1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/device.h> 9 #include <linux/slab.h> 10 #include <linux/bitfield.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_data.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_cmd.h" 20 #include "ipa_mem.h" 21 #include "ipa_modem.h" 22 #include "ipa_table.h" 23 #include "ipa_gsi.h" 24 #include "ipa_power.h" 25 26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) 27 28 /* Hardware is told about receive buffers once a "batch" has been queued */ 29 #define IPA_REPLENISH_BATCH 16 /* Must be non-zero */ 30 31 /* The amount of RX buffer space consumed by standard skb overhead */ 32 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 33 34 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ 35 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ 36 37 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 38 39 /** enum ipa_status_opcode - status element opcode hardware values */ 40 enum ipa_status_opcode { 41 IPA_STATUS_OPCODE_PACKET = 0x01, 42 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, 43 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, 44 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, 45 }; 46 47 /** enum ipa_status_exception - status element exception type */ 48 enum ipa_status_exception { 49 /* 0 means no exception */ 50 IPA_STATUS_EXCEPTION_DEAGGR = 0x01, 51 }; 52 53 /* Status element provided by hardware */ 54 struct ipa_status { 55 u8 opcode; /* enum ipa_status_opcode */ 56 u8 exception; /* enum ipa_status_exception */ 57 __le16 mask; 58 __le16 pkt_len; 59 u8 endp_src_idx; 60 u8 endp_dst_idx; 61 __le32 metadata; 62 __le32 flags1; 63 __le64 flags2; 64 __le32 flags3; 65 __le32 flags4; 66 }; 67 68 /* Field masks for struct ipa_status structure fields */ 69 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) 70 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) 71 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) 72 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) 73 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) 74 75 static u32 aggr_byte_limit_max(enum ipa_version version) 76 { 77 if (version < IPA_VERSION_4_5) 78 return field_max(aggr_byte_limit_fmask(true)); 79 80 return field_max(aggr_byte_limit_fmask(false)); 81 } 82 83 /* Compute the aggregation size value to use for a given buffer size */ 84 static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit) 85 { 86 /* A hard aggregation limit will not be crossed; aggregation closes 87 * if saving incoming data would cross the hard byte limit boundary. 88 * 89 * With a soft limit, aggregation closes *after* the size boundary 90 * has been crossed. In that case the limit must leave enough space 91 * after that limit to receive a full MTU of data plus overhead. 92 */ 93 if (!aggr_hard_limit) 94 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 95 96 /* The byte limit is encoded as a number of kilobytes */ 97 98 return rx_buffer_size / SZ_1K; 99 } 100 101 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 102 const struct ipa_gsi_endpoint_data *all_data, 103 const struct ipa_gsi_endpoint_data *data) 104 { 105 const struct ipa_gsi_endpoint_data *other_data; 106 struct device *dev = &ipa->pdev->dev; 107 enum ipa_endpoint_name other_name; 108 109 if (ipa_gsi_endpoint_data_empty(data)) 110 return true; 111 112 if (!data->toward_ipa) { 113 const struct ipa_endpoint_rx *rx_config; 114 u32 buffer_size; 115 u32 aggr_size; 116 u32 limit; 117 118 if (data->endpoint.filter_support) { 119 dev_err(dev, "filtering not supported for " 120 "RX endpoint %u\n", 121 data->endpoint_id); 122 return false; 123 } 124 125 /* Nothing more to check for non-AP RX */ 126 if (data->ee_id != GSI_EE_AP) 127 return true; 128 129 rx_config = &data->endpoint.config.rx; 130 131 /* The buffer size must hold an MTU plus overhead */ 132 buffer_size = rx_config->buffer_size; 133 limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 134 if (buffer_size < limit) { 135 dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n", 136 data->endpoint_id, buffer_size, limit); 137 return false; 138 } 139 140 if (!data->endpoint.config.aggregation) { 141 bool result = true; 142 143 /* No aggregation; check for bogus aggregation data */ 144 if (rx_config->aggr_time_limit) { 145 dev_err(dev, 146 "time limit with no aggregation for RX endpoint %u\n", 147 data->endpoint_id); 148 result = false; 149 } 150 151 if (rx_config->aggr_hard_limit) { 152 dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n", 153 data->endpoint_id); 154 result = false; 155 } 156 157 if (rx_config->aggr_close_eof) { 158 dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n", 159 data->endpoint_id); 160 result = false; 161 } 162 163 return result; /* Nothing more to check */ 164 } 165 166 /* For an endpoint supporting receive aggregation, the byte 167 * limit defines the point at which aggregation closes. This 168 * check ensures the receive buffer size doesn't result in a 169 * limit that exceeds what's representable in the aggregation 170 * byte limit field. 171 */ 172 aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, 173 rx_config->aggr_hard_limit); 174 limit = aggr_byte_limit_max(ipa->version); 175 if (aggr_size > limit) { 176 dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n", 177 data->endpoint_id, aggr_size, limit); 178 179 return false; 180 } 181 182 return true; /* Nothing more to check for RX */ 183 } 184 185 if (data->endpoint.config.status_enable) { 186 other_name = data->endpoint.config.tx.status_endpoint; 187 if (other_name >= count) { 188 dev_err(dev, "status endpoint name %u out of range " 189 "for endpoint %u\n", 190 other_name, data->endpoint_id); 191 return false; 192 } 193 194 /* Status endpoint must be defined... */ 195 other_data = &all_data[other_name]; 196 if (ipa_gsi_endpoint_data_empty(other_data)) { 197 dev_err(dev, "DMA endpoint name %u undefined " 198 "for endpoint %u\n", 199 other_name, data->endpoint_id); 200 return false; 201 } 202 203 /* ...and has to be an RX endpoint... */ 204 if (other_data->toward_ipa) { 205 dev_err(dev, 206 "status endpoint for endpoint %u not RX\n", 207 data->endpoint_id); 208 return false; 209 } 210 211 /* ...and if it's to be an AP endpoint... */ 212 if (other_data->ee_id == GSI_EE_AP) { 213 /* ...make sure it has status enabled. */ 214 if (!other_data->endpoint.config.status_enable) { 215 dev_err(dev, 216 "status not enabled for endpoint %u\n", 217 other_data->endpoint_id); 218 return false; 219 } 220 } 221 } 222 223 if (data->endpoint.config.dma_mode) { 224 other_name = data->endpoint.config.dma_endpoint; 225 if (other_name >= count) { 226 dev_err(dev, "DMA endpoint name %u out of range " 227 "for endpoint %u\n", 228 other_name, data->endpoint_id); 229 return false; 230 } 231 232 other_data = &all_data[other_name]; 233 if (ipa_gsi_endpoint_data_empty(other_data)) { 234 dev_err(dev, "DMA endpoint name %u undefined " 235 "for endpoint %u\n", 236 other_name, data->endpoint_id); 237 return false; 238 } 239 } 240 241 return true; 242 } 243 244 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 245 const struct ipa_gsi_endpoint_data *data) 246 { 247 const struct ipa_gsi_endpoint_data *dp = data; 248 struct device *dev = &ipa->pdev->dev; 249 enum ipa_endpoint_name name; 250 251 if (count > IPA_ENDPOINT_COUNT) { 252 dev_err(dev, "too many endpoints specified (%u > %u)\n", 253 count, IPA_ENDPOINT_COUNT); 254 return false; 255 } 256 257 /* Make sure needed endpoints have defined data */ 258 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 259 dev_err(dev, "command TX endpoint not defined\n"); 260 return false; 261 } 262 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 263 dev_err(dev, "LAN RX endpoint not defined\n"); 264 return false; 265 } 266 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 267 dev_err(dev, "AP->modem TX endpoint not defined\n"); 268 return false; 269 } 270 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 271 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 272 return false; 273 } 274 275 for (name = 0; name < count; name++, dp++) 276 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 277 return false; 278 279 return true; 280 } 281 282 /* Allocate a transaction to use on a non-command endpoint */ 283 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 284 u32 tre_count) 285 { 286 struct gsi *gsi = &endpoint->ipa->gsi; 287 u32 channel_id = endpoint->channel_id; 288 enum dma_data_direction direction; 289 290 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 291 292 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 293 } 294 295 /* suspend_delay represents suspend for RX, delay for TX endpoints. 296 * Note that suspend is not supported starting with IPA v4.0, and 297 * delay mode should not be used starting with IPA v4.2. 298 */ 299 static bool 300 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 301 { 302 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); 303 struct ipa *ipa = endpoint->ipa; 304 bool state; 305 u32 mask; 306 u32 val; 307 308 if (endpoint->toward_ipa) 309 WARN_ON(ipa->version >= IPA_VERSION_4_2); 310 else 311 WARN_ON(ipa->version >= IPA_VERSION_4_0); 312 313 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; 314 315 val = ioread32(ipa->reg_virt + offset); 316 state = !!(val & mask); 317 318 /* Don't bother if it's already in the requested state */ 319 if (suspend_delay != state) { 320 val ^= mask; 321 iowrite32(val, ipa->reg_virt + offset); 322 } 323 324 return state; 325 } 326 327 /* We don't care what the previous state was for delay mode */ 328 static void 329 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) 330 { 331 /* Delay mode should not be used for IPA v4.2+ */ 332 WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2); 333 WARN_ON(!endpoint->toward_ipa); 334 335 (void)ipa_endpoint_init_ctrl(endpoint, enable); 336 } 337 338 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 339 { 340 u32 mask = BIT(endpoint->endpoint_id); 341 struct ipa *ipa = endpoint->ipa; 342 u32 offset; 343 u32 val; 344 345 WARN_ON(!(mask & ipa->available)); 346 347 offset = ipa_reg_state_aggr_active_offset(ipa->version); 348 val = ioread32(ipa->reg_virt + offset); 349 350 return !!(val & mask); 351 } 352 353 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 354 { 355 u32 mask = BIT(endpoint->endpoint_id); 356 struct ipa *ipa = endpoint->ipa; 357 358 WARN_ON(!(mask & ipa->available)); 359 360 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); 361 } 362 363 /** 364 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 365 * @endpoint: Endpoint on which to emulate a suspend 366 * 367 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 368 * with an open aggregation frame. This is to work around a hardware 369 * issue in IPA version 3.5.1 where the suspend interrupt will not be 370 * generated when it should be. 371 */ 372 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 373 { 374 struct ipa *ipa = endpoint->ipa; 375 376 if (!endpoint->config.aggregation) 377 return; 378 379 /* Nothing to do if the endpoint doesn't have aggregation open */ 380 if (!ipa_endpoint_aggr_active(endpoint)) 381 return; 382 383 /* Force close aggregation */ 384 ipa_endpoint_force_close(endpoint); 385 386 ipa_interrupt_simulate_suspend(ipa->interrupt); 387 } 388 389 /* Returns previous suspend state (true means suspend was enabled) */ 390 static bool 391 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) 392 { 393 bool suspended; 394 395 if (endpoint->ipa->version >= IPA_VERSION_4_0) 396 return enable; /* For IPA v4.0+, no change made */ 397 398 WARN_ON(endpoint->toward_ipa); 399 400 suspended = ipa_endpoint_init_ctrl(endpoint, enable); 401 402 /* A client suspended with an open aggregation frame will not 403 * generate a SUSPEND IPA interrupt. If enabling suspend, have 404 * ipa_endpoint_suspend_aggr() handle this. 405 */ 406 if (enable && !suspended) 407 ipa_endpoint_suspend_aggr(endpoint); 408 409 return suspended; 410 } 411 412 /* Put all modem RX endpoints into suspend mode, and stop transmission 413 * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is 414 * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow 415 * control instead. 416 */ 417 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 418 { 419 u32 endpoint_id; 420 421 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { 422 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; 423 424 if (endpoint->ee_id != GSI_EE_MODEM) 425 continue; 426 427 if (!endpoint->toward_ipa) 428 (void)ipa_endpoint_program_suspend(endpoint, enable); 429 else if (ipa->version < IPA_VERSION_4_2) 430 ipa_endpoint_program_delay(endpoint, enable); 431 else 432 gsi_modem_channel_flow_control(&ipa->gsi, 433 endpoint->channel_id, 434 enable); 435 } 436 } 437 438 /* Reset all modem endpoints to use the default exception endpoint */ 439 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 440 { 441 u32 initialized = ipa->initialized; 442 struct gsi_trans *trans; 443 u32 count; 444 445 /* We need one command per modem TX endpoint, plus the commands 446 * that clear the pipeline. 447 */ 448 count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count(); 449 trans = ipa_cmd_trans_alloc(ipa, count); 450 if (!trans) { 451 dev_err(&ipa->pdev->dev, 452 "no transaction to reset modem exception endpoints\n"); 453 return -EBUSY; 454 } 455 456 while (initialized) { 457 u32 endpoint_id = __ffs(initialized); 458 struct ipa_endpoint *endpoint; 459 u32 offset; 460 461 initialized ^= BIT(endpoint_id); 462 463 /* We only reset modem TX endpoints */ 464 endpoint = &ipa->endpoint[endpoint_id]; 465 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 466 continue; 467 468 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 469 470 /* Value written is 0, and all bits are updated. That 471 * means status is disabled on the endpoint, and as a 472 * result all other fields in the register are ignored. 473 */ 474 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 475 } 476 477 ipa_cmd_pipeline_clear_add(trans); 478 479 gsi_trans_commit_wait(trans); 480 481 ipa_cmd_pipeline_clear_wait(ipa); 482 483 return 0; 484 } 485 486 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 487 { 488 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); 489 enum ipa_cs_offload_en enabled; 490 u32 val = 0; 491 492 /* FRAG_OFFLOAD_EN is 0 */ 493 if (endpoint->config.checksum) { 494 enum ipa_version version = endpoint->ipa->version; 495 496 if (endpoint->toward_ipa) { 497 u32 checksum_offset; 498 499 /* Checksum header offset is in 4-byte units */ 500 checksum_offset = sizeof(struct rmnet_map_header); 501 checksum_offset /= sizeof(u32); 502 val |= u32_encode_bits(checksum_offset, 503 CS_METADATA_HDR_OFFSET_FMASK); 504 505 enabled = version < IPA_VERSION_4_5 506 ? IPA_CS_OFFLOAD_UL 507 : IPA_CS_OFFLOAD_INLINE; 508 } else { 509 enabled = version < IPA_VERSION_4_5 510 ? IPA_CS_OFFLOAD_DL 511 : IPA_CS_OFFLOAD_INLINE; 512 } 513 } else { 514 enabled = IPA_CS_OFFLOAD_NONE; 515 } 516 val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK); 517 /* CS_GEN_QMB_MASTER_SEL is 0 */ 518 519 iowrite32(val, endpoint->ipa->reg_virt + offset); 520 } 521 522 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) 523 { 524 u32 offset; 525 u32 val; 526 527 if (!endpoint->toward_ipa) 528 return; 529 530 offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id); 531 val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK); 532 533 iowrite32(val, endpoint->ipa->reg_virt + offset); 534 } 535 536 static u32 537 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) 538 { 539 u32 header_size = sizeof(struct rmnet_map_header); 540 541 /* Without checksum offload, we just have the MAP header */ 542 if (!endpoint->config.checksum) 543 return header_size; 544 545 if (version < IPA_VERSION_4_5) { 546 /* Checksum header inserted for AP TX endpoints only */ 547 if (endpoint->toward_ipa) 548 header_size += sizeof(struct rmnet_map_ul_csum_header); 549 } else { 550 /* Checksum header is used in both directions */ 551 header_size += sizeof(struct rmnet_map_v5_csum_header); 552 } 553 554 return header_size; 555 } 556 557 /** 558 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register 559 * @endpoint: Endpoint pointer 560 * 561 * We program QMAP endpoints so each packet received is preceded by a QMAP 562 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte 563 * packet size field, and we have the IPA hardware populate both for each 564 * received packet. The header is configured (in the HDR_EXT register) 565 * to use big endian format. 566 * 567 * The packet size is written into the QMAP header's pkt_len field. That 568 * location is defined here using the HDR_OFST_PKT_SIZE field. 569 * 570 * The mux_id comes from a 4-byte metadata value supplied with each packet 571 * by the modem. It is *not* a QMAP header, but it does contain the mux_id 572 * value that we want, in its low-order byte. A bitmask defined in the 573 * endpoint's METADATA_MASK register defines which byte within the modem 574 * metadata contains the mux_id. And the OFST_METADATA field programmed 575 * here indicates where the extracted byte should be placed within the QMAP 576 * header. 577 */ 578 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 579 { 580 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); 581 struct ipa *ipa = endpoint->ipa; 582 u32 val = 0; 583 584 if (endpoint->config.qmap) { 585 enum ipa_version version = ipa->version; 586 size_t header_size; 587 588 header_size = ipa_qmap_header_size(version, endpoint); 589 val = ipa_header_size_encoded(version, header_size); 590 591 /* Define how to fill fields in a received QMAP header */ 592 if (!endpoint->toward_ipa) { 593 u32 offset; /* Field offset within header */ 594 595 /* Where IPA will write the metadata value */ 596 offset = offsetof(struct rmnet_map_header, mux_id); 597 val |= ipa_metadata_offset_encoded(version, offset); 598 599 /* Where IPA will write the length */ 600 offset = offsetof(struct rmnet_map_header, pkt_len); 601 /* Upper bits are stored in HDR_EXT with IPA v4.5 */ 602 if (version >= IPA_VERSION_4_5) 603 offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK); 604 605 val |= HDR_OFST_PKT_SIZE_VALID_FMASK; 606 val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK); 607 } 608 /* For QMAP TX, metadata offset is 0 (modem assumes this) */ 609 val |= HDR_OFST_METADATA_VALID_FMASK; 610 611 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ 612 /* HDR_A5_MUX is 0 */ 613 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 614 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ 615 } 616 617 iowrite32(val, ipa->reg_virt + offset); 618 } 619 620 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 621 { 622 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); 623 u32 pad_align = endpoint->config.rx.pad_align; 624 struct ipa *ipa = endpoint->ipa; 625 u32 val = 0; 626 627 if (endpoint->config.qmap) { 628 /* We have a header, so we must specify its endianness */ 629 val |= HDR_ENDIANNESS_FMASK; /* big endian */ 630 631 /* A QMAP header contains a 6 bit pad field at offset 0. 632 * The RMNet driver assumes this field is meaningful in 633 * packets it receives, and assumes the header's payload 634 * length includes that padding. The RMNet driver does 635 * *not* pad packets it sends, however, so the pad field 636 * (although 0) should be ignored. 637 */ 638 if (!endpoint->toward_ipa) { 639 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; 640 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 641 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; 642 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 643 } 644 } 645 646 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 647 if (!endpoint->toward_ipa) 648 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); 649 650 /* IPA v4.5 adds some most-significant bits to a few fields, 651 * two of which are defined in the HDR (not HDR_EXT) register. 652 */ 653 if (ipa->version >= IPA_VERSION_4_5) { 654 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ 655 if (endpoint->config.qmap && !endpoint->toward_ipa) { 656 u32 offset; 657 658 offset = offsetof(struct rmnet_map_header, pkt_len); 659 offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK); 660 val |= u32_encode_bits(offset, 661 HDR_OFST_PKT_SIZE_MSB_FMASK); 662 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ 663 } 664 } 665 iowrite32(val, ipa->reg_virt + offset); 666 } 667 668 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 669 { 670 u32 endpoint_id = endpoint->endpoint_id; 671 u32 val = 0; 672 u32 offset; 673 674 if (endpoint->toward_ipa) 675 return; /* Register not valid for TX endpoints */ 676 677 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); 678 679 /* Note that HDR_ENDIANNESS indicates big endian header fields */ 680 if (endpoint->config.qmap) 681 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); 682 683 iowrite32(val, endpoint->ipa->reg_virt + offset); 684 } 685 686 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 687 { 688 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); 689 u32 val; 690 691 if (!endpoint->toward_ipa) 692 return; /* Register not valid for RX endpoints */ 693 694 if (endpoint->config.dma_mode) { 695 enum ipa_endpoint_name name = endpoint->config.dma_endpoint; 696 u32 dma_endpoint_id; 697 698 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; 699 700 val = u32_encode_bits(IPA_DMA, MODE_FMASK); 701 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); 702 } else { 703 val = u32_encode_bits(IPA_BASIC, MODE_FMASK); 704 } 705 /* All other bits unspecified (and 0) */ 706 707 iowrite32(val, endpoint->ipa->reg_virt + offset); 708 } 709 710 /* Encoded values for AGGR endpoint register fields */ 711 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit) 712 { 713 if (version < IPA_VERSION_4_5) 714 return u32_encode_bits(limit, aggr_byte_limit_fmask(true)); 715 716 return u32_encode_bits(limit, aggr_byte_limit_fmask(false)); 717 } 718 719 /* Encode the aggregation timer limit (microseconds) based on IPA version */ 720 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit) 721 { 722 u32 gran_sel; 723 u32 fmask; 724 u32 val; 725 726 if (version < IPA_VERSION_4_5) { 727 /* We set aggregation granularity in ipa_hardware_config() */ 728 fmask = aggr_time_limit_fmask(true); 729 val = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); 730 WARN(val > field_max(fmask), 731 "aggr_time_limit too large (%u > %u usec)\n", 732 val, field_max(fmask) * IPA_AGGR_GRANULARITY); 733 734 return u32_encode_bits(val, fmask); 735 } 736 737 /* IPA v4.5 expresses the time limit using Qtime. The AP has 738 * pulse generators 0 and 1 available, which were configured 739 * in ipa_qtime_config() to have granularity 100 usec and 740 * 1 msec, respectively. Use pulse generator 0 if possible, 741 * otherwise fall back to pulse generator 1. 742 */ 743 fmask = aggr_time_limit_fmask(false); 744 val = DIV_ROUND_CLOSEST(limit, 100); 745 if (val > field_max(fmask)) { 746 /* Have to use pulse generator 1 (millisecond granularity) */ 747 gran_sel = AGGR_GRAN_SEL_FMASK; 748 val = DIV_ROUND_CLOSEST(limit, 1000); 749 WARN(val > field_max(fmask), 750 "aggr_time_limit too large (%u > %u usec)\n", 751 limit, field_max(fmask) * 1000); 752 } else { 753 /* We can use pulse generator 0 (100 usec granularity) */ 754 gran_sel = 0; 755 } 756 757 return gran_sel | u32_encode_bits(val, fmask); 758 } 759 760 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled) 761 { 762 u32 val = enabled ? 1 : 0; 763 764 if (version < IPA_VERSION_4_5) 765 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true)); 766 767 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false)); 768 } 769 770 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 771 { 772 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); 773 enum ipa_version version = endpoint->ipa->version; 774 u32 val = 0; 775 776 if (endpoint->config.aggregation) { 777 if (!endpoint->toward_ipa) { 778 const struct ipa_endpoint_rx *rx_config; 779 u32 buffer_size; 780 bool close_eof; 781 u32 limit; 782 783 rx_config = &endpoint->config.rx; 784 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); 785 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); 786 787 buffer_size = rx_config->buffer_size; 788 limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, 789 rx_config->aggr_hard_limit); 790 val |= aggr_byte_limit_encoded(version, limit); 791 792 limit = rx_config->aggr_time_limit; 793 val |= aggr_time_limit_encoded(version, limit); 794 795 /* AGGR_PKT_LIMIT is 0 (unlimited) */ 796 797 close_eof = rx_config->aggr_close_eof; 798 val |= aggr_sw_eof_active_encoded(version, close_eof); 799 } else { 800 val |= u32_encode_bits(IPA_ENABLE_DEAGGR, 801 AGGR_EN_FMASK); 802 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); 803 /* other fields ignored */ 804 } 805 /* AGGR_FORCE_CLOSE is 0 */ 806 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ 807 } else { 808 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); 809 /* other fields ignored */ 810 } 811 812 iowrite32(val, endpoint->ipa->reg_virt + offset); 813 } 814 815 /* Return the Qtime-based head-of-line blocking timer value that 816 * represents the given number of microseconds. The result 817 * includes both the timer value and the selected timer granularity. 818 */ 819 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds) 820 { 821 u32 gran_sel; 822 u32 val; 823 824 /* IPA v4.5 expresses time limits using Qtime. The AP has 825 * pulse generators 0 and 1 available, which were configured 826 * in ipa_qtime_config() to have granularity 100 usec and 827 * 1 msec, respectively. Use pulse generator 0 if possible, 828 * otherwise fall back to pulse generator 1. 829 */ 830 val = DIV_ROUND_CLOSEST(microseconds, 100); 831 if (val > field_max(TIME_LIMIT_FMASK)) { 832 /* Have to use pulse generator 1 (millisecond granularity) */ 833 gran_sel = GRAN_SEL_FMASK; 834 val = DIV_ROUND_CLOSEST(microseconds, 1000); 835 } else { 836 /* We can use pulse generator 0 (100 usec granularity) */ 837 gran_sel = 0; 838 } 839 840 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK); 841 } 842 843 /* The head-of-line blocking timer is defined as a tick count. For 844 * IPA version 4.5 the tick count is based on the Qtimer, which is 845 * derived from the 19.2 MHz SoC XO clock. For older IPA versions 846 * each tick represents 128 cycles of the IPA core clock. 847 * 848 * Return the encoded value that should be written to that register 849 * that represents the timeout period provided. For IPA v4.2 this 850 * encodes a base and scale value, while for earlier versions the 851 * value is a simple tick count. 852 */ 853 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds) 854 { 855 u32 width; 856 u32 scale; 857 u64 ticks; 858 u64 rate; 859 u32 high; 860 u32 val; 861 862 if (!microseconds) 863 return 0; /* Nothing to compute if timer period is 0 */ 864 865 if (ipa->version >= IPA_VERSION_4_5) 866 return hol_block_timer_qtime_val(ipa, microseconds); 867 868 /* Use 64 bit arithmetic to avoid overflow... */ 869 rate = ipa_core_clock_rate(ipa); 870 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); 871 /* ...but we still need to fit into a 32-bit register */ 872 WARN_ON(ticks > U32_MAX); 873 874 /* IPA v3.5.1 through v4.1 just record the tick count */ 875 if (ipa->version < IPA_VERSION_4_2) 876 return (u32)ticks; 877 878 /* For IPA v4.2, the tick count is represented by base and 879 * scale fields within the 32-bit timer register, where: 880 * ticks = base << scale; 881 * The best precision is achieved when the base value is as 882 * large as possible. Find the highest set bit in the tick 883 * count, and extract the number of bits in the base field 884 * such that high bit is included. 885 */ 886 high = fls(ticks); /* 1..32 */ 887 width = HWEIGHT32(BASE_VALUE_FMASK); 888 scale = high > width ? high - width : 0; 889 if (scale) { 890 /* If we're scaling, round up to get a closer result */ 891 ticks += 1 << (scale - 1); 892 /* High bit was set, so rounding might have affected it */ 893 if (fls(ticks) != high) 894 scale++; 895 } 896 897 val = u32_encode_bits(scale, SCALE_FMASK); 898 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); 899 900 return val; 901 } 902 903 /* If microseconds is 0, timeout is immediate */ 904 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 905 u32 microseconds) 906 { 907 u32 endpoint_id = endpoint->endpoint_id; 908 struct ipa *ipa = endpoint->ipa; 909 u32 offset; 910 u32 val; 911 912 /* This should only be changed when HOL_BLOCK_EN is disabled */ 913 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); 914 val = hol_block_timer_val(ipa, microseconds); 915 iowrite32(val, ipa->reg_virt + offset); 916 } 917 918 static void 919 ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable) 920 { 921 u32 endpoint_id = endpoint->endpoint_id; 922 u32 offset; 923 u32 val; 924 925 val = enable ? HOL_BLOCK_EN_FMASK : 0; 926 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); 927 iowrite32(val, endpoint->ipa->reg_virt + offset); 928 /* When enabling, the register must be written twice for IPA v4.5+ */ 929 if (enable && endpoint->ipa->version >= IPA_VERSION_4_5) 930 iowrite32(val, endpoint->ipa->reg_virt + offset); 931 } 932 933 /* Assumes HOL_BLOCK is in disabled state */ 934 static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, 935 u32 microseconds) 936 { 937 ipa_endpoint_init_hol_block_timer(endpoint, microseconds); 938 ipa_endpoint_init_hol_block_en(endpoint, true); 939 } 940 941 static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint) 942 { 943 ipa_endpoint_init_hol_block_en(endpoint, false); 944 } 945 946 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 947 { 948 u32 i; 949 950 for (i = 0; i < IPA_ENDPOINT_MAX; i++) { 951 struct ipa_endpoint *endpoint = &ipa->endpoint[i]; 952 953 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) 954 continue; 955 956 ipa_endpoint_init_hol_block_disable(endpoint); 957 ipa_endpoint_init_hol_block_enable(endpoint, 0); 958 } 959 } 960 961 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 962 { 963 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); 964 u32 val = 0; 965 966 if (!endpoint->toward_ipa) 967 return; /* Register not valid for RX endpoints */ 968 969 /* DEAGGR_HDR_LEN is 0 */ 970 /* PACKET_OFFSET_VALID is 0 */ 971 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 972 /* MAX_PACKET_LEN is 0 (not enforced) */ 973 974 iowrite32(val, endpoint->ipa->reg_virt + offset); 975 } 976 977 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) 978 { 979 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id); 980 struct ipa *ipa = endpoint->ipa; 981 u32 val; 982 983 val = rsrc_grp_encoded(ipa->version, endpoint->config.resource_group); 984 iowrite32(val, ipa->reg_virt + offset); 985 } 986 987 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 988 { 989 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); 990 u32 val = 0; 991 992 if (!endpoint->toward_ipa) 993 return; /* Register not valid for RX endpoints */ 994 995 /* Low-order byte configures primary packet processing */ 996 val |= u32_encode_bits(endpoint->config.tx.seq_type, SEQ_TYPE_FMASK); 997 998 /* Second byte configures replicated packet processing */ 999 val |= u32_encode_bits(endpoint->config.tx.seq_rep_type, 1000 SEQ_REP_TYPE_FMASK); 1001 1002 iowrite32(val, endpoint->ipa->reg_virt + offset); 1003 } 1004 1005 /** 1006 * ipa_endpoint_skb_tx() - Transmit a socket buffer 1007 * @endpoint: Endpoint pointer 1008 * @skb: Socket buffer to send 1009 * 1010 * Returns: 0 if successful, or a negative error code 1011 */ 1012 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 1013 { 1014 struct gsi_trans *trans; 1015 u32 nr_frags; 1016 int ret; 1017 1018 /* Make sure source endpoint's TLV FIFO has enough entries to 1019 * hold the linear portion of the skb and all its fragments. 1020 * If not, see if we can linearize it before giving up. 1021 */ 1022 nr_frags = skb_shinfo(skb)->nr_frags; 1023 if (nr_frags > endpoint->skb_frag_max) { 1024 if (skb_linearize(skb)) 1025 return -E2BIG; 1026 nr_frags = 0; 1027 } 1028 1029 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 1030 if (!trans) 1031 return -EBUSY; 1032 1033 ret = gsi_trans_skb_add(trans, skb); 1034 if (ret) 1035 goto err_trans_free; 1036 trans->data = skb; /* transaction owns skb now */ 1037 1038 gsi_trans_commit(trans, !netdev_xmit_more()); 1039 1040 return 0; 1041 1042 err_trans_free: 1043 gsi_trans_free(trans); 1044 1045 return -ENOMEM; 1046 } 1047 1048 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 1049 { 1050 u32 endpoint_id = endpoint->endpoint_id; 1051 struct ipa *ipa = endpoint->ipa; 1052 u32 val = 0; 1053 u32 offset; 1054 1055 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 1056 1057 if (endpoint->config.status_enable) { 1058 val |= STATUS_EN_FMASK; 1059 if (endpoint->toward_ipa) { 1060 enum ipa_endpoint_name name; 1061 u32 status_endpoint_id; 1062 1063 name = endpoint->config.tx.status_endpoint; 1064 status_endpoint_id = ipa->name_map[name]->endpoint_id; 1065 1066 val |= u32_encode_bits(status_endpoint_id, 1067 STATUS_ENDP_FMASK); 1068 } 1069 /* STATUS_LOCATION is 0, meaning status element precedes 1070 * packet (not present for IPA v4.5) 1071 */ 1072 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */ 1073 } 1074 1075 iowrite32(val, ipa->reg_virt + offset); 1076 } 1077 1078 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint, 1079 struct gsi_trans *trans) 1080 { 1081 struct page *page; 1082 u32 buffer_size; 1083 u32 offset; 1084 u32 len; 1085 int ret; 1086 1087 buffer_size = endpoint->config.rx.buffer_size; 1088 page = dev_alloc_pages(get_order(buffer_size)); 1089 if (!page) 1090 return -ENOMEM; 1091 1092 /* Offset the buffer to make space for skb headroom */ 1093 offset = NET_SKB_PAD; 1094 len = buffer_size - offset; 1095 1096 ret = gsi_trans_page_add(trans, page, len, offset); 1097 if (ret) 1098 put_page(page); 1099 else 1100 trans->data = page; /* transaction owns page now */ 1101 1102 return ret; 1103 } 1104 1105 /** 1106 * ipa_endpoint_replenish() - Replenish endpoint receive buffers 1107 * @endpoint: Endpoint to be replenished 1108 * 1109 * The IPA hardware can hold a fixed number of receive buffers for an RX 1110 * endpoint, based on the number of entries in the underlying channel ring 1111 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many 1112 * more receive buffers can be supplied to the hardware. Replenishing for 1113 * an endpoint can be disabled, in which case buffers are not queued to 1114 * the hardware. 1115 */ 1116 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint) 1117 { 1118 struct gsi_trans *trans; 1119 1120 if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) 1121 return; 1122 1123 /* Skip it if it's already active */ 1124 if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) 1125 return; 1126 1127 while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) { 1128 bool doorbell; 1129 1130 if (ipa_endpoint_replenish_one(endpoint, trans)) 1131 goto try_again_later; 1132 1133 1134 /* Ring the doorbell if we've got a full batch */ 1135 doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH); 1136 gsi_trans_commit(trans, doorbell); 1137 } 1138 1139 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1140 1141 return; 1142 1143 try_again_later: 1144 gsi_trans_free(trans); 1145 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1146 1147 /* Whenever a receive buffer transaction completes we'll try to 1148 * replenish again. It's unlikely, but if we fail to supply even 1149 * one buffer, nothing will trigger another replenish attempt. 1150 * If the hardware has no receive buffers queued, schedule work to 1151 * try replenishing again. 1152 */ 1153 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) 1154 schedule_delayed_work(&endpoint->replenish_work, 1155 msecs_to_jiffies(1)); 1156 } 1157 1158 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 1159 { 1160 set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1161 1162 /* Start replenishing if hardware currently has no buffers */ 1163 if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) 1164 ipa_endpoint_replenish(endpoint); 1165 } 1166 1167 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 1168 { 1169 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1170 } 1171 1172 static void ipa_endpoint_replenish_work(struct work_struct *work) 1173 { 1174 struct delayed_work *dwork = to_delayed_work(work); 1175 struct ipa_endpoint *endpoint; 1176 1177 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 1178 1179 ipa_endpoint_replenish(endpoint); 1180 } 1181 1182 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 1183 void *data, u32 len, u32 extra) 1184 { 1185 struct sk_buff *skb; 1186 1187 if (!endpoint->netdev) 1188 return; 1189 1190 skb = __dev_alloc_skb(len, GFP_ATOMIC); 1191 if (skb) { 1192 /* Copy the data into the socket buffer and receive it */ 1193 skb_put(skb, len); 1194 memcpy(skb->data, data, len); 1195 skb->truesize += extra; 1196 } 1197 1198 ipa_modem_skb_rx(endpoint->netdev, skb); 1199 } 1200 1201 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 1202 struct page *page, u32 len) 1203 { 1204 u32 buffer_size = endpoint->config.rx.buffer_size; 1205 struct sk_buff *skb; 1206 1207 /* Nothing to do if there's no netdev */ 1208 if (!endpoint->netdev) 1209 return false; 1210 1211 WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD)); 1212 1213 skb = build_skb(page_address(page), buffer_size); 1214 if (skb) { 1215 /* Reserve the headroom and account for the data */ 1216 skb_reserve(skb, NET_SKB_PAD); 1217 skb_put(skb, len); 1218 } 1219 1220 /* Receive the buffer (or record drop if unable to build it) */ 1221 ipa_modem_skb_rx(endpoint->netdev, skb); 1222 1223 return skb != NULL; 1224 } 1225 1226 /* The format of a packet status element is the same for several status 1227 * types (opcodes). Other types aren't currently supported. 1228 */ 1229 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 1230 { 1231 switch (opcode) { 1232 case IPA_STATUS_OPCODE_PACKET: 1233 case IPA_STATUS_OPCODE_DROPPED_PACKET: 1234 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 1235 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 1236 return true; 1237 default: 1238 return false; 1239 } 1240 } 1241 1242 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, 1243 const struct ipa_status *status) 1244 { 1245 u32 endpoint_id; 1246 1247 if (!ipa_status_format_packet(status->opcode)) 1248 return true; 1249 if (!status->pkt_len) 1250 return true; 1251 endpoint_id = u8_get_bits(status->endp_dst_idx, 1252 IPA_STATUS_DST_IDX_FMASK); 1253 if (endpoint_id != endpoint->endpoint_id) 1254 return true; 1255 1256 return false; /* Don't skip this packet, process it */ 1257 } 1258 1259 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, 1260 const struct ipa_status *status) 1261 { 1262 struct ipa_endpoint *command_endpoint; 1263 struct ipa *ipa = endpoint->ipa; 1264 u32 endpoint_id; 1265 1266 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) 1267 return false; /* No valid tag */ 1268 1269 /* The status contains a valid tag. We know the packet was sent to 1270 * this endpoint (already verified by ipa_endpoint_status_skip()). 1271 * If the packet came from the AP->command TX endpoint we know 1272 * this packet was sent as part of the pipeline clear process. 1273 */ 1274 endpoint_id = u8_get_bits(status->endp_src_idx, 1275 IPA_STATUS_SRC_IDX_FMASK); 1276 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 1277 if (endpoint_id == command_endpoint->endpoint_id) { 1278 complete(&ipa->completion); 1279 } else { 1280 dev_err(&ipa->pdev->dev, 1281 "unexpected tagged packet from endpoint %u\n", 1282 endpoint_id); 1283 } 1284 1285 return true; 1286 } 1287 1288 /* Return whether the status indicates the packet should be dropped */ 1289 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, 1290 const struct ipa_status *status) 1291 { 1292 u32 val; 1293 1294 /* If the status indicates a tagged transfer, we'll drop the packet */ 1295 if (ipa_endpoint_status_tag(endpoint, status)) 1296 return true; 1297 1298 /* Deaggregation exceptions we drop; all other types we consume */ 1299 if (status->exception) 1300 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; 1301 1302 /* Drop the packet if it fails to match a routing rule; otherwise no */ 1303 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1304 1305 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1306 } 1307 1308 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 1309 struct page *page, u32 total_len) 1310 { 1311 u32 buffer_size = endpoint->config.rx.buffer_size; 1312 void *data = page_address(page) + NET_SKB_PAD; 1313 u32 unused = buffer_size - total_len; 1314 u32 resid = total_len; 1315 1316 while (resid) { 1317 const struct ipa_status *status = data; 1318 u32 align; 1319 u32 len; 1320 1321 if (resid < sizeof(*status)) { 1322 dev_err(&endpoint->ipa->pdev->dev, 1323 "short message (%u bytes < %zu byte status)\n", 1324 resid, sizeof(*status)); 1325 break; 1326 } 1327 1328 /* Skip over status packets that lack packet data */ 1329 if (ipa_endpoint_status_skip(endpoint, status)) { 1330 data += sizeof(*status); 1331 resid -= sizeof(*status); 1332 continue; 1333 } 1334 1335 /* Compute the amount of buffer space consumed by the packet, 1336 * including the status element. If the hardware is configured 1337 * to pad packet data to an aligned boundary, account for that. 1338 * And if checksum offload is enabled a trailer containing 1339 * computed checksum information will be appended. 1340 */ 1341 align = endpoint->config.rx.pad_align ? : 1; 1342 len = le16_to_cpu(status->pkt_len); 1343 len = sizeof(*status) + ALIGN(len, align); 1344 if (endpoint->config.checksum) 1345 len += sizeof(struct rmnet_map_dl_csum_trailer); 1346 1347 if (!ipa_endpoint_status_drop(endpoint, status)) { 1348 void *data2; 1349 u32 extra; 1350 u32 len2; 1351 1352 /* Client receives only packet data (no status) */ 1353 data2 = data + sizeof(*status); 1354 len2 = le16_to_cpu(status->pkt_len); 1355 1356 /* Have the true size reflect the extra unused space in 1357 * the original receive buffer. Distribute the "cost" 1358 * proportionately across all aggregated packets in the 1359 * buffer. 1360 */ 1361 extra = DIV_ROUND_CLOSEST(unused * len, total_len); 1362 ipa_endpoint_skb_copy(endpoint, data2, len2, extra); 1363 } 1364 1365 /* Consume status and the full packet it describes */ 1366 data += len; 1367 resid -= len; 1368 } 1369 } 1370 1371 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1372 struct gsi_trans *trans) 1373 { 1374 struct page *page; 1375 1376 if (endpoint->toward_ipa) 1377 return; 1378 1379 if (trans->cancelled) 1380 goto done; 1381 1382 /* Parse or build a socket buffer using the actual received length */ 1383 page = trans->data; 1384 if (endpoint->config.status_enable) 1385 ipa_endpoint_status_parse(endpoint, page, trans->len); 1386 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1387 trans->data = NULL; /* Pages have been consumed */ 1388 done: 1389 ipa_endpoint_replenish(endpoint); 1390 } 1391 1392 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1393 struct gsi_trans *trans) 1394 { 1395 if (endpoint->toward_ipa) { 1396 struct ipa *ipa = endpoint->ipa; 1397 1398 /* Nothing to do for command transactions */ 1399 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1400 struct sk_buff *skb = trans->data; 1401 1402 if (skb) 1403 dev_kfree_skb_any(skb); 1404 } 1405 } else { 1406 struct page *page = trans->data; 1407 1408 if (page) 1409 put_page(page); 1410 } 1411 } 1412 1413 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1414 { 1415 u32 val; 1416 1417 /* ROUTE_DIS is 0 */ 1418 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); 1419 val |= ROUTE_DEF_HDR_TABLE_FMASK; 1420 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); 1421 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); 1422 val |= ROUTE_DEF_RETAIN_HDR_FMASK; 1423 1424 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); 1425 } 1426 1427 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1428 { 1429 ipa_endpoint_default_route_set(ipa, 0); 1430 } 1431 1432 /** 1433 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1434 * @endpoint: Endpoint to be reset 1435 * 1436 * If aggregation is active on an RX endpoint when a reset is performed 1437 * on its underlying GSI channel, a special sequence of actions must be 1438 * taken to ensure the IPA pipeline is properly cleared. 1439 * 1440 * Return: 0 if successful, or a negative error code 1441 */ 1442 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1443 { 1444 struct device *dev = &endpoint->ipa->pdev->dev; 1445 struct ipa *ipa = endpoint->ipa; 1446 struct gsi *gsi = &ipa->gsi; 1447 bool suspended = false; 1448 dma_addr_t addr; 1449 u32 retries; 1450 u32 len = 1; 1451 void *virt; 1452 int ret; 1453 1454 virt = kzalloc(len, GFP_KERNEL); 1455 if (!virt) 1456 return -ENOMEM; 1457 1458 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1459 if (dma_mapping_error(dev, addr)) { 1460 ret = -ENOMEM; 1461 goto out_kfree; 1462 } 1463 1464 /* Force close aggregation before issuing the reset */ 1465 ipa_endpoint_force_close(endpoint); 1466 1467 /* Reset and reconfigure the channel with the doorbell engine 1468 * disabled. Then poll until we know aggregation is no longer 1469 * active. We'll re-enable the doorbell (if appropriate) when 1470 * we reset again below. 1471 */ 1472 gsi_channel_reset(gsi, endpoint->channel_id, false); 1473 1474 /* Make sure the channel isn't suspended */ 1475 suspended = ipa_endpoint_program_suspend(endpoint, false); 1476 1477 /* Start channel and do a 1 byte read */ 1478 ret = gsi_channel_start(gsi, endpoint->channel_id); 1479 if (ret) 1480 goto out_suspend_again; 1481 1482 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1483 if (ret) 1484 goto err_endpoint_stop; 1485 1486 /* Wait for aggregation to be closed on the channel */ 1487 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1488 do { 1489 if (!ipa_endpoint_aggr_active(endpoint)) 1490 break; 1491 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1492 } while (retries--); 1493 1494 /* Check one last time */ 1495 if (ipa_endpoint_aggr_active(endpoint)) 1496 dev_err(dev, "endpoint %u still active during reset\n", 1497 endpoint->endpoint_id); 1498 1499 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1500 1501 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1502 if (ret) 1503 goto out_suspend_again; 1504 1505 /* Finally, reset and reconfigure the channel again (re-enabling 1506 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1507 * complete the channel reset sequence. Finish by suspending the 1508 * channel again (if necessary). 1509 */ 1510 gsi_channel_reset(gsi, endpoint->channel_id, true); 1511 1512 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1513 1514 goto out_suspend_again; 1515 1516 err_endpoint_stop: 1517 (void)gsi_channel_stop(gsi, endpoint->channel_id); 1518 out_suspend_again: 1519 if (suspended) 1520 (void)ipa_endpoint_program_suspend(endpoint, true); 1521 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1522 out_kfree: 1523 kfree(virt); 1524 1525 return ret; 1526 } 1527 1528 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1529 { 1530 u32 channel_id = endpoint->channel_id; 1531 struct ipa *ipa = endpoint->ipa; 1532 bool special; 1533 int ret = 0; 1534 1535 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1536 * is active, we need to handle things specially to recover. 1537 * All other cases just need to reset the underlying GSI channel. 1538 */ 1539 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && 1540 endpoint->config.aggregation; 1541 if (special && ipa_endpoint_aggr_active(endpoint)) 1542 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1543 else 1544 gsi_channel_reset(&ipa->gsi, channel_id, true); 1545 1546 if (ret) 1547 dev_err(&ipa->pdev->dev, 1548 "error %d resetting channel %u for endpoint %u\n", 1549 ret, endpoint->channel_id, endpoint->endpoint_id); 1550 } 1551 1552 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1553 { 1554 if (endpoint->toward_ipa) { 1555 /* Newer versions of IPA use GSI channel flow control 1556 * instead of endpoint DELAY mode to prevent sending data. 1557 * Flow control is disabled for newly-allocated channels, 1558 * and we can assume flow control is not (ever) enabled 1559 * for AP TX channels. 1560 */ 1561 if (endpoint->ipa->version < IPA_VERSION_4_2) 1562 ipa_endpoint_program_delay(endpoint, false); 1563 } else { 1564 /* Ensure suspend mode is off on all AP RX endpoints */ 1565 (void)ipa_endpoint_program_suspend(endpoint, false); 1566 } 1567 ipa_endpoint_init_cfg(endpoint); 1568 ipa_endpoint_init_nat(endpoint); 1569 ipa_endpoint_init_hdr(endpoint); 1570 ipa_endpoint_init_hdr_ext(endpoint); 1571 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1572 ipa_endpoint_init_mode(endpoint); 1573 ipa_endpoint_init_aggr(endpoint); 1574 if (!endpoint->toward_ipa) { 1575 if (endpoint->config.rx.holb_drop) 1576 ipa_endpoint_init_hol_block_enable(endpoint, 0); 1577 else 1578 ipa_endpoint_init_hol_block_disable(endpoint); 1579 } 1580 ipa_endpoint_init_deaggr(endpoint); 1581 ipa_endpoint_init_rsrc_grp(endpoint); 1582 ipa_endpoint_init_seq(endpoint); 1583 ipa_endpoint_status(endpoint); 1584 } 1585 1586 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1587 { 1588 struct ipa *ipa = endpoint->ipa; 1589 struct gsi *gsi = &ipa->gsi; 1590 int ret; 1591 1592 ret = gsi_channel_start(gsi, endpoint->channel_id); 1593 if (ret) { 1594 dev_err(&ipa->pdev->dev, 1595 "error %d starting %cX channel %u for endpoint %u\n", 1596 ret, endpoint->toward_ipa ? 'T' : 'R', 1597 endpoint->channel_id, endpoint->endpoint_id); 1598 return ret; 1599 } 1600 1601 if (!endpoint->toward_ipa) { 1602 ipa_interrupt_suspend_enable(ipa->interrupt, 1603 endpoint->endpoint_id); 1604 ipa_endpoint_replenish_enable(endpoint); 1605 } 1606 1607 ipa->enabled |= BIT(endpoint->endpoint_id); 1608 1609 return 0; 1610 } 1611 1612 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1613 { 1614 u32 mask = BIT(endpoint->endpoint_id); 1615 struct ipa *ipa = endpoint->ipa; 1616 struct gsi *gsi = &ipa->gsi; 1617 int ret; 1618 1619 if (!(ipa->enabled & mask)) 1620 return; 1621 1622 ipa->enabled ^= mask; 1623 1624 if (!endpoint->toward_ipa) { 1625 ipa_endpoint_replenish_disable(endpoint); 1626 ipa_interrupt_suspend_disable(ipa->interrupt, 1627 endpoint->endpoint_id); 1628 } 1629 1630 /* Note that if stop fails, the channel's state is not well-defined */ 1631 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1632 if (ret) 1633 dev_err(&ipa->pdev->dev, 1634 "error %d attempting to stop endpoint %u\n", ret, 1635 endpoint->endpoint_id); 1636 } 1637 1638 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1639 { 1640 struct device *dev = &endpoint->ipa->pdev->dev; 1641 struct gsi *gsi = &endpoint->ipa->gsi; 1642 int ret; 1643 1644 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1645 return; 1646 1647 if (!endpoint->toward_ipa) { 1648 ipa_endpoint_replenish_disable(endpoint); 1649 (void)ipa_endpoint_program_suspend(endpoint, true); 1650 } 1651 1652 ret = gsi_channel_suspend(gsi, endpoint->channel_id); 1653 if (ret) 1654 dev_err(dev, "error %d suspending channel %u\n", ret, 1655 endpoint->channel_id); 1656 } 1657 1658 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1659 { 1660 struct device *dev = &endpoint->ipa->pdev->dev; 1661 struct gsi *gsi = &endpoint->ipa->gsi; 1662 int ret; 1663 1664 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1665 return; 1666 1667 if (!endpoint->toward_ipa) 1668 (void)ipa_endpoint_program_suspend(endpoint, false); 1669 1670 ret = gsi_channel_resume(gsi, endpoint->channel_id); 1671 if (ret) 1672 dev_err(dev, "error %d resuming channel %u\n", ret, 1673 endpoint->channel_id); 1674 else if (!endpoint->toward_ipa) 1675 ipa_endpoint_replenish_enable(endpoint); 1676 } 1677 1678 void ipa_endpoint_suspend(struct ipa *ipa) 1679 { 1680 if (!ipa->setup_complete) 1681 return; 1682 1683 if (ipa->modem_netdev) 1684 ipa_modem_suspend(ipa->modem_netdev); 1685 1686 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1687 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1688 } 1689 1690 void ipa_endpoint_resume(struct ipa *ipa) 1691 { 1692 if (!ipa->setup_complete) 1693 return; 1694 1695 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1696 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1697 1698 if (ipa->modem_netdev) 1699 ipa_modem_resume(ipa->modem_netdev); 1700 } 1701 1702 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1703 { 1704 struct gsi *gsi = &endpoint->ipa->gsi; 1705 u32 channel_id = endpoint->channel_id; 1706 1707 /* Only AP endpoints get set up */ 1708 if (endpoint->ee_id != GSI_EE_AP) 1709 return; 1710 1711 endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1; 1712 if (!endpoint->toward_ipa) { 1713 /* RX transactions require a single TRE, so the maximum 1714 * backlog is the same as the maximum outstanding TREs. 1715 */ 1716 clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); 1717 clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); 1718 INIT_DELAYED_WORK(&endpoint->replenish_work, 1719 ipa_endpoint_replenish_work); 1720 } 1721 1722 ipa_endpoint_program(endpoint); 1723 1724 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); 1725 } 1726 1727 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1728 { 1729 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); 1730 1731 if (!endpoint->toward_ipa) 1732 cancel_delayed_work_sync(&endpoint->replenish_work); 1733 1734 ipa_endpoint_reset(endpoint); 1735 } 1736 1737 void ipa_endpoint_setup(struct ipa *ipa) 1738 { 1739 u32 initialized = ipa->initialized; 1740 1741 ipa->set_up = 0; 1742 while (initialized) { 1743 u32 endpoint_id = __ffs(initialized); 1744 1745 initialized ^= BIT(endpoint_id); 1746 1747 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1748 } 1749 } 1750 1751 void ipa_endpoint_teardown(struct ipa *ipa) 1752 { 1753 u32 set_up = ipa->set_up; 1754 1755 while (set_up) { 1756 u32 endpoint_id = __fls(set_up); 1757 1758 set_up ^= BIT(endpoint_id); 1759 1760 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1761 } 1762 ipa->set_up = 0; 1763 } 1764 1765 int ipa_endpoint_config(struct ipa *ipa) 1766 { 1767 struct device *dev = &ipa->pdev->dev; 1768 u32 initialized; 1769 u32 rx_base; 1770 u32 rx_mask; 1771 u32 tx_mask; 1772 int ret = 0; 1773 u32 max; 1774 u32 val; 1775 1776 /* Prior to IPAv3.5, the FLAVOR_0 register was not supported. 1777 * Furthermore, the endpoints were not grouped such that TX 1778 * endpoint numbers started with 0 and RX endpoints had numbers 1779 * higher than all TX endpoints, so we can't do the simple 1780 * direction check used for newer hardware below. 1781 * 1782 * For hardware that doesn't support the FLAVOR_0 register, 1783 * just set the available mask to support any endpoint, and 1784 * assume the configuration is valid. 1785 */ 1786 if (ipa->version < IPA_VERSION_3_5) { 1787 ipa->available = ~0; 1788 return 0; 1789 } 1790 1791 /* Find out about the endpoints supplied by the hardware, and ensure 1792 * the highest one doesn't exceed the number we support. 1793 */ 1794 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); 1795 1796 /* Our RX is an IPA producer */ 1797 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK); 1798 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK); 1799 if (max > IPA_ENDPOINT_MAX) { 1800 dev_err(dev, "too many endpoints (%u > %u)\n", 1801 max, IPA_ENDPOINT_MAX); 1802 return -EINVAL; 1803 } 1804 rx_mask = GENMASK(max - 1, rx_base); 1805 1806 /* Our TX is an IPA consumer */ 1807 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK); 1808 tx_mask = GENMASK(max - 1, 0); 1809 1810 ipa->available = rx_mask | tx_mask; 1811 1812 /* Check for initialized endpoints not supported by the hardware */ 1813 if (ipa->initialized & ~ipa->available) { 1814 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", 1815 ipa->initialized & ~ipa->available); 1816 ret = -EINVAL; /* Report other errors too */ 1817 } 1818 1819 initialized = ipa->initialized; 1820 while (initialized) { 1821 u32 endpoint_id = __ffs(initialized); 1822 struct ipa_endpoint *endpoint; 1823 1824 initialized ^= BIT(endpoint_id); 1825 1826 /* Make sure it's pointing in the right direction */ 1827 endpoint = &ipa->endpoint[endpoint_id]; 1828 if ((endpoint_id < rx_base) != endpoint->toward_ipa) { 1829 dev_err(dev, "endpoint id %u wrong direction\n", 1830 endpoint_id); 1831 ret = -EINVAL; 1832 } 1833 } 1834 1835 return ret; 1836 } 1837 1838 void ipa_endpoint_deconfig(struct ipa *ipa) 1839 { 1840 ipa->available = 0; /* Nothing more to do */ 1841 } 1842 1843 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 1844 const struct ipa_gsi_endpoint_data *data) 1845 { 1846 struct ipa_endpoint *endpoint; 1847 1848 endpoint = &ipa->endpoint[data->endpoint_id]; 1849 1850 if (data->ee_id == GSI_EE_AP) 1851 ipa->channel_map[data->channel_id] = endpoint; 1852 ipa->name_map[name] = endpoint; 1853 1854 endpoint->ipa = ipa; 1855 endpoint->ee_id = data->ee_id; 1856 endpoint->channel_id = data->channel_id; 1857 endpoint->endpoint_id = data->endpoint_id; 1858 endpoint->toward_ipa = data->toward_ipa; 1859 endpoint->config = data->endpoint.config; 1860 1861 ipa->initialized |= BIT(endpoint->endpoint_id); 1862 } 1863 1864 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 1865 { 1866 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); 1867 1868 memset(endpoint, 0, sizeof(*endpoint)); 1869 } 1870 1871 void ipa_endpoint_exit(struct ipa *ipa) 1872 { 1873 u32 initialized = ipa->initialized; 1874 1875 while (initialized) { 1876 u32 endpoint_id = __fls(initialized); 1877 1878 initialized ^= BIT(endpoint_id); 1879 1880 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 1881 } 1882 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 1883 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 1884 } 1885 1886 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 1887 u32 ipa_endpoint_init(struct ipa *ipa, u32 count, 1888 const struct ipa_gsi_endpoint_data *data) 1889 { 1890 enum ipa_endpoint_name name; 1891 u32 filter_map; 1892 1893 BUILD_BUG_ON(!IPA_REPLENISH_BATCH); 1894 1895 if (!ipa_endpoint_data_valid(ipa, count, data)) 1896 return 0; /* Error */ 1897 1898 ipa->initialized = 0; 1899 1900 filter_map = 0; 1901 for (name = 0; name < count; name++, data++) { 1902 if (ipa_gsi_endpoint_data_empty(data)) 1903 continue; /* Skip over empty slots */ 1904 1905 ipa_endpoint_init_one(ipa, name, data); 1906 1907 if (data->endpoint.filter_support) 1908 filter_map |= BIT(data->endpoint_id); 1909 if (data->ee_id == GSI_EE_MODEM && data->toward_ipa) 1910 ipa->modem_tx_count++; 1911 } 1912 1913 if (!ipa_filter_map_valid(ipa, filter_map)) 1914 goto err_endpoint_exit; 1915 1916 return filter_map; /* Non-zero bitmask */ 1917 1918 err_endpoint_exit: 1919 ipa_endpoint_exit(ipa); 1920 1921 return 0; /* Error */ 1922 } 1923