1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/device.h> 9 #include <linux/slab.h> 10 #include <linux/bitfield.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_data.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_cmd.h" 20 #include "ipa_mem.h" 21 #include "ipa_modem.h" 22 #include "ipa_table.h" 23 #include "ipa_gsi.h" 24 25 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) 26 27 #define IPA_REPLENISH_BATCH 16 28 29 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */ 30 #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */ 31 32 /* The amount of RX buffer space consumed by standard skb overhead */ 33 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 34 35 #define IPA_ENDPOINT_STOP_RX_RETRIES 10 36 #define IPA_ENDPOINT_STOP_RX_SIZE 1 /* bytes */ 37 38 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 39 #define IPA_AGGR_TIME_LIMIT_DEFAULT 1000 /* microseconds */ 40 41 #define ENDPOINT_STOP_DMA_TIMEOUT 15 /* milliseconds */ 42 43 /** enum ipa_status_opcode - status element opcode hardware values */ 44 enum ipa_status_opcode { 45 IPA_STATUS_OPCODE_PACKET = 0x01, 46 IPA_STATUS_OPCODE_NEW_FRAG_RULE = 0x02, 47 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, 48 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, 49 IPA_STATUS_OPCODE_LOG = 0x10, 50 IPA_STATUS_OPCODE_DCMP = 0x20, 51 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, 52 }; 53 54 /** enum ipa_status_exception - status element exception type */ 55 enum ipa_status_exception { 56 /* 0 means no exception */ 57 IPA_STATUS_EXCEPTION_DEAGGR = 0x01, 58 IPA_STATUS_EXCEPTION_IPTYPE = 0x04, 59 IPA_STATUS_EXCEPTION_PACKET_LENGTH = 0x08, 60 IPA_STATUS_EXCEPTION_FRAG_RULE_MISS = 0x10, 61 IPA_STATUS_EXCEPTION_SW_FILT = 0x20, 62 /* The meaning of the next value depends on whether the IP version */ 63 IPA_STATUS_EXCEPTION_NAT = 0x40, /* IPv4 */ 64 IPA_STATUS_EXCEPTION_IPV6CT = IPA_STATUS_EXCEPTION_NAT, 65 }; 66 67 /* Status element provided by hardware */ 68 struct ipa_status { 69 u8 opcode; /* enum ipa_status_opcode */ 70 u8 exception; /* enum ipa_status_exception */ 71 __le16 mask; 72 __le16 pkt_len; 73 u8 endp_src_idx; 74 u8 endp_dst_idx; 75 __le32 metadata; 76 __le32 flags1; 77 __le64 flags2; 78 __le32 flags3; 79 __le32 flags4; 80 }; 81 82 /* Field masks for struct ipa_status structure fields */ 83 84 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) 85 86 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) 87 88 #define IPA_STATUS_FLAGS1_FLT_LOCAL_FMASK GENMASK(0, 0) 89 #define IPA_STATUS_FLAGS1_FLT_HASH_FMASK GENMASK(1, 1) 90 #define IPA_STATUS_FLAGS1_FLT_GLOBAL_FMASK GENMASK(2, 2) 91 #define IPA_STATUS_FLAGS1_FLT_RET_HDR_FMASK GENMASK(3, 3) 92 #define IPA_STATUS_FLAGS1_FLT_RULE_ID_FMASK GENMASK(13, 4) 93 #define IPA_STATUS_FLAGS1_RT_LOCAL_FMASK GENMASK(14, 14) 94 #define IPA_STATUS_FLAGS1_RT_HASH_FMASK GENMASK(15, 15) 95 #define IPA_STATUS_FLAGS1_UCP_FMASK GENMASK(16, 16) 96 #define IPA_STATUS_FLAGS1_RT_TBL_IDX_FMASK GENMASK(21, 17) 97 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) 98 99 #define IPA_STATUS_FLAGS2_NAT_HIT_FMASK GENMASK_ULL(0, 0) 100 #define IPA_STATUS_FLAGS2_NAT_ENTRY_IDX_FMASK GENMASK_ULL(13, 1) 101 #define IPA_STATUS_FLAGS2_NAT_TYPE_FMASK GENMASK_ULL(15, 14) 102 #define IPA_STATUS_FLAGS2_TAG_INFO_FMASK GENMASK_ULL(63, 16) 103 104 #define IPA_STATUS_FLAGS3_SEQ_NUM_FMASK GENMASK(7, 0) 105 #define IPA_STATUS_FLAGS3_TOD_CTR_FMASK GENMASK(31, 8) 106 107 #define IPA_STATUS_FLAGS4_HDR_LOCAL_FMASK GENMASK(0, 0) 108 #define IPA_STATUS_FLAGS4_HDR_OFFSET_FMASK GENMASK(10, 1) 109 #define IPA_STATUS_FLAGS4_FRAG_HIT_FMASK GENMASK(11, 11) 110 #define IPA_STATUS_FLAGS4_FRAG_RULE_FMASK GENMASK(15, 12) 111 #define IPA_STATUS_FLAGS4_HW_SPECIFIC_FMASK GENMASK(31, 16) 112 113 #ifdef IPA_VALIDATE 114 115 static void ipa_endpoint_validate_build(void) 116 { 117 /* The aggregation byte limit defines the point at which an 118 * aggregation window will close. It is programmed into the 119 * IPA hardware as a number of KB. We don't use "hard byte 120 * limit" aggregation, which means that we need to supply 121 * enough space in a receive buffer to hold a complete MTU 122 * plus normal skb overhead *after* that aggregation byte 123 * limit has been crossed. 124 * 125 * This check just ensures we don't define a receive buffer 126 * size that would exceed what we can represent in the field 127 * that is used to program its size. 128 */ 129 BUILD_BUG_ON(IPA_RX_BUFFER_SIZE > 130 field_max(AGGR_BYTE_LIMIT_FMASK) * SZ_1K + 131 IPA_MTU + IPA_RX_BUFFER_OVERHEAD); 132 133 /* I honestly don't know where this requirement comes from. But 134 * it holds, and if we someday need to loosen the constraint we 135 * can try to track it down. 136 */ 137 BUILD_BUG_ON(sizeof(struct ipa_status) % 4); 138 } 139 140 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 141 const struct ipa_gsi_endpoint_data *all_data, 142 const struct ipa_gsi_endpoint_data *data) 143 { 144 const struct ipa_gsi_endpoint_data *other_data; 145 struct device *dev = &ipa->pdev->dev; 146 enum ipa_endpoint_name other_name; 147 148 if (ipa_gsi_endpoint_data_empty(data)) 149 return true; 150 151 if (!data->toward_ipa) { 152 if (data->endpoint.filter_support) { 153 dev_err(dev, "filtering not supported for " 154 "RX endpoint %u\n", 155 data->endpoint_id); 156 return false; 157 } 158 159 return true; /* Nothing more to check for RX */ 160 } 161 162 if (data->endpoint.config.status_enable) { 163 other_name = data->endpoint.config.tx.status_endpoint; 164 if (other_name >= count) { 165 dev_err(dev, "status endpoint name %u out of range " 166 "for endpoint %u\n", 167 other_name, data->endpoint_id); 168 return false; 169 } 170 171 /* Status endpoint must be defined... */ 172 other_data = &all_data[other_name]; 173 if (ipa_gsi_endpoint_data_empty(other_data)) { 174 dev_err(dev, "DMA endpoint name %u undefined " 175 "for endpoint %u\n", 176 other_name, data->endpoint_id); 177 return false; 178 } 179 180 /* ...and has to be an RX endpoint... */ 181 if (other_data->toward_ipa) { 182 dev_err(dev, 183 "status endpoint for endpoint %u not RX\n", 184 data->endpoint_id); 185 return false; 186 } 187 188 /* ...and if it's to be an AP endpoint... */ 189 if (other_data->ee_id == GSI_EE_AP) { 190 /* ...make sure it has status enabled. */ 191 if (!other_data->endpoint.config.status_enable) { 192 dev_err(dev, 193 "status not enabled for endpoint %u\n", 194 other_data->endpoint_id); 195 return false; 196 } 197 } 198 } 199 200 if (data->endpoint.config.dma_mode) { 201 other_name = data->endpoint.config.dma_endpoint; 202 if (other_name >= count) { 203 dev_err(dev, "DMA endpoint name %u out of range " 204 "for endpoint %u\n", 205 other_name, data->endpoint_id); 206 return false; 207 } 208 209 other_data = &all_data[other_name]; 210 if (ipa_gsi_endpoint_data_empty(other_data)) { 211 dev_err(dev, "DMA endpoint name %u undefined " 212 "for endpoint %u\n", 213 other_name, data->endpoint_id); 214 return false; 215 } 216 } 217 218 return true; 219 } 220 221 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 222 const struct ipa_gsi_endpoint_data *data) 223 { 224 const struct ipa_gsi_endpoint_data *dp = data; 225 struct device *dev = &ipa->pdev->dev; 226 enum ipa_endpoint_name name; 227 228 ipa_endpoint_validate_build(); 229 230 if (count > IPA_ENDPOINT_COUNT) { 231 dev_err(dev, "too many endpoints specified (%u > %u)\n", 232 count, IPA_ENDPOINT_COUNT); 233 return false; 234 } 235 236 /* Make sure needed endpoints have defined data */ 237 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 238 dev_err(dev, "command TX endpoint not defined\n"); 239 return false; 240 } 241 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 242 dev_err(dev, "LAN RX endpoint not defined\n"); 243 return false; 244 } 245 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 246 dev_err(dev, "AP->modem TX endpoint not defined\n"); 247 return false; 248 } 249 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 250 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 251 return false; 252 } 253 254 for (name = 0; name < count; name++, dp++) 255 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 256 return false; 257 258 return true; 259 } 260 261 #else /* !IPA_VALIDATE */ 262 263 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 264 const struct ipa_gsi_endpoint_data *data) 265 { 266 return true; 267 } 268 269 #endif /* !IPA_VALIDATE */ 270 271 /* Allocate a transaction to use on a non-command endpoint */ 272 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 273 u32 tre_count) 274 { 275 struct gsi *gsi = &endpoint->ipa->gsi; 276 u32 channel_id = endpoint->channel_id; 277 enum dma_data_direction direction; 278 279 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 280 281 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 282 } 283 284 /* suspend_delay represents suspend for RX, delay for TX endpoints. 285 * Note that suspend is not supported starting with IPA v4.0. 286 */ 287 static int 288 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 289 { 290 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); 291 struct ipa *ipa = endpoint->ipa; 292 u32 mask; 293 u32 val; 294 295 /* assert(ipa->version == IPA_VERSION_3_5_1 */ 296 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; 297 298 val = ioread32(ipa->reg_virt + offset); 299 if (suspend_delay == !!(val & mask)) 300 return -EALREADY; /* Already set to desired state */ 301 302 val ^= mask; 303 iowrite32(val, ipa->reg_virt + offset); 304 305 return 0; 306 } 307 308 /* Enable or disable delay or suspend mode on all modem endpoints */ 309 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 310 { 311 bool support_suspend; 312 u32 endpoint_id; 313 314 /* DELAY mode doesn't work right on IPA v4.2 */ 315 if (ipa->version == IPA_VERSION_4_2) 316 return; 317 318 /* Only IPA v3.5.1 supports SUSPEND mode on RX endpoints */ 319 support_suspend = ipa->version == IPA_VERSION_3_5_1; 320 321 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { 322 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; 323 324 if (endpoint->ee_id != GSI_EE_MODEM) 325 continue; 326 327 /* Set TX delay mode, or for IPA v3.5.1 RX suspend mode */ 328 if (endpoint->toward_ipa || support_suspend) 329 (void)ipa_endpoint_init_ctrl(endpoint, enable); 330 } 331 } 332 333 /* Reset all modem endpoints to use the default exception endpoint */ 334 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 335 { 336 u32 initialized = ipa->initialized; 337 struct gsi_trans *trans; 338 u32 count; 339 340 /* We need one command per modem TX endpoint. We can get an upper 341 * bound on that by assuming all initialized endpoints are modem->IPA. 342 * That won't happen, and we could be more precise, but this is fine 343 * for now. We need to end the transactio with a "tag process." 344 */ 345 count = hweight32(initialized) + ipa_cmd_tag_process_count(); 346 trans = ipa_cmd_trans_alloc(ipa, count); 347 if (!trans) { 348 dev_err(&ipa->pdev->dev, 349 "no transaction to reset modem exception endpoints\n"); 350 return -EBUSY; 351 } 352 353 while (initialized) { 354 u32 endpoint_id = __ffs(initialized); 355 struct ipa_endpoint *endpoint; 356 u32 offset; 357 358 initialized ^= BIT(endpoint_id); 359 360 /* We only reset modem TX endpoints */ 361 endpoint = &ipa->endpoint[endpoint_id]; 362 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 363 continue; 364 365 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 366 367 /* Value written is 0, and all bits are updated. That 368 * means status is disabled on the endpoint, and as a 369 * result all other fields in the register are ignored. 370 */ 371 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 372 } 373 374 ipa_cmd_tag_process_add(trans); 375 376 /* XXX This should have a 1 second timeout */ 377 gsi_trans_commit_wait(trans); 378 379 return 0; 380 } 381 382 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 383 { 384 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); 385 u32 val = 0; 386 387 /* FRAG_OFFLOAD_EN is 0 */ 388 if (endpoint->data->checksum) { 389 if (endpoint->toward_ipa) { 390 u32 checksum_offset; 391 392 val |= u32_encode_bits(IPA_CS_OFFLOAD_UL, 393 CS_OFFLOAD_EN_FMASK); 394 /* Checksum header offset is in 4-byte units */ 395 checksum_offset = sizeof(struct rmnet_map_header); 396 checksum_offset /= sizeof(u32); 397 val |= u32_encode_bits(checksum_offset, 398 CS_METADATA_HDR_OFFSET_FMASK); 399 } else { 400 val |= u32_encode_bits(IPA_CS_OFFLOAD_DL, 401 CS_OFFLOAD_EN_FMASK); 402 } 403 } else { 404 val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE, 405 CS_OFFLOAD_EN_FMASK); 406 } 407 /* CS_GEN_QMB_MASTER_SEL is 0 */ 408 409 iowrite32(val, endpoint->ipa->reg_virt + offset); 410 } 411 412 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 413 { 414 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); 415 u32 val = 0; 416 417 if (endpoint->data->qmap) { 418 size_t header_size = sizeof(struct rmnet_map_header); 419 420 if (endpoint->toward_ipa && endpoint->data->checksum) 421 header_size += sizeof(struct rmnet_map_ul_csum_header); 422 423 val |= u32_encode_bits(header_size, HDR_LEN_FMASK); 424 /* metadata is the 4 byte rmnet_map header itself */ 425 val |= HDR_OFST_METADATA_VALID_FMASK; 426 val |= u32_encode_bits(0, HDR_OFST_METADATA_FMASK); 427 /* HDR_ADDITIONAL_CONST_LEN is 0; (IPA->AP only) */ 428 if (!endpoint->toward_ipa) { 429 u32 size_offset = offsetof(struct rmnet_map_header, 430 pkt_len); 431 432 val |= HDR_OFST_PKT_SIZE_VALID_FMASK; 433 val |= u32_encode_bits(size_offset, 434 HDR_OFST_PKT_SIZE_FMASK); 435 } 436 /* HDR_A5_MUX is 0 */ 437 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 438 /* HDR_METADATA_REG_VALID is 0; (AP->IPA only) */ 439 } 440 441 iowrite32(val, endpoint->ipa->reg_virt + offset); 442 } 443 444 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 445 { 446 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); 447 u32 pad_align = endpoint->data->rx.pad_align; 448 u32 val = 0; 449 450 val |= HDR_ENDIANNESS_FMASK; /* big endian */ 451 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; 452 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 453 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 454 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 455 if (!endpoint->toward_ipa) 456 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); 457 458 iowrite32(val, endpoint->ipa->reg_virt + offset); 459 } 460 461 /** 462 * Generate a metadata mask value that will select only the mux_id 463 * field in an rmnet_map header structure. The mux_id is at offset 464 * 1 byte from the beginning of the structure, but the metadata 465 * value is treated as a 4-byte unit. So this mask must be computed 466 * with endianness in mind. Note that ipa_endpoint_init_hdr_metadata_mask() 467 * will convert this value to the proper byte order. 468 * 469 * Marked __always_inline because this is really computing a 470 * constant value. 471 */ 472 static __always_inline __be32 ipa_rmnet_mux_id_metadata_mask(void) 473 { 474 size_t mux_id_offset = offsetof(struct rmnet_map_header, mux_id); 475 u32 mux_id_mask = 0; 476 u8 *bytes; 477 478 bytes = (u8 *)&mux_id_mask; 479 bytes[mux_id_offset] = 0xff; /* mux_id is 1 byte */ 480 481 return cpu_to_be32(mux_id_mask); 482 } 483 484 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 485 { 486 u32 endpoint_id = endpoint->endpoint_id; 487 u32 val = 0; 488 u32 offset; 489 490 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); 491 492 if (!endpoint->toward_ipa && endpoint->data->qmap) 493 val = ipa_rmnet_mux_id_metadata_mask(); 494 495 iowrite32(val, endpoint->ipa->reg_virt + offset); 496 } 497 498 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 499 { 500 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); 501 u32 val; 502 503 if (endpoint->toward_ipa && endpoint->data->dma_mode) { 504 enum ipa_endpoint_name name = endpoint->data->dma_endpoint; 505 u32 dma_endpoint_id; 506 507 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; 508 509 val = u32_encode_bits(IPA_DMA, MODE_FMASK); 510 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); 511 } else { 512 val = u32_encode_bits(IPA_BASIC, MODE_FMASK); 513 } 514 /* Other bitfields unspecified (and 0) */ 515 516 iowrite32(val, endpoint->ipa->reg_virt + offset); 517 } 518 519 /* Compute the aggregation size value to use for a given buffer size */ 520 static u32 ipa_aggr_size_kb(u32 rx_buffer_size) 521 { 522 /* We don't use "hard byte limit" aggregation, so we define the 523 * aggregation limit such that our buffer has enough space *after* 524 * that limit to receive a full MTU of data, plus overhead. 525 */ 526 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 527 528 return rx_buffer_size / SZ_1K; 529 } 530 531 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 532 { 533 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); 534 u32 val = 0; 535 536 if (endpoint->data->aggregation) { 537 if (!endpoint->toward_ipa) { 538 u32 aggr_size = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE); 539 u32 limit; 540 541 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); 542 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); 543 val |= u32_encode_bits(aggr_size, 544 AGGR_BYTE_LIMIT_FMASK); 545 limit = IPA_AGGR_TIME_LIMIT_DEFAULT; 546 val |= u32_encode_bits(limit / IPA_AGGR_GRANULARITY, 547 AGGR_TIME_LIMIT_FMASK); 548 val |= u32_encode_bits(0, AGGR_PKT_LIMIT_FMASK); 549 if (endpoint->data->rx.aggr_close_eof) 550 val |= AGGR_SW_EOF_ACTIVE_FMASK; 551 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ 552 } else { 553 val |= u32_encode_bits(IPA_ENABLE_DEAGGR, 554 AGGR_EN_FMASK); 555 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); 556 /* other fields ignored */ 557 } 558 /* AGGR_FORCE_CLOSE is 0 */ 559 } else { 560 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); 561 /* other fields ignored */ 562 } 563 564 iowrite32(val, endpoint->ipa->reg_virt + offset); 565 } 566 567 /* A return value of 0 indicates an error */ 568 static u32 ipa_reg_init_hol_block_timer_val(struct ipa *ipa, u32 microseconds) 569 { 570 u32 scale; 571 u32 base; 572 u32 val; 573 574 if (!microseconds) 575 return 0; /* invalid delay */ 576 577 /* Timer is represented in units of clock ticks. */ 578 if (ipa->version < IPA_VERSION_4_2) 579 return microseconds; /* XXX Needs to be computed */ 580 581 /* IPA v4.2 represents the tick count as base * scale */ 582 scale = 1; /* XXX Needs to be computed */ 583 if (scale > field_max(SCALE_FMASK)) 584 return 0; /* scale too big */ 585 586 base = DIV_ROUND_CLOSEST(microseconds, scale); 587 if (base > field_max(BASE_VALUE_FMASK)) 588 return 0; /* microseconds too big */ 589 590 val = u32_encode_bits(scale, SCALE_FMASK); 591 val |= u32_encode_bits(base, BASE_VALUE_FMASK); 592 593 return val; 594 } 595 596 static int ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 597 u32 microseconds) 598 { 599 u32 endpoint_id = endpoint->endpoint_id; 600 struct ipa *ipa = endpoint->ipa; 601 u32 offset; 602 u32 val; 603 604 /* XXX We'll fix this when the register definition is clear */ 605 if (microseconds) { 606 struct device *dev = &ipa->pdev->dev; 607 608 dev_err(dev, "endpoint %u non-zero HOLB period (ignoring)\n", 609 endpoint_id); 610 microseconds = 0; 611 } 612 613 if (microseconds) { 614 val = ipa_reg_init_hol_block_timer_val(ipa, microseconds); 615 if (!val) 616 return -EINVAL; 617 } else { 618 val = 0; /* timeout is immediate */ 619 } 620 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); 621 iowrite32(val, ipa->reg_virt + offset); 622 623 return 0; 624 } 625 626 static void 627 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable) 628 { 629 u32 endpoint_id = endpoint->endpoint_id; 630 u32 offset; 631 u32 val; 632 633 val = u32_encode_bits(enable ? 1 : 0, HOL_BLOCK_EN_FMASK); 634 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); 635 iowrite32(val, endpoint->ipa->reg_virt + offset); 636 } 637 638 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 639 { 640 u32 i; 641 642 for (i = 0; i < IPA_ENDPOINT_MAX; i++) { 643 struct ipa_endpoint *endpoint = &ipa->endpoint[i]; 644 645 if (endpoint->ee_id != GSI_EE_MODEM) 646 continue; 647 648 (void)ipa_endpoint_init_hol_block_timer(endpoint, 0); 649 ipa_endpoint_init_hol_block_enable(endpoint, true); 650 } 651 } 652 653 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 654 { 655 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); 656 u32 val = 0; 657 658 /* DEAGGR_HDR_LEN is 0 */ 659 /* PACKET_OFFSET_VALID is 0 */ 660 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 661 /* MAX_PACKET_LEN is 0 (not enforced) */ 662 663 iowrite32(val, endpoint->ipa->reg_virt + offset); 664 } 665 666 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 667 { 668 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); 669 u32 seq_type = endpoint->seq_type; 670 u32 val = 0; 671 672 val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK); 673 val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK); 674 /* HPS_REP_SEQ_TYPE is 0 */ 675 /* DPS_REP_SEQ_TYPE is 0 */ 676 677 iowrite32(val, endpoint->ipa->reg_virt + offset); 678 } 679 680 /** 681 * ipa_endpoint_skb_tx() - Transmit a socket buffer 682 * @endpoint: Endpoint pointer 683 * @skb: Socket buffer to send 684 * 685 * Returns: 0 if successful, or a negative error code 686 */ 687 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 688 { 689 struct gsi_trans *trans; 690 u32 nr_frags; 691 int ret; 692 693 /* Make sure source endpoint's TLV FIFO has enough entries to 694 * hold the linear portion of the skb and all its fragments. 695 * If not, see if we can linearize it before giving up. 696 */ 697 nr_frags = skb_shinfo(skb)->nr_frags; 698 if (1 + nr_frags > endpoint->trans_tre_max) { 699 if (skb_linearize(skb)) 700 return -E2BIG; 701 nr_frags = 0; 702 } 703 704 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 705 if (!trans) 706 return -EBUSY; 707 708 ret = gsi_trans_skb_add(trans, skb); 709 if (ret) 710 goto err_trans_free; 711 trans->data = skb; /* transaction owns skb now */ 712 713 gsi_trans_commit(trans, !netdev_xmit_more()); 714 715 return 0; 716 717 err_trans_free: 718 gsi_trans_free(trans); 719 720 return -ENOMEM; 721 } 722 723 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 724 { 725 u32 endpoint_id = endpoint->endpoint_id; 726 struct ipa *ipa = endpoint->ipa; 727 u32 val = 0; 728 u32 offset; 729 730 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 731 732 if (endpoint->data->status_enable) { 733 val |= STATUS_EN_FMASK; 734 if (endpoint->toward_ipa) { 735 enum ipa_endpoint_name name; 736 u32 status_endpoint_id; 737 738 name = endpoint->data->tx.status_endpoint; 739 status_endpoint_id = ipa->name_map[name]->endpoint_id; 740 741 val |= u32_encode_bits(status_endpoint_id, 742 STATUS_ENDP_FMASK); 743 } 744 /* STATUS_LOCATION is 0 (status element precedes packet) */ 745 /* The next field is present for IPA v4.0 and above */ 746 /* STATUS_PKT_SUPPRESS_FMASK is 0 */ 747 } 748 749 iowrite32(val, ipa->reg_virt + offset); 750 } 751 752 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint) 753 { 754 struct gsi_trans *trans; 755 bool doorbell = false; 756 struct page *page; 757 u32 offset; 758 u32 len; 759 int ret; 760 761 page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE)); 762 if (!page) 763 return -ENOMEM; 764 765 trans = ipa_endpoint_trans_alloc(endpoint, 1); 766 if (!trans) 767 goto err_free_pages; 768 769 /* Offset the buffer to make space for skb headroom */ 770 offset = NET_SKB_PAD; 771 len = IPA_RX_BUFFER_SIZE - offset; 772 773 ret = gsi_trans_page_add(trans, page, len, offset); 774 if (ret) 775 goto err_trans_free; 776 trans->data = page; /* transaction owns page now */ 777 778 if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) { 779 doorbell = true; 780 endpoint->replenish_ready = 0; 781 } 782 783 gsi_trans_commit(trans, doorbell); 784 785 return 0; 786 787 err_trans_free: 788 gsi_trans_free(trans); 789 err_free_pages: 790 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 791 792 return -ENOMEM; 793 } 794 795 /** 796 * ipa_endpoint_replenish() - Replenish the Rx packets cache. 797 * 798 * Allocate RX packet wrapper structures with maximal socket buffers 799 * for an endpoint. These are supplied to the hardware, which fills 800 * them with incoming data. 801 */ 802 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count) 803 { 804 struct gsi *gsi; 805 u32 backlog; 806 807 if (!endpoint->replenish_enabled) { 808 if (count) 809 atomic_add(count, &endpoint->replenish_saved); 810 return; 811 } 812 813 814 while (atomic_dec_not_zero(&endpoint->replenish_backlog)) 815 if (ipa_endpoint_replenish_one(endpoint)) 816 goto try_again_later; 817 if (count) 818 atomic_add(count, &endpoint->replenish_backlog); 819 820 return; 821 822 try_again_later: 823 /* The last one didn't succeed, so fix the backlog */ 824 backlog = atomic_inc_return(&endpoint->replenish_backlog); 825 826 if (count) 827 atomic_add(count, &endpoint->replenish_backlog); 828 829 /* Whenever a receive buffer transaction completes we'll try to 830 * replenish again. It's unlikely, but if we fail to supply even 831 * one buffer, nothing will trigger another replenish attempt. 832 * Receive buffer transactions use one TRE, so schedule work to 833 * try replenishing again if our backlog is *all* available TREs. 834 */ 835 gsi = &endpoint->ipa->gsi; 836 if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id)) 837 schedule_delayed_work(&endpoint->replenish_work, 838 msecs_to_jiffies(1)); 839 } 840 841 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 842 { 843 struct gsi *gsi = &endpoint->ipa->gsi; 844 u32 max_backlog; 845 u32 saved; 846 847 endpoint->replenish_enabled = true; 848 while ((saved = atomic_xchg(&endpoint->replenish_saved, 0))) 849 atomic_add(saved, &endpoint->replenish_backlog); 850 851 /* Start replenishing if hardware currently has no buffers */ 852 max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id); 853 if (atomic_read(&endpoint->replenish_backlog) == max_backlog) 854 ipa_endpoint_replenish(endpoint, 0); 855 } 856 857 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 858 { 859 u32 backlog; 860 861 endpoint->replenish_enabled = false; 862 while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0))) 863 atomic_add(backlog, &endpoint->replenish_saved); 864 } 865 866 static void ipa_endpoint_replenish_work(struct work_struct *work) 867 { 868 struct delayed_work *dwork = to_delayed_work(work); 869 struct ipa_endpoint *endpoint; 870 871 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 872 873 ipa_endpoint_replenish(endpoint, 0); 874 } 875 876 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 877 void *data, u32 len, u32 extra) 878 { 879 struct sk_buff *skb; 880 881 skb = __dev_alloc_skb(len, GFP_ATOMIC); 882 if (skb) { 883 skb_put(skb, len); 884 memcpy(skb->data, data, len); 885 skb->truesize += extra; 886 } 887 888 /* Now receive it, or drop it if there's no netdev */ 889 if (endpoint->netdev) 890 ipa_modem_skb_rx(endpoint->netdev, skb); 891 else if (skb) 892 dev_kfree_skb_any(skb); 893 } 894 895 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 896 struct page *page, u32 len) 897 { 898 struct sk_buff *skb; 899 900 /* Nothing to do if there's no netdev */ 901 if (!endpoint->netdev) 902 return false; 903 904 /* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */ 905 skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE); 906 if (skb) { 907 /* Reserve the headroom and account for the data */ 908 skb_reserve(skb, NET_SKB_PAD); 909 skb_put(skb, len); 910 } 911 912 /* Receive the buffer (or record drop if unable to build it) */ 913 ipa_modem_skb_rx(endpoint->netdev, skb); 914 915 return skb != NULL; 916 } 917 918 /* The format of a packet status element is the same for several status 919 * types (opcodes). The NEW_FRAG_RULE, LOG, DCMP (decompression) types 920 * aren't currently supported 921 */ 922 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 923 { 924 switch (opcode) { 925 case IPA_STATUS_OPCODE_PACKET: 926 case IPA_STATUS_OPCODE_DROPPED_PACKET: 927 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 928 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 929 return true; 930 default: 931 return false; 932 } 933 } 934 935 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, 936 const struct ipa_status *status) 937 { 938 u32 endpoint_id; 939 940 if (!ipa_status_format_packet(status->opcode)) 941 return true; 942 if (!status->pkt_len) 943 return true; 944 endpoint_id = u32_get_bits(status->endp_dst_idx, 945 IPA_STATUS_DST_IDX_FMASK); 946 if (endpoint_id != endpoint->endpoint_id) 947 return true; 948 949 return false; /* Don't skip this packet, process it */ 950 } 951 952 /* Return whether the status indicates the packet should be dropped */ 953 static bool ipa_status_drop_packet(const struct ipa_status *status) 954 { 955 u32 val; 956 957 /* Deaggregation exceptions we drop; others we consume */ 958 if (status->exception) 959 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; 960 961 /* Drop the packet if it fails to match a routing rule; otherwise no */ 962 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 963 964 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 965 } 966 967 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 968 struct page *page, u32 total_len) 969 { 970 void *data = page_address(page) + NET_SKB_PAD; 971 u32 unused = IPA_RX_BUFFER_SIZE - total_len; 972 u32 resid = total_len; 973 974 while (resid) { 975 const struct ipa_status *status = data; 976 u32 align; 977 u32 len; 978 979 if (resid < sizeof(*status)) { 980 dev_err(&endpoint->ipa->pdev->dev, 981 "short message (%u bytes < %zu byte status)\n", 982 resid, sizeof(*status)); 983 break; 984 } 985 986 /* Skip over status packets that lack packet data */ 987 if (ipa_endpoint_status_skip(endpoint, status)) { 988 data += sizeof(*status); 989 resid -= sizeof(*status); 990 continue; 991 } 992 993 /* Compute the amount of buffer space consumed by the 994 * packet, including the status element. If the hardware 995 * is configured to pad packet data to an aligned boundary, 996 * account for that. And if checksum offload is is enabled 997 * a trailer containing computed checksum information will 998 * be appended. 999 */ 1000 align = endpoint->data->rx.pad_align ? : 1; 1001 len = le16_to_cpu(status->pkt_len); 1002 len = sizeof(*status) + ALIGN(len, align); 1003 if (endpoint->data->checksum) 1004 len += sizeof(struct rmnet_map_dl_csum_trailer); 1005 1006 /* Charge the new packet with a proportional fraction of 1007 * the unused space in the original receive buffer. 1008 * XXX Charge a proportion of the *whole* receive buffer? 1009 */ 1010 if (!ipa_status_drop_packet(status)) { 1011 u32 extra = unused * len / total_len; 1012 void *data2 = data + sizeof(*status); 1013 u32 len2 = le16_to_cpu(status->pkt_len); 1014 1015 /* Client receives only packet data (no status) */ 1016 ipa_endpoint_skb_copy(endpoint, data2, len2, extra); 1017 } 1018 1019 /* Consume status and the full packet it describes */ 1020 data += len; 1021 resid -= len; 1022 } 1023 } 1024 1025 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ 1026 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, 1027 struct gsi_trans *trans) 1028 { 1029 } 1030 1031 /* Complete transaction initiated in ipa_endpoint_replenish_one() */ 1032 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, 1033 struct gsi_trans *trans) 1034 { 1035 struct page *page; 1036 1037 ipa_endpoint_replenish(endpoint, 1); 1038 1039 if (trans->cancelled) 1040 return; 1041 1042 /* Parse or build a socket buffer using the actual received length */ 1043 page = trans->data; 1044 if (endpoint->data->status_enable) 1045 ipa_endpoint_status_parse(endpoint, page, trans->len); 1046 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1047 trans->data = NULL; /* Pages have been consumed */ 1048 } 1049 1050 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1051 struct gsi_trans *trans) 1052 { 1053 if (endpoint->toward_ipa) 1054 ipa_endpoint_tx_complete(endpoint, trans); 1055 else 1056 ipa_endpoint_rx_complete(endpoint, trans); 1057 } 1058 1059 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1060 struct gsi_trans *trans) 1061 { 1062 if (endpoint->toward_ipa) { 1063 struct ipa *ipa = endpoint->ipa; 1064 1065 /* Nothing to do for command transactions */ 1066 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1067 struct sk_buff *skb = trans->data; 1068 1069 if (skb) 1070 dev_kfree_skb_any(skb); 1071 } 1072 } else { 1073 struct page *page = trans->data; 1074 1075 if (page) 1076 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 1077 } 1078 } 1079 1080 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1081 { 1082 u32 val; 1083 1084 /* ROUTE_DIS is 0 */ 1085 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); 1086 val |= ROUTE_DEF_HDR_TABLE_FMASK; 1087 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); 1088 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); 1089 val |= ROUTE_DEF_RETAIN_HDR_FMASK; 1090 1091 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); 1092 } 1093 1094 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1095 { 1096 ipa_endpoint_default_route_set(ipa, 0); 1097 } 1098 1099 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 1100 { 1101 u32 mask = BIT(endpoint->endpoint_id); 1102 struct ipa *ipa = endpoint->ipa; 1103 u32 offset; 1104 u32 val; 1105 1106 /* assert(mask & ipa->available); */ 1107 offset = ipa_reg_state_aggr_active_offset(ipa->version); 1108 val = ioread32(ipa->reg_virt + offset); 1109 1110 return !!(val & mask); 1111 } 1112 1113 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 1114 { 1115 u32 mask = BIT(endpoint->endpoint_id); 1116 struct ipa *ipa = endpoint->ipa; 1117 1118 /* assert(mask & ipa->available); */ 1119 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); 1120 } 1121 1122 /** 1123 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1124 * @endpoint: Endpoint to be reset 1125 * 1126 * If aggregation is active on an RX endpoint when a reset is performed 1127 * on its underlying GSI channel, a special sequence of actions must be 1128 * taken to ensure the IPA pipeline is properly cleared. 1129 * 1130 * @Return: 0 if successful, or a negative error code 1131 */ 1132 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1133 { 1134 struct device *dev = &endpoint->ipa->pdev->dev; 1135 struct ipa *ipa = endpoint->ipa; 1136 bool endpoint_suspended = false; 1137 struct gsi *gsi = &ipa->gsi; 1138 dma_addr_t addr; 1139 bool db_enable; 1140 u32 retries; 1141 u32 len = 1; 1142 void *virt; 1143 int ret; 1144 1145 virt = kzalloc(len, GFP_KERNEL); 1146 if (!virt) 1147 return -ENOMEM; 1148 1149 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1150 if (dma_mapping_error(dev, addr)) { 1151 ret = -ENOMEM; 1152 goto out_kfree; 1153 } 1154 1155 /* Force close aggregation before issuing the reset */ 1156 ipa_endpoint_force_close(endpoint); 1157 1158 /* Reset and reconfigure the channel with the doorbell engine 1159 * disabled. Then poll until we know aggregation is no longer 1160 * active. We'll re-enable the doorbell (if appropriate) when 1161 * we reset again below. 1162 */ 1163 gsi_channel_reset(gsi, endpoint->channel_id, false); 1164 1165 /* Make sure the channel isn't suspended */ 1166 if (endpoint->ipa->version == IPA_VERSION_3_5_1) 1167 if (!ipa_endpoint_init_ctrl(endpoint, false)) 1168 endpoint_suspended = true; 1169 1170 /* Start channel and do a 1 byte read */ 1171 ret = gsi_channel_start(gsi, endpoint->channel_id); 1172 if (ret) 1173 goto out_suspend_again; 1174 1175 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1176 if (ret) 1177 goto err_endpoint_stop; 1178 1179 /* Wait for aggregation to be closed on the channel */ 1180 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1181 do { 1182 if (!ipa_endpoint_aggr_active(endpoint)) 1183 break; 1184 msleep(1); 1185 } while (retries--); 1186 1187 /* Check one last time */ 1188 if (ipa_endpoint_aggr_active(endpoint)) 1189 dev_err(dev, "endpoint %u still active during reset\n", 1190 endpoint->endpoint_id); 1191 1192 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1193 1194 ret = ipa_endpoint_stop(endpoint); 1195 if (ret) 1196 goto out_suspend_again; 1197 1198 /* Finally, reset and reconfigure the channel again (re-enabling the 1199 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1200 * complete the channel reset sequence. Finish by suspending the 1201 * channel again (if necessary). 1202 */ 1203 db_enable = ipa->version == IPA_VERSION_3_5_1; 1204 gsi_channel_reset(gsi, endpoint->channel_id, db_enable); 1205 1206 msleep(1); 1207 1208 goto out_suspend_again; 1209 1210 err_endpoint_stop: 1211 ipa_endpoint_stop(endpoint); 1212 out_suspend_again: 1213 if (endpoint_suspended) 1214 (void)ipa_endpoint_init_ctrl(endpoint, true); 1215 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1216 out_kfree: 1217 kfree(virt); 1218 1219 return ret; 1220 } 1221 1222 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1223 { 1224 u32 channel_id = endpoint->channel_id; 1225 struct ipa *ipa = endpoint->ipa; 1226 bool db_enable; 1227 bool special; 1228 int ret = 0; 1229 1230 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1231 * is active, we need to handle things specially to recover. 1232 * All other cases just need to reset the underlying GSI channel. 1233 * 1234 * IPA v3.5.1 enables the doorbell engine. Newer versions do not. 1235 */ 1236 db_enable = ipa->version == IPA_VERSION_3_5_1; 1237 special = !endpoint->toward_ipa && endpoint->data->aggregation; 1238 if (special && ipa_endpoint_aggr_active(endpoint)) 1239 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1240 else 1241 gsi_channel_reset(&ipa->gsi, channel_id, db_enable); 1242 1243 if (ret) 1244 dev_err(&ipa->pdev->dev, 1245 "error %d resetting channel %u for endpoint %u\n", 1246 ret, endpoint->channel_id, endpoint->endpoint_id); 1247 } 1248 1249 static int ipa_endpoint_stop_rx_dma(struct ipa *ipa) 1250 { 1251 u16 size = IPA_ENDPOINT_STOP_RX_SIZE; 1252 struct gsi_trans *trans; 1253 dma_addr_t addr; 1254 int ret; 1255 1256 trans = ipa_cmd_trans_alloc(ipa, 1); 1257 if (!trans) { 1258 dev_err(&ipa->pdev->dev, 1259 "no transaction for RX endpoint STOP workaround\n"); 1260 return -EBUSY; 1261 } 1262 1263 /* Read into the highest part of the zero memory area */ 1264 addr = ipa->zero_addr + ipa->zero_size - size; 1265 1266 ipa_cmd_dma_task_32b_addr_add(trans, size, addr, false); 1267 1268 ret = gsi_trans_commit_wait_timeout(trans, ENDPOINT_STOP_DMA_TIMEOUT); 1269 if (ret) 1270 gsi_trans_free(trans); 1271 1272 return ret; 1273 } 1274 1275 /** 1276 * ipa_endpoint_stop() - Stops a GSI channel in IPA 1277 * @client: Client whose endpoint should be stopped 1278 * 1279 * This function implements the sequence to stop a GSI channel 1280 * in IPA. This function returns when the channel is is STOP state. 1281 * 1282 * Return value: 0 on success, negative otherwise 1283 */ 1284 int ipa_endpoint_stop(struct ipa_endpoint *endpoint) 1285 { 1286 u32 retries = endpoint->toward_ipa ? 0 : IPA_ENDPOINT_STOP_RX_RETRIES; 1287 int ret; 1288 1289 do { 1290 struct ipa *ipa = endpoint->ipa; 1291 struct gsi *gsi = &ipa->gsi; 1292 1293 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1294 if (ret != -EAGAIN) 1295 break; 1296 1297 if (endpoint->toward_ipa) 1298 continue; 1299 1300 /* For IPA v3.5.1, send a DMA read task and check again */ 1301 if (ipa->version == IPA_VERSION_3_5_1) { 1302 ret = ipa_endpoint_stop_rx_dma(ipa); 1303 if (ret) 1304 break; 1305 } 1306 1307 msleep(1); 1308 } while (retries--); 1309 1310 return retries ? ret : -EIO; 1311 } 1312 1313 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1314 { 1315 struct device *dev = &endpoint->ipa->pdev->dev; 1316 int ret; 1317 1318 if (endpoint->toward_ipa) { 1319 bool delay_mode = endpoint->data->tx.delay; 1320 1321 ret = ipa_endpoint_init_ctrl(endpoint, delay_mode); 1322 /* Endpoint is expected to not be in delay mode */ 1323 if (!ret != delay_mode) { 1324 dev_warn(dev, 1325 "TX endpoint %u was %sin delay mode\n", 1326 endpoint->endpoint_id, 1327 delay_mode ? "already " : ""); 1328 } 1329 ipa_endpoint_init_hdr_ext(endpoint); 1330 ipa_endpoint_init_aggr(endpoint); 1331 ipa_endpoint_init_deaggr(endpoint); 1332 ipa_endpoint_init_seq(endpoint); 1333 } else { 1334 if (endpoint->ipa->version == IPA_VERSION_3_5_1) { 1335 if (!ipa_endpoint_init_ctrl(endpoint, false)) 1336 dev_warn(dev, 1337 "RX endpoint %u was suspended\n", 1338 endpoint->endpoint_id); 1339 } 1340 ipa_endpoint_init_hdr_ext(endpoint); 1341 ipa_endpoint_init_aggr(endpoint); 1342 } 1343 ipa_endpoint_init_cfg(endpoint); 1344 ipa_endpoint_init_hdr(endpoint); 1345 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1346 ipa_endpoint_init_mode(endpoint); 1347 ipa_endpoint_status(endpoint); 1348 } 1349 1350 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1351 { 1352 struct ipa *ipa = endpoint->ipa; 1353 struct gsi *gsi = &ipa->gsi; 1354 int ret; 1355 1356 ret = gsi_channel_start(gsi, endpoint->channel_id); 1357 if (ret) { 1358 dev_err(&ipa->pdev->dev, 1359 "error %d starting %cX channel %u for endpoint %u\n", 1360 ret, endpoint->toward_ipa ? 'T' : 'R', 1361 endpoint->channel_id, endpoint->endpoint_id); 1362 return ret; 1363 } 1364 1365 if (!endpoint->toward_ipa) { 1366 ipa_interrupt_suspend_enable(ipa->interrupt, 1367 endpoint->endpoint_id); 1368 ipa_endpoint_replenish_enable(endpoint); 1369 } 1370 1371 ipa->enabled |= BIT(endpoint->endpoint_id); 1372 1373 return 0; 1374 } 1375 1376 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1377 { 1378 u32 mask = BIT(endpoint->endpoint_id); 1379 struct ipa *ipa = endpoint->ipa; 1380 int ret; 1381 1382 if (!(endpoint->ipa->enabled & mask)) 1383 return; 1384 1385 endpoint->ipa->enabled ^= mask; 1386 1387 if (!endpoint->toward_ipa) { 1388 ipa_endpoint_replenish_disable(endpoint); 1389 ipa_interrupt_suspend_disable(ipa->interrupt, 1390 endpoint->endpoint_id); 1391 } 1392 1393 /* Note that if stop fails, the channel's state is not well-defined */ 1394 ret = ipa_endpoint_stop(endpoint); 1395 if (ret) 1396 dev_err(&ipa->pdev->dev, 1397 "error %d attempting to stop endpoint %u\n", ret, 1398 endpoint->endpoint_id); 1399 } 1400 1401 /** 1402 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 1403 * @endpoint_id: Endpoint on which to emulate a suspend 1404 * 1405 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 1406 * with an open aggregation frame. This is to work around a hardware 1407 * issue in IPA version 3.5.1 where the suspend interrupt will not be 1408 * generated when it should be. 1409 */ 1410 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 1411 { 1412 struct ipa *ipa = endpoint->ipa; 1413 1414 /* assert(ipa->version == IPA_VERSION_3_5_1); */ 1415 1416 if (!endpoint->data->aggregation) 1417 return; 1418 1419 /* Nothing to do if the endpoint doesn't have aggregation open */ 1420 if (!ipa_endpoint_aggr_active(endpoint)) 1421 return; 1422 1423 /* Force close aggregation */ 1424 ipa_endpoint_force_close(endpoint); 1425 1426 ipa_interrupt_simulate_suspend(ipa->interrupt); 1427 } 1428 1429 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1430 { 1431 struct device *dev = &endpoint->ipa->pdev->dev; 1432 struct gsi *gsi = &endpoint->ipa->gsi; 1433 bool stop_channel; 1434 int ret; 1435 1436 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1437 return; 1438 1439 if (!endpoint->toward_ipa) 1440 ipa_endpoint_replenish_disable(endpoint); 1441 1442 /* IPA v3.5.1 doesn't use channel stop for suspend */ 1443 stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1; 1444 if (!endpoint->toward_ipa && !stop_channel) { 1445 /* Due to a hardware bug, a client suspended with an open 1446 * aggregation frame will not generate a SUSPEND IPA 1447 * interrupt. We work around this by force-closing the 1448 * aggregation frame, then simulating the arrival of such 1449 * an interrupt. 1450 */ 1451 WARN_ON(ipa_endpoint_init_ctrl(endpoint, true)); 1452 ipa_endpoint_suspend_aggr(endpoint); 1453 } 1454 1455 ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel); 1456 if (ret) 1457 dev_err(dev, "error %d suspending channel %u\n", ret, 1458 endpoint->channel_id); 1459 } 1460 1461 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1462 { 1463 struct device *dev = &endpoint->ipa->pdev->dev; 1464 struct gsi *gsi = &endpoint->ipa->gsi; 1465 bool start_channel; 1466 int ret; 1467 1468 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1469 return; 1470 1471 /* IPA v3.5.1 doesn't use channel start for resume */ 1472 start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1; 1473 if (!endpoint->toward_ipa && !start_channel) 1474 WARN_ON(ipa_endpoint_init_ctrl(endpoint, false)); 1475 1476 ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel); 1477 if (ret) 1478 dev_err(dev, "error %d resuming channel %u\n", ret, 1479 endpoint->channel_id); 1480 else if (!endpoint->toward_ipa) 1481 ipa_endpoint_replenish_enable(endpoint); 1482 } 1483 1484 void ipa_endpoint_suspend(struct ipa *ipa) 1485 { 1486 if (ipa->modem_netdev) 1487 ipa_modem_suspend(ipa->modem_netdev); 1488 1489 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1490 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1491 } 1492 1493 void ipa_endpoint_resume(struct ipa *ipa) 1494 { 1495 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1496 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1497 1498 if (ipa->modem_netdev) 1499 ipa_modem_resume(ipa->modem_netdev); 1500 } 1501 1502 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1503 { 1504 struct gsi *gsi = &endpoint->ipa->gsi; 1505 u32 channel_id = endpoint->channel_id; 1506 1507 /* Only AP endpoints get set up */ 1508 if (endpoint->ee_id != GSI_EE_AP) 1509 return; 1510 1511 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); 1512 if (!endpoint->toward_ipa) { 1513 /* RX transactions require a single TRE, so the maximum 1514 * backlog is the same as the maximum outstanding TREs. 1515 */ 1516 endpoint->replenish_enabled = false; 1517 atomic_set(&endpoint->replenish_saved, 1518 gsi_channel_tre_max(gsi, endpoint->channel_id)); 1519 atomic_set(&endpoint->replenish_backlog, 0); 1520 INIT_DELAYED_WORK(&endpoint->replenish_work, 1521 ipa_endpoint_replenish_work); 1522 } 1523 1524 ipa_endpoint_program(endpoint); 1525 1526 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); 1527 } 1528 1529 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1530 { 1531 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); 1532 1533 if (!endpoint->toward_ipa) 1534 cancel_delayed_work_sync(&endpoint->replenish_work); 1535 1536 ipa_endpoint_reset(endpoint); 1537 } 1538 1539 void ipa_endpoint_setup(struct ipa *ipa) 1540 { 1541 u32 initialized = ipa->initialized; 1542 1543 ipa->set_up = 0; 1544 while (initialized) { 1545 u32 endpoint_id = __ffs(initialized); 1546 1547 initialized ^= BIT(endpoint_id); 1548 1549 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1550 } 1551 } 1552 1553 void ipa_endpoint_teardown(struct ipa *ipa) 1554 { 1555 u32 set_up = ipa->set_up; 1556 1557 while (set_up) { 1558 u32 endpoint_id = __fls(set_up); 1559 1560 set_up ^= BIT(endpoint_id); 1561 1562 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1563 } 1564 ipa->set_up = 0; 1565 } 1566 1567 int ipa_endpoint_config(struct ipa *ipa) 1568 { 1569 struct device *dev = &ipa->pdev->dev; 1570 u32 initialized; 1571 u32 rx_base; 1572 u32 rx_mask; 1573 u32 tx_mask; 1574 int ret = 0; 1575 u32 max; 1576 u32 val; 1577 1578 /* Find out about the endpoints supplied by the hardware, and ensure 1579 * the highest one doesn't exceed the number we support. 1580 */ 1581 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); 1582 1583 /* Our RX is an IPA producer */ 1584 rx_base = u32_get_bits(val, BAM_PROD_LOWEST_FMASK); 1585 max = rx_base + u32_get_bits(val, BAM_MAX_PROD_PIPES_FMASK); 1586 if (max > IPA_ENDPOINT_MAX) { 1587 dev_err(dev, "too many endpoints (%u > %u)\n", 1588 max, IPA_ENDPOINT_MAX); 1589 return -EINVAL; 1590 } 1591 rx_mask = GENMASK(max - 1, rx_base); 1592 1593 /* Our TX is an IPA consumer */ 1594 max = u32_get_bits(val, BAM_MAX_CONS_PIPES_FMASK); 1595 tx_mask = GENMASK(max - 1, 0); 1596 1597 ipa->available = rx_mask | tx_mask; 1598 1599 /* Check for initialized endpoints not supported by the hardware */ 1600 if (ipa->initialized & ~ipa->available) { 1601 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", 1602 ipa->initialized & ~ipa->available); 1603 ret = -EINVAL; /* Report other errors too */ 1604 } 1605 1606 initialized = ipa->initialized; 1607 while (initialized) { 1608 u32 endpoint_id = __ffs(initialized); 1609 struct ipa_endpoint *endpoint; 1610 1611 initialized ^= BIT(endpoint_id); 1612 1613 /* Make sure it's pointing in the right direction */ 1614 endpoint = &ipa->endpoint[endpoint_id]; 1615 if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) { 1616 dev_err(dev, "endpoint id %u wrong direction\n", 1617 endpoint_id); 1618 ret = -EINVAL; 1619 } 1620 } 1621 1622 return ret; 1623 } 1624 1625 void ipa_endpoint_deconfig(struct ipa *ipa) 1626 { 1627 ipa->available = 0; /* Nothing more to do */ 1628 } 1629 1630 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 1631 const struct ipa_gsi_endpoint_data *data) 1632 { 1633 struct ipa_endpoint *endpoint; 1634 1635 endpoint = &ipa->endpoint[data->endpoint_id]; 1636 1637 if (data->ee_id == GSI_EE_AP) 1638 ipa->channel_map[data->channel_id] = endpoint; 1639 ipa->name_map[name] = endpoint; 1640 1641 endpoint->ipa = ipa; 1642 endpoint->ee_id = data->ee_id; 1643 endpoint->seq_type = data->endpoint.seq_type; 1644 endpoint->channel_id = data->channel_id; 1645 endpoint->endpoint_id = data->endpoint_id; 1646 endpoint->toward_ipa = data->toward_ipa; 1647 endpoint->data = &data->endpoint.config; 1648 1649 ipa->initialized |= BIT(endpoint->endpoint_id); 1650 } 1651 1652 void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 1653 { 1654 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); 1655 1656 memset(endpoint, 0, sizeof(*endpoint)); 1657 } 1658 1659 void ipa_endpoint_exit(struct ipa *ipa) 1660 { 1661 u32 initialized = ipa->initialized; 1662 1663 while (initialized) { 1664 u32 endpoint_id = __fls(initialized); 1665 1666 initialized ^= BIT(endpoint_id); 1667 1668 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 1669 } 1670 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 1671 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 1672 } 1673 1674 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 1675 u32 ipa_endpoint_init(struct ipa *ipa, u32 count, 1676 const struct ipa_gsi_endpoint_data *data) 1677 { 1678 enum ipa_endpoint_name name; 1679 u32 filter_map; 1680 1681 if (!ipa_endpoint_data_valid(ipa, count, data)) 1682 return 0; /* Error */ 1683 1684 ipa->initialized = 0; 1685 1686 filter_map = 0; 1687 for (name = 0; name < count; name++, data++) { 1688 if (ipa_gsi_endpoint_data_empty(data)) 1689 continue; /* Skip over empty slots */ 1690 1691 ipa_endpoint_init_one(ipa, name, data); 1692 1693 if (data->endpoint.filter_support) 1694 filter_map |= BIT(data->endpoint_id); 1695 } 1696 1697 if (!ipa_filter_map_valid(ipa, filter_map)) 1698 goto err_endpoint_exit; 1699 1700 return filter_map; /* Non-zero bitmask */ 1701 1702 err_endpoint_exit: 1703 ipa_endpoint_exit(ipa); 1704 1705 return 0; /* Error */ 1706 } 1707