsi = &endpoint->ipa->gsi; 1595 int ret; 1596 1597 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1598 return; 1599 1600 if (!endpoint->toward_ipa) { 1601 ipa_endpoint_replenish_disable(endpoint); 1602 (void)ipa_endpoint_program_suspend(endpoint, true); 1603 } 1604 1605 ret = gsi_channel_suspend(gsi, endpoint->channel_id); 1606 if (ret) 1607 dev_err(dev, "error %d suspending channel %u\n", ret, 1608 endpoint->channel_id); 1609 } 1610 1611 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1612 { 1613 struct device *dev = &endpoint->ipa->pdev->dev; 1614 struct gsi *gsi = &endpoint->ipa->gsi; 1615 int ret; 1616 1617 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1618 return; 1619 1620 if (!endpoint->toward_ipa) 1621 (void)ipa_endpoint_program_suspend(endpoint, false); 1622 1623 ret = gsi_channel_resume(gsi, endpoint->channel_id); 1624 if (ret) 1625 dev_err(dev, "error %d resuming channel %u\n", ret, 1626 endpoint->channel_id); 1627 else if (!endpoint->toward_ipa) 1628 ipa_endpoint_replenish_enable(endpoint); 1629 } 1630 1631 void ipa_endpoint_suspend(struct ipa *ipa) 1632 { 1633 if (!ipa->setup_complete) 1634 return; 1635 1636 if (ipa->modem_netdev) 1637 ipa_modem_suspend(ipa->modem_netdev); 1638 1639 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1640 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1641 } 1642 1643 void ipa_endpoint_resume(struct ipa *ipa) 1644 { 1645 if (!ipa->setup_complete) 1646 return; 1647 1648 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1649 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1650 1651 if (ipa->modem_netdev) 1652 ipa_modem_resume(ipa->modem_netdev); 1653 } 1654 1655 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1656 { 1657 struct gsi *gsi = &endpoint->ipa->gsi; 1658 u32 channel_id = endpoint->channel_id; 1659 1660 /* Only AP endpoints get set up */ 1661 if (endpoint->ee_id != GSI_EE_AP) 1662 return; 1663 1664 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); 1665 if (!endpoint->toward_ipa) { 1666 /* RX transactions require a single TRE, so the maximum 1667 * backlog is the same as the maximum outstanding TREs. 1668 */ 1669 endpoint->replenish_enabled = false; 1670 atomic_set(&endpoint->replenish_saved, 1671 gsi_channel_tre_max(gsi, endpoint->channel_id)); 1672 atomic_set(&endpoint->replenish_backlog, 0); 1673 INIT_DELAYED_WORK(&endpoint->replenish_work, 1674 ipa_endpoint_replenish_work); 1675 } 1676 1677 ipa_endpoint_program(endpoint); 1678 1679 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); 1680 } 1681 1682 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1683 { 1684 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); 1685 1686 if (!endpoint->toward_ipa) 1687 cancel_delayed_work_sync(&endpoint->replenish_work); 1688 1689 ipa_endpoint_reset(endpoint); 1690 } 1691 1692 void ipa_endpoint_setup(struct ipa *ipa) 1693 { 1694 u32 initialized = ipa->initialized; 1695 1696 ipa->set_up = 0; 1697 while (initialized) { 1698 u32 endpoint_id = __ffs(initialized); 1699 1700 initialized ^= BIT(endpoint_id); 1701 1702 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1703 } 1704 } 1705 1706 void ipa_endpoint_teardown(struct ipa *ipa) 1707 { 1708 u32 set_up = ipa->set_up; 1709 1710 while (set_up) { 1711 u32 endpoint_id = __fls(set_up); 1712 1713 set_up ^= BIT(endpoint_id); 1714 1715 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1716 } 1717 ipa->set_up = 0; 1718 } 1719 1720 int ipa_endpoint_config(struct ipa *ipa) 1721 { 1722 struct device *dev = &ipa->pdev->dev; 1723 u32 initialized; 1724 u32 rx_base; 1725 u32 rx_mask; 1726 u32 tx_mask; 1727 int ret = 0; 1728 u32 max; 1729 u32 val; 1730 1731 /* Prior to IPAv3.5, the FLAVOR_0 register was not supported. 1732 * Furthermore, the endpoints were not grouped such that TX 1733 * endpoint numbers started with 0 and RX endpoints had numbers 1734 * higher than all TX endpoints, so we can't do the simple 1735 * direction check used for newer hardware below. 1736 * 1737 * For hardware that doesn't support the FLAVOR_0 register, 1738 * just set the available mask to support any endpoint, and 1739 * assume the configuration is valid. 1740 */ 1741 if (ipa->version < IPA_VERSION_3_5) { 1742 ipa->available = ~0; 1743 return 0; 1744 } 1745 1746 /* Find out about the endpoints supplied by the hardware, and ensure 1747 * the highest one doesn't exceed the number we support. 1748 */ 1749 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); 1750 1751 /* Our RX is an IPA producer */ 1752 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK); 1753 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK); 1754 if (max > IPA_ENDPOINT_MAX) { 1755 dev_err(dev, "too many endpoints (%u > %u)\n", 1756 max, IPA_ENDPOINT_MAX); 1757 return -EINVAL; 1758 } 1759 rx_mask = GENMASK(max - 1, rx_base); 1760 1761 /* Our TX is an IPA consumer */ 1762 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK); 1763 tx_mask = GENMASK(max - 1, 0); 1764 1765 ipa->available = rx_mask | tx_mask; 1766 1767 /* Check for initialized endpoints not supported by the hardware */ 1768 if (ipa->initialized & ~ipa->available) { 1769 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", 1770 ipa->initialized & ~ipa->available); 1771 ret = -EINVAL; /* Report other errors too */ 1772 } 1773 1774 initialized = ipa->initialized; 1775 while (initialized) { 1776 u32 endpoint_id = __ffs(initialized); 1777 struct ipa_endpoint *endpoint; 1778 1779 initialized ^= BIT(endpoint_id); 1780 1781 /* Make sure it's pointing in the right direction */ 1782 endpoint = &ipa->endpoint[endpoint_id]; 1783 if ((endpoint_id < rx_base) != endpoint->toward_ipa) { 1784 dev_err(dev, "endpoint id %u wrong direction\n", 1785 endpoint_id); 1786 ret = -EINVAL; 1787 } 1788 } 1789 1790 return ret; 1791 } 1792 1793 void ipa_endpoint_deconfig(struct ipa *ipa) 1794 { 1795 ipa->available = 0; /* Nothing more to do */ 1796 } 1797 1798 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 1799 const struct ipa_gsi_endpoint_data *data) 1800 { 1801 struct ipa_endpoint *endpoint; 1802 1803 endpoint = &ipa->endpoint[data->endpoint_id]; 1804 1805 if (data->ee_id == GSI_EE_AP) 1806 ipa->channel_map[data->channel_id] = endpoint; 1807 ipa->name_map[name] = endpoint; 1808 1809 endpoint->ipa = ipa; 1810 endpoint->ee_id = data->ee_id; 1811 endpoint->channel_id = data->channel_id; 1812 endpoint->endpoint_id = data->endpoint_id; 1813 endpoint->toward_ipa = data->toward_ipa; 1814 endpoint->data = &data->endpoint.config; 1815 1816 ipa->initialized |= BIT(endpoint->endpoint_id); 1817 } 1818 1819 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 1820 { 1821 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); 1822 1823 memset(endpoint, 0, sizeof(*endpoint)); 1824 } 1825 1826 void ipa_endpoint_exit(struct ipa *ipa) 1827 { 1828 u32 initialized = ipa->initialized; 1829 1830 while (initialized) { 1831 u32 endpoint_id = __fls(initialized); 1832 1833 initialized ^= BIT(endpoint_id); 1834 1835 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 1836 } 1837 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 1838 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 1839 } 1840 1841 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 1842 u32 ipa_endpoint_init(struct ipa *ipa, u32 count, 1843 const struct ipa_gsi_endpoint_data *data) 1844 { 1845 enum ipa_endpoint_name name; 1846 u32 filter_map; 1847 1848 if (!ipa_endpoint_data_valid(ipa, count, data)) 1849 return 0; /* Error */ 1850 1851 ipa->initialized = 0; 1852 1853 filter_map = 0; 1854 for (name = 0; name < count; name++, data++) { 1855 if (ipa_gsi_endpoint_data_empty(data)) 1856 continue; /* Skip over empty slots */ 1857 1858 ipa_endpoint_init_one(ipa, name, data); 1859 1860 if (data->endpoint.filter_support) 1861 filter_map |= BIT(data->endpoint_id); 1862 } 1863 1864 if (!ipa_filter_map_valid(ipa, filter_map)) 1865 goto err_endpoint_exit; 1866 1867 return filter_map; /* Non-zero bitmask */ 1868 1869 err_endpoint_exit: 1870 ipa_endpoint_exit(ipa); 1871 1872 return 0; /* Error */ 1873 } 1874