xref: /openbmc/linux/drivers/net/ipa/ipa_endpoint.c (revision 2c86446f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_clock.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 #define IPA_REPLENISH_BATCH	16
29 
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
32 
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35 
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
38 
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
40 #define IPA_AGGR_TIME_LIMIT			500	/* microseconds */
41 
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 	IPA_STATUS_OPCODE_PACKET		= 0x01,
45 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
46 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
47 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
48 };
49 
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 	/* 0 means no exception */
53 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
54 };
55 
56 /* Status element provided by hardware */
57 struct ipa_status {
58 	u8 opcode;		/* enum ipa_status_opcode */
59 	u8 exception;		/* enum ipa_status_exception */
60 	__le16 mask;
61 	__le16 pkt_len;
62 	u8 endp_src_idx;
63 	u8 endp_dst_idx;
64 	__le32 metadata;
65 	__le32 flags1;
66 	__le64 flags2;
67 	__le32 flags3;
68 	__le32 flags4;
69 };
70 
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_MASK_TAG_VALID_FMASK		GENMASK(4, 4)
73 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
74 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
76 #define IPA_STATUS_FLAGS2_TAG_FMASK		GENMASK_ULL(63, 16)
77 
78 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
79 			    const struct ipa_gsi_endpoint_data *all_data,
80 			    const struct ipa_gsi_endpoint_data *data)
81 {
82 	const struct ipa_gsi_endpoint_data *other_data;
83 	struct device *dev = &ipa->pdev->dev;
84 	enum ipa_endpoint_name other_name;
85 
86 	if (ipa_gsi_endpoint_data_empty(data))
87 		return true;
88 
89 	if (!data->toward_ipa) {
90 		if (data->endpoint.filter_support) {
91 			dev_err(dev, "filtering not supported for "
92 					"RX endpoint %u\n",
93 				data->endpoint_id);
94 			return false;
95 		}
96 
97 		return true;	/* Nothing more to check for RX */
98 	}
99 
100 	if (data->endpoint.config.status_enable) {
101 		other_name = data->endpoint.config.tx.status_endpoint;
102 		if (other_name >= count) {
103 			dev_err(dev, "status endpoint name %u out of range "
104 					"for endpoint %u\n",
105 				other_name, data->endpoint_id);
106 			return false;
107 		}
108 
109 		/* Status endpoint must be defined... */
110 		other_data = &all_data[other_name];
111 		if (ipa_gsi_endpoint_data_empty(other_data)) {
112 			dev_err(dev, "DMA endpoint name %u undefined "
113 					"for endpoint %u\n",
114 				other_name, data->endpoint_id);
115 			return false;
116 		}
117 
118 		/* ...and has to be an RX endpoint... */
119 		if (other_data->toward_ipa) {
120 			dev_err(dev,
121 				"status endpoint for endpoint %u not RX\n",
122 				data->endpoint_id);
123 			return false;
124 		}
125 
126 		/* ...and if it's to be an AP endpoint... */
127 		if (other_data->ee_id == GSI_EE_AP) {
128 			/* ...make sure it has status enabled. */
129 			if (!other_data->endpoint.config.status_enable) {
130 				dev_err(dev,
131 					"status not enabled for endpoint %u\n",
132 					other_data->endpoint_id);
133 				return false;
134 			}
135 		}
136 	}
137 
138 	if (data->endpoint.config.dma_mode) {
139 		other_name = data->endpoint.config.dma_endpoint;
140 		if (other_name >= count) {
141 			dev_err(dev, "DMA endpoint name %u out of range "
142 					"for endpoint %u\n",
143 				other_name, data->endpoint_id);
144 			return false;
145 		}
146 
147 		other_data = &all_data[other_name];
148 		if (ipa_gsi_endpoint_data_empty(other_data)) {
149 			dev_err(dev, "DMA endpoint name %u undefined "
150 					"for endpoint %u\n",
151 				other_name, data->endpoint_id);
152 			return false;
153 		}
154 	}
155 
156 	return true;
157 }
158 
159 static u32 aggr_byte_limit_max(enum ipa_version version)
160 {
161 	if (version < IPA_VERSION_4_5)
162 		return field_max(aggr_byte_limit_fmask(true));
163 
164 	return field_max(aggr_byte_limit_fmask(false));
165 }
166 
167 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
168 				    const struct ipa_gsi_endpoint_data *data)
169 {
170 	const struct ipa_gsi_endpoint_data *dp = data;
171 	struct device *dev = &ipa->pdev->dev;
172 	enum ipa_endpoint_name name;
173 	u32 limit;
174 
175 	if (count > IPA_ENDPOINT_COUNT) {
176 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
177 			count, IPA_ENDPOINT_COUNT);
178 		return false;
179 	}
180 
181 	/* The aggregation byte limit defines the point at which an
182 	 * aggregation window will close.  It is programmed into the
183 	 * IPA hardware as a number of KB.  We don't use "hard byte
184 	 * limit" aggregation, which means that we need to supply
185 	 * enough space in a receive buffer to hold a complete MTU
186 	 * plus normal skb overhead *after* that aggregation byte
187 	 * limit has been crossed.
188 	 *
189 	 * This check ensures we don't define a receive buffer size
190 	 * that would exceed what we can represent in the field that
191 	 * is used to program its size.
192 	 */
193 	limit = aggr_byte_limit_max(ipa->version) * SZ_1K;
194 	limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
195 	if (limit < IPA_RX_BUFFER_SIZE) {
196 		dev_err(dev, "buffer size too big for aggregation (%u > %u)\n",
197 			IPA_RX_BUFFER_SIZE, limit);
198 		return false;
199 	}
200 
201 	/* Make sure needed endpoints have defined data */
202 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
203 		dev_err(dev, "command TX endpoint not defined\n");
204 		return false;
205 	}
206 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
207 		dev_err(dev, "LAN RX endpoint not defined\n");
208 		return false;
209 	}
210 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
211 		dev_err(dev, "AP->modem TX endpoint not defined\n");
212 		return false;
213 	}
214 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
215 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
216 		return false;
217 	}
218 
219 	for (name = 0; name < count; name++, dp++)
220 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
221 			return false;
222 
223 	return true;
224 }
225 
226 /* Allocate a transaction to use on a non-command endpoint */
227 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
228 						  u32 tre_count)
229 {
230 	struct gsi *gsi = &endpoint->ipa->gsi;
231 	u32 channel_id = endpoint->channel_id;
232 	enum dma_data_direction direction;
233 
234 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
235 
236 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
237 }
238 
239 /* suspend_delay represents suspend for RX, delay for TX endpoints.
240  * Note that suspend is not supported starting with IPA v4.0.
241  */
242 static bool
243 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
244 {
245 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
246 	struct ipa *ipa = endpoint->ipa;
247 	bool state;
248 	u32 mask;
249 	u32 val;
250 
251 	/* Suspend is not supported for IPA v4.0+.  Delay doesn't work
252 	 * correctly on IPA v4.2.
253 	 *
254 	 * if (endpoint->toward_ipa)
255 	 * 	assert(ipa->version != IPA_VERSION_4.2);
256 	 * else
257 	 *	assert(ipa->version < IPA_VERSION_4_0);
258 	 */
259 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
260 
261 	val = ioread32(ipa->reg_virt + offset);
262 	/* Don't bother if it's already in the requested state */
263 	state = !!(val & mask);
264 	if (suspend_delay != state) {
265 		val ^= mask;
266 		iowrite32(val, ipa->reg_virt + offset);
267 	}
268 
269 	return state;
270 }
271 
272 /* We currently don't care what the previous state was for delay mode */
273 static void
274 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
275 {
276 	/* assert(endpoint->toward_ipa); */
277 
278 	/* Delay mode doesn't work properly for IPA v4.2 */
279 	if (endpoint->ipa->version != IPA_VERSION_4_2)
280 		(void)ipa_endpoint_init_ctrl(endpoint, enable);
281 }
282 
283 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
284 {
285 	u32 mask = BIT(endpoint->endpoint_id);
286 	struct ipa *ipa = endpoint->ipa;
287 	u32 offset;
288 	u32 val;
289 
290 	/* assert(mask & ipa->available); */
291 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
292 	val = ioread32(ipa->reg_virt + offset);
293 
294 	return !!(val & mask);
295 }
296 
297 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
298 {
299 	u32 mask = BIT(endpoint->endpoint_id);
300 	struct ipa *ipa = endpoint->ipa;
301 
302 	/* assert(mask & ipa->available); */
303 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
304 }
305 
306 /**
307  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
308  * @endpoint:	Endpoint on which to emulate a suspend
309  *
310  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
311  *  with an open aggregation frame.  This is to work around a hardware
312  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
313  *  generated when it should be.
314  */
315 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
316 {
317 	struct ipa *ipa = endpoint->ipa;
318 
319 	if (!endpoint->data->aggregation)
320 		return;
321 
322 	/* Nothing to do if the endpoint doesn't have aggregation open */
323 	if (!ipa_endpoint_aggr_active(endpoint))
324 		return;
325 
326 	/* Force close aggregation */
327 	ipa_endpoint_force_close(endpoint);
328 
329 	ipa_interrupt_simulate_suspend(ipa->interrupt);
330 }
331 
332 /* Returns previous suspend state (true means suspend was enabled) */
333 static bool
334 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
335 {
336 	bool suspended;
337 
338 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
339 		return enable;	/* For IPA v4.0+, no change made */
340 
341 	/* assert(!endpoint->toward_ipa); */
342 
343 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
344 
345 	/* A client suspended with an open aggregation frame will not
346 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
347 	 * ipa_endpoint_suspend_aggr() handle this.
348 	 */
349 	if (enable && !suspended)
350 		ipa_endpoint_suspend_aggr(endpoint);
351 
352 	return suspended;
353 }
354 
355 /* Enable or disable delay or suspend mode on all modem endpoints */
356 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
357 {
358 	u32 endpoint_id;
359 
360 	/* DELAY mode doesn't work correctly on IPA v4.2 */
361 	if (ipa->version == IPA_VERSION_4_2)
362 		return;
363 
364 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
365 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
366 
367 		if (endpoint->ee_id != GSI_EE_MODEM)
368 			continue;
369 
370 		/* Set TX delay mode or RX suspend mode */
371 		if (endpoint->toward_ipa)
372 			ipa_endpoint_program_delay(endpoint, enable);
373 		else
374 			(void)ipa_endpoint_program_suspend(endpoint, enable);
375 	}
376 }
377 
378 /* Reset all modem endpoints to use the default exception endpoint */
379 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
380 {
381 	u32 initialized = ipa->initialized;
382 	struct gsi_trans *trans;
383 	u32 count;
384 
385 	/* We need one command per modem TX endpoint.  We can get an upper
386 	 * bound on that by assuming all initialized endpoints are modem->IPA.
387 	 * That won't happen, and we could be more precise, but this is fine
388 	 * for now.  End the transaction with commands to clear the pipeline.
389 	 */
390 	count = hweight32(initialized) + ipa_cmd_pipeline_clear_count();
391 	trans = ipa_cmd_trans_alloc(ipa, count);
392 	if (!trans) {
393 		dev_err(&ipa->pdev->dev,
394 			"no transaction to reset modem exception endpoints\n");
395 		return -EBUSY;
396 	}
397 
398 	while (initialized) {
399 		u32 endpoint_id = __ffs(initialized);
400 		struct ipa_endpoint *endpoint;
401 		u32 offset;
402 
403 		initialized ^= BIT(endpoint_id);
404 
405 		/* We only reset modem TX endpoints */
406 		endpoint = &ipa->endpoint[endpoint_id];
407 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
408 			continue;
409 
410 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
411 
412 		/* Value written is 0, and all bits are updated.  That
413 		 * means status is disabled on the endpoint, and as a
414 		 * result all other fields in the register are ignored.
415 		 */
416 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
417 	}
418 
419 	ipa_cmd_pipeline_clear_add(trans);
420 
421 	/* XXX This should have a 1 second timeout */
422 	gsi_trans_commit_wait(trans);
423 
424 	ipa_cmd_pipeline_clear_wait(ipa);
425 
426 	return 0;
427 }
428 
429 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
430 {
431 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
432 	enum ipa_cs_offload_en enabled;
433 	u32 val = 0;
434 
435 	/* FRAG_OFFLOAD_EN is 0 */
436 	if (endpoint->data->checksum) {
437 		enum ipa_version version = endpoint->ipa->version;
438 
439 		if (endpoint->toward_ipa) {
440 			u32 checksum_offset;
441 
442 			/* Checksum header offset is in 4-byte units */
443 			checksum_offset = sizeof(struct rmnet_map_header);
444 			checksum_offset /= sizeof(u32);
445 			val |= u32_encode_bits(checksum_offset,
446 					       CS_METADATA_HDR_OFFSET_FMASK);
447 
448 			enabled = version < IPA_VERSION_4_5
449 					? IPA_CS_OFFLOAD_UL
450 					: IPA_CS_OFFLOAD_INLINE;
451 		} else {
452 			enabled = version < IPA_VERSION_4_5
453 					? IPA_CS_OFFLOAD_DL
454 					: IPA_CS_OFFLOAD_INLINE;
455 		}
456 	} else {
457 		enabled = IPA_CS_OFFLOAD_NONE;
458 	}
459 	val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK);
460 	/* CS_GEN_QMB_MASTER_SEL is 0 */
461 
462 	iowrite32(val, endpoint->ipa->reg_virt + offset);
463 }
464 
465 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
466 {
467 	u32 offset;
468 	u32 val;
469 
470 	if (!endpoint->toward_ipa)
471 		return;
472 
473 	offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
474 	val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
475 
476 	iowrite32(val, endpoint->ipa->reg_virt + offset);
477 }
478 
479 static u32
480 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
481 {
482 	u32 header_size = sizeof(struct rmnet_map_header);
483 
484 	/* Without checksum offload, we just have the MAP header */
485 	if (!endpoint->data->checksum)
486 		return header_size;
487 
488 	if (version < IPA_VERSION_4_5) {
489 		/* Checksum header inserted for AP TX endpoints only */
490 		if (endpoint->toward_ipa)
491 			header_size += sizeof(struct rmnet_map_ul_csum_header);
492 	} else {
493 		/* Checksum header is used in both directions */
494 		header_size += sizeof(struct rmnet_map_v5_csum_header);
495 	}
496 
497 	return header_size;
498 }
499 
500 /**
501  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
502  * @endpoint:	Endpoint pointer
503  *
504  * We program QMAP endpoints so each packet received is preceded by a QMAP
505  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
506  * packet size field, and we have the IPA hardware populate both for each
507  * received packet.  The header is configured (in the HDR_EXT register)
508  * to use big endian format.
509  *
510  * The packet size is written into the QMAP header's pkt_len field.  That
511  * location is defined here using the HDR_OFST_PKT_SIZE field.
512  *
513  * The mux_id comes from a 4-byte metadata value supplied with each packet
514  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
515  * value that we want, in its low-order byte.  A bitmask defined in the
516  * endpoint's METADATA_MASK register defines which byte within the modem
517  * metadata contains the mux_id.  And the OFST_METADATA field programmed
518  * here indicates where the extracted byte should be placed within the QMAP
519  * header.
520  */
521 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
522 {
523 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
524 	struct ipa *ipa = endpoint->ipa;
525 	u32 val = 0;
526 
527 	if (endpoint->data->qmap) {
528 		enum ipa_version version = ipa->version;
529 		size_t header_size;
530 
531 		header_size = ipa_qmap_header_size(version, endpoint);
532 		val = ipa_header_size_encoded(version, header_size);
533 
534 		/* Define how to fill fields in a received QMAP header */
535 		if (!endpoint->toward_ipa) {
536 			u32 offset;	/* Field offset within header */
537 
538 			/* Where IPA will write the metadata value */
539 			offset = offsetof(struct rmnet_map_header, mux_id);
540 			val |= ipa_metadata_offset_encoded(version, offset);
541 
542 			/* Where IPA will write the length */
543 			offset = offsetof(struct rmnet_map_header, pkt_len);
544 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
545 			if (version >= IPA_VERSION_4_5)
546 				offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
547 
548 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
549 			val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
550 		}
551 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
552 		val |= HDR_OFST_METADATA_VALID_FMASK;
553 
554 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
555 		/* HDR_A5_MUX is 0 */
556 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
557 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
558 	}
559 
560 	iowrite32(val, ipa->reg_virt + offset);
561 }
562 
563 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
564 {
565 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
566 	u32 pad_align = endpoint->data->rx.pad_align;
567 	struct ipa *ipa = endpoint->ipa;
568 	u32 val = 0;
569 
570 	val |= HDR_ENDIANNESS_FMASK;		/* big endian */
571 
572 	/* A QMAP header contains a 6 bit pad field at offset 0.  The RMNet
573 	 * driver assumes this field is meaningful in packets it receives,
574 	 * and assumes the header's payload length includes that padding.
575 	 * The RMNet driver does *not* pad packets it sends, however, so
576 	 * the pad field (although 0) should be ignored.
577 	 */
578 	if (endpoint->data->qmap && !endpoint->toward_ipa) {
579 		val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
580 		/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
581 		val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
582 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
583 	}
584 
585 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
586 	if (!endpoint->toward_ipa)
587 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
588 
589 	/* IPA v4.5 adds some most-significant bits to a few fields,
590 	 * two of which are defined in the HDR (not HDR_EXT) register.
591 	 */
592 	if (ipa->version >= IPA_VERSION_4_5) {
593 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
594 		if (endpoint->data->qmap && !endpoint->toward_ipa) {
595 			u32 offset;
596 
597 			offset = offsetof(struct rmnet_map_header, pkt_len);
598 			offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
599 			val |= u32_encode_bits(offset,
600 					       HDR_OFST_PKT_SIZE_MSB_FMASK);
601 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
602 		}
603 	}
604 	iowrite32(val, ipa->reg_virt + offset);
605 }
606 
607 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
608 {
609 	u32 endpoint_id = endpoint->endpoint_id;
610 	u32 val = 0;
611 	u32 offset;
612 
613 	if (endpoint->toward_ipa)
614 		return;		/* Register not valid for TX endpoints */
615 
616 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
617 
618 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
619 	if (endpoint->data->qmap)
620 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
621 
622 	iowrite32(val, endpoint->ipa->reg_virt + offset);
623 }
624 
625 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
626 {
627 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
628 	u32 val;
629 
630 	if (!endpoint->toward_ipa)
631 		return;		/* Register not valid for RX endpoints */
632 
633 	if (endpoint->data->dma_mode) {
634 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
635 		u32 dma_endpoint_id;
636 
637 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
638 
639 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
640 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
641 	} else {
642 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
643 	}
644 	/* All other bits unspecified (and 0) */
645 
646 	iowrite32(val, endpoint->ipa->reg_virt + offset);
647 }
648 
649 /* Compute the aggregation size value to use for a given buffer size */
650 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
651 {
652 	/* We don't use "hard byte limit" aggregation, so we define the
653 	 * aggregation limit such that our buffer has enough space *after*
654 	 * that limit to receive a full MTU of data, plus overhead.
655 	 */
656 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
657 
658 	return rx_buffer_size / SZ_1K;
659 }
660 
661 /* Encoded values for AGGR endpoint register fields */
662 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
663 {
664 	if (version < IPA_VERSION_4_5)
665 		return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
666 
667 	return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
668 }
669 
670 /* Encode the aggregation timer limit (microseconds) based on IPA version */
671 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
672 {
673 	u32 gran_sel;
674 	u32 fmask;
675 	u32 val;
676 
677 	if (version < IPA_VERSION_4_5) {
678 		/* We set aggregation granularity in ipa_hardware_config() */
679 		limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
680 
681 		return u32_encode_bits(limit, aggr_time_limit_fmask(true));
682 	}
683 
684 	/* IPA v4.5 expresses the time limit using Qtime.  The AP has
685 	 * pulse generators 0 and 1 available, which were configured
686 	 * in ipa_qtime_config() to have granularity 100 usec and
687 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
688 	 * otherwise fall back to pulse generator 1.
689 	 */
690 	fmask = aggr_time_limit_fmask(false);
691 	val = DIV_ROUND_CLOSEST(limit, 100);
692 	if (val > field_max(fmask)) {
693 		/* Have to use pulse generator 1 (millisecond granularity) */
694 		gran_sel = AGGR_GRAN_SEL_FMASK;
695 		val = DIV_ROUND_CLOSEST(limit, 1000);
696 	} else {
697 		/* We can use pulse generator 0 (100 usec granularity) */
698 		gran_sel = 0;
699 	}
700 
701 	return gran_sel | u32_encode_bits(val, fmask);
702 }
703 
704 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
705 {
706 	u32 val = enabled ? 1 : 0;
707 
708 	if (version < IPA_VERSION_4_5)
709 		return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
710 
711 	return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
712 }
713 
714 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
715 {
716 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
717 	enum ipa_version version = endpoint->ipa->version;
718 	u32 val = 0;
719 
720 	if (endpoint->data->aggregation) {
721 		if (!endpoint->toward_ipa) {
722 			bool close_eof;
723 			u32 limit;
724 
725 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
726 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
727 
728 			limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
729 			val |= aggr_byte_limit_encoded(version, limit);
730 
731 			limit = IPA_AGGR_TIME_LIMIT;
732 			val |= aggr_time_limit_encoded(version, limit);
733 
734 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
735 
736 			close_eof = endpoint->data->rx.aggr_close_eof;
737 			val |= aggr_sw_eof_active_encoded(version, close_eof);
738 
739 			/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
740 		} else {
741 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
742 					       AGGR_EN_FMASK);
743 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
744 			/* other fields ignored */
745 		}
746 		/* AGGR_FORCE_CLOSE is 0 */
747 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
748 	} else {
749 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
750 		/* other fields ignored */
751 	}
752 
753 	iowrite32(val, endpoint->ipa->reg_virt + offset);
754 }
755 
756 /* Return the Qtime-based head-of-line blocking timer value that
757  * represents the given number of microseconds.  The result
758  * includes both the timer value and the selected timer granularity.
759  */
760 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
761 {
762 	u32 gran_sel;
763 	u32 val;
764 
765 	/* IPA v4.5 expresses time limits using Qtime.  The AP has
766 	 * pulse generators 0 and 1 available, which were configured
767 	 * in ipa_qtime_config() to have granularity 100 usec and
768 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
769 	 * otherwise fall back to pulse generator 1.
770 	 */
771 	val = DIV_ROUND_CLOSEST(microseconds, 100);
772 	if (val > field_max(TIME_LIMIT_FMASK)) {
773 		/* Have to use pulse generator 1 (millisecond granularity) */
774 		gran_sel = GRAN_SEL_FMASK;
775 		val = DIV_ROUND_CLOSEST(microseconds, 1000);
776 	} else {
777 		/* We can use pulse generator 0 (100 usec granularity) */
778 		gran_sel = 0;
779 	}
780 
781 	return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
782 }
783 
784 /* The head-of-line blocking timer is defined as a tick count.  For
785  * IPA version 4.5 the tick count is based on the Qtimer, which is
786  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
787  * each tick represents 128 cycles of the IPA core clock.
788  *
789  * Return the encoded value that should be written to that register
790  * that represents the timeout period provided.  For IPA v4.2 this
791  * encodes a base and scale value, while for earlier versions the
792  * value is a simple tick count.
793  */
794 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
795 {
796 	u32 width;
797 	u32 scale;
798 	u64 ticks;
799 	u64 rate;
800 	u32 high;
801 	u32 val;
802 
803 	if (!microseconds)
804 		return 0;	/* Nothing to compute if timer period is 0 */
805 
806 	if (ipa->version >= IPA_VERSION_4_5)
807 		return hol_block_timer_qtime_val(ipa, microseconds);
808 
809 	/* Use 64 bit arithmetic to avoid overflow... */
810 	rate = ipa_clock_rate(ipa);
811 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
812 	/* ...but we still need to fit into a 32-bit register */
813 	WARN_ON(ticks > U32_MAX);
814 
815 	/* IPA v3.5.1 through v4.1 just record the tick count */
816 	if (ipa->version < IPA_VERSION_4_2)
817 		return (u32)ticks;
818 
819 	/* For IPA v4.2, the tick count is represented by base and
820 	 * scale fields within the 32-bit timer register, where:
821 	 *     ticks = base << scale;
822 	 * The best precision is achieved when the base value is as
823 	 * large as possible.  Find the highest set bit in the tick
824 	 * count, and extract the number of bits in the base field
825 	 * such that high bit is included.
826 	 */
827 	high = fls(ticks);		/* 1..32 */
828 	width = HWEIGHT32(BASE_VALUE_FMASK);
829 	scale = high > width ? high - width : 0;
830 	if (scale) {
831 		/* If we're scaling, round up to get a closer result */
832 		ticks += 1 << (scale - 1);
833 		/* High bit was set, so rounding might have affected it */
834 		if (fls(ticks) != high)
835 			scale++;
836 	}
837 
838 	val = u32_encode_bits(scale, SCALE_FMASK);
839 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
840 
841 	return val;
842 }
843 
844 /* If microseconds is 0, timeout is immediate */
845 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
846 					      u32 microseconds)
847 {
848 	u32 endpoint_id = endpoint->endpoint_id;
849 	struct ipa *ipa = endpoint->ipa;
850 	u32 offset;
851 	u32 val;
852 
853 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
854 	val = hol_block_timer_val(ipa, microseconds);
855 	iowrite32(val, ipa->reg_virt + offset);
856 }
857 
858 static void
859 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
860 {
861 	u32 endpoint_id = endpoint->endpoint_id;
862 	u32 offset;
863 	u32 val;
864 
865 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
866 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
867 	iowrite32(val, endpoint->ipa->reg_virt + offset);
868 }
869 
870 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
871 {
872 	u32 i;
873 
874 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
875 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
876 
877 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
878 			continue;
879 
880 		ipa_endpoint_init_hol_block_timer(endpoint, 0);
881 		ipa_endpoint_init_hol_block_enable(endpoint, true);
882 	}
883 }
884 
885 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
886 {
887 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
888 	u32 val = 0;
889 
890 	if (!endpoint->toward_ipa)
891 		return;		/* Register not valid for RX endpoints */
892 
893 	/* DEAGGR_HDR_LEN is 0 */
894 	/* PACKET_OFFSET_VALID is 0 */
895 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
896 	/* MAX_PACKET_LEN is 0 (not enforced) */
897 
898 	iowrite32(val, endpoint->ipa->reg_virt + offset);
899 }
900 
901 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
902 {
903 	u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
904 	struct ipa *ipa = endpoint->ipa;
905 	u32 val;
906 
907 	val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
908 	iowrite32(val, ipa->reg_virt + offset);
909 }
910 
911 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
912 {
913 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
914 	u32 val = 0;
915 
916 	if (!endpoint->toward_ipa)
917 		return;		/* Register not valid for RX endpoints */
918 
919 	/* Low-order byte configures primary packet processing */
920 	val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK);
921 
922 	/* Second byte configures replicated packet processing */
923 	val |= u32_encode_bits(endpoint->data->tx.seq_rep_type,
924 			       SEQ_REP_TYPE_FMASK);
925 
926 	iowrite32(val, endpoint->ipa->reg_virt + offset);
927 }
928 
929 /**
930  * ipa_endpoint_skb_tx() - Transmit a socket buffer
931  * @endpoint:	Endpoint pointer
932  * @skb:	Socket buffer to send
933  *
934  * Returns:	0 if successful, or a negative error code
935  */
936 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
937 {
938 	struct gsi_trans *trans;
939 	u32 nr_frags;
940 	int ret;
941 
942 	/* Make sure source endpoint's TLV FIFO has enough entries to
943 	 * hold the linear portion of the skb and all its fragments.
944 	 * If not, see if we can linearize it before giving up.
945 	 */
946 	nr_frags = skb_shinfo(skb)->nr_frags;
947 	if (1 + nr_frags > endpoint->trans_tre_max) {
948 		if (skb_linearize(skb))
949 			return -E2BIG;
950 		nr_frags = 0;
951 	}
952 
953 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
954 	if (!trans)
955 		return -EBUSY;
956 
957 	ret = gsi_trans_skb_add(trans, skb);
958 	if (ret)
959 		goto err_trans_free;
960 	trans->data = skb;	/* transaction owns skb now */
961 
962 	gsi_trans_commit(trans, !netdev_xmit_more());
963 
964 	return 0;
965 
966 err_trans_free:
967 	gsi_trans_free(trans);
968 
969 	return -ENOMEM;
970 }
971 
972 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
973 {
974 	u32 endpoint_id = endpoint->endpoint_id;
975 	struct ipa *ipa = endpoint->ipa;
976 	u32 val = 0;
977 	u32 offset;
978 
979 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
980 
981 	if (endpoint->data->status_enable) {
982 		val |= STATUS_EN_FMASK;
983 		if (endpoint->toward_ipa) {
984 			enum ipa_endpoint_name name;
985 			u32 status_endpoint_id;
986 
987 			name = endpoint->data->tx.status_endpoint;
988 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
989 
990 			val |= u32_encode_bits(status_endpoint_id,
991 					       STATUS_ENDP_FMASK);
992 		}
993 		/* STATUS_LOCATION is 0, meaning status element precedes
994 		 * packet (not present for IPA v4.5)
995 		 */
996 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
997 	}
998 
999 	iowrite32(val, ipa->reg_virt + offset);
1000 }
1001 
1002 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
1003 {
1004 	struct gsi_trans *trans;
1005 	bool doorbell = false;
1006 	struct page *page;
1007 	u32 offset;
1008 	u32 len;
1009 	int ret;
1010 
1011 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
1012 	if (!page)
1013 		return -ENOMEM;
1014 
1015 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
1016 	if (!trans)
1017 		goto err_free_pages;
1018 
1019 	/* Offset the buffer to make space for skb headroom */
1020 	offset = NET_SKB_PAD;
1021 	len = IPA_RX_BUFFER_SIZE - offset;
1022 
1023 	ret = gsi_trans_page_add(trans, page, len, offset);
1024 	if (ret)
1025 		goto err_trans_free;
1026 	trans->data = page;	/* transaction owns page now */
1027 
1028 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
1029 		doorbell = true;
1030 		endpoint->replenish_ready = 0;
1031 	}
1032 
1033 	gsi_trans_commit(trans, doorbell);
1034 
1035 	return 0;
1036 
1037 err_trans_free:
1038 	gsi_trans_free(trans);
1039 err_free_pages:
1040 	__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1041 
1042 	return -ENOMEM;
1043 }
1044 
1045 /**
1046  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1047  * @endpoint:	Endpoint to be replenished
1048  * @add_one:	Whether this is replacing a just-consumed buffer
1049  *
1050  * The IPA hardware can hold a fixed number of receive buffers for an RX
1051  * endpoint, based on the number of entries in the underlying channel ring
1052  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1053  * more receive buffers can be supplied to the hardware.  Replenishing for
1054  * an endpoint can be disabled, in which case requests to replenish a
1055  * buffer are "saved", and transferred to the backlog once it is re-enabled
1056  * again.
1057  */
1058 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one)
1059 {
1060 	struct gsi *gsi;
1061 	u32 backlog;
1062 
1063 	if (!endpoint->replenish_enabled) {
1064 		if (add_one)
1065 			atomic_inc(&endpoint->replenish_saved);
1066 		return;
1067 	}
1068 
1069 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
1070 		if (ipa_endpoint_replenish_one(endpoint))
1071 			goto try_again_later;
1072 	if (add_one)
1073 		atomic_inc(&endpoint->replenish_backlog);
1074 
1075 	return;
1076 
1077 try_again_later:
1078 	/* The last one didn't succeed, so fix the backlog */
1079 	backlog = atomic_inc_return(&endpoint->replenish_backlog);
1080 
1081 	if (add_one)
1082 		atomic_inc(&endpoint->replenish_backlog);
1083 
1084 	/* Whenever a receive buffer transaction completes we'll try to
1085 	 * replenish again.  It's unlikely, but if we fail to supply even
1086 	 * one buffer, nothing will trigger another replenish attempt.
1087 	 * Receive buffer transactions use one TRE, so schedule work to
1088 	 * try replenishing again if our backlog is *all* available TREs.
1089 	 */
1090 	gsi = &endpoint->ipa->gsi;
1091 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
1092 		schedule_delayed_work(&endpoint->replenish_work,
1093 				      msecs_to_jiffies(1));
1094 }
1095 
1096 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1097 {
1098 	struct gsi *gsi = &endpoint->ipa->gsi;
1099 	u32 max_backlog;
1100 	u32 saved;
1101 
1102 	endpoint->replenish_enabled = true;
1103 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
1104 		atomic_add(saved, &endpoint->replenish_backlog);
1105 
1106 	/* Start replenishing if hardware currently has no buffers */
1107 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
1108 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
1109 		ipa_endpoint_replenish(endpoint, false);
1110 }
1111 
1112 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1113 {
1114 	u32 backlog;
1115 
1116 	endpoint->replenish_enabled = false;
1117 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
1118 		atomic_add(backlog, &endpoint->replenish_saved);
1119 }
1120 
1121 static void ipa_endpoint_replenish_work(struct work_struct *work)
1122 {
1123 	struct delayed_work *dwork = to_delayed_work(work);
1124 	struct ipa_endpoint *endpoint;
1125 
1126 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1127 
1128 	ipa_endpoint_replenish(endpoint, false);
1129 }
1130 
1131 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1132 				  void *data, u32 len, u32 extra)
1133 {
1134 	struct sk_buff *skb;
1135 
1136 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1137 	if (skb) {
1138 		skb_put(skb, len);
1139 		memcpy(skb->data, data, len);
1140 		skb->truesize += extra;
1141 	}
1142 
1143 	/* Now receive it, or drop it if there's no netdev */
1144 	if (endpoint->netdev)
1145 		ipa_modem_skb_rx(endpoint->netdev, skb);
1146 	else if (skb)
1147 		dev_kfree_skb_any(skb);
1148 }
1149 
1150 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1151 				   struct page *page, u32 len)
1152 {
1153 	struct sk_buff *skb;
1154 
1155 	/* Nothing to do if there's no netdev */
1156 	if (!endpoint->netdev)
1157 		return false;
1158 
1159 	/* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
1160 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1161 	if (skb) {
1162 		/* Reserve the headroom and account for the data */
1163 		skb_reserve(skb, NET_SKB_PAD);
1164 		skb_put(skb, len);
1165 	}
1166 
1167 	/* Receive the buffer (or record drop if unable to build it) */
1168 	ipa_modem_skb_rx(endpoint->netdev, skb);
1169 
1170 	return skb != NULL;
1171 }
1172 
1173 /* The format of a packet status element is the same for several status
1174  * types (opcodes).  Other types aren't currently supported.
1175  */
1176 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1177 {
1178 	switch (opcode) {
1179 	case IPA_STATUS_OPCODE_PACKET:
1180 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1181 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1182 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1183 		return true;
1184 	default:
1185 		return false;
1186 	}
1187 }
1188 
1189 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1190 				     const struct ipa_status *status)
1191 {
1192 	u32 endpoint_id;
1193 
1194 	if (!ipa_status_format_packet(status->opcode))
1195 		return true;
1196 	if (!status->pkt_len)
1197 		return true;
1198 	endpoint_id = u8_get_bits(status->endp_dst_idx,
1199 				  IPA_STATUS_DST_IDX_FMASK);
1200 	if (endpoint_id != endpoint->endpoint_id)
1201 		return true;
1202 
1203 	return false;	/* Don't skip this packet, process it */
1204 }
1205 
1206 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1207 				    const struct ipa_status *status)
1208 {
1209 	struct ipa_endpoint *command_endpoint;
1210 	struct ipa *ipa = endpoint->ipa;
1211 	u32 endpoint_id;
1212 
1213 	if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1214 		return false;	/* No valid tag */
1215 
1216 	/* The status contains a valid tag.  We know the packet was sent to
1217 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1218 	 * If the packet came from the AP->command TX endpoint we know
1219 	 * this packet was sent as part of the pipeline clear process.
1220 	 */
1221 	endpoint_id = u8_get_bits(status->endp_src_idx,
1222 				  IPA_STATUS_SRC_IDX_FMASK);
1223 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1224 	if (endpoint_id == command_endpoint->endpoint_id) {
1225 		complete(&ipa->completion);
1226 	} else {
1227 		dev_err(&ipa->pdev->dev,
1228 			"unexpected tagged packet from endpoint %u\n",
1229 			endpoint_id);
1230 	}
1231 
1232 	return true;
1233 }
1234 
1235 /* Return whether the status indicates the packet should be dropped */
1236 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1237 				     const struct ipa_status *status)
1238 {
1239 	u32 val;
1240 
1241 	/* If the status indicates a tagged transfer, we'll drop the packet */
1242 	if (ipa_endpoint_status_tag(endpoint, status))
1243 		return true;
1244 
1245 	/* Deaggregation exceptions we drop; all other types we consume */
1246 	if (status->exception)
1247 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1248 
1249 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1250 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1251 
1252 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1253 }
1254 
1255 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1256 				      struct page *page, u32 total_len)
1257 {
1258 	void *data = page_address(page) + NET_SKB_PAD;
1259 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1260 	u32 resid = total_len;
1261 
1262 	while (resid) {
1263 		const struct ipa_status *status = data;
1264 		u32 align;
1265 		u32 len;
1266 
1267 		if (resid < sizeof(*status)) {
1268 			dev_err(&endpoint->ipa->pdev->dev,
1269 				"short message (%u bytes < %zu byte status)\n",
1270 				resid, sizeof(*status));
1271 			break;
1272 		}
1273 
1274 		/* Skip over status packets that lack packet data */
1275 		if (ipa_endpoint_status_skip(endpoint, status)) {
1276 			data += sizeof(*status);
1277 			resid -= sizeof(*status);
1278 			continue;
1279 		}
1280 
1281 		/* Compute the amount of buffer space consumed by the packet,
1282 		 * including the status element.  If the hardware is configured
1283 		 * to pad packet data to an aligned boundary, account for that.
1284 		 * And if checksum offload is enabled a trailer containing
1285 		 * computed checksum information will be appended.
1286 		 */
1287 		align = endpoint->data->rx.pad_align ? : 1;
1288 		len = le16_to_cpu(status->pkt_len);
1289 		len = sizeof(*status) + ALIGN(len, align);
1290 		if (endpoint->data->checksum)
1291 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1292 
1293 		if (!ipa_endpoint_status_drop(endpoint, status)) {
1294 			void *data2;
1295 			u32 extra;
1296 			u32 len2;
1297 
1298 			/* Client receives only packet data (no status) */
1299 			data2 = data + sizeof(*status);
1300 			len2 = le16_to_cpu(status->pkt_len);
1301 
1302 			/* Have the true size reflect the extra unused space in
1303 			 * the original receive buffer.  Distribute the "cost"
1304 			 * proportionately across all aggregated packets in the
1305 			 * buffer.
1306 			 */
1307 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1308 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1309 		}
1310 
1311 		/* Consume status and the full packet it describes */
1312 		data += len;
1313 		resid -= len;
1314 	}
1315 }
1316 
1317 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
1318 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1319 				     struct gsi_trans *trans)
1320 {
1321 }
1322 
1323 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
1324 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1325 				     struct gsi_trans *trans)
1326 {
1327 	struct page *page;
1328 
1329 	ipa_endpoint_replenish(endpoint, true);
1330 
1331 	if (trans->cancelled)
1332 		return;
1333 
1334 	/* Parse or build a socket buffer using the actual received length */
1335 	page = trans->data;
1336 	if (endpoint->data->status_enable)
1337 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1338 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1339 		trans->data = NULL;	/* Pages have been consumed */
1340 }
1341 
1342 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1343 				 struct gsi_trans *trans)
1344 {
1345 	if (endpoint->toward_ipa)
1346 		ipa_endpoint_tx_complete(endpoint, trans);
1347 	else
1348 		ipa_endpoint_rx_complete(endpoint, trans);
1349 }
1350 
1351 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1352 				struct gsi_trans *trans)
1353 {
1354 	if (endpoint->toward_ipa) {
1355 		struct ipa *ipa = endpoint->ipa;
1356 
1357 		/* Nothing to do for command transactions */
1358 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1359 			struct sk_buff *skb = trans->data;
1360 
1361 			if (skb)
1362 				dev_kfree_skb_any(skb);
1363 		}
1364 	} else {
1365 		struct page *page = trans->data;
1366 
1367 		if (page)
1368 			__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1369 	}
1370 }
1371 
1372 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1373 {
1374 	u32 val;
1375 
1376 	/* ROUTE_DIS is 0 */
1377 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1378 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1379 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1380 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1381 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1382 
1383 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1384 }
1385 
1386 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1387 {
1388 	ipa_endpoint_default_route_set(ipa, 0);
1389 }
1390 
1391 /**
1392  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1393  * @endpoint:	Endpoint to be reset
1394  *
1395  * If aggregation is active on an RX endpoint when a reset is performed
1396  * on its underlying GSI channel, a special sequence of actions must be
1397  * taken to ensure the IPA pipeline is properly cleared.
1398  *
1399  * Return:	0 if successful, or a negative error code
1400  */
1401 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1402 {
1403 	struct device *dev = &endpoint->ipa->pdev->dev;
1404 	struct ipa *ipa = endpoint->ipa;
1405 	struct gsi *gsi = &ipa->gsi;
1406 	bool suspended = false;
1407 	dma_addr_t addr;
1408 	u32 retries;
1409 	u32 len = 1;
1410 	void *virt;
1411 	int ret;
1412 
1413 	virt = kzalloc(len, GFP_KERNEL);
1414 	if (!virt)
1415 		return -ENOMEM;
1416 
1417 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1418 	if (dma_mapping_error(dev, addr)) {
1419 		ret = -ENOMEM;
1420 		goto out_kfree;
1421 	}
1422 
1423 	/* Force close aggregation before issuing the reset */
1424 	ipa_endpoint_force_close(endpoint);
1425 
1426 	/* Reset and reconfigure the channel with the doorbell engine
1427 	 * disabled.  Then poll until we know aggregation is no longer
1428 	 * active.  We'll re-enable the doorbell (if appropriate) when
1429 	 * we reset again below.
1430 	 */
1431 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1432 
1433 	/* Make sure the channel isn't suspended */
1434 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1435 
1436 	/* Start channel and do a 1 byte read */
1437 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1438 	if (ret)
1439 		goto out_suspend_again;
1440 
1441 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1442 	if (ret)
1443 		goto err_endpoint_stop;
1444 
1445 	/* Wait for aggregation to be closed on the channel */
1446 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1447 	do {
1448 		if (!ipa_endpoint_aggr_active(endpoint))
1449 			break;
1450 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1451 	} while (retries--);
1452 
1453 	/* Check one last time */
1454 	if (ipa_endpoint_aggr_active(endpoint))
1455 		dev_err(dev, "endpoint %u still active during reset\n",
1456 			endpoint->endpoint_id);
1457 
1458 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1459 
1460 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1461 	if (ret)
1462 		goto out_suspend_again;
1463 
1464 	/* Finally, reset and reconfigure the channel again (re-enabling
1465 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1466 	 * complete the channel reset sequence.  Finish by suspending the
1467 	 * channel again (if necessary).
1468 	 */
1469 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1470 
1471 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1472 
1473 	goto out_suspend_again;
1474 
1475 err_endpoint_stop:
1476 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1477 out_suspend_again:
1478 	if (suspended)
1479 		(void)ipa_endpoint_program_suspend(endpoint, true);
1480 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1481 out_kfree:
1482 	kfree(virt);
1483 
1484 	return ret;
1485 }
1486 
1487 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1488 {
1489 	u32 channel_id = endpoint->channel_id;
1490 	struct ipa *ipa = endpoint->ipa;
1491 	bool special;
1492 	int ret = 0;
1493 
1494 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1495 	 * is active, we need to handle things specially to recover.
1496 	 * All other cases just need to reset the underlying GSI channel.
1497 	 */
1498 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1499 			endpoint->data->aggregation;
1500 	if (special && ipa_endpoint_aggr_active(endpoint))
1501 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1502 	else
1503 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1504 
1505 	if (ret)
1506 		dev_err(&ipa->pdev->dev,
1507 			"error %d resetting channel %u for endpoint %u\n",
1508 			ret, endpoint->channel_id, endpoint->endpoint_id);
1509 }
1510 
1511 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1512 {
1513 	if (endpoint->toward_ipa)
1514 		ipa_endpoint_program_delay(endpoint, false);
1515 	else
1516 		(void)ipa_endpoint_program_suspend(endpoint, false);
1517 	ipa_endpoint_init_cfg(endpoint);
1518 	ipa_endpoint_init_nat(endpoint);
1519 	ipa_endpoint_init_hdr(endpoint);
1520 	ipa_endpoint_init_hdr_ext(endpoint);
1521 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1522 	ipa_endpoint_init_mode(endpoint);
1523 	ipa_endpoint_init_aggr(endpoint);
1524 	ipa_endpoint_init_deaggr(endpoint);
1525 	ipa_endpoint_init_rsrc_grp(endpoint);
1526 	ipa_endpoint_init_seq(endpoint);
1527 	ipa_endpoint_status(endpoint);
1528 }
1529 
1530 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1531 {
1532 	struct ipa *ipa = endpoint->ipa;
1533 	struct gsi *gsi = &ipa->gsi;
1534 	int ret;
1535 
1536 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1537 	if (ret) {
1538 		dev_err(&ipa->pdev->dev,
1539 			"error %d starting %cX channel %u for endpoint %u\n",
1540 			ret, endpoint->toward_ipa ? 'T' : 'R',
1541 			endpoint->channel_id, endpoint->endpoint_id);
1542 		return ret;
1543 	}
1544 
1545 	if (!endpoint->toward_ipa) {
1546 		ipa_interrupt_suspend_enable(ipa->interrupt,
1547 					     endpoint->endpoint_id);
1548 		ipa_endpoint_replenish_enable(endpoint);
1549 	}
1550 
1551 	ipa->enabled |= BIT(endpoint->endpoint_id);
1552 
1553 	return 0;
1554 }
1555 
1556 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1557 {
1558 	u32 mask = BIT(endpoint->endpoint_id);
1559 	struct ipa *ipa = endpoint->ipa;
1560 	struct gsi *gsi = &ipa->gsi;
1561 	int ret;
1562 
1563 	if (!(ipa->enabled & mask))
1564 		return;
1565 
1566 	ipa->enabled ^= mask;
1567 
1568 	if (!endpoint->toward_ipa) {
1569 		ipa_endpoint_replenish_disable(endpoint);
1570 		ipa_interrupt_suspend_disable(ipa->interrupt,
1571 					      endpoint->endpoint_id);
1572 	}
1573 
1574 	/* Note that if stop fails, the channel's state is not well-defined */
1575 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1576 	if (ret)
1577 		dev_err(&ipa->pdev->dev,
1578 			"error %d attempting to stop endpoint %u\n", ret,
1579 			endpoint->endpoint_id);
1580 }
1581 
1582 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1583 {
1584 	struct device *dev = &endpoint->ipa->pdev->dev;
1585 	struct gsi *gsi = &endpoint->ipa->gsi;
1586 	bool stop_channel;
1587 	int ret;
1588 
1589 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1590 		return;
1591 
1592 	if (!endpoint->toward_ipa) {
1593 		ipa_endpoint_replenish_disable(endpoint);
1594 		(void)ipa_endpoint_program_suspend(endpoint, true);
1595 	}
1596 
1597 	/* Starting with IPA v4.0, endpoints are suspended by stopping the
1598 	 * underlying GSI channel rather than using endpoint suspend mode.
1599 	 */
1600 	stop_channel = endpoint->ipa->version >= IPA_VERSION_4_0;
1601 	ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
1602 	if (ret)
1603 		dev_err(dev, "error %d suspending channel %u\n", ret,
1604 			endpoint->channel_id);
1605 }
1606 
1607 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1608 {
1609 	struct device *dev = &endpoint->ipa->pdev->dev;
1610 	struct gsi *gsi = &endpoint->ipa->gsi;
1611 	bool start_channel;
1612 	int ret;
1613 
1614 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1615 		return;
1616 
1617 	if (!endpoint->toward_ipa)
1618 		(void)ipa_endpoint_program_suspend(endpoint, false);
1619 
1620 	/* Starting with IPA v4.0, the underlying GSI channel must be
1621 	 * restarted for resume.
1622 	 */
1623 	start_channel = endpoint->ipa->version >= IPA_VERSION_4_0;
1624 	ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
1625 	if (ret)
1626 		dev_err(dev, "error %d resuming channel %u\n", ret,
1627 			endpoint->channel_id);
1628 	else if (!endpoint->toward_ipa)
1629 		ipa_endpoint_replenish_enable(endpoint);
1630 }
1631 
1632 void ipa_endpoint_suspend(struct ipa *ipa)
1633 {
1634 	if (!ipa->setup_complete)
1635 		return;
1636 
1637 	if (ipa->modem_netdev)
1638 		ipa_modem_suspend(ipa->modem_netdev);
1639 
1640 	ipa_cmd_pipeline_clear(ipa);
1641 
1642 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1643 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1644 }
1645 
1646 void ipa_endpoint_resume(struct ipa *ipa)
1647 {
1648 	if (!ipa->setup_complete)
1649 		return;
1650 
1651 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1652 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1653 
1654 	if (ipa->modem_netdev)
1655 		ipa_modem_resume(ipa->modem_netdev);
1656 }
1657 
1658 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1659 {
1660 	struct gsi *gsi = &endpoint->ipa->gsi;
1661 	u32 channel_id = endpoint->channel_id;
1662 
1663 	/* Only AP endpoints get set up */
1664 	if (endpoint->ee_id != GSI_EE_AP)
1665 		return;
1666 
1667 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1668 	if (!endpoint->toward_ipa) {
1669 		/* RX transactions require a single TRE, so the maximum
1670 		 * backlog is the same as the maximum outstanding TREs.
1671 		 */
1672 		endpoint->replenish_enabled = false;
1673 		atomic_set(&endpoint->replenish_saved,
1674 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1675 		atomic_set(&endpoint->replenish_backlog, 0);
1676 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1677 				  ipa_endpoint_replenish_work);
1678 	}
1679 
1680 	ipa_endpoint_program(endpoint);
1681 
1682 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1683 }
1684 
1685 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1686 {
1687 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1688 
1689 	if (!endpoint->toward_ipa)
1690 		cancel_delayed_work_sync(&endpoint->replenish_work);
1691 
1692 	ipa_endpoint_reset(endpoint);
1693 }
1694 
1695 void ipa_endpoint_setup(struct ipa *ipa)
1696 {
1697 	u32 initialized = ipa->initialized;
1698 
1699 	ipa->set_up = 0;
1700 	while (initialized) {
1701 		u32 endpoint_id = __ffs(initialized);
1702 
1703 		initialized ^= BIT(endpoint_id);
1704 
1705 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1706 	}
1707 }
1708 
1709 void ipa_endpoint_teardown(struct ipa *ipa)
1710 {
1711 	u32 set_up = ipa->set_up;
1712 
1713 	while (set_up) {
1714 		u32 endpoint_id = __fls(set_up);
1715 
1716 		set_up ^= BIT(endpoint_id);
1717 
1718 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1719 	}
1720 	ipa->set_up = 0;
1721 }
1722 
1723 int ipa_endpoint_config(struct ipa *ipa)
1724 {
1725 	struct device *dev = &ipa->pdev->dev;
1726 	u32 initialized;
1727 	u32 rx_base;
1728 	u32 rx_mask;
1729 	u32 tx_mask;
1730 	int ret = 0;
1731 	u32 max;
1732 	u32 val;
1733 
1734 	/* Prior to IPAv3.5, the FLAVOR_0 register was not supported.
1735 	 * Furthermore, the endpoints were not grouped such that TX
1736 	 * endpoint numbers started with 0 and RX endpoints had numbers
1737 	 * higher than all TX endpoints, so we can't do the simple
1738 	 * direction check used for newer hardware below.
1739 	 *
1740 	 * For hardware that doesn't support the FLAVOR_0 register,
1741 	 * just set the available mask to support any endpoint, and
1742 	 * assume the configuration is valid.
1743 	 */
1744 	if (ipa->version < IPA_VERSION_3_5) {
1745 		ipa->available = ~0;
1746 		return 0;
1747 	}
1748 
1749 	/* Find out about the endpoints supplied by the hardware, and ensure
1750 	 * the highest one doesn't exceed the number we support.
1751 	 */
1752 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1753 
1754 	/* Our RX is an IPA producer */
1755 	rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1756 	max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1757 	if (max > IPA_ENDPOINT_MAX) {
1758 		dev_err(dev, "too many endpoints (%u > %u)\n",
1759 			max, IPA_ENDPOINT_MAX);
1760 		return -EINVAL;
1761 	}
1762 	rx_mask = GENMASK(max - 1, rx_base);
1763 
1764 	/* Our TX is an IPA consumer */
1765 	max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1766 	tx_mask = GENMASK(max - 1, 0);
1767 
1768 	ipa->available = rx_mask | tx_mask;
1769 
1770 	/* Check for initialized endpoints not supported by the hardware */
1771 	if (ipa->initialized & ~ipa->available) {
1772 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1773 			ipa->initialized & ~ipa->available);
1774 		ret = -EINVAL;		/* Report other errors too */
1775 	}
1776 
1777 	initialized = ipa->initialized;
1778 	while (initialized) {
1779 		u32 endpoint_id = __ffs(initialized);
1780 		struct ipa_endpoint *endpoint;
1781 
1782 		initialized ^= BIT(endpoint_id);
1783 
1784 		/* Make sure it's pointing in the right direction */
1785 		endpoint = &ipa->endpoint[endpoint_id];
1786 		if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1787 			dev_err(dev, "endpoint id %u wrong direction\n",
1788 				endpoint_id);
1789 			ret = -EINVAL;
1790 		}
1791 	}
1792 
1793 	return ret;
1794 }
1795 
1796 void ipa_endpoint_deconfig(struct ipa *ipa)
1797 {
1798 	ipa->available = 0;	/* Nothing more to do */
1799 }
1800 
1801 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1802 				  const struct ipa_gsi_endpoint_data *data)
1803 {
1804 	struct ipa_endpoint *endpoint;
1805 
1806 	endpoint = &ipa->endpoint[data->endpoint_id];
1807 
1808 	if (data->ee_id == GSI_EE_AP)
1809 		ipa->channel_map[data->channel_id] = endpoint;
1810 	ipa->name_map[name] = endpoint;
1811 
1812 	endpoint->ipa = ipa;
1813 	endpoint->ee_id = data->ee_id;
1814 	endpoint->channel_id = data->channel_id;
1815 	endpoint->endpoint_id = data->endpoint_id;
1816 	endpoint->toward_ipa = data->toward_ipa;
1817 	endpoint->data = &data->endpoint.config;
1818 
1819 	ipa->initialized |= BIT(endpoint->endpoint_id);
1820 }
1821 
1822 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1823 {
1824 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1825 
1826 	memset(endpoint, 0, sizeof(*endpoint));
1827 }
1828 
1829 void ipa_endpoint_exit(struct ipa *ipa)
1830 {
1831 	u32 initialized = ipa->initialized;
1832 
1833 	while (initialized) {
1834 		u32 endpoint_id = __fls(initialized);
1835 
1836 		initialized ^= BIT(endpoint_id);
1837 
1838 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1839 	}
1840 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1841 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1842 }
1843 
1844 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
1845 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1846 		      const struct ipa_gsi_endpoint_data *data)
1847 {
1848 	enum ipa_endpoint_name name;
1849 	u32 filter_map;
1850 
1851 	if (!ipa_endpoint_data_valid(ipa, count, data))
1852 		return 0;	/* Error */
1853 
1854 	ipa->initialized = 0;
1855 
1856 	filter_map = 0;
1857 	for (name = 0; name < count; name++, data++) {
1858 		if (ipa_gsi_endpoint_data_empty(data))
1859 			continue;	/* Skip over empty slots */
1860 
1861 		ipa_endpoint_init_one(ipa, name, data);
1862 
1863 		if (data->endpoint.filter_support)
1864 			filter_map |= BIT(data->endpoint_id);
1865 	}
1866 
1867 	if (!ipa_filter_map_valid(ipa, filter_map))
1868 		goto err_endpoint_exit;
1869 
1870 	return filter_map;	/* Non-zero bitmask */
1871 
1872 err_endpoint_exit:
1873 	ipa_endpoint_exit(ipa);
1874 
1875 	return 0;	/* Error */
1876 }
1877