1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/device.h> 9 #include <linux/slab.h> 10 #include <linux/bitfield.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_data.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_cmd.h" 20 #include "ipa_mem.h" 21 #include "ipa_modem.h" 22 #include "ipa_table.h" 23 #include "ipa_gsi.h" 24 #include "ipa_clock.h" 25 26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) 27 28 #define IPA_REPLENISH_BATCH 16 29 30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */ 31 #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */ 32 33 /* The amount of RX buffer space consumed by standard skb overhead */ 34 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 35 36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ 37 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ 38 39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 40 #define IPA_AGGR_TIME_LIMIT 500 /* microseconds */ 41 42 /** enum ipa_status_opcode - status element opcode hardware values */ 43 enum ipa_status_opcode { 44 IPA_STATUS_OPCODE_PACKET = 0x01, 45 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, 46 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, 47 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, 48 }; 49 50 /** enum ipa_status_exception - status element exception type */ 51 enum ipa_status_exception { 52 /* 0 means no exception */ 53 IPA_STATUS_EXCEPTION_DEAGGR = 0x01, 54 }; 55 56 /* Status element provided by hardware */ 57 struct ipa_status { 58 u8 opcode; /* enum ipa_status_opcode */ 59 u8 exception; /* enum ipa_status_exception */ 60 __le16 mask; 61 __le16 pkt_len; 62 u8 endp_src_idx; 63 u8 endp_dst_idx; 64 __le32 metadata; 65 __le32 flags1; 66 __le64 flags2; 67 __le32 flags3; 68 __le32 flags4; 69 }; 70 71 /* Field masks for struct ipa_status structure fields */ 72 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) 73 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) 74 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) 75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) 76 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) 77 78 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 79 const struct ipa_gsi_endpoint_data *all_data, 80 const struct ipa_gsi_endpoint_data *data) 81 { 82 const struct ipa_gsi_endpoint_data *other_data; 83 struct device *dev = &ipa->pdev->dev; 84 enum ipa_endpoint_name other_name; 85 86 if (ipa_gsi_endpoint_data_empty(data)) 87 return true; 88 89 if (!data->toward_ipa) { 90 if (data->endpoint.filter_support) { 91 dev_err(dev, "filtering not supported for " 92 "RX endpoint %u\n", 93 data->endpoint_id); 94 return false; 95 } 96 97 return true; /* Nothing more to check for RX */ 98 } 99 100 if (data->endpoint.config.status_enable) { 101 other_name = data->endpoint.config.tx.status_endpoint; 102 if (other_name >= count) { 103 dev_err(dev, "status endpoint name %u out of range " 104 "for endpoint %u\n", 105 other_name, data->endpoint_id); 106 return false; 107 } 108 109 /* Status endpoint must be defined... */ 110 other_data = &all_data[other_name]; 111 if (ipa_gsi_endpoint_data_empty(other_data)) { 112 dev_err(dev, "DMA endpoint name %u undefined " 113 "for endpoint %u\n", 114 other_name, data->endpoint_id); 115 return false; 116 } 117 118 /* ...and has to be an RX endpoint... */ 119 if (other_data->toward_ipa) { 120 dev_err(dev, 121 "status endpoint for endpoint %u not RX\n", 122 data->endpoint_id); 123 return false; 124 } 125 126 /* ...and if it's to be an AP endpoint... */ 127 if (other_data->ee_id == GSI_EE_AP) { 128 /* ...make sure it has status enabled. */ 129 if (!other_data->endpoint.config.status_enable) { 130 dev_err(dev, 131 "status not enabled for endpoint %u\n", 132 other_data->endpoint_id); 133 return false; 134 } 135 } 136 } 137 138 if (data->endpoint.config.dma_mode) { 139 other_name = data->endpoint.config.dma_endpoint; 140 if (other_name >= count) { 141 dev_err(dev, "DMA endpoint name %u out of range " 142 "for endpoint %u\n", 143 other_name, data->endpoint_id); 144 return false; 145 } 146 147 other_data = &all_data[other_name]; 148 if (ipa_gsi_endpoint_data_empty(other_data)) { 149 dev_err(dev, "DMA endpoint name %u undefined " 150 "for endpoint %u\n", 151 other_name, data->endpoint_id); 152 return false; 153 } 154 } 155 156 return true; 157 } 158 159 static u32 aggr_byte_limit_max(enum ipa_version version) 160 { 161 if (version < IPA_VERSION_4_5) 162 return field_max(aggr_byte_limit_fmask(true)); 163 164 return field_max(aggr_byte_limit_fmask(false)); 165 } 166 167 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 168 const struct ipa_gsi_endpoint_data *data) 169 { 170 const struct ipa_gsi_endpoint_data *dp = data; 171 struct device *dev = &ipa->pdev->dev; 172 enum ipa_endpoint_name name; 173 u32 limit; 174 175 if (count > IPA_ENDPOINT_COUNT) { 176 dev_err(dev, "too many endpoints specified (%u > %u)\n", 177 count, IPA_ENDPOINT_COUNT); 178 return false; 179 } 180 181 /* The aggregation byte limit defines the point at which an 182 * aggregation window will close. It is programmed into the 183 * IPA hardware as a number of KB. We don't use "hard byte 184 * limit" aggregation, which means that we need to supply 185 * enough space in a receive buffer to hold a complete MTU 186 * plus normal skb overhead *after* that aggregation byte 187 * limit has been crossed. 188 * 189 * This check ensures we don't define a receive buffer size 190 * that would exceed what we can represent in the field that 191 * is used to program its size. 192 */ 193 limit = aggr_byte_limit_max(ipa->version) * SZ_1K; 194 limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 195 if (limit < IPA_RX_BUFFER_SIZE) { 196 dev_err(dev, "buffer size too big for aggregation (%u > %u)\n", 197 IPA_RX_BUFFER_SIZE, limit); 198 return false; 199 } 200 201 /* Make sure needed endpoints have defined data */ 202 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 203 dev_err(dev, "command TX endpoint not defined\n"); 204 return false; 205 } 206 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 207 dev_err(dev, "LAN RX endpoint not defined\n"); 208 return false; 209 } 210 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 211 dev_err(dev, "AP->modem TX endpoint not defined\n"); 212 return false; 213 } 214 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 215 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 216 return false; 217 } 218 219 for (name = 0; name < count; name++, dp++) 220 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 221 return false; 222 223 return true; 224 } 225 226 /* Allocate a transaction to use on a non-command endpoint */ 227 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 228 u32 tre_count) 229 { 230 struct gsi *gsi = &endpoint->ipa->gsi; 231 u32 channel_id = endpoint->channel_id; 232 enum dma_data_direction direction; 233 234 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 235 236 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 237 } 238 239 /* suspend_delay represents suspend for RX, delay for TX endpoints. 240 * Note that suspend is not supported starting with IPA v4.0. 241 */ 242 static bool 243 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 244 { 245 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); 246 struct ipa *ipa = endpoint->ipa; 247 bool state; 248 u32 mask; 249 u32 val; 250 251 /* Suspend is not supported for IPA v4.0+. Delay doesn't work 252 * correctly on IPA v4.2. 253 * 254 * if (endpoint->toward_ipa) 255 * assert(ipa->version != IPA_VERSION_4.2); 256 * else 257 * assert(ipa->version < IPA_VERSION_4_0); 258 */ 259 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; 260 261 val = ioread32(ipa->reg_virt + offset); 262 /* Don't bother if it's already in the requested state */ 263 state = !!(val & mask); 264 if (suspend_delay != state) { 265 val ^= mask; 266 iowrite32(val, ipa->reg_virt + offset); 267 } 268 269 return state; 270 } 271 272 /* We currently don't care what the previous state was for delay mode */ 273 static void 274 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) 275 { 276 /* assert(endpoint->toward_ipa); */ 277 278 /* Delay mode doesn't work properly for IPA v4.2 */ 279 if (endpoint->ipa->version != IPA_VERSION_4_2) 280 (void)ipa_endpoint_init_ctrl(endpoint, enable); 281 } 282 283 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 284 { 285 u32 mask = BIT(endpoint->endpoint_id); 286 struct ipa *ipa = endpoint->ipa; 287 u32 offset; 288 u32 val; 289 290 /* assert(mask & ipa->available); */ 291 offset = ipa_reg_state_aggr_active_offset(ipa->version); 292 val = ioread32(ipa->reg_virt + offset); 293 294 return !!(val & mask); 295 } 296 297 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 298 { 299 u32 mask = BIT(endpoint->endpoint_id); 300 struct ipa *ipa = endpoint->ipa; 301 302 /* assert(mask & ipa->available); */ 303 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); 304 } 305 306 /** 307 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 308 * @endpoint: Endpoint on which to emulate a suspend 309 * 310 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 311 * with an open aggregation frame. This is to work around a hardware 312 * issue in IPA version 3.5.1 where the suspend interrupt will not be 313 * generated when it should be. 314 */ 315 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 316 { 317 struct ipa *ipa = endpoint->ipa; 318 319 if (!endpoint->data->aggregation) 320 return; 321 322 /* Nothing to do if the endpoint doesn't have aggregation open */ 323 if (!ipa_endpoint_aggr_active(endpoint)) 324 return; 325 326 /* Force close aggregation */ 327 ipa_endpoint_force_close(endpoint); 328 329 ipa_interrupt_simulate_suspend(ipa->interrupt); 330 } 331 332 /* Returns previous suspend state (true means suspend was enabled) */ 333 static bool 334 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) 335 { 336 bool suspended; 337 338 if (endpoint->ipa->version >= IPA_VERSION_4_0) 339 return enable; /* For IPA v4.0+, no change made */ 340 341 /* assert(!endpoint->toward_ipa); */ 342 343 suspended = ipa_endpoint_init_ctrl(endpoint, enable); 344 345 /* A client suspended with an open aggregation frame will not 346 * generate a SUSPEND IPA interrupt. If enabling suspend, have 347 * ipa_endpoint_suspend_aggr() handle this. 348 */ 349 if (enable && !suspended) 350 ipa_endpoint_suspend_aggr(endpoint); 351 352 return suspended; 353 } 354 355 /* Enable or disable delay or suspend mode on all modem endpoints */ 356 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 357 { 358 u32 endpoint_id; 359 360 /* DELAY mode doesn't work correctly on IPA v4.2 */ 361 if (ipa->version == IPA_VERSION_4_2) 362 return; 363 364 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { 365 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; 366 367 if (endpoint->ee_id != GSI_EE_MODEM) 368 continue; 369 370 /* Set TX delay mode or RX suspend mode */ 371 if (endpoint->toward_ipa) 372 ipa_endpoint_program_delay(endpoint, enable); 373 else 374 (void)ipa_endpoint_program_suspend(endpoint, enable); 375 } 376 } 377 378 /* Reset all modem endpoints to use the default exception endpoint */ 379 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 380 { 381 u32 initialized = ipa->initialized; 382 struct gsi_trans *trans; 383 u32 count; 384 385 /* We need one command per modem TX endpoint. We can get an upper 386 * bound on that by assuming all initialized endpoints are modem->IPA. 387 * That won't happen, and we could be more precise, but this is fine 388 * for now. End the transaction with commands to clear the pipeline. 389 */ 390 count = hweight32(initialized) + ipa_cmd_pipeline_clear_count(); 391 trans = ipa_cmd_trans_alloc(ipa, count); 392 if (!trans) { 393 dev_err(&ipa->pdev->dev, 394 "no transaction to reset modem exception endpoints\n"); 395 return -EBUSY; 396 } 397 398 while (initialized) { 399 u32 endpoint_id = __ffs(initialized); 400 struct ipa_endpoint *endpoint; 401 u32 offset; 402 403 initialized ^= BIT(endpoint_id); 404 405 /* We only reset modem TX endpoints */ 406 endpoint = &ipa->endpoint[endpoint_id]; 407 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 408 continue; 409 410 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 411 412 /* Value written is 0, and all bits are updated. That 413 * means status is disabled on the endpoint, and as a 414 * result all other fields in the register are ignored. 415 */ 416 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 417 } 418 419 ipa_cmd_pipeline_clear_add(trans); 420 421 /* XXX This should have a 1 second timeout */ 422 gsi_trans_commit_wait(trans); 423 424 ipa_cmd_pipeline_clear_wait(ipa); 425 426 return 0; 427 } 428 429 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 430 { 431 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); 432 enum ipa_cs_offload_en enabled; 433 u32 val = 0; 434 435 /* FRAG_OFFLOAD_EN is 0 */ 436 if (endpoint->data->checksum) { 437 enum ipa_version version = endpoint->ipa->version; 438 439 if (endpoint->toward_ipa) { 440 u32 checksum_offset; 441 442 /* Checksum header offset is in 4-byte units */ 443 checksum_offset = sizeof(struct rmnet_map_header); 444 checksum_offset /= sizeof(u32); 445 val |= u32_encode_bits(checksum_offset, 446 CS_METADATA_HDR_OFFSET_FMASK); 447 448 enabled = version < IPA_VERSION_4_5 449 ? IPA_CS_OFFLOAD_UL 450 : IPA_CS_OFFLOAD_INLINE; 451 } else { 452 enabled = version < IPA_VERSION_4_5 453 ? IPA_CS_OFFLOAD_DL 454 : IPA_CS_OFFLOAD_INLINE; 455 } 456 } else { 457 enabled = IPA_CS_OFFLOAD_NONE; 458 } 459 val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK); 460 /* CS_GEN_QMB_MASTER_SEL is 0 */ 461 462 iowrite32(val, endpoint->ipa->reg_virt + offset); 463 } 464 465 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) 466 { 467 u32 offset; 468 u32 val; 469 470 if (!endpoint->toward_ipa) 471 return; 472 473 offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id); 474 val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK); 475 476 iowrite32(val, endpoint->ipa->reg_virt + offset); 477 } 478 479 static u32 480 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) 481 { 482 u32 header_size = sizeof(struct rmnet_map_header); 483 484 /* Without checksum offload, we just have the MAP header */ 485 if (!endpoint->data->checksum) 486 return header_size; 487 488 if (version < IPA_VERSION_4_5) { 489 /* Checksum header inserted for AP TX endpoints only */ 490 if (endpoint->toward_ipa) 491 header_size += sizeof(struct rmnet_map_ul_csum_header); 492 } else { 493 /* Checksum header is used in both directions */ 494 header_size += sizeof(struct rmnet_map_v5_csum_header); 495 } 496 497 return header_size; 498 } 499 500 /** 501 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register 502 * @endpoint: Endpoint pointer 503 * 504 * We program QMAP endpoints so each packet received is preceded by a QMAP 505 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte 506 * packet size field, and we have the IPA hardware populate both for each 507 * received packet. The header is configured (in the HDR_EXT register) 508 * to use big endian format. 509 * 510 * The packet size is written into the QMAP header's pkt_len field. That 511 * location is defined here using the HDR_OFST_PKT_SIZE field. 512 * 513 * The mux_id comes from a 4-byte metadata value supplied with each packet 514 * by the modem. It is *not* a QMAP header, but it does contain the mux_id 515 * value that we want, in its low-order byte. A bitmask defined in the 516 * endpoint's METADATA_MASK register defines which byte within the modem 517 * metadata contains the mux_id. And the OFST_METADATA field programmed 518 * here indicates where the extracted byte should be placed within the QMAP 519 * header. 520 */ 521 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 522 { 523 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); 524 struct ipa *ipa = endpoint->ipa; 525 u32 val = 0; 526 527 if (endpoint->data->qmap) { 528 enum ipa_version version = ipa->version; 529 size_t header_size; 530 531 header_size = ipa_qmap_header_size(version, endpoint); 532 val = ipa_header_size_encoded(version, header_size); 533 534 /* Define how to fill fields in a received QMAP header */ 535 if (!endpoint->toward_ipa) { 536 u32 offset; /* Field offset within header */ 537 538 /* Where IPA will write the metadata value */ 539 offset = offsetof(struct rmnet_map_header, mux_id); 540 val |= ipa_metadata_offset_encoded(version, offset); 541 542 /* Where IPA will write the length */ 543 offset = offsetof(struct rmnet_map_header, pkt_len); 544 /* Upper bits are stored in HDR_EXT with IPA v4.5 */ 545 if (version >= IPA_VERSION_4_5) 546 offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK); 547 548 val |= HDR_OFST_PKT_SIZE_VALID_FMASK; 549 val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK); 550 } 551 /* For QMAP TX, metadata offset is 0 (modem assumes this) */ 552 val |= HDR_OFST_METADATA_VALID_FMASK; 553 554 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ 555 /* HDR_A5_MUX is 0 */ 556 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 557 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ 558 } 559 560 iowrite32(val, ipa->reg_virt + offset); 561 } 562 563 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 564 { 565 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); 566 u32 pad_align = endpoint->data->rx.pad_align; 567 struct ipa *ipa = endpoint->ipa; 568 u32 val = 0; 569 570 val |= HDR_ENDIANNESS_FMASK; /* big endian */ 571 572 /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet 573 * driver assumes this field is meaningful in packets it receives, 574 * and assumes the header's payload length includes that padding. 575 * The RMNet driver does *not* pad packets it sends, however, so 576 * the pad field (although 0) should be ignored. 577 */ 578 if (endpoint->data->qmap && !endpoint->toward_ipa) { 579 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; 580 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 581 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; 582 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 583 } 584 585 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 586 if (!endpoint->toward_ipa) 587 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); 588 589 /* IPA v4.5 adds some most-significant bits to a few fields, 590 * two of which are defined in the HDR (not HDR_EXT) register. 591 */ 592 if (ipa->version >= IPA_VERSION_4_5) { 593 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ 594 if (endpoint->data->qmap && !endpoint->toward_ipa) { 595 u32 offset; 596 597 offset = offsetof(struct rmnet_map_header, pkt_len); 598 offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK); 599 val |= u32_encode_bits(offset, 600 HDR_OFST_PKT_SIZE_MSB_FMASK); 601 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ 602 } 603 } 604 iowrite32(val, ipa->reg_virt + offset); 605 } 606 607 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 608 { 609 u32 endpoint_id = endpoint->endpoint_id; 610 u32 val = 0; 611 u32 offset; 612 613 if (endpoint->toward_ipa) 614 return; /* Register not valid for TX endpoints */ 615 616 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); 617 618 /* Note that HDR_ENDIANNESS indicates big endian header fields */ 619 if (endpoint->data->qmap) 620 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); 621 622 iowrite32(val, endpoint->ipa->reg_virt + offset); 623 } 624 625 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 626 { 627 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); 628 u32 val; 629 630 if (!endpoint->toward_ipa) 631 return; /* Register not valid for RX endpoints */ 632 633 if (endpoint->data->dma_mode) { 634 enum ipa_endpoint_name name = endpoint->data->dma_endpoint; 635 u32 dma_endpoint_id; 636 637 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; 638 639 val = u32_encode_bits(IPA_DMA, MODE_FMASK); 640 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); 641 } else { 642 val = u32_encode_bits(IPA_BASIC, MODE_FMASK); 643 } 644 /* All other bits unspecified (and 0) */ 645 646 iowrite32(val, endpoint->ipa->reg_virt + offset); 647 } 648 649 /* Compute the aggregation size value to use for a given buffer size */ 650 static u32 ipa_aggr_size_kb(u32 rx_buffer_size) 651 { 652 /* We don't use "hard byte limit" aggregation, so we define the 653 * aggregation limit such that our buffer has enough space *after* 654 * that limit to receive a full MTU of data, plus overhead. 655 */ 656 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 657 658 return rx_buffer_size / SZ_1K; 659 } 660 661 /* Encoded values for AGGR endpoint register fields */ 662 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit) 663 { 664 if (version < IPA_VERSION_4_5) 665 return u32_encode_bits(limit, aggr_byte_limit_fmask(true)); 666 667 return u32_encode_bits(limit, aggr_byte_limit_fmask(false)); 668 } 669 670 /* Encode the aggregation timer limit (microseconds) based on IPA version */ 671 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit) 672 { 673 u32 gran_sel; 674 u32 fmask; 675 u32 val; 676 677 if (version < IPA_VERSION_4_5) { 678 /* We set aggregation granularity in ipa_hardware_config() */ 679 limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); 680 681 return u32_encode_bits(limit, aggr_time_limit_fmask(true)); 682 } 683 684 /* IPA v4.5 expresses the time limit using Qtime. The AP has 685 * pulse generators 0 and 1 available, which were configured 686 * in ipa_qtime_config() to have granularity 100 usec and 687 * 1 msec, respectively. Use pulse generator 0 if possible, 688 * otherwise fall back to pulse generator 1. 689 */ 690 fmask = aggr_time_limit_fmask(false); 691 val = DIV_ROUND_CLOSEST(limit, 100); 692 if (val > field_max(fmask)) { 693 /* Have to use pulse generator 1 (millisecond granularity) */ 694 gran_sel = AGGR_GRAN_SEL_FMASK; 695 val = DIV_ROUND_CLOSEST(limit, 1000); 696 } else { 697 /* We can use pulse generator 0 (100 usec granularity) */ 698 gran_sel = 0; 699 } 700 701 return gran_sel | u32_encode_bits(val, fmask); 702 } 703 704 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled) 705 { 706 u32 val = enabled ? 1 : 0; 707 708 if (version < IPA_VERSION_4_5) 709 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true)); 710 711 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false)); 712 } 713 714 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 715 { 716 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); 717 enum ipa_version version = endpoint->ipa->version; 718 u32 val = 0; 719 720 if (endpoint->data->aggregation) { 721 if (!endpoint->toward_ipa) { 722 bool close_eof; 723 u32 limit; 724 725 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); 726 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); 727 728 limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE); 729 val |= aggr_byte_limit_encoded(version, limit); 730 731 limit = IPA_AGGR_TIME_LIMIT; 732 val |= aggr_time_limit_encoded(version, limit); 733 734 /* AGGR_PKT_LIMIT is 0 (unlimited) */ 735 736 close_eof = endpoint->data->rx.aggr_close_eof; 737 val |= aggr_sw_eof_active_encoded(version, close_eof); 738 739 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ 740 } else { 741 val |= u32_encode_bits(IPA_ENABLE_DEAGGR, 742 AGGR_EN_FMASK); 743 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); 744 /* other fields ignored */ 745 } 746 /* AGGR_FORCE_CLOSE is 0 */ 747 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ 748 } else { 749 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); 750 /* other fields ignored */ 751 } 752 753 iowrite32(val, endpoint->ipa->reg_virt + offset); 754 } 755 756 /* Return the Qtime-based head-of-line blocking timer value that 757 * represents the given number of microseconds. The result 758 * includes both the timer value and the selected timer granularity. 759 */ 760 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds) 761 { 762 u32 gran_sel; 763 u32 val; 764 765 /* IPA v4.5 expresses time limits using Qtime. The AP has 766 * pulse generators 0 and 1 available, which were configured 767 * in ipa_qtime_config() to have granularity 100 usec and 768 * 1 msec, respectively. Use pulse generator 0 if possible, 769 * otherwise fall back to pulse generator 1. 770 */ 771 val = DIV_ROUND_CLOSEST(microseconds, 100); 772 if (val > field_max(TIME_LIMIT_FMASK)) { 773 /* Have to use pulse generator 1 (millisecond granularity) */ 774 gran_sel = GRAN_SEL_FMASK; 775 val = DIV_ROUND_CLOSEST(microseconds, 1000); 776 } else { 777 /* We can use pulse generator 0 (100 usec granularity) */ 778 gran_sel = 0; 779 } 780 781 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK); 782 } 783 784 /* The head-of-line blocking timer is defined as a tick count. For 785 * IPA version 4.5 the tick count is based on the Qtimer, which is 786 * derived from the 19.2 MHz SoC XO clock. For older IPA versions 787 * each tick represents 128 cycles of the IPA core clock. 788 * 789 * Return the encoded value that should be written to that register 790 * that represents the timeout period provided. For IPA v4.2 this 791 * encodes a base and scale value, while for earlier versions the 792 * value is a simple tick count. 793 */ 794 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds) 795 { 796 u32 width; 797 u32 scale; 798 u64 ticks; 799 u64 rate; 800 u32 high; 801 u32 val; 802 803 if (!microseconds) 804 return 0; /* Nothing to compute if timer period is 0 */ 805 806 if (ipa->version >= IPA_VERSION_4_5) 807 return hol_block_timer_qtime_val(ipa, microseconds); 808 809 /* Use 64 bit arithmetic to avoid overflow... */ 810 rate = ipa_clock_rate(ipa); 811 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); 812 /* ...but we still need to fit into a 32-bit register */ 813 WARN_ON(ticks > U32_MAX); 814 815 /* IPA v3.5.1 through v4.1 just record the tick count */ 816 if (ipa->version < IPA_VERSION_4_2) 817 return (u32)ticks; 818 819 /* For IPA v4.2, the tick count is represented by base and 820 * scale fields within the 32-bit timer register, where: 821 * ticks = base << scale; 822 * The best precision is achieved when the base value is as 823 * large as possible. Find the highest set bit in the tick 824 * count, and extract the number of bits in the base field 825 * such that high bit is included. 826 */ 827 high = fls(ticks); /* 1..32 */ 828 width = HWEIGHT32(BASE_VALUE_FMASK); 829 scale = high > width ? high - width : 0; 830 if (scale) { 831 /* If we're scaling, round up to get a closer result */ 832 ticks += 1 << (scale - 1); 833 /* High bit was set, so rounding might have affected it */ 834 if (fls(ticks) != high) 835 scale++; 836 } 837 838 val = u32_encode_bits(scale, SCALE_FMASK); 839 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); 840 841 return val; 842 } 843 844 /* If microseconds is 0, timeout is immediate */ 845 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 846 u32 microseconds) 847 { 848 u32 endpoint_id = endpoint->endpoint_id; 849 struct ipa *ipa = endpoint->ipa; 850 u32 offset; 851 u32 val; 852 853 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); 854 val = hol_block_timer_val(ipa, microseconds); 855 iowrite32(val, ipa->reg_virt + offset); 856 } 857 858 static void 859 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable) 860 { 861 u32 endpoint_id = endpoint->endpoint_id; 862 u32 offset; 863 u32 val; 864 865 val = enable ? HOL_BLOCK_EN_FMASK : 0; 866 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); 867 iowrite32(val, endpoint->ipa->reg_virt + offset); 868 } 869 870 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 871 { 872 u32 i; 873 874 for (i = 0; i < IPA_ENDPOINT_MAX; i++) { 875 struct ipa_endpoint *endpoint = &ipa->endpoint[i]; 876 877 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) 878 continue; 879 880 ipa_endpoint_init_hol_block_timer(endpoint, 0); 881 ipa_endpoint_init_hol_block_enable(endpoint, true); 882 } 883 } 884 885 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 886 { 887 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); 888 u32 val = 0; 889 890 if (!endpoint->toward_ipa) 891 return; /* Register not valid for RX endpoints */ 892 893 /* DEAGGR_HDR_LEN is 0 */ 894 /* PACKET_OFFSET_VALID is 0 */ 895 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 896 /* MAX_PACKET_LEN is 0 (not enforced) */ 897 898 iowrite32(val, endpoint->ipa->reg_virt + offset); 899 } 900 901 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) 902 { 903 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id); 904 struct ipa *ipa = endpoint->ipa; 905 u32 val; 906 907 val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group); 908 iowrite32(val, ipa->reg_virt + offset); 909 } 910 911 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 912 { 913 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); 914 u32 val = 0; 915 916 if (!endpoint->toward_ipa) 917 return; /* Register not valid for RX endpoints */ 918 919 /* Low-order byte configures primary packet processing */ 920 val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK); 921 922 /* Second byte configures replicated packet processing */ 923 val |= u32_encode_bits(endpoint->data->tx.seq_rep_type, 924 SEQ_REP_TYPE_FMASK); 925 926 iowrite32(val, endpoint->ipa->reg_virt + offset); 927 } 928 929 /** 930 * ipa_endpoint_skb_tx() - Transmit a socket buffer 931 * @endpoint: Endpoint pointer 932 * @skb: Socket buffer to send 933 * 934 * Returns: 0 if successful, or a negative error code 935 */ 936 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 937 { 938 struct gsi_trans *trans; 939 u32 nr_frags; 940 int ret; 941 942 /* Make sure source endpoint's TLV FIFO has enough entries to 943 * hold the linear portion of the skb and all its fragments. 944 * If not, see if we can linearize it before giving up. 945 */ 946 nr_frags = skb_shinfo(skb)->nr_frags; 947 if (1 + nr_frags > endpoint->trans_tre_max) { 948 if (skb_linearize(skb)) 949 return -E2BIG; 950 nr_frags = 0; 951 } 952 953 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 954 if (!trans) 955 return -EBUSY; 956 957 ret = gsi_trans_skb_add(trans, skb); 958 if (ret) 959 goto err_trans_free; 960 trans->data = skb; /* transaction owns skb now */ 961 962 gsi_trans_commit(trans, !netdev_xmit_more()); 963 964 return 0; 965 966 err_trans_free: 967 gsi_trans_free(trans); 968 969 return -ENOMEM; 970 } 971 972 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 973 { 974 u32 endpoint_id = endpoint->endpoint_id; 975 struct ipa *ipa = endpoint->ipa; 976 u32 val = 0; 977 u32 offset; 978 979 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 980 981 if (endpoint->data->status_enable) { 982 val |= STATUS_EN_FMASK; 983 if (endpoint->toward_ipa) { 984 enum ipa_endpoint_name name; 985 u32 status_endpoint_id; 986 987 name = endpoint->data->tx.status_endpoint; 988 status_endpoint_id = ipa->name_map[name]->endpoint_id; 989 990 val |= u32_encode_bits(status_endpoint_id, 991 STATUS_ENDP_FMASK); 992 } 993 /* STATUS_LOCATION is 0, meaning status element precedes 994 * packet (not present for IPA v4.5) 995 */ 996 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */ 997 } 998 999 iowrite32(val, ipa->reg_virt + offset); 1000 } 1001 1002 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint) 1003 { 1004 struct gsi_trans *trans; 1005 bool doorbell = false; 1006 struct page *page; 1007 u32 offset; 1008 u32 len; 1009 int ret; 1010 1011 page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE)); 1012 if (!page) 1013 return -ENOMEM; 1014 1015 trans = ipa_endpoint_trans_alloc(endpoint, 1); 1016 if (!trans) 1017 goto err_free_pages; 1018 1019 /* Offset the buffer to make space for skb headroom */ 1020 offset = NET_SKB_PAD; 1021 len = IPA_RX_BUFFER_SIZE - offset; 1022 1023 ret = gsi_trans_page_add(trans, page, len, offset); 1024 if (ret) 1025 goto err_trans_free; 1026 trans->data = page; /* transaction owns page now */ 1027 1028 if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) { 1029 doorbell = true; 1030 endpoint->replenish_ready = 0; 1031 } 1032 1033 gsi_trans_commit(trans, doorbell); 1034 1035 return 0; 1036 1037 err_trans_free: 1038 gsi_trans_free(trans); 1039 err_free_pages: 1040 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 1041 1042 return -ENOMEM; 1043 } 1044 1045 /** 1046 * ipa_endpoint_replenish() - Replenish endpoint receive buffers 1047 * @endpoint: Endpoint to be replenished 1048 * @add_one: Whether this is replacing a just-consumed buffer 1049 * 1050 * The IPA hardware can hold a fixed number of receive buffers for an RX 1051 * endpoint, based on the number of entries in the underlying channel ring 1052 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many 1053 * more receive buffers can be supplied to the hardware. Replenishing for 1054 * an endpoint can be disabled, in which case requests to replenish a 1055 * buffer are "saved", and transferred to the backlog once it is re-enabled 1056 * again. 1057 */ 1058 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one) 1059 { 1060 struct gsi *gsi; 1061 u32 backlog; 1062 1063 if (!endpoint->replenish_enabled) { 1064 if (add_one) 1065 atomic_inc(&endpoint->replenish_saved); 1066 return; 1067 } 1068 1069 while (atomic_dec_not_zero(&endpoint->replenish_backlog)) 1070 if (ipa_endpoint_replenish_one(endpoint)) 1071 goto try_again_later; 1072 if (add_one) 1073 atomic_inc(&endpoint->replenish_backlog); 1074 1075 return; 1076 1077 try_again_later: 1078 /* The last one didn't succeed, so fix the backlog */ 1079 backlog = atomic_inc_return(&endpoint->replenish_backlog); 1080 1081 if (add_one) 1082 atomic_inc(&endpoint->replenish_backlog); 1083 1084 /* Whenever a receive buffer transaction completes we'll try to 1085 * replenish again. It's unlikely, but if we fail to supply even 1086 * one buffer, nothing will trigger another replenish attempt. 1087 * Receive buffer transactions use one TRE, so schedule work to 1088 * try replenishing again if our backlog is *all* available TREs. 1089 */ 1090 gsi = &endpoint->ipa->gsi; 1091 if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id)) 1092 schedule_delayed_work(&endpoint->replenish_work, 1093 msecs_to_jiffies(1)); 1094 } 1095 1096 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 1097 { 1098 struct gsi *gsi = &endpoint->ipa->gsi; 1099 u32 max_backlog; 1100 u32 saved; 1101 1102 endpoint->replenish_enabled = true; 1103 while ((saved = atomic_xchg(&endpoint->replenish_saved, 0))) 1104 atomic_add(saved, &endpoint->replenish_backlog); 1105 1106 /* Start replenishing if hardware currently has no buffers */ 1107 max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id); 1108 if (atomic_read(&endpoint->replenish_backlog) == max_backlog) 1109 ipa_endpoint_replenish(endpoint, false); 1110 } 1111 1112 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 1113 { 1114 u32 backlog; 1115 1116 endpoint->replenish_enabled = false; 1117 while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0))) 1118 atomic_add(backlog, &endpoint->replenish_saved); 1119 } 1120 1121 static void ipa_endpoint_replenish_work(struct work_struct *work) 1122 { 1123 struct delayed_work *dwork = to_delayed_work(work); 1124 struct ipa_endpoint *endpoint; 1125 1126 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 1127 1128 ipa_endpoint_replenish(endpoint, false); 1129 } 1130 1131 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 1132 void *data, u32 len, u32 extra) 1133 { 1134 struct sk_buff *skb; 1135 1136 skb = __dev_alloc_skb(len, GFP_ATOMIC); 1137 if (skb) { 1138 skb_put(skb, len); 1139 memcpy(skb->data, data, len); 1140 skb->truesize += extra; 1141 } 1142 1143 /* Now receive it, or drop it if there's no netdev */ 1144 if (endpoint->netdev) 1145 ipa_modem_skb_rx(endpoint->netdev, skb); 1146 else if (skb) 1147 dev_kfree_skb_any(skb); 1148 } 1149 1150 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 1151 struct page *page, u32 len) 1152 { 1153 struct sk_buff *skb; 1154 1155 /* Nothing to do if there's no netdev */ 1156 if (!endpoint->netdev) 1157 return false; 1158 1159 /* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */ 1160 skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE); 1161 if (skb) { 1162 /* Reserve the headroom and account for the data */ 1163 skb_reserve(skb, NET_SKB_PAD); 1164 skb_put(skb, len); 1165 } 1166 1167 /* Receive the buffer (or record drop if unable to build it) */ 1168 ipa_modem_skb_rx(endpoint->netdev, skb); 1169 1170 return skb != NULL; 1171 } 1172 1173 /* The format of a packet status element is the same for several status 1174 * types (opcodes). Other types aren't currently supported. 1175 */ 1176 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 1177 { 1178 switch (opcode) { 1179 case IPA_STATUS_OPCODE_PACKET: 1180 case IPA_STATUS_OPCODE_DROPPED_PACKET: 1181 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 1182 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 1183 return true; 1184 default: 1185 return false; 1186 } 1187 } 1188 1189 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, 1190 const struct ipa_status *status) 1191 { 1192 u32 endpoint_id; 1193 1194 if (!ipa_status_format_packet(status->opcode)) 1195 return true; 1196 if (!status->pkt_len) 1197 return true; 1198 endpoint_id = u8_get_bits(status->endp_dst_idx, 1199 IPA_STATUS_DST_IDX_FMASK); 1200 if (endpoint_id != endpoint->endpoint_id) 1201 return true; 1202 1203 return false; /* Don't skip this packet, process it */ 1204 } 1205 1206 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, 1207 const struct ipa_status *status) 1208 { 1209 struct ipa_endpoint *command_endpoint; 1210 struct ipa *ipa = endpoint->ipa; 1211 u32 endpoint_id; 1212 1213 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) 1214 return false; /* No valid tag */ 1215 1216 /* The status contains a valid tag. We know the packet was sent to 1217 * this endpoint (already verified by ipa_endpoint_status_skip()). 1218 * If the packet came from the AP->command TX endpoint we know 1219 * this packet was sent as part of the pipeline clear process. 1220 */ 1221 endpoint_id = u8_get_bits(status->endp_src_idx, 1222 IPA_STATUS_SRC_IDX_FMASK); 1223 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 1224 if (endpoint_id == command_endpoint->endpoint_id) { 1225 complete(&ipa->completion); 1226 } else { 1227 dev_err(&ipa->pdev->dev, 1228 "unexpected tagged packet from endpoint %u\n", 1229 endpoint_id); 1230 } 1231 1232 return true; 1233 } 1234 1235 /* Return whether the status indicates the packet should be dropped */ 1236 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, 1237 const struct ipa_status *status) 1238 { 1239 u32 val; 1240 1241 /* If the status indicates a tagged transfer, we'll drop the packet */ 1242 if (ipa_endpoint_status_tag(endpoint, status)) 1243 return true; 1244 1245 /* Deaggregation exceptions we drop; all other types we consume */ 1246 if (status->exception) 1247 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; 1248 1249 /* Drop the packet if it fails to match a routing rule; otherwise no */ 1250 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1251 1252 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1253 } 1254 1255 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 1256 struct page *page, u32 total_len) 1257 { 1258 void *data = page_address(page) + NET_SKB_PAD; 1259 u32 unused = IPA_RX_BUFFER_SIZE - total_len; 1260 u32 resid = total_len; 1261 1262 while (resid) { 1263 const struct ipa_status *status = data; 1264 u32 align; 1265 u32 len; 1266 1267 if (resid < sizeof(*status)) { 1268 dev_err(&endpoint->ipa->pdev->dev, 1269 "short message (%u bytes < %zu byte status)\n", 1270 resid, sizeof(*status)); 1271 break; 1272 } 1273 1274 /* Skip over status packets that lack packet data */ 1275 if (ipa_endpoint_status_skip(endpoint, status)) { 1276 data += sizeof(*status); 1277 resid -= sizeof(*status); 1278 continue; 1279 } 1280 1281 /* Compute the amount of buffer space consumed by the packet, 1282 * including the status element. If the hardware is configured 1283 * to pad packet data to an aligned boundary, account for that. 1284 * And if checksum offload is enabled a trailer containing 1285 * computed checksum information will be appended. 1286 */ 1287 align = endpoint->data->rx.pad_align ? : 1; 1288 len = le16_to_cpu(status->pkt_len); 1289 len = sizeof(*status) + ALIGN(len, align); 1290 if (endpoint->data->checksum) 1291 len += sizeof(struct rmnet_map_dl_csum_trailer); 1292 1293 if (!ipa_endpoint_status_drop(endpoint, status)) { 1294 void *data2; 1295 u32 extra; 1296 u32 len2; 1297 1298 /* Client receives only packet data (no status) */ 1299 data2 = data + sizeof(*status); 1300 len2 = le16_to_cpu(status->pkt_len); 1301 1302 /* Have the true size reflect the extra unused space in 1303 * the original receive buffer. Distribute the "cost" 1304 * proportionately across all aggregated packets in the 1305 * buffer. 1306 */ 1307 extra = DIV_ROUND_CLOSEST(unused * len, total_len); 1308 ipa_endpoint_skb_copy(endpoint, data2, len2, extra); 1309 } 1310 1311 /* Consume status and the full packet it describes */ 1312 data += len; 1313 resid -= len; 1314 } 1315 } 1316 1317 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ 1318 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, 1319 struct gsi_trans *trans) 1320 { 1321 } 1322 1323 /* Complete transaction initiated in ipa_endpoint_replenish_one() */ 1324 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, 1325 struct gsi_trans *trans) 1326 { 1327 struct page *page; 1328 1329 ipa_endpoint_replenish(endpoint, true); 1330 1331 if (trans->cancelled) 1332 return; 1333 1334 /* Parse or build a socket buffer using the actual received length */ 1335 page = trans->data; 1336 if (endpoint->data->status_enable) 1337 ipa_endpoint_status_parse(endpoint, page, trans->len); 1338 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1339 trans->data = NULL; /* Pages have been consumed */ 1340 } 1341 1342 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1343 struct gsi_trans *trans) 1344 { 1345 if (endpoint->toward_ipa) 1346 ipa_endpoint_tx_complete(endpoint, trans); 1347 else 1348 ipa_endpoint_rx_complete(endpoint, trans); 1349 } 1350 1351 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1352 struct gsi_trans *trans) 1353 { 1354 if (endpoint->toward_ipa) { 1355 struct ipa *ipa = endpoint->ipa; 1356 1357 /* Nothing to do for command transactions */ 1358 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1359 struct sk_buff *skb = trans->data; 1360 1361 if (skb) 1362 dev_kfree_skb_any(skb); 1363 } 1364 } else { 1365 struct page *page = trans->data; 1366 1367 if (page) 1368 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 1369 } 1370 } 1371 1372 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1373 { 1374 u32 val; 1375 1376 /* ROUTE_DIS is 0 */ 1377 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); 1378 val |= ROUTE_DEF_HDR_TABLE_FMASK; 1379 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); 1380 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); 1381 val |= ROUTE_DEF_RETAIN_HDR_FMASK; 1382 1383 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); 1384 } 1385 1386 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1387 { 1388 ipa_endpoint_default_route_set(ipa, 0); 1389 } 1390 1391 /** 1392 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1393 * @endpoint: Endpoint to be reset 1394 * 1395 * If aggregation is active on an RX endpoint when a reset is performed 1396 * on its underlying GSI channel, a special sequence of actions must be 1397 * taken to ensure the IPA pipeline is properly cleared. 1398 * 1399 * Return: 0 if successful, or a negative error code 1400 */ 1401 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1402 { 1403 struct device *dev = &endpoint->ipa->pdev->dev; 1404 struct ipa *ipa = endpoint->ipa; 1405 struct gsi *gsi = &ipa->gsi; 1406 bool suspended = false; 1407 dma_addr_t addr; 1408 u32 retries; 1409 u32 len = 1; 1410 void *virt; 1411 int ret; 1412 1413 virt = kzalloc(len, GFP_KERNEL); 1414 if (!virt) 1415 return -ENOMEM; 1416 1417 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1418 if (dma_mapping_error(dev, addr)) { 1419 ret = -ENOMEM; 1420 goto out_kfree; 1421 } 1422 1423 /* Force close aggregation before issuing the reset */ 1424 ipa_endpoint_force_close(endpoint); 1425 1426 /* Reset and reconfigure the channel with the doorbell engine 1427 * disabled. Then poll until we know aggregation is no longer 1428 * active. We'll re-enable the doorbell (if appropriate) when 1429 * we reset again below. 1430 */ 1431 gsi_channel_reset(gsi, endpoint->channel_id, false); 1432 1433 /* Make sure the channel isn't suspended */ 1434 suspended = ipa_endpoint_program_suspend(endpoint, false); 1435 1436 /* Start channel and do a 1 byte read */ 1437 ret = gsi_channel_start(gsi, endpoint->channel_id); 1438 if (ret) 1439 goto out_suspend_again; 1440 1441 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1442 if (ret) 1443 goto err_endpoint_stop; 1444 1445 /* Wait for aggregation to be closed on the channel */ 1446 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1447 do { 1448 if (!ipa_endpoint_aggr_active(endpoint)) 1449 break; 1450 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1451 } while (retries--); 1452 1453 /* Check one last time */ 1454 if (ipa_endpoint_aggr_active(endpoint)) 1455 dev_err(dev, "endpoint %u still active during reset\n", 1456 endpoint->endpoint_id); 1457 1458 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1459 1460 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1461 if (ret) 1462 goto out_suspend_again; 1463 1464 /* Finally, reset and reconfigure the channel again (re-enabling 1465 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1466 * complete the channel reset sequence. Finish by suspending the 1467 * channel again (if necessary). 1468 */ 1469 gsi_channel_reset(gsi, endpoint->channel_id, true); 1470 1471 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1472 1473 goto out_suspend_again; 1474 1475 err_endpoint_stop: 1476 (void)gsi_channel_stop(gsi, endpoint->channel_id); 1477 out_suspend_again: 1478 if (suspended) 1479 (void)ipa_endpoint_program_suspend(endpoint, true); 1480 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1481 out_kfree: 1482 kfree(virt); 1483 1484 return ret; 1485 } 1486 1487 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1488 { 1489 u32 channel_id = endpoint->channel_id; 1490 struct ipa *ipa = endpoint->ipa; 1491 bool special; 1492 int ret = 0; 1493 1494 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1495 * is active, we need to handle things specially to recover. 1496 * All other cases just need to reset the underlying GSI channel. 1497 */ 1498 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && 1499 endpoint->data->aggregation; 1500 if (special && ipa_endpoint_aggr_active(endpoint)) 1501 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1502 else 1503 gsi_channel_reset(&ipa->gsi, channel_id, true); 1504 1505 if (ret) 1506 dev_err(&ipa->pdev->dev, 1507 "error %d resetting channel %u for endpoint %u\n", 1508 ret, endpoint->channel_id, endpoint->endpoint_id); 1509 } 1510 1511 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1512 { 1513 if (endpoint->toward_ipa) 1514 ipa_endpoint_program_delay(endpoint, false); 1515 else 1516 (void)ipa_endpoint_program_suspend(endpoint, false); 1517 ipa_endpoint_init_cfg(endpoint); 1518 ipa_endpoint_init_nat(endpoint); 1519 ipa_endpoint_init_hdr(endpoint); 1520 ipa_endpoint_init_hdr_ext(endpoint); 1521 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1522 ipa_endpoint_init_mode(endpoint); 1523 ipa_endpoint_init_aggr(endpoint); 1524 ipa_endpoint_init_deaggr(endpoint); 1525 ipa_endpoint_init_rsrc_grp(endpoint); 1526 ipa_endpoint_init_seq(endpoint); 1527 ipa_endpoint_status(endpoint); 1528 } 1529 1530 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1531 { 1532 struct ipa *ipa = endpoint->ipa; 1533 struct gsi *gsi = &ipa->gsi; 1534 int ret; 1535 1536 ret = gsi_channel_start(gsi, endpoint->channel_id); 1537 if (ret) { 1538 dev_err(&ipa->pdev->dev, 1539 "error %d starting %cX channel %u for endpoint %u\n", 1540 ret, endpoint->toward_ipa ? 'T' : 'R', 1541 endpoint->channel_id, endpoint->endpoint_id); 1542 return ret; 1543 } 1544 1545 if (!endpoint->toward_ipa) { 1546 ipa_interrupt_suspend_enable(ipa->interrupt, 1547 endpoint->endpoint_id); 1548 ipa_endpoint_replenish_enable(endpoint); 1549 } 1550 1551 ipa->enabled |= BIT(endpoint->endpoint_id); 1552 1553 return 0; 1554 } 1555 1556 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1557 { 1558 u32 mask = BIT(endpoint->endpoint_id); 1559 struct ipa *ipa = endpoint->ipa; 1560 struct gsi *gsi = &ipa->gsi; 1561 int ret; 1562 1563 if (!(ipa->enabled & mask)) 1564 return; 1565 1566 ipa->enabled ^= mask; 1567 1568 if (!endpoint->toward_ipa) { 1569 ipa_endpoint_replenish_disable(endpoint); 1570 ipa_interrupt_suspend_disable(ipa->interrupt, 1571 endpoint->endpoint_id); 1572 } 1573 1574 /* Note that if stop fails, the channel's state is not well-defined */ 1575 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1576 if (ret) 1577 dev_err(&ipa->pdev->dev, 1578 "error %d attempting to stop endpoint %u\n", ret, 1579 endpoint->endpoint_id); 1580 } 1581 1582 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1583 { 1584 struct device *dev = &endpoint->ipa->pdev->dev; 1585 struct gsi *gsi = &endpoint->ipa->gsi; 1586 bool stop_channel; 1587 int ret; 1588 1589 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1590 return; 1591 1592 if (!endpoint->toward_ipa) { 1593 ipa_endpoint_replenish_disable(endpoint); 1594 (void)ipa_endpoint_program_suspend(endpoint, true); 1595 } 1596 1597 /* Starting with IPA v4.0, endpoints are suspended by stopping the 1598 * underlying GSI channel rather than using endpoint suspend mode. 1599 */ 1600 stop_channel = endpoint->ipa->version >= IPA_VERSION_4_0; 1601 ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel); 1602 if (ret) 1603 dev_err(dev, "error %d suspending channel %u\n", ret, 1604 endpoint->channel_id); 1605 } 1606 1607 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1608 { 1609 struct device *dev = &endpoint->ipa->pdev->dev; 1610 struct gsi *gsi = &endpoint->ipa->gsi; 1611 bool start_channel; 1612 int ret; 1613 1614 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1615 return; 1616 1617 if (!endpoint->toward_ipa) 1618 (void)ipa_endpoint_program_suspend(endpoint, false); 1619 1620 /* Starting with IPA v4.0, the underlying GSI channel must be 1621 * restarted for resume. 1622 */ 1623 start_channel = endpoint->ipa->version >= IPA_VERSION_4_0; 1624 ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel); 1625 if (ret) 1626 dev_err(dev, "error %d resuming channel %u\n", ret, 1627 endpoint->channel_id); 1628 else if (!endpoint->toward_ipa) 1629 ipa_endpoint_replenish_enable(endpoint); 1630 } 1631 1632 void ipa_endpoint_suspend(struct ipa *ipa) 1633 { 1634 if (!ipa->setup_complete) 1635 return; 1636 1637 if (ipa->modem_netdev) 1638 ipa_modem_suspend(ipa->modem_netdev); 1639 1640 ipa_cmd_pipeline_clear(ipa); 1641 1642 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1643 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1644 } 1645 1646 void ipa_endpoint_resume(struct ipa *ipa) 1647 { 1648 if (!ipa->setup_complete) 1649 return; 1650 1651 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1652 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1653 1654 if (ipa->modem_netdev) 1655 ipa_modem_resume(ipa->modem_netdev); 1656 } 1657 1658 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1659 { 1660 struct gsi *gsi = &endpoint->ipa->gsi; 1661 u32 channel_id = endpoint->channel_id; 1662 1663 /* Only AP endpoints get set up */ 1664 if (endpoint->ee_id != GSI_EE_AP) 1665 return; 1666 1667 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); 1668 if (!endpoint->toward_ipa) { 1669 /* RX transactions require a single TRE, so the maximum 1670 * backlog is the same as the maximum outstanding TREs. 1671 */ 1672 endpoint->replenish_enabled = false; 1673 atomic_set(&endpoint->replenish_saved, 1674 gsi_channel_tre_max(gsi, endpoint->channel_id)); 1675 atomic_set(&endpoint->replenish_backlog, 0); 1676 INIT_DELAYED_WORK(&endpoint->replenish_work, 1677 ipa_endpoint_replenish_work); 1678 } 1679 1680 ipa_endpoint_program(endpoint); 1681 1682 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); 1683 } 1684 1685 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1686 { 1687 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); 1688 1689 if (!endpoint->toward_ipa) 1690 cancel_delayed_work_sync(&endpoint->replenish_work); 1691 1692 ipa_endpoint_reset(endpoint); 1693 } 1694 1695 void ipa_endpoint_setup(struct ipa *ipa) 1696 { 1697 u32 initialized = ipa->initialized; 1698 1699 ipa->set_up = 0; 1700 while (initialized) { 1701 u32 endpoint_id = __ffs(initialized); 1702 1703 initialized ^= BIT(endpoint_id); 1704 1705 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1706 } 1707 } 1708 1709 void ipa_endpoint_teardown(struct ipa *ipa) 1710 { 1711 u32 set_up = ipa->set_up; 1712 1713 while (set_up) { 1714 u32 endpoint_id = __fls(set_up); 1715 1716 set_up ^= BIT(endpoint_id); 1717 1718 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1719 } 1720 ipa->set_up = 0; 1721 } 1722 1723 int ipa_endpoint_config(struct ipa *ipa) 1724 { 1725 struct device *dev = &ipa->pdev->dev; 1726 u32 initialized; 1727 u32 rx_base; 1728 u32 rx_mask; 1729 u32 tx_mask; 1730 int ret = 0; 1731 u32 max; 1732 u32 val; 1733 1734 /* Prior to IPAv3.5, the FLAVOR_0 register was not supported. 1735 * Furthermore, the endpoints were not grouped such that TX 1736 * endpoint numbers started with 0 and RX endpoints had numbers 1737 * higher than all TX endpoints, so we can't do the simple 1738 * direction check used for newer hardware below. 1739 * 1740 * For hardware that doesn't support the FLAVOR_0 register, 1741 * just set the available mask to support any endpoint, and 1742 * assume the configuration is valid. 1743 */ 1744 if (ipa->version < IPA_VERSION_3_5) { 1745 ipa->available = ~0; 1746 return 0; 1747 } 1748 1749 /* Find out about the endpoints supplied by the hardware, and ensure 1750 * the highest one doesn't exceed the number we support. 1751 */ 1752 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); 1753 1754 /* Our RX is an IPA producer */ 1755 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK); 1756 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK); 1757 if (max > IPA_ENDPOINT_MAX) { 1758 dev_err(dev, "too many endpoints (%u > %u)\n", 1759 max, IPA_ENDPOINT_MAX); 1760 return -EINVAL; 1761 } 1762 rx_mask = GENMASK(max - 1, rx_base); 1763 1764 /* Our TX is an IPA consumer */ 1765 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK); 1766 tx_mask = GENMASK(max - 1, 0); 1767 1768 ipa->available = rx_mask | tx_mask; 1769 1770 /* Check for initialized endpoints not supported by the hardware */ 1771 if (ipa->initialized & ~ipa->available) { 1772 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", 1773 ipa->initialized & ~ipa->available); 1774 ret = -EINVAL; /* Report other errors too */ 1775 } 1776 1777 initialized = ipa->initialized; 1778 while (initialized) { 1779 u32 endpoint_id = __ffs(initialized); 1780 struct ipa_endpoint *endpoint; 1781 1782 initialized ^= BIT(endpoint_id); 1783 1784 /* Make sure it's pointing in the right direction */ 1785 endpoint = &ipa->endpoint[endpoint_id]; 1786 if ((endpoint_id < rx_base) != endpoint->toward_ipa) { 1787 dev_err(dev, "endpoint id %u wrong direction\n", 1788 endpoint_id); 1789 ret = -EINVAL; 1790 } 1791 } 1792 1793 return ret; 1794 } 1795 1796 void ipa_endpoint_deconfig(struct ipa *ipa) 1797 { 1798 ipa->available = 0; /* Nothing more to do */ 1799 } 1800 1801 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 1802 const struct ipa_gsi_endpoint_data *data) 1803 { 1804 struct ipa_endpoint *endpoint; 1805 1806 endpoint = &ipa->endpoint[data->endpoint_id]; 1807 1808 if (data->ee_id == GSI_EE_AP) 1809 ipa->channel_map[data->channel_id] = endpoint; 1810 ipa->name_map[name] = endpoint; 1811 1812 endpoint->ipa = ipa; 1813 endpoint->ee_id = data->ee_id; 1814 endpoint->channel_id = data->channel_id; 1815 endpoint->endpoint_id = data->endpoint_id; 1816 endpoint->toward_ipa = data->toward_ipa; 1817 endpoint->data = &data->endpoint.config; 1818 1819 ipa->initialized |= BIT(endpoint->endpoint_id); 1820 } 1821 1822 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 1823 { 1824 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); 1825 1826 memset(endpoint, 0, sizeof(*endpoint)); 1827 } 1828 1829 void ipa_endpoint_exit(struct ipa *ipa) 1830 { 1831 u32 initialized = ipa->initialized; 1832 1833 while (initialized) { 1834 u32 endpoint_id = __fls(initialized); 1835 1836 initialized ^= BIT(endpoint_id); 1837 1838 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 1839 } 1840 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 1841 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 1842 } 1843 1844 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 1845 u32 ipa_endpoint_init(struct ipa *ipa, u32 count, 1846 const struct ipa_gsi_endpoint_data *data) 1847 { 1848 enum ipa_endpoint_name name; 1849 u32 filter_map; 1850 1851 if (!ipa_endpoint_data_valid(ipa, count, data)) 1852 return 0; /* Error */ 1853 1854 ipa->initialized = 0; 1855 1856 filter_map = 0; 1857 for (name = 0; name < count; name++, data++) { 1858 if (ipa_gsi_endpoint_data_empty(data)) 1859 continue; /* Skip over empty slots */ 1860 1861 ipa_endpoint_init_one(ipa, name, data); 1862 1863 if (data->endpoint.filter_support) 1864 filter_map |= BIT(data->endpoint_id); 1865 } 1866 1867 if (!ipa_filter_map_valid(ipa, filter_map)) 1868 goto err_endpoint_exit; 1869 1870 return filter_map; /* Non-zero bitmask */ 1871 1872 err_endpoint_exit: 1873 ipa_endpoint_exit(ipa); 1874 1875 return 0; /* Error */ 1876 } 1877