1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/device.h> 9 #include <linux/slab.h> 10 #include <linux/bitfield.h> 11 #include <linux/if_rmnet.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_trans.h" 16 #include "ipa.h" 17 #include "ipa_data.h" 18 #include "ipa_endpoint.h" 19 #include "ipa_cmd.h" 20 #include "ipa_mem.h" 21 #include "ipa_modem.h" 22 #include "ipa_table.h" 23 #include "ipa_gsi.h" 24 #include "ipa_clock.h" 25 26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) 27 28 #define IPA_REPLENISH_BATCH 16 29 30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */ 31 #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */ 32 33 /* The amount of RX buffer space consumed by standard skb overhead */ 34 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) 35 36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ 37 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ 38 39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 40 #define IPA_AGGR_TIME_LIMIT 500 /* microseconds */ 41 42 /** enum ipa_status_opcode - status element opcode hardware values */ 43 enum ipa_status_opcode { 44 IPA_STATUS_OPCODE_PACKET = 0x01, 45 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, 46 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, 47 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, 48 }; 49 50 /** enum ipa_status_exception - status element exception type */ 51 enum ipa_status_exception { 52 /* 0 means no exception */ 53 IPA_STATUS_EXCEPTION_DEAGGR = 0x01, 54 }; 55 56 /* Status element provided by hardware */ 57 struct ipa_status { 58 u8 opcode; /* enum ipa_status_opcode */ 59 u8 exception; /* enum ipa_status_exception */ 60 __le16 mask; 61 __le16 pkt_len; 62 u8 endp_src_idx; 63 u8 endp_dst_idx; 64 __le32 metadata; 65 __le32 flags1; 66 __le64 flags2; 67 __le32 flags3; 68 __le32 flags4; 69 }; 70 71 /* Field masks for struct ipa_status structure fields */ 72 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) 73 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) 74 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) 75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) 76 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) 77 78 #ifdef IPA_VALIDATE 79 80 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, 81 const struct ipa_gsi_endpoint_data *all_data, 82 const struct ipa_gsi_endpoint_data *data) 83 { 84 const struct ipa_gsi_endpoint_data *other_data; 85 struct device *dev = &ipa->pdev->dev; 86 enum ipa_endpoint_name other_name; 87 88 if (ipa_gsi_endpoint_data_empty(data)) 89 return true; 90 91 if (!data->toward_ipa) { 92 if (data->endpoint.filter_support) { 93 dev_err(dev, "filtering not supported for " 94 "RX endpoint %u\n", 95 data->endpoint_id); 96 return false; 97 } 98 99 return true; /* Nothing more to check for RX */ 100 } 101 102 if (data->endpoint.config.status_enable) { 103 other_name = data->endpoint.config.tx.status_endpoint; 104 if (other_name >= count) { 105 dev_err(dev, "status endpoint name %u out of range " 106 "for endpoint %u\n", 107 other_name, data->endpoint_id); 108 return false; 109 } 110 111 /* Status endpoint must be defined... */ 112 other_data = &all_data[other_name]; 113 if (ipa_gsi_endpoint_data_empty(other_data)) { 114 dev_err(dev, "DMA endpoint name %u undefined " 115 "for endpoint %u\n", 116 other_name, data->endpoint_id); 117 return false; 118 } 119 120 /* ...and has to be an RX endpoint... */ 121 if (other_data->toward_ipa) { 122 dev_err(dev, 123 "status endpoint for endpoint %u not RX\n", 124 data->endpoint_id); 125 return false; 126 } 127 128 /* ...and if it's to be an AP endpoint... */ 129 if (other_data->ee_id == GSI_EE_AP) { 130 /* ...make sure it has status enabled. */ 131 if (!other_data->endpoint.config.status_enable) { 132 dev_err(dev, 133 "status not enabled for endpoint %u\n", 134 other_data->endpoint_id); 135 return false; 136 } 137 } 138 } 139 140 if (data->endpoint.config.dma_mode) { 141 other_name = data->endpoint.config.dma_endpoint; 142 if (other_name >= count) { 143 dev_err(dev, "DMA endpoint name %u out of range " 144 "for endpoint %u\n", 145 other_name, data->endpoint_id); 146 return false; 147 } 148 149 other_data = &all_data[other_name]; 150 if (ipa_gsi_endpoint_data_empty(other_data)) { 151 dev_err(dev, "DMA endpoint name %u undefined " 152 "for endpoint %u\n", 153 other_name, data->endpoint_id); 154 return false; 155 } 156 } 157 158 return true; 159 } 160 161 static u32 aggr_byte_limit_max(enum ipa_version version) 162 { 163 if (version < IPA_VERSION_4_5) 164 return field_max(aggr_byte_limit_fmask(true)); 165 166 return field_max(aggr_byte_limit_fmask(false)); 167 } 168 169 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 170 const struct ipa_gsi_endpoint_data *data) 171 { 172 const struct ipa_gsi_endpoint_data *dp = data; 173 struct device *dev = &ipa->pdev->dev; 174 enum ipa_endpoint_name name; 175 u32 limit; 176 177 if (count > IPA_ENDPOINT_COUNT) { 178 dev_err(dev, "too many endpoints specified (%u > %u)\n", 179 count, IPA_ENDPOINT_COUNT); 180 return false; 181 } 182 183 /* The aggregation byte limit defines the point at which an 184 * aggregation window will close. It is programmed into the 185 * IPA hardware as a number of KB. We don't use "hard byte 186 * limit" aggregation, which means that we need to supply 187 * enough space in a receive buffer to hold a complete MTU 188 * plus normal skb overhead *after* that aggregation byte 189 * limit has been crossed. 190 * 191 * This check ensures we don't define a receive buffer size 192 * that would exceed what we can represent in the field that 193 * is used to program its size. 194 */ 195 limit = aggr_byte_limit_max(ipa->version) * SZ_1K; 196 limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 197 if (limit < IPA_RX_BUFFER_SIZE) { 198 dev_err(dev, "buffer size too big for aggregation (%u > %u)\n", 199 IPA_RX_BUFFER_SIZE, limit); 200 return false; 201 } 202 203 /* Make sure needed endpoints have defined data */ 204 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { 205 dev_err(dev, "command TX endpoint not defined\n"); 206 return false; 207 } 208 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { 209 dev_err(dev, "LAN RX endpoint not defined\n"); 210 return false; 211 } 212 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { 213 dev_err(dev, "AP->modem TX endpoint not defined\n"); 214 return false; 215 } 216 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { 217 dev_err(dev, "AP<-modem RX endpoint not defined\n"); 218 return false; 219 } 220 221 for (name = 0; name < count; name++, dp++) 222 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) 223 return false; 224 225 return true; 226 } 227 228 #else /* !IPA_VALIDATE */ 229 230 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, 231 const struct ipa_gsi_endpoint_data *data) 232 { 233 return true; 234 } 235 236 #endif /* !IPA_VALIDATE */ 237 238 /* Allocate a transaction to use on a non-command endpoint */ 239 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, 240 u32 tre_count) 241 { 242 struct gsi *gsi = &endpoint->ipa->gsi; 243 u32 channel_id = endpoint->channel_id; 244 enum dma_data_direction direction; 245 246 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 247 248 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); 249 } 250 251 /* suspend_delay represents suspend for RX, delay for TX endpoints. 252 * Note that suspend is not supported starting with IPA v4.0. 253 */ 254 static bool 255 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) 256 { 257 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); 258 struct ipa *ipa = endpoint->ipa; 259 bool state; 260 u32 mask; 261 u32 val; 262 263 /* Suspend is not supported for IPA v4.0+. Delay doesn't work 264 * correctly on IPA v4.2. 265 * 266 * if (endpoint->toward_ipa) 267 * assert(ipa->version != IPA_VERSION_4.2); 268 * else 269 * assert(ipa->version == IPA_VERSION_3_5_1); 270 */ 271 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; 272 273 val = ioread32(ipa->reg_virt + offset); 274 /* Don't bother if it's already in the requested state */ 275 state = !!(val & mask); 276 if (suspend_delay != state) { 277 val ^= mask; 278 iowrite32(val, ipa->reg_virt + offset); 279 } 280 281 return state; 282 } 283 284 /* We currently don't care what the previous state was for delay mode */ 285 static void 286 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) 287 { 288 /* assert(endpoint->toward_ipa); */ 289 290 /* Delay mode doesn't work properly for IPA v4.2 */ 291 if (endpoint->ipa->version != IPA_VERSION_4_2) 292 (void)ipa_endpoint_init_ctrl(endpoint, enable); 293 } 294 295 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) 296 { 297 u32 mask = BIT(endpoint->endpoint_id); 298 struct ipa *ipa = endpoint->ipa; 299 u32 offset; 300 u32 val; 301 302 /* assert(mask & ipa->available); */ 303 offset = ipa_reg_state_aggr_active_offset(ipa->version); 304 val = ioread32(ipa->reg_virt + offset); 305 306 return !!(val & mask); 307 } 308 309 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) 310 { 311 u32 mask = BIT(endpoint->endpoint_id); 312 struct ipa *ipa = endpoint->ipa; 313 314 /* assert(mask & ipa->available); */ 315 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); 316 } 317 318 /** 319 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt 320 * @endpoint: Endpoint on which to emulate a suspend 321 * 322 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended 323 * with an open aggregation frame. This is to work around a hardware 324 * issue in IPA version 3.5.1 where the suspend interrupt will not be 325 * generated when it should be. 326 */ 327 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) 328 { 329 struct ipa *ipa = endpoint->ipa; 330 331 if (!endpoint->data->aggregation) 332 return; 333 334 /* Nothing to do if the endpoint doesn't have aggregation open */ 335 if (!ipa_endpoint_aggr_active(endpoint)) 336 return; 337 338 /* Force close aggregation */ 339 ipa_endpoint_force_close(endpoint); 340 341 ipa_interrupt_simulate_suspend(ipa->interrupt); 342 } 343 344 /* Returns previous suspend state (true means suspend was enabled) */ 345 static bool 346 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) 347 { 348 bool suspended; 349 350 if (endpoint->ipa->version != IPA_VERSION_3_5_1) 351 return enable; /* For IPA v4.0+, no change made */ 352 353 /* assert(!endpoint->toward_ipa); */ 354 355 suspended = ipa_endpoint_init_ctrl(endpoint, enable); 356 357 /* A client suspended with an open aggregation frame will not 358 * generate a SUSPEND IPA interrupt. If enabling suspend, have 359 * ipa_endpoint_suspend_aggr() handle this. 360 */ 361 if (enable && !suspended) 362 ipa_endpoint_suspend_aggr(endpoint); 363 364 return suspended; 365 } 366 367 /* Enable or disable delay or suspend mode on all modem endpoints */ 368 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) 369 { 370 u32 endpoint_id; 371 372 /* DELAY mode doesn't work correctly on IPA v4.2 */ 373 if (ipa->version == IPA_VERSION_4_2) 374 return; 375 376 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { 377 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; 378 379 if (endpoint->ee_id != GSI_EE_MODEM) 380 continue; 381 382 /* Set TX delay mode or RX suspend mode */ 383 if (endpoint->toward_ipa) 384 ipa_endpoint_program_delay(endpoint, enable); 385 else 386 (void)ipa_endpoint_program_suspend(endpoint, enable); 387 } 388 } 389 390 /* Reset all modem endpoints to use the default exception endpoint */ 391 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) 392 { 393 u32 initialized = ipa->initialized; 394 struct gsi_trans *trans; 395 u32 count; 396 397 /* We need one command per modem TX endpoint. We can get an upper 398 * bound on that by assuming all initialized endpoints are modem->IPA. 399 * That won't happen, and we could be more precise, but this is fine 400 * for now. We need to end the transaction with a "tag process." 401 */ 402 count = hweight32(initialized) + ipa_cmd_pipeline_clear_count(); 403 trans = ipa_cmd_trans_alloc(ipa, count); 404 if (!trans) { 405 dev_err(&ipa->pdev->dev, 406 "no transaction to reset modem exception endpoints\n"); 407 return -EBUSY; 408 } 409 410 while (initialized) { 411 u32 endpoint_id = __ffs(initialized); 412 struct ipa_endpoint *endpoint; 413 u32 offset; 414 415 initialized ^= BIT(endpoint_id); 416 417 /* We only reset modem TX endpoints */ 418 endpoint = &ipa->endpoint[endpoint_id]; 419 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) 420 continue; 421 422 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 423 424 /* Value written is 0, and all bits are updated. That 425 * means status is disabled on the endpoint, and as a 426 * result all other fields in the register are ignored. 427 */ 428 ipa_cmd_register_write_add(trans, offset, 0, ~0, false); 429 } 430 431 ipa_cmd_pipeline_clear_add(trans); 432 433 /* XXX This should have a 1 second timeout */ 434 gsi_trans_commit_wait(trans); 435 436 ipa_cmd_pipeline_clear_wait(ipa); 437 438 return 0; 439 } 440 441 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) 442 { 443 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); 444 u32 val = 0; 445 446 /* FRAG_OFFLOAD_EN is 0 */ 447 if (endpoint->data->checksum) { 448 if (endpoint->toward_ipa) { 449 u32 checksum_offset; 450 451 val |= u32_encode_bits(IPA_CS_OFFLOAD_UL, 452 CS_OFFLOAD_EN_FMASK); 453 /* Checksum header offset is in 4-byte units */ 454 checksum_offset = sizeof(struct rmnet_map_header); 455 checksum_offset /= sizeof(u32); 456 val |= u32_encode_bits(checksum_offset, 457 CS_METADATA_HDR_OFFSET_FMASK); 458 } else { 459 val |= u32_encode_bits(IPA_CS_OFFLOAD_DL, 460 CS_OFFLOAD_EN_FMASK); 461 } 462 } else { 463 val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE, 464 CS_OFFLOAD_EN_FMASK); 465 } 466 /* CS_GEN_QMB_MASTER_SEL is 0 */ 467 468 iowrite32(val, endpoint->ipa->reg_virt + offset); 469 } 470 471 /** 472 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register 473 * @endpoint: Endpoint pointer 474 * 475 * We program QMAP endpoints so each packet received is preceded by a QMAP 476 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte 477 * packet size field, and we have the IPA hardware populate both for each 478 * received packet. The header is configured (in the HDR_EXT register) 479 * to use big endian format. 480 * 481 * The packet size is written into the QMAP header's pkt_len field. That 482 * location is defined here using the HDR_OFST_PKT_SIZE field. 483 * 484 * The mux_id comes from a 4-byte metadata value supplied with each packet 485 * by the modem. It is *not* a QMAP header, but it does contain the mux_id 486 * value that we want, in its low-order byte. A bitmask defined in the 487 * endpoint's METADATA_MASK register defines which byte within the modem 488 * metadata contains the mux_id. And the OFST_METADATA field programmed 489 * here indicates where the extracted byte should be placed within the QMAP 490 * header. 491 */ 492 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) 493 { 494 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); 495 struct ipa *ipa = endpoint->ipa; 496 u32 val = 0; 497 498 if (endpoint->data->qmap) { 499 size_t header_size = sizeof(struct rmnet_map_header); 500 enum ipa_version version = ipa->version; 501 502 /* We might supply a checksum header after the QMAP header */ 503 if (endpoint->toward_ipa && endpoint->data->checksum) 504 header_size += sizeof(struct rmnet_map_ul_csum_header); 505 val |= ipa_header_size_encoded(version, header_size); 506 507 /* Define how to fill fields in a received QMAP header */ 508 if (!endpoint->toward_ipa) { 509 u32 offset; /* Field offset within header */ 510 511 /* Where IPA will write the metadata value */ 512 offset = offsetof(struct rmnet_map_header, mux_id); 513 val |= ipa_metadata_offset_encoded(version, offset); 514 515 /* Where IPA will write the length */ 516 offset = offsetof(struct rmnet_map_header, pkt_len); 517 /* Upper bits are stored in HDR_EXT with IPA v4.5 */ 518 if (version == IPA_VERSION_4_5) 519 offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK); 520 521 val |= HDR_OFST_PKT_SIZE_VALID_FMASK; 522 val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK); 523 } 524 /* For QMAP TX, metadata offset is 0 (modem assumes this) */ 525 val |= HDR_OFST_METADATA_VALID_FMASK; 526 527 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ 528 /* HDR_A5_MUX is 0 */ 529 /* HDR_LEN_INC_DEAGG_HDR is 0 */ 530 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ 531 } 532 533 iowrite32(val, ipa->reg_virt + offset); 534 } 535 536 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) 537 { 538 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); 539 u32 pad_align = endpoint->data->rx.pad_align; 540 struct ipa *ipa = endpoint->ipa; 541 u32 val = 0; 542 543 val |= HDR_ENDIANNESS_FMASK; /* big endian */ 544 545 /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet 546 * driver assumes this field is meaningful in packets it receives, 547 * and assumes the header's payload length includes that padding. 548 * The RMNet driver does *not* pad packets it sends, however, so 549 * the pad field (although 0) should be ignored. 550 */ 551 if (endpoint->data->qmap && !endpoint->toward_ipa) { 552 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; 553 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ 554 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; 555 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ 556 } 557 558 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ 559 if (!endpoint->toward_ipa) 560 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); 561 562 /* IPA v4.5 adds some most-significant bits to a few fields, 563 * two of which are defined in the HDR (not HDR_EXT) register. 564 */ 565 if (ipa->version == IPA_VERSION_4_5) { 566 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ 567 if (endpoint->data->qmap && !endpoint->toward_ipa) { 568 u32 offset; 569 570 offset = offsetof(struct rmnet_map_header, pkt_len); 571 offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK); 572 val |= u32_encode_bits(offset, 573 HDR_OFST_PKT_SIZE_MSB_FMASK); 574 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ 575 } 576 } 577 iowrite32(val, ipa->reg_virt + offset); 578 } 579 580 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) 581 { 582 u32 endpoint_id = endpoint->endpoint_id; 583 u32 val = 0; 584 u32 offset; 585 586 if (endpoint->toward_ipa) 587 return; /* Register not valid for TX endpoints */ 588 589 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); 590 591 /* Note that HDR_ENDIANNESS indicates big endian header fields */ 592 if (endpoint->data->qmap) 593 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); 594 595 iowrite32(val, endpoint->ipa->reg_virt + offset); 596 } 597 598 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) 599 { 600 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); 601 u32 val; 602 603 if (!endpoint->toward_ipa) 604 return; /* Register not valid for RX endpoints */ 605 606 if (endpoint->data->dma_mode) { 607 enum ipa_endpoint_name name = endpoint->data->dma_endpoint; 608 u32 dma_endpoint_id; 609 610 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; 611 612 val = u32_encode_bits(IPA_DMA, MODE_FMASK); 613 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); 614 } else { 615 val = u32_encode_bits(IPA_BASIC, MODE_FMASK); 616 } 617 /* All other bits unspecified (and 0) */ 618 619 iowrite32(val, endpoint->ipa->reg_virt + offset); 620 } 621 622 /* Compute the aggregation size value to use for a given buffer size */ 623 static u32 ipa_aggr_size_kb(u32 rx_buffer_size) 624 { 625 /* We don't use "hard byte limit" aggregation, so we define the 626 * aggregation limit such that our buffer has enough space *after* 627 * that limit to receive a full MTU of data, plus overhead. 628 */ 629 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; 630 631 return rx_buffer_size / SZ_1K; 632 } 633 634 /* Encoded values for AGGR endpoint register fields */ 635 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit) 636 { 637 if (version < IPA_VERSION_4_5) 638 return u32_encode_bits(limit, aggr_byte_limit_fmask(true)); 639 640 return u32_encode_bits(limit, aggr_byte_limit_fmask(false)); 641 } 642 643 /* Encode the aggregation timer limit (microseconds) based on IPA version */ 644 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit) 645 { 646 u32 gran_sel; 647 u32 fmask; 648 u32 val; 649 650 if (version < IPA_VERSION_4_5) { 651 /* We set aggregation granularity in ipa_hardware_config() */ 652 limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); 653 654 return u32_encode_bits(limit, aggr_time_limit_fmask(true)); 655 } 656 657 /* IPA v4.5 expresses the time limit using Qtime. The AP has 658 * pulse generators 0 and 1 available, which were configured 659 * in ipa_qtime_config() to have granularity 100 usec and 660 * 1 msec, respectively. Use pulse generator 0 if possible, 661 * otherwise fall back to pulse generator 1. 662 */ 663 fmask = aggr_time_limit_fmask(false); 664 val = DIV_ROUND_CLOSEST(limit, 100); 665 if (val > field_max(fmask)) { 666 /* Have to use pulse generator 1 (millisecond granularity) */ 667 gran_sel = AGGR_GRAN_SEL_FMASK; 668 val = DIV_ROUND_CLOSEST(limit, 1000); 669 } else { 670 /* We can use pulse generator 0 (100 usec granularity) */ 671 gran_sel = 0; 672 } 673 674 return gran_sel | u32_encode_bits(val, fmask); 675 } 676 677 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled) 678 { 679 u32 val = enabled ? 1 : 0; 680 681 if (version < IPA_VERSION_4_5) 682 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true)); 683 684 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false)); 685 } 686 687 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) 688 { 689 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); 690 enum ipa_version version = endpoint->ipa->version; 691 u32 val = 0; 692 693 if (endpoint->data->aggregation) { 694 if (!endpoint->toward_ipa) { 695 bool close_eof; 696 u32 limit; 697 698 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); 699 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); 700 701 limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE); 702 val |= aggr_byte_limit_encoded(version, limit); 703 704 limit = IPA_AGGR_TIME_LIMIT; 705 val |= aggr_time_limit_encoded(version, limit); 706 707 /* AGGR_PKT_LIMIT is 0 (unlimited) */ 708 709 close_eof = endpoint->data->rx.aggr_close_eof; 710 val |= aggr_sw_eof_active_encoded(version, close_eof); 711 712 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ 713 } else { 714 val |= u32_encode_bits(IPA_ENABLE_DEAGGR, 715 AGGR_EN_FMASK); 716 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); 717 /* other fields ignored */ 718 } 719 /* AGGR_FORCE_CLOSE is 0 */ 720 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ 721 } else { 722 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); 723 /* other fields ignored */ 724 } 725 726 iowrite32(val, endpoint->ipa->reg_virt + offset); 727 } 728 729 /* Return the Qtime-based head-of-line blocking timer value that 730 * represents the given number of microseconds. The result 731 * includes both the timer value and the selected timer granularity. 732 */ 733 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds) 734 { 735 u32 gran_sel; 736 u32 val; 737 738 /* IPA v4.5 expresses time limits using Qtime. The AP has 739 * pulse generators 0 and 1 available, which were configured 740 * in ipa_qtime_config() to have granularity 100 usec and 741 * 1 msec, respectively. Use pulse generator 0 if possible, 742 * otherwise fall back to pulse generator 1. 743 */ 744 val = DIV_ROUND_CLOSEST(microseconds, 100); 745 if (val > field_max(TIME_LIMIT_FMASK)) { 746 /* Have to use pulse generator 1 (millisecond granularity) */ 747 gran_sel = GRAN_SEL_FMASK; 748 val = DIV_ROUND_CLOSEST(microseconds, 1000); 749 } else { 750 /* We can use pulse generator 0 (100 usec granularity) */ 751 gran_sel = 0; 752 } 753 754 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK); 755 } 756 757 /* The head-of-line blocking timer is defined as a tick count. For 758 * IPA version 4.5 the tick count is based on the Qtimer, which is 759 * derived from the 19.2 MHz SoC XO clock. For older IPA versions 760 * each tick represents 128 cycles of the IPA core clock. 761 * 762 * Return the encoded value that should be written to that register 763 * that represents the timeout period provided. For IPA v4.2 this 764 * encodes a base and scale value, while for earlier versions the 765 * value is a simple tick count. 766 */ 767 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds) 768 { 769 u32 width; 770 u32 scale; 771 u64 ticks; 772 u64 rate; 773 u32 high; 774 u32 val; 775 776 if (!microseconds) 777 return 0; /* Nothing to compute if timer period is 0 */ 778 779 if (ipa->version == IPA_VERSION_4_5) 780 return hol_block_timer_qtime_val(ipa, microseconds); 781 782 /* Use 64 bit arithmetic to avoid overflow... */ 783 rate = ipa_clock_rate(ipa); 784 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); 785 /* ...but we still need to fit into a 32-bit register */ 786 WARN_ON(ticks > U32_MAX); 787 788 /* IPA v3.5.1 through v4.1 just record the tick count */ 789 if (ipa->version < IPA_VERSION_4_2) 790 return (u32)ticks; 791 792 /* For IPA v4.2, the tick count is represented by base and 793 * scale fields within the 32-bit timer register, where: 794 * ticks = base << scale; 795 * The best precision is achieved when the base value is as 796 * large as possible. Find the highest set bit in the tick 797 * count, and extract the number of bits in the base field 798 * such that that high bit is included. 799 */ 800 high = fls(ticks); /* 1..32 */ 801 width = HWEIGHT32(BASE_VALUE_FMASK); 802 scale = high > width ? high - width : 0; 803 if (scale) { 804 /* If we're scaling, round up to get a closer result */ 805 ticks += 1 << (scale - 1); 806 /* High bit was set, so rounding might have affected it */ 807 if (fls(ticks) != high) 808 scale++; 809 } 810 811 val = u32_encode_bits(scale, SCALE_FMASK); 812 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); 813 814 return val; 815 } 816 817 /* If microseconds is 0, timeout is immediate */ 818 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, 819 u32 microseconds) 820 { 821 u32 endpoint_id = endpoint->endpoint_id; 822 struct ipa *ipa = endpoint->ipa; 823 u32 offset; 824 u32 val; 825 826 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); 827 val = hol_block_timer_val(ipa, microseconds); 828 iowrite32(val, ipa->reg_virt + offset); 829 } 830 831 static void 832 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable) 833 { 834 u32 endpoint_id = endpoint->endpoint_id; 835 u32 offset; 836 u32 val; 837 838 val = enable ? HOL_BLOCK_EN_FMASK : 0; 839 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); 840 iowrite32(val, endpoint->ipa->reg_virt + offset); 841 } 842 843 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) 844 { 845 u32 i; 846 847 for (i = 0; i < IPA_ENDPOINT_MAX; i++) { 848 struct ipa_endpoint *endpoint = &ipa->endpoint[i]; 849 850 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) 851 continue; 852 853 ipa_endpoint_init_hol_block_timer(endpoint, 0); 854 ipa_endpoint_init_hol_block_enable(endpoint, true); 855 } 856 } 857 858 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) 859 { 860 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); 861 u32 val = 0; 862 863 if (!endpoint->toward_ipa) 864 return; /* Register not valid for RX endpoints */ 865 866 /* DEAGGR_HDR_LEN is 0 */ 867 /* PACKET_OFFSET_VALID is 0 */ 868 /* PACKET_OFFSET_LOCATION is ignored (not valid) */ 869 /* MAX_PACKET_LEN is 0 (not enforced) */ 870 871 iowrite32(val, endpoint->ipa->reg_virt + offset); 872 } 873 874 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) 875 { 876 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id); 877 struct ipa *ipa = endpoint->ipa; 878 u32 val; 879 880 val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group); 881 iowrite32(val, ipa->reg_virt + offset); 882 } 883 884 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) 885 { 886 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); 887 u32 seq_type = endpoint->seq_type; 888 u32 val = 0; 889 890 if (!endpoint->toward_ipa) 891 return; /* Register not valid for RX endpoints */ 892 893 /* Sequencer type is made up of four nibbles */ 894 val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK); 895 val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK); 896 /* The second two apply to replicated packets */ 897 val |= u32_encode_bits((seq_type >> 8) & 0xf, HPS_REP_SEQ_TYPE_FMASK); 898 val |= u32_encode_bits((seq_type >> 12) & 0xf, DPS_REP_SEQ_TYPE_FMASK); 899 900 iowrite32(val, endpoint->ipa->reg_virt + offset); 901 } 902 903 /** 904 * ipa_endpoint_skb_tx() - Transmit a socket buffer 905 * @endpoint: Endpoint pointer 906 * @skb: Socket buffer to send 907 * 908 * Returns: 0 if successful, or a negative error code 909 */ 910 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) 911 { 912 struct gsi_trans *trans; 913 u32 nr_frags; 914 int ret; 915 916 /* Make sure source endpoint's TLV FIFO has enough entries to 917 * hold the linear portion of the skb and all its fragments. 918 * If not, see if we can linearize it before giving up. 919 */ 920 nr_frags = skb_shinfo(skb)->nr_frags; 921 if (1 + nr_frags > endpoint->trans_tre_max) { 922 if (skb_linearize(skb)) 923 return -E2BIG; 924 nr_frags = 0; 925 } 926 927 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); 928 if (!trans) 929 return -EBUSY; 930 931 ret = gsi_trans_skb_add(trans, skb); 932 if (ret) 933 goto err_trans_free; 934 trans->data = skb; /* transaction owns skb now */ 935 936 gsi_trans_commit(trans, !netdev_xmit_more()); 937 938 return 0; 939 940 err_trans_free: 941 gsi_trans_free(trans); 942 943 return -ENOMEM; 944 } 945 946 static void ipa_endpoint_status(struct ipa_endpoint *endpoint) 947 { 948 u32 endpoint_id = endpoint->endpoint_id; 949 struct ipa *ipa = endpoint->ipa; 950 u32 val = 0; 951 u32 offset; 952 953 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); 954 955 if (endpoint->data->status_enable) { 956 val |= STATUS_EN_FMASK; 957 if (endpoint->toward_ipa) { 958 enum ipa_endpoint_name name; 959 u32 status_endpoint_id; 960 961 name = endpoint->data->tx.status_endpoint; 962 status_endpoint_id = ipa->name_map[name]->endpoint_id; 963 964 val |= u32_encode_bits(status_endpoint_id, 965 STATUS_ENDP_FMASK); 966 } 967 /* STATUS_LOCATION is 0, meaning status element precedes 968 * packet (not present for IPA v4.5) 969 */ 970 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */ 971 } 972 973 iowrite32(val, ipa->reg_virt + offset); 974 } 975 976 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint) 977 { 978 struct gsi_trans *trans; 979 bool doorbell = false; 980 struct page *page; 981 u32 offset; 982 u32 len; 983 int ret; 984 985 page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE)); 986 if (!page) 987 return -ENOMEM; 988 989 trans = ipa_endpoint_trans_alloc(endpoint, 1); 990 if (!trans) 991 goto err_free_pages; 992 993 /* Offset the buffer to make space for skb headroom */ 994 offset = NET_SKB_PAD; 995 len = IPA_RX_BUFFER_SIZE - offset; 996 997 ret = gsi_trans_page_add(trans, page, len, offset); 998 if (ret) 999 goto err_trans_free; 1000 trans->data = page; /* transaction owns page now */ 1001 1002 if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) { 1003 doorbell = true; 1004 endpoint->replenish_ready = 0; 1005 } 1006 1007 gsi_trans_commit(trans, doorbell); 1008 1009 return 0; 1010 1011 err_trans_free: 1012 gsi_trans_free(trans); 1013 err_free_pages: 1014 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 1015 1016 return -ENOMEM; 1017 } 1018 1019 /** 1020 * ipa_endpoint_replenish() - Replenish endpoint receive buffers 1021 * @endpoint: Endpoint to be replenished 1022 * @add_one: Whether this is replacing a just-consumed buffer 1023 * 1024 * The IPA hardware can hold a fixed number of receive buffers for an RX 1025 * endpoint, based on the number of entries in the underlying channel ring 1026 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many 1027 * more receive buffers can be supplied to the hardware. Replenishing for 1028 * an endpoint can be disabled, in which case requests to replenish a 1029 * buffer are "saved", and transferred to the backlog once it is re-enabled 1030 * again. 1031 */ 1032 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one) 1033 { 1034 struct gsi *gsi; 1035 u32 backlog; 1036 1037 if (!endpoint->replenish_enabled) { 1038 if (add_one) 1039 atomic_inc(&endpoint->replenish_saved); 1040 return; 1041 } 1042 1043 while (atomic_dec_not_zero(&endpoint->replenish_backlog)) 1044 if (ipa_endpoint_replenish_one(endpoint)) 1045 goto try_again_later; 1046 if (add_one) 1047 atomic_inc(&endpoint->replenish_backlog); 1048 1049 return; 1050 1051 try_again_later: 1052 /* The last one didn't succeed, so fix the backlog */ 1053 backlog = atomic_inc_return(&endpoint->replenish_backlog); 1054 1055 if (add_one) 1056 atomic_inc(&endpoint->replenish_backlog); 1057 1058 /* Whenever a receive buffer transaction completes we'll try to 1059 * replenish again. It's unlikely, but if we fail to supply even 1060 * one buffer, nothing will trigger another replenish attempt. 1061 * Receive buffer transactions use one TRE, so schedule work to 1062 * try replenishing again if our backlog is *all* available TREs. 1063 */ 1064 gsi = &endpoint->ipa->gsi; 1065 if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id)) 1066 schedule_delayed_work(&endpoint->replenish_work, 1067 msecs_to_jiffies(1)); 1068 } 1069 1070 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) 1071 { 1072 struct gsi *gsi = &endpoint->ipa->gsi; 1073 u32 max_backlog; 1074 u32 saved; 1075 1076 endpoint->replenish_enabled = true; 1077 while ((saved = atomic_xchg(&endpoint->replenish_saved, 0))) 1078 atomic_add(saved, &endpoint->replenish_backlog); 1079 1080 /* Start replenishing if hardware currently has no buffers */ 1081 max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id); 1082 if (atomic_read(&endpoint->replenish_backlog) == max_backlog) 1083 ipa_endpoint_replenish(endpoint, false); 1084 } 1085 1086 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) 1087 { 1088 u32 backlog; 1089 1090 endpoint->replenish_enabled = false; 1091 while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0))) 1092 atomic_add(backlog, &endpoint->replenish_saved); 1093 } 1094 1095 static void ipa_endpoint_replenish_work(struct work_struct *work) 1096 { 1097 struct delayed_work *dwork = to_delayed_work(work); 1098 struct ipa_endpoint *endpoint; 1099 1100 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); 1101 1102 ipa_endpoint_replenish(endpoint, false); 1103 } 1104 1105 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, 1106 void *data, u32 len, u32 extra) 1107 { 1108 struct sk_buff *skb; 1109 1110 skb = __dev_alloc_skb(len, GFP_ATOMIC); 1111 if (skb) { 1112 skb_put(skb, len); 1113 memcpy(skb->data, data, len); 1114 skb->truesize += extra; 1115 } 1116 1117 /* Now receive it, or drop it if there's no netdev */ 1118 if (endpoint->netdev) 1119 ipa_modem_skb_rx(endpoint->netdev, skb); 1120 else if (skb) 1121 dev_kfree_skb_any(skb); 1122 } 1123 1124 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, 1125 struct page *page, u32 len) 1126 { 1127 struct sk_buff *skb; 1128 1129 /* Nothing to do if there's no netdev */ 1130 if (!endpoint->netdev) 1131 return false; 1132 1133 /* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */ 1134 skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE); 1135 if (skb) { 1136 /* Reserve the headroom and account for the data */ 1137 skb_reserve(skb, NET_SKB_PAD); 1138 skb_put(skb, len); 1139 } 1140 1141 /* Receive the buffer (or record drop if unable to build it) */ 1142 ipa_modem_skb_rx(endpoint->netdev, skb); 1143 1144 return skb != NULL; 1145 } 1146 1147 /* The format of a packet status element is the same for several status 1148 * types (opcodes). Other types aren't currently supported. 1149 */ 1150 static bool ipa_status_format_packet(enum ipa_status_opcode opcode) 1151 { 1152 switch (opcode) { 1153 case IPA_STATUS_OPCODE_PACKET: 1154 case IPA_STATUS_OPCODE_DROPPED_PACKET: 1155 case IPA_STATUS_OPCODE_SUSPENDED_PACKET: 1156 case IPA_STATUS_OPCODE_PACKET_2ND_PASS: 1157 return true; 1158 default: 1159 return false; 1160 } 1161 } 1162 1163 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, 1164 const struct ipa_status *status) 1165 { 1166 u32 endpoint_id; 1167 1168 if (!ipa_status_format_packet(status->opcode)) 1169 return true; 1170 if (!status->pkt_len) 1171 return true; 1172 endpoint_id = u8_get_bits(status->endp_dst_idx, 1173 IPA_STATUS_DST_IDX_FMASK); 1174 if (endpoint_id != endpoint->endpoint_id) 1175 return true; 1176 1177 return false; /* Don't skip this packet, process it */ 1178 } 1179 1180 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, 1181 const struct ipa_status *status) 1182 { 1183 struct ipa_endpoint *command_endpoint; 1184 struct ipa *ipa = endpoint->ipa; 1185 u32 endpoint_id; 1186 1187 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) 1188 return false; /* No valid tag */ 1189 1190 /* The status contains a valid tag. We know the packet was sent to 1191 * this endpoint (already verified by ipa_endpoint_status_skip()). 1192 * If the packet came from the AP->command TX endpoint we know 1193 * this packet was sent as part of the pipeline clear process. 1194 */ 1195 endpoint_id = u8_get_bits(status->endp_src_idx, 1196 IPA_STATUS_SRC_IDX_FMASK); 1197 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; 1198 if (endpoint_id == command_endpoint->endpoint_id) { 1199 complete(&ipa->completion); 1200 } else { 1201 dev_err(&ipa->pdev->dev, 1202 "unexpected tagged packet from endpoint %u\n", 1203 endpoint_id); 1204 } 1205 1206 return true; 1207 } 1208 1209 /* Return whether the status indicates the packet should be dropped */ 1210 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, 1211 const struct ipa_status *status) 1212 { 1213 u32 val; 1214 1215 /* If the status indicates a tagged transfer, we'll drop the packet */ 1216 if (ipa_endpoint_status_tag(endpoint, status)) 1217 return true; 1218 1219 /* Deaggregation exceptions we drop; all other types we consume */ 1220 if (status->exception) 1221 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; 1222 1223 /* Drop the packet if it fails to match a routing rule; otherwise no */ 1224 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1225 1226 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); 1227 } 1228 1229 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, 1230 struct page *page, u32 total_len) 1231 { 1232 void *data = page_address(page) + NET_SKB_PAD; 1233 u32 unused = IPA_RX_BUFFER_SIZE - total_len; 1234 u32 resid = total_len; 1235 1236 while (resid) { 1237 const struct ipa_status *status = data; 1238 u32 align; 1239 u32 len; 1240 1241 if (resid < sizeof(*status)) { 1242 dev_err(&endpoint->ipa->pdev->dev, 1243 "short message (%u bytes < %zu byte status)\n", 1244 resid, sizeof(*status)); 1245 break; 1246 } 1247 1248 /* Skip over status packets that lack packet data */ 1249 if (ipa_endpoint_status_skip(endpoint, status)) { 1250 data += sizeof(*status); 1251 resid -= sizeof(*status); 1252 continue; 1253 } 1254 1255 /* Compute the amount of buffer space consumed by the packet, 1256 * including the status element. If the hardware is configured 1257 * to pad packet data to an aligned boundary, account for that. 1258 * And if checksum offload is enabled a trailer containing 1259 * computed checksum information will be appended. 1260 */ 1261 align = endpoint->data->rx.pad_align ? : 1; 1262 len = le16_to_cpu(status->pkt_len); 1263 len = sizeof(*status) + ALIGN(len, align); 1264 if (endpoint->data->checksum) 1265 len += sizeof(struct rmnet_map_dl_csum_trailer); 1266 1267 if (!ipa_endpoint_status_drop(endpoint, status)) { 1268 void *data2; 1269 u32 extra; 1270 u32 len2; 1271 1272 /* Client receives only packet data (no status) */ 1273 data2 = data + sizeof(*status); 1274 len2 = le16_to_cpu(status->pkt_len); 1275 1276 /* Have the true size reflect the extra unused space in 1277 * the original receive buffer. Distribute the "cost" 1278 * proportionately across all aggregated packets in the 1279 * buffer. 1280 */ 1281 extra = DIV_ROUND_CLOSEST(unused * len, total_len); 1282 ipa_endpoint_skb_copy(endpoint, data2, len2, extra); 1283 } 1284 1285 /* Consume status and the full packet it describes */ 1286 data += len; 1287 resid -= len; 1288 } 1289 } 1290 1291 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ 1292 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, 1293 struct gsi_trans *trans) 1294 { 1295 } 1296 1297 /* Complete transaction initiated in ipa_endpoint_replenish_one() */ 1298 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, 1299 struct gsi_trans *trans) 1300 { 1301 struct page *page; 1302 1303 ipa_endpoint_replenish(endpoint, true); 1304 1305 if (trans->cancelled) 1306 return; 1307 1308 /* Parse or build a socket buffer using the actual received length */ 1309 page = trans->data; 1310 if (endpoint->data->status_enable) 1311 ipa_endpoint_status_parse(endpoint, page, trans->len); 1312 else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) 1313 trans->data = NULL; /* Pages have been consumed */ 1314 } 1315 1316 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, 1317 struct gsi_trans *trans) 1318 { 1319 if (endpoint->toward_ipa) 1320 ipa_endpoint_tx_complete(endpoint, trans); 1321 else 1322 ipa_endpoint_rx_complete(endpoint, trans); 1323 } 1324 1325 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, 1326 struct gsi_trans *trans) 1327 { 1328 if (endpoint->toward_ipa) { 1329 struct ipa *ipa = endpoint->ipa; 1330 1331 /* Nothing to do for command transactions */ 1332 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { 1333 struct sk_buff *skb = trans->data; 1334 1335 if (skb) 1336 dev_kfree_skb_any(skb); 1337 } 1338 } else { 1339 struct page *page = trans->data; 1340 1341 if (page) 1342 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); 1343 } 1344 } 1345 1346 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) 1347 { 1348 u32 val; 1349 1350 /* ROUTE_DIS is 0 */ 1351 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); 1352 val |= ROUTE_DEF_HDR_TABLE_FMASK; 1353 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); 1354 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); 1355 val |= ROUTE_DEF_RETAIN_HDR_FMASK; 1356 1357 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); 1358 } 1359 1360 void ipa_endpoint_default_route_clear(struct ipa *ipa) 1361 { 1362 ipa_endpoint_default_route_set(ipa, 0); 1363 } 1364 1365 /** 1366 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active 1367 * @endpoint: Endpoint to be reset 1368 * 1369 * If aggregation is active on an RX endpoint when a reset is performed 1370 * on its underlying GSI channel, a special sequence of actions must be 1371 * taken to ensure the IPA pipeline is properly cleared. 1372 * 1373 * Return: 0 if successful, or a negative error code 1374 */ 1375 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) 1376 { 1377 struct device *dev = &endpoint->ipa->pdev->dev; 1378 struct ipa *ipa = endpoint->ipa; 1379 struct gsi *gsi = &ipa->gsi; 1380 bool suspended = false; 1381 dma_addr_t addr; 1382 u32 retries; 1383 u32 len = 1; 1384 void *virt; 1385 int ret; 1386 1387 virt = kzalloc(len, GFP_KERNEL); 1388 if (!virt) 1389 return -ENOMEM; 1390 1391 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); 1392 if (dma_mapping_error(dev, addr)) { 1393 ret = -ENOMEM; 1394 goto out_kfree; 1395 } 1396 1397 /* Force close aggregation before issuing the reset */ 1398 ipa_endpoint_force_close(endpoint); 1399 1400 /* Reset and reconfigure the channel with the doorbell engine 1401 * disabled. Then poll until we know aggregation is no longer 1402 * active. We'll re-enable the doorbell (if appropriate) when 1403 * we reset again below. 1404 */ 1405 gsi_channel_reset(gsi, endpoint->channel_id, false); 1406 1407 /* Make sure the channel isn't suspended */ 1408 suspended = ipa_endpoint_program_suspend(endpoint, false); 1409 1410 /* Start channel and do a 1 byte read */ 1411 ret = gsi_channel_start(gsi, endpoint->channel_id); 1412 if (ret) 1413 goto out_suspend_again; 1414 1415 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); 1416 if (ret) 1417 goto err_endpoint_stop; 1418 1419 /* Wait for aggregation to be closed on the channel */ 1420 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; 1421 do { 1422 if (!ipa_endpoint_aggr_active(endpoint)) 1423 break; 1424 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1425 } while (retries--); 1426 1427 /* Check one last time */ 1428 if (ipa_endpoint_aggr_active(endpoint)) 1429 dev_err(dev, "endpoint %u still active during reset\n", 1430 endpoint->endpoint_id); 1431 1432 gsi_trans_read_byte_done(gsi, endpoint->channel_id); 1433 1434 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1435 if (ret) 1436 goto out_suspend_again; 1437 1438 /* Finally, reset and reconfigure the channel again (re-enabling the 1439 * the doorbell engine if appropriate). Sleep for 1 millisecond to 1440 * complete the channel reset sequence. Finish by suspending the 1441 * channel again (if necessary). 1442 */ 1443 gsi_channel_reset(gsi, endpoint->channel_id, true); 1444 1445 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 1446 1447 goto out_suspend_again; 1448 1449 err_endpoint_stop: 1450 (void)gsi_channel_stop(gsi, endpoint->channel_id); 1451 out_suspend_again: 1452 if (suspended) 1453 (void)ipa_endpoint_program_suspend(endpoint, true); 1454 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); 1455 out_kfree: 1456 kfree(virt); 1457 1458 return ret; 1459 } 1460 1461 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) 1462 { 1463 u32 channel_id = endpoint->channel_id; 1464 struct ipa *ipa = endpoint->ipa; 1465 bool special; 1466 int ret = 0; 1467 1468 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation 1469 * is active, we need to handle things specially to recover. 1470 * All other cases just need to reset the underlying GSI channel. 1471 */ 1472 special = ipa->version == IPA_VERSION_3_5_1 && 1473 !endpoint->toward_ipa && 1474 endpoint->data->aggregation; 1475 if (special && ipa_endpoint_aggr_active(endpoint)) 1476 ret = ipa_endpoint_reset_rx_aggr(endpoint); 1477 else 1478 gsi_channel_reset(&ipa->gsi, channel_id, true); 1479 1480 if (ret) 1481 dev_err(&ipa->pdev->dev, 1482 "error %d resetting channel %u for endpoint %u\n", 1483 ret, endpoint->channel_id, endpoint->endpoint_id); 1484 } 1485 1486 static void ipa_endpoint_program(struct ipa_endpoint *endpoint) 1487 { 1488 if (endpoint->toward_ipa) 1489 ipa_endpoint_program_delay(endpoint, false); 1490 else 1491 (void)ipa_endpoint_program_suspend(endpoint, false); 1492 ipa_endpoint_init_cfg(endpoint); 1493 ipa_endpoint_init_hdr(endpoint); 1494 ipa_endpoint_init_hdr_ext(endpoint); 1495 ipa_endpoint_init_hdr_metadata_mask(endpoint); 1496 ipa_endpoint_init_mode(endpoint); 1497 ipa_endpoint_init_aggr(endpoint); 1498 ipa_endpoint_init_deaggr(endpoint); 1499 ipa_endpoint_init_rsrc_grp(endpoint); 1500 ipa_endpoint_init_seq(endpoint); 1501 ipa_endpoint_status(endpoint); 1502 } 1503 1504 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) 1505 { 1506 struct ipa *ipa = endpoint->ipa; 1507 struct gsi *gsi = &ipa->gsi; 1508 int ret; 1509 1510 ret = gsi_channel_start(gsi, endpoint->channel_id); 1511 if (ret) { 1512 dev_err(&ipa->pdev->dev, 1513 "error %d starting %cX channel %u for endpoint %u\n", 1514 ret, endpoint->toward_ipa ? 'T' : 'R', 1515 endpoint->channel_id, endpoint->endpoint_id); 1516 return ret; 1517 } 1518 1519 if (!endpoint->toward_ipa) { 1520 ipa_interrupt_suspend_enable(ipa->interrupt, 1521 endpoint->endpoint_id); 1522 ipa_endpoint_replenish_enable(endpoint); 1523 } 1524 1525 ipa->enabled |= BIT(endpoint->endpoint_id); 1526 1527 return 0; 1528 } 1529 1530 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) 1531 { 1532 u32 mask = BIT(endpoint->endpoint_id); 1533 struct ipa *ipa = endpoint->ipa; 1534 struct gsi *gsi = &ipa->gsi; 1535 int ret; 1536 1537 if (!(ipa->enabled & mask)) 1538 return; 1539 1540 ipa->enabled ^= mask; 1541 1542 if (!endpoint->toward_ipa) { 1543 ipa_endpoint_replenish_disable(endpoint); 1544 ipa_interrupt_suspend_disable(ipa->interrupt, 1545 endpoint->endpoint_id); 1546 } 1547 1548 /* Note that if stop fails, the channel's state is not well-defined */ 1549 ret = gsi_channel_stop(gsi, endpoint->channel_id); 1550 if (ret) 1551 dev_err(&ipa->pdev->dev, 1552 "error %d attempting to stop endpoint %u\n", ret, 1553 endpoint->endpoint_id); 1554 } 1555 1556 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) 1557 { 1558 struct device *dev = &endpoint->ipa->pdev->dev; 1559 struct gsi *gsi = &endpoint->ipa->gsi; 1560 bool stop_channel; 1561 int ret; 1562 1563 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1564 return; 1565 1566 if (!endpoint->toward_ipa) { 1567 ipa_endpoint_replenish_disable(endpoint); 1568 (void)ipa_endpoint_program_suspend(endpoint, true); 1569 } 1570 1571 /* IPA v3.5.1 doesn't use channel stop for suspend */ 1572 stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1; 1573 ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel); 1574 if (ret) 1575 dev_err(dev, "error %d suspending channel %u\n", ret, 1576 endpoint->channel_id); 1577 } 1578 1579 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) 1580 { 1581 struct device *dev = &endpoint->ipa->pdev->dev; 1582 struct gsi *gsi = &endpoint->ipa->gsi; 1583 bool start_channel; 1584 int ret; 1585 1586 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) 1587 return; 1588 1589 if (!endpoint->toward_ipa) 1590 (void)ipa_endpoint_program_suspend(endpoint, false); 1591 1592 /* IPA v3.5.1 doesn't use channel start for resume */ 1593 start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1; 1594 ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel); 1595 if (ret) 1596 dev_err(dev, "error %d resuming channel %u\n", ret, 1597 endpoint->channel_id); 1598 else if (!endpoint->toward_ipa) 1599 ipa_endpoint_replenish_enable(endpoint); 1600 } 1601 1602 void ipa_endpoint_suspend(struct ipa *ipa) 1603 { 1604 if (!ipa->setup_complete) 1605 return; 1606 1607 if (ipa->modem_netdev) 1608 ipa_modem_suspend(ipa->modem_netdev); 1609 1610 ipa_cmd_pipeline_clear(ipa); 1611 1612 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1613 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1614 } 1615 1616 void ipa_endpoint_resume(struct ipa *ipa) 1617 { 1618 if (!ipa->setup_complete) 1619 return; 1620 1621 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); 1622 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); 1623 1624 if (ipa->modem_netdev) 1625 ipa_modem_resume(ipa->modem_netdev); 1626 } 1627 1628 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) 1629 { 1630 struct gsi *gsi = &endpoint->ipa->gsi; 1631 u32 channel_id = endpoint->channel_id; 1632 1633 /* Only AP endpoints get set up */ 1634 if (endpoint->ee_id != GSI_EE_AP) 1635 return; 1636 1637 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); 1638 if (!endpoint->toward_ipa) { 1639 /* RX transactions require a single TRE, so the maximum 1640 * backlog is the same as the maximum outstanding TREs. 1641 */ 1642 endpoint->replenish_enabled = false; 1643 atomic_set(&endpoint->replenish_saved, 1644 gsi_channel_tre_max(gsi, endpoint->channel_id)); 1645 atomic_set(&endpoint->replenish_backlog, 0); 1646 INIT_DELAYED_WORK(&endpoint->replenish_work, 1647 ipa_endpoint_replenish_work); 1648 } 1649 1650 ipa_endpoint_program(endpoint); 1651 1652 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); 1653 } 1654 1655 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) 1656 { 1657 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); 1658 1659 if (!endpoint->toward_ipa) 1660 cancel_delayed_work_sync(&endpoint->replenish_work); 1661 1662 ipa_endpoint_reset(endpoint); 1663 } 1664 1665 void ipa_endpoint_setup(struct ipa *ipa) 1666 { 1667 u32 initialized = ipa->initialized; 1668 1669 ipa->set_up = 0; 1670 while (initialized) { 1671 u32 endpoint_id = __ffs(initialized); 1672 1673 initialized ^= BIT(endpoint_id); 1674 1675 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); 1676 } 1677 } 1678 1679 void ipa_endpoint_teardown(struct ipa *ipa) 1680 { 1681 u32 set_up = ipa->set_up; 1682 1683 while (set_up) { 1684 u32 endpoint_id = __fls(set_up); 1685 1686 set_up ^= BIT(endpoint_id); 1687 1688 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); 1689 } 1690 ipa->set_up = 0; 1691 } 1692 1693 int ipa_endpoint_config(struct ipa *ipa) 1694 { 1695 struct device *dev = &ipa->pdev->dev; 1696 u32 initialized; 1697 u32 rx_base; 1698 u32 rx_mask; 1699 u32 tx_mask; 1700 int ret = 0; 1701 u32 max; 1702 u32 val; 1703 1704 /* Find out about the endpoints supplied by the hardware, and ensure 1705 * the highest one doesn't exceed the number we support. 1706 */ 1707 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); 1708 1709 /* Our RX is an IPA producer */ 1710 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK); 1711 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK); 1712 if (max > IPA_ENDPOINT_MAX) { 1713 dev_err(dev, "too many endpoints (%u > %u)\n", 1714 max, IPA_ENDPOINT_MAX); 1715 return -EINVAL; 1716 } 1717 rx_mask = GENMASK(max - 1, rx_base); 1718 1719 /* Our TX is an IPA consumer */ 1720 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK); 1721 tx_mask = GENMASK(max - 1, 0); 1722 1723 ipa->available = rx_mask | tx_mask; 1724 1725 /* Check for initialized endpoints not supported by the hardware */ 1726 if (ipa->initialized & ~ipa->available) { 1727 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", 1728 ipa->initialized & ~ipa->available); 1729 ret = -EINVAL; /* Report other errors too */ 1730 } 1731 1732 initialized = ipa->initialized; 1733 while (initialized) { 1734 u32 endpoint_id = __ffs(initialized); 1735 struct ipa_endpoint *endpoint; 1736 1737 initialized ^= BIT(endpoint_id); 1738 1739 /* Make sure it's pointing in the right direction */ 1740 endpoint = &ipa->endpoint[endpoint_id]; 1741 if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) { 1742 dev_err(dev, "endpoint id %u wrong direction\n", 1743 endpoint_id); 1744 ret = -EINVAL; 1745 } 1746 } 1747 1748 return ret; 1749 } 1750 1751 void ipa_endpoint_deconfig(struct ipa *ipa) 1752 { 1753 ipa->available = 0; /* Nothing more to do */ 1754 } 1755 1756 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, 1757 const struct ipa_gsi_endpoint_data *data) 1758 { 1759 struct ipa_endpoint *endpoint; 1760 1761 endpoint = &ipa->endpoint[data->endpoint_id]; 1762 1763 if (data->ee_id == GSI_EE_AP) 1764 ipa->channel_map[data->channel_id] = endpoint; 1765 ipa->name_map[name] = endpoint; 1766 1767 endpoint->ipa = ipa; 1768 endpoint->ee_id = data->ee_id; 1769 endpoint->seq_type = data->endpoint.seq_type; 1770 endpoint->channel_id = data->channel_id; 1771 endpoint->endpoint_id = data->endpoint_id; 1772 endpoint->toward_ipa = data->toward_ipa; 1773 endpoint->data = &data->endpoint.config; 1774 1775 ipa->initialized |= BIT(endpoint->endpoint_id); 1776 } 1777 1778 void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) 1779 { 1780 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); 1781 1782 memset(endpoint, 0, sizeof(*endpoint)); 1783 } 1784 1785 void ipa_endpoint_exit(struct ipa *ipa) 1786 { 1787 u32 initialized = ipa->initialized; 1788 1789 while (initialized) { 1790 u32 endpoint_id = __fls(initialized); 1791 1792 initialized ^= BIT(endpoint_id); 1793 1794 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); 1795 } 1796 memset(ipa->name_map, 0, sizeof(ipa->name_map)); 1797 memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); 1798 } 1799 1800 /* Returns a bitmask of endpoints that support filtering, or 0 on error */ 1801 u32 ipa_endpoint_init(struct ipa *ipa, u32 count, 1802 const struct ipa_gsi_endpoint_data *data) 1803 { 1804 enum ipa_endpoint_name name; 1805 u32 filter_map; 1806 1807 if (!ipa_endpoint_data_valid(ipa, count, data)) 1808 return 0; /* Error */ 1809 1810 ipa->initialized = 0; 1811 1812 filter_map = 0; 1813 for (name = 0; name < count; name++, data++) { 1814 if (ipa_gsi_endpoint_data_empty(data)) 1815 continue; /* Skip over empty slots */ 1816 1817 ipa_endpoint_init_one(ipa, name, data); 1818 1819 if (data->endpoint.filter_support) 1820 filter_map |= BIT(data->endpoint_id); 1821 } 1822 1823 if (!ipa_filter_map_valid(ipa, filter_map)) 1824 goto err_endpoint_exit; 1825 1826 return filter_map; /* Non-zero bitmask */ 1827 1828 err_endpoint_exit: 1829 ipa_endpoint_exit(ipa); 1830 1831 return 0; /* Error */ 1832 } 1833