1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/refcount.h> 11 #include <linux/scatterlist.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_private.h" 16 #include "gsi_trans.h" 17 #include "ipa_gsi.h" 18 #include "ipa_data.h" 19 #include "ipa_cmd.h" 20 21 /** 22 * DOC: GSI Transactions 23 * 24 * A GSI transaction abstracts the behavior of a GSI channel by representing 25 * everything about a related group of IPA commands in a single structure. 26 * (A "command" in this sense is either a data transfer or an IPA immediate 27 * command.) Most details of interaction with the GSI hardware are managed 28 * by the GSI transaction core, allowing users to simply describe commands 29 * to be performed. When a transaction has completed a callback function 30 * (dependent on the type of endpoint associated with the channel) allows 31 * cleanup of resources associated with the transaction. 32 * 33 * To perform a command (or set of them), a user of the GSI transaction 34 * interface allocates a transaction, indicating the number of TREs required 35 * (one per command). If sufficient TREs are available, they are reserved 36 * for use in the transaction and the allocation succeeds. This way 37 * exhaustion of the available TREs in a channel ring is detected 38 * as early as possible. All resources required to complete a transaction 39 * are allocated at transaction allocation time. 40 * 41 * Commands performed as part of a transaction are represented in an array 42 * of Linux scatterlist structures. This array is allocated with the 43 * transaction, and its entries are initialized using standard scatterlist 44 * functions (such as sg_set_buf() or skb_to_sgvec()). 45 * 46 * Once a transaction's scatterlist structures have been initialized, the 47 * transaction is committed. The caller is responsible for mapping buffers 48 * for DMA if necessary, and this should be done *before* allocating 49 * the transaction. Between a successful allocation and commit of a 50 * transaction no errors should occur. 51 * 52 * Committing transfers ownership of the entire transaction to the GSI 53 * transaction core. The GSI transaction code formats the content of 54 * the scatterlist array into the channel ring buffer and informs the 55 * hardware that new TREs are available to process. 56 * 57 * The last TRE in each transaction is marked to interrupt the AP when the 58 * GSI hardware has completed it. Because transfers described by TREs are 59 * performed strictly in order, signaling the completion of just the last 60 * TRE in the transaction is sufficient to indicate the full transaction 61 * is complete. 62 * 63 * When a transaction is complete, ipa_gsi_trans_complete() is called by the 64 * GSI code into the IPA layer, allowing it to perform any final cleanup 65 * required before the transaction is freed. 66 */ 67 68 /* Hardware values representing a transfer element type */ 69 enum gsi_tre_type { 70 GSI_RE_XFER = 0x2, 71 GSI_RE_IMMD_CMD = 0x3, 72 }; 73 74 /* An entry in a channel ring */ 75 struct gsi_tre { 76 __le64 addr; /* DMA address */ 77 __le16 len_opcode; /* length in bytes or enum IPA_CMD_* */ 78 __le16 reserved; 79 __le32 flags; /* TRE_FLAGS_* */ 80 }; 81 82 /* gsi_tre->flags mask values (in CPU byte order) */ 83 #define TRE_FLAGS_CHAIN_FMASK GENMASK(0, 0) 84 #define TRE_FLAGS_IEOB_FMASK GENMASK(8, 8) 85 #define TRE_FLAGS_IEOT_FMASK GENMASK(9, 9) 86 #define TRE_FLAGS_BEI_FMASK GENMASK(10, 10) 87 #define TRE_FLAGS_TYPE_FMASK GENMASK(23, 16) 88 89 int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count, 90 u32 max_alloc) 91 { 92 void *virt; 93 94 #ifdef IPA_VALIDATE 95 if (!size || size % 8) 96 return -EINVAL; 97 if (count < max_alloc) 98 return -EINVAL; 99 if (!max_alloc) 100 return -EINVAL; 101 #endif /* IPA_VALIDATE */ 102 103 /* By allocating a few extra entries in our pool (one less 104 * than the maximum number that will be requested in a 105 * single allocation), we can always satisfy requests without 106 * ever worrying about straddling the end of the pool array. 107 * If there aren't enough entries starting at the free index, 108 * we just allocate free entries from the beginning of the pool. 109 */ 110 virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL); 111 if (!virt) 112 return -ENOMEM; 113 114 pool->base = virt; 115 /* If the allocator gave us any extra memory, use it */ 116 pool->count = ksize(pool->base) / size; 117 pool->free = 0; 118 pool->max_alloc = max_alloc; 119 pool->size = size; 120 pool->addr = 0; /* Only used for DMA pools */ 121 122 return 0; 123 } 124 125 void gsi_trans_pool_exit(struct gsi_trans_pool *pool) 126 { 127 kfree(pool->base); 128 memset(pool, 0, sizeof(*pool)); 129 } 130 131 /* Allocate the requested number of (zeroed) entries from the pool */ 132 /* Home-grown DMA pool. This way we can preallocate and use the tre_count 133 * to guarantee allocations will succeed. Even though we specify max_alloc 134 * (and it can be more than one), we only allow allocation of a single 135 * element from a DMA pool. 136 */ 137 int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool, 138 size_t size, u32 count, u32 max_alloc) 139 { 140 size_t total_size; 141 dma_addr_t addr; 142 void *virt; 143 144 #ifdef IPA_VALIDATE 145 if (!size || size % 8) 146 return -EINVAL; 147 if (count < max_alloc) 148 return -EINVAL; 149 if (!max_alloc) 150 return -EINVAL; 151 #endif /* IPA_VALIDATE */ 152 153 /* Don't let allocations cross a power-of-two boundary */ 154 size = __roundup_pow_of_two(size); 155 total_size = (count + max_alloc - 1) * size; 156 157 /* The allocator will give us a power-of-2 number of pages. But we 158 * can't guarantee that, so request it. That way we won't waste any 159 * memory that would be available beyond the required space. 160 */ 161 total_size = get_order(total_size) << PAGE_SHIFT; 162 163 virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL); 164 if (!virt) 165 return -ENOMEM; 166 167 pool->base = virt; 168 pool->count = total_size / size; 169 pool->free = 0; 170 pool->size = size; 171 pool->max_alloc = max_alloc; 172 pool->addr = addr; 173 174 return 0; 175 } 176 177 void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool) 178 { 179 dma_free_coherent(dev, pool->size, pool->base, pool->addr); 180 memset(pool, 0, sizeof(*pool)); 181 } 182 183 /* Return the byte offset of the next free entry in the pool */ 184 static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count) 185 { 186 u32 offset; 187 188 /* assert(count > 0); */ 189 /* assert(count <= pool->max_alloc); */ 190 191 /* Allocate from beginning if wrap would occur */ 192 if (count > pool->count - pool->free) 193 pool->free = 0; 194 195 offset = pool->free * pool->size; 196 pool->free += count; 197 memset(pool->base + offset, 0, count * pool->size); 198 199 return offset; 200 } 201 202 /* Allocate a contiguous block of zeroed entries from a pool */ 203 void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count) 204 { 205 return pool->base + gsi_trans_pool_alloc_common(pool, count); 206 } 207 208 /* Allocate a single zeroed entry from a DMA pool */ 209 void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr) 210 { 211 u32 offset = gsi_trans_pool_alloc_common(pool, 1); 212 213 *addr = pool->addr + offset; 214 215 return pool->base + offset; 216 } 217 218 /* Return the pool element that immediately follows the one given. 219 * This only works done if elements are allocated one at a time. 220 */ 221 void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element) 222 { 223 void *end = pool->base + pool->count * pool->size; 224 225 /* assert(element >= pool->base); */ 226 /* assert(element < end); */ 227 /* assert(pool->max_alloc == 1); */ 228 element += pool->size; 229 230 return element < end ? element : pool->base; 231 } 232 233 /* Map a given ring entry index to the transaction associated with it */ 234 static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index, 235 struct gsi_trans *trans) 236 { 237 /* Note: index *must* be used modulo the ring count here */ 238 channel->trans_info.map[index % channel->tre_ring.count] = trans; 239 } 240 241 /* Return the transaction mapped to a given ring entry */ 242 struct gsi_trans * 243 gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index) 244 { 245 /* Note: index *must* be used modulo the ring count here */ 246 return channel->trans_info.map[index % channel->tre_ring.count]; 247 } 248 249 /* Return the oldest completed transaction for a channel (or null) */ 250 struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel) 251 { 252 return list_first_entry_or_null(&channel->trans_info.complete, 253 struct gsi_trans, links); 254 } 255 256 /* Move a transaction from the allocated list to the pending list */ 257 static void gsi_trans_move_pending(struct gsi_trans *trans) 258 { 259 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 260 struct gsi_trans_info *trans_info = &channel->trans_info; 261 262 spin_lock_bh(&trans_info->spinlock); 263 264 list_move_tail(&trans->links, &trans_info->pending); 265 266 spin_unlock_bh(&trans_info->spinlock); 267 } 268 269 /* Move a transaction and all of its predecessors from the pending list 270 * to the completed list. 271 */ 272 void gsi_trans_move_complete(struct gsi_trans *trans) 273 { 274 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 275 struct gsi_trans_info *trans_info = &channel->trans_info; 276 struct list_head list; 277 278 spin_lock_bh(&trans_info->spinlock); 279 280 /* Move this transaction and all predecessors to completed list */ 281 list_cut_position(&list, &trans_info->pending, &trans->links); 282 list_splice_tail(&list, &trans_info->complete); 283 284 spin_unlock_bh(&trans_info->spinlock); 285 } 286 287 /* Move a transaction from the completed list to the polled list */ 288 void gsi_trans_move_polled(struct gsi_trans *trans) 289 { 290 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 291 struct gsi_trans_info *trans_info = &channel->trans_info; 292 293 spin_lock_bh(&trans_info->spinlock); 294 295 list_move_tail(&trans->links, &trans_info->polled); 296 297 spin_unlock_bh(&trans_info->spinlock); 298 } 299 300 /* Reserve some number of TREs on a channel. Returns true if successful */ 301 static bool 302 gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count) 303 { 304 int avail = atomic_read(&trans_info->tre_avail); 305 int new; 306 307 do { 308 new = avail - (int)tre_count; 309 if (unlikely(new < 0)) 310 return false; 311 } while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new)); 312 313 return true; 314 } 315 316 /* Release previously-reserved TRE entries to a channel */ 317 static void 318 gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count) 319 { 320 atomic_add(tre_count, &trans_info->tre_avail); 321 } 322 323 /* Allocate a GSI transaction on a channel */ 324 struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id, 325 u32 tre_count, 326 enum dma_data_direction direction) 327 { 328 struct gsi_channel *channel = &gsi->channel[channel_id]; 329 struct gsi_trans_info *trans_info; 330 struct gsi_trans *trans; 331 332 /* assert(tre_count <= gsi_channel_trans_tre_max(gsi, channel_id)); */ 333 334 trans_info = &channel->trans_info; 335 336 /* We reserve the TREs now, but consume them at commit time. 337 * If there aren't enough available, we're done. 338 */ 339 if (!gsi_trans_tre_reserve(trans_info, tre_count)) 340 return NULL; 341 342 /* Allocate and initialize non-zero fields in the the transaction */ 343 trans = gsi_trans_pool_alloc(&trans_info->pool, 1); 344 trans->gsi = gsi; 345 trans->channel_id = channel_id; 346 trans->tre_count = tre_count; 347 init_completion(&trans->completion); 348 349 /* Allocate the scatterlist and (if requested) info entries. */ 350 trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count); 351 sg_init_marker(trans->sgl, tre_count); 352 353 trans->direction = direction; 354 355 spin_lock_bh(&trans_info->spinlock); 356 357 list_add_tail(&trans->links, &trans_info->alloc); 358 359 spin_unlock_bh(&trans_info->spinlock); 360 361 refcount_set(&trans->refcount, 1); 362 363 return trans; 364 } 365 366 /* Free a previously-allocated transaction (used only in case of error) */ 367 void gsi_trans_free(struct gsi_trans *trans) 368 { 369 struct gsi_trans_info *trans_info; 370 371 if (!refcount_dec_and_test(&trans->refcount)) 372 return; 373 374 trans_info = &trans->gsi->channel[trans->channel_id].trans_info; 375 376 spin_lock_bh(&trans_info->spinlock); 377 378 list_del(&trans->links); 379 380 spin_unlock_bh(&trans_info->spinlock); 381 382 ipa_gsi_trans_release(trans); 383 384 /* Releasing the reserved TREs implicitly frees the sgl[] and 385 * (if present) info[] arrays, plus the transaction itself. 386 */ 387 gsi_trans_tre_release(trans_info, trans->tre_count); 388 } 389 390 /* Add an immediate command to a transaction */ 391 void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size, 392 dma_addr_t addr, enum dma_data_direction direction, 393 enum ipa_cmd_opcode opcode) 394 { 395 struct ipa_cmd_info *info; 396 u32 which = trans->used++; 397 struct scatterlist *sg; 398 399 /* assert(which < trans->tre_count); */ 400 401 /* Set the page information for the buffer. We also need to fill in 402 * the DMA address and length for the buffer (something dma_map_sg() 403 * normally does). 404 */ 405 sg = &trans->sgl[which]; 406 407 sg_set_buf(sg, buf, size); 408 sg_dma_address(sg) = addr; 409 sg_dma_len(sg) = sg->length; 410 411 info = &trans->info[which]; 412 info->opcode = opcode; 413 info->direction = direction; 414 } 415 416 /* Add a page transfer to a transaction. It will fill the only TRE. */ 417 int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size, 418 u32 offset) 419 { 420 struct scatterlist *sg = &trans->sgl[0]; 421 int ret; 422 423 /* assert(trans->tre_count == 1); */ 424 /* assert(!trans->used); */ 425 426 sg_set_page(sg, page, size, offset); 427 ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction); 428 if (!ret) 429 return -ENOMEM; 430 431 trans->used++; /* Transaction now owns the (DMA mapped) page */ 432 433 return 0; 434 } 435 436 /* Add an SKB transfer to a transaction. No other TREs will be used. */ 437 int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb) 438 { 439 struct scatterlist *sg = &trans->sgl[0]; 440 u32 used; 441 int ret; 442 443 /* assert(trans->tre_count == 1); */ 444 /* assert(!trans->used); */ 445 446 /* skb->len will not be 0 (checked early) */ 447 ret = skb_to_sgvec(skb, sg, 0, skb->len); 448 if (ret < 0) 449 return ret; 450 used = ret; 451 452 ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction); 453 if (!ret) 454 return -ENOMEM; 455 456 trans->used += used; /* Transaction now owns the (DMA mapped) skb */ 457 458 return 0; 459 } 460 461 /* Compute the length/opcode value to use for a TRE */ 462 static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len) 463 { 464 return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len) 465 : cpu_to_le16((u16)opcode); 466 } 467 468 /* Compute the flags value to use for a given TRE */ 469 static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode) 470 { 471 enum gsi_tre_type tre_type; 472 u32 tre_flags; 473 474 tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD; 475 tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK); 476 477 /* Last TRE contains interrupt flags */ 478 if (last_tre) { 479 /* All transactions end in a transfer completion interrupt */ 480 tre_flags |= TRE_FLAGS_IEOT_FMASK; 481 /* Don't interrupt when outbound commands are acknowledged */ 482 if (bei) 483 tre_flags |= TRE_FLAGS_BEI_FMASK; 484 } else { /* All others indicate there's more to come */ 485 tre_flags |= TRE_FLAGS_CHAIN_FMASK; 486 } 487 488 return cpu_to_le32(tre_flags); 489 } 490 491 static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr, 492 u32 len, bool last_tre, bool bei, 493 enum ipa_cmd_opcode opcode) 494 { 495 struct gsi_tre tre; 496 497 tre.addr = cpu_to_le64(addr); 498 tre.len_opcode = gsi_tre_len_opcode(opcode, len); 499 tre.reserved = 0; 500 tre.flags = gsi_tre_flags(last_tre, bei, opcode); 501 502 /* ARM64 can write 16 bytes as a unit with a single instruction. 503 * Doing the assignment this way is an attempt to make that happen. 504 */ 505 *dest_tre = tre; 506 } 507 508 /** 509 * __gsi_trans_commit() - Common GSI transaction commit code 510 * @trans: Transaction to commit 511 * @ring_db: Whether to tell the hardware about these queued transfers 512 * 513 * Formats channel ring TRE entries based on the content of the scatterlist. 514 * Maps a transaction pointer to the last ring entry used for the transaction, 515 * so it can be recovered when it completes. Moves the transaction to the 516 * pending list. Finally, updates the channel ring pointer and optionally 517 * rings the doorbell. 518 */ 519 static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db) 520 { 521 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 522 struct gsi_ring *ring = &channel->tre_ring; 523 enum ipa_cmd_opcode opcode = IPA_CMD_NONE; 524 bool bei = channel->toward_ipa; 525 struct ipa_cmd_info *info; 526 struct gsi_tre *dest_tre; 527 struct scatterlist *sg; 528 u32 byte_count = 0; 529 u32 avail; 530 u32 i; 531 532 /* assert(trans->used > 0); */ 533 534 /* Consume the entries. If we cross the end of the ring while 535 * filling them we'll switch to the beginning to finish. 536 * If there is no info array we're doing a simple data 537 * transfer request, whose opcode is IPA_CMD_NONE. 538 */ 539 info = trans->info ? &trans->info[0] : NULL; 540 avail = ring->count - ring->index % ring->count; 541 dest_tre = gsi_ring_virt(ring, ring->index); 542 for_each_sg(trans->sgl, sg, trans->used, i) { 543 bool last_tre = i == trans->used - 1; 544 dma_addr_t addr = sg_dma_address(sg); 545 u32 len = sg_dma_len(sg); 546 547 byte_count += len; 548 if (!avail--) 549 dest_tre = gsi_ring_virt(ring, 0); 550 if (info) 551 opcode = info++->opcode; 552 553 gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode); 554 dest_tre++; 555 } 556 ring->index += trans->used; 557 558 if (channel->toward_ipa) { 559 /* We record TX bytes when they are sent */ 560 trans->len = byte_count; 561 trans->trans_count = channel->trans_count; 562 trans->byte_count = channel->byte_count; 563 channel->trans_count++; 564 channel->byte_count += byte_count; 565 } 566 567 /* Associate the last TRE with the transaction */ 568 gsi_channel_trans_map(channel, ring->index - 1, trans); 569 570 gsi_trans_move_pending(trans); 571 572 /* Ring doorbell if requested, or if all TREs are allocated */ 573 if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) { 574 /* Report what we're handing off to hardware for TX channels */ 575 if (channel->toward_ipa) 576 gsi_channel_tx_queued(channel); 577 gsi_channel_doorbell(channel); 578 } 579 } 580 581 /* Commit a GSI transaction */ 582 void gsi_trans_commit(struct gsi_trans *trans, bool ring_db) 583 { 584 if (trans->used) 585 __gsi_trans_commit(trans, ring_db); 586 else 587 gsi_trans_free(trans); 588 } 589 590 /* Commit a GSI transaction and wait for it to complete */ 591 void gsi_trans_commit_wait(struct gsi_trans *trans) 592 { 593 if (!trans->used) 594 goto out_trans_free; 595 596 refcount_inc(&trans->refcount); 597 598 __gsi_trans_commit(trans, true); 599 600 wait_for_completion(&trans->completion); 601 602 out_trans_free: 603 gsi_trans_free(trans); 604 } 605 606 /* Commit a GSI transaction and wait for it to complete, with timeout */ 607 int gsi_trans_commit_wait_timeout(struct gsi_trans *trans, 608 unsigned long timeout) 609 { 610 unsigned long timeout_jiffies = msecs_to_jiffies(timeout); 611 unsigned long remaining = 1; /* In case of empty transaction */ 612 613 if (!trans->used) 614 goto out_trans_free; 615 616 refcount_inc(&trans->refcount); 617 618 __gsi_trans_commit(trans, true); 619 620 remaining = wait_for_completion_timeout(&trans->completion, 621 timeout_jiffies); 622 out_trans_free: 623 gsi_trans_free(trans); 624 625 return remaining ? 0 : -ETIMEDOUT; 626 } 627 628 /* Process the completion of a transaction; called while polling */ 629 void gsi_trans_complete(struct gsi_trans *trans) 630 { 631 /* If the entire SGL was mapped when added, unmap it now */ 632 if (trans->direction != DMA_NONE) 633 dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used, 634 trans->direction); 635 636 ipa_gsi_trans_complete(trans); 637 638 complete(&trans->completion); 639 640 gsi_trans_free(trans); 641 } 642 643 /* Cancel a channel's pending transactions */ 644 void gsi_channel_trans_cancel_pending(struct gsi_channel *channel) 645 { 646 struct gsi_trans_info *trans_info = &channel->trans_info; 647 struct gsi_trans *trans; 648 bool cancelled; 649 650 /* channel->gsi->mutex is held by caller */ 651 spin_lock_bh(&trans_info->spinlock); 652 653 cancelled = !list_empty(&trans_info->pending); 654 list_for_each_entry(trans, &trans_info->pending, links) 655 trans->cancelled = true; 656 657 list_splice_tail_init(&trans_info->pending, &trans_info->complete); 658 659 spin_unlock_bh(&trans_info->spinlock); 660 661 /* Schedule NAPI polling to complete the cancelled transactions */ 662 if (cancelled) 663 napi_schedule(&channel->napi); 664 } 665 666 /* Issue a command to read a single byte from a channel */ 667 int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr) 668 { 669 struct gsi_channel *channel = &gsi->channel[channel_id]; 670 struct gsi_ring *ring = &channel->tre_ring; 671 struct gsi_trans_info *trans_info; 672 struct gsi_tre *dest_tre; 673 674 trans_info = &channel->trans_info; 675 676 /* First reserve the TRE, if possible */ 677 if (!gsi_trans_tre_reserve(trans_info, 1)) 678 return -EBUSY; 679 680 /* Now fill the the reserved TRE and tell the hardware */ 681 682 dest_tre = gsi_ring_virt(ring, ring->index); 683 gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE); 684 685 ring->index++; 686 gsi_channel_doorbell(channel); 687 688 return 0; 689 } 690 691 /* Mark a gsi_trans_read_byte() request done */ 692 void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id) 693 { 694 struct gsi_channel *channel = &gsi->channel[channel_id]; 695 696 gsi_trans_tre_release(&channel->trans_info, 1); 697 } 698 699 /* Initialize a channel's GSI transaction info */ 700 int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id) 701 { 702 struct gsi_channel *channel = &gsi->channel[channel_id]; 703 struct gsi_trans_info *trans_info; 704 u32 tre_max; 705 int ret; 706 707 /* Ensure the size of a channel element is what's expected */ 708 BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE); 709 710 /* The map array is used to determine what transaction is associated 711 * with a TRE that the hardware reports has completed. We need one 712 * map entry per TRE. 713 */ 714 trans_info = &channel->trans_info; 715 trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map), 716 GFP_KERNEL); 717 if (!trans_info->map) 718 return -ENOMEM; 719 720 /* We can't use more TREs than there are available in the ring. 721 * This limits the number of transactions that can be oustanding. 722 * Worst case is one TRE per transaction (but we actually limit 723 * it to something a little less than that). We allocate resources 724 * for transactions (including transaction structures) based on 725 * this maximum number. 726 */ 727 tre_max = gsi_channel_tre_max(channel->gsi, channel_id); 728 729 /* Transactions are allocated one at a time. */ 730 ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans), 731 tre_max, 1); 732 if (ret) 733 goto err_kfree; 734 735 /* A transaction uses a scatterlist array to represent the data 736 * transfers implemented by the transaction. Each scatterlist 737 * element is used to fill a single TRE when the transaction is 738 * committed. So we need as many scatterlist elements as the 739 * maximum number of TREs that can be outstanding. 740 * 741 * All TREs in a transaction must fit within the channel's TLV FIFO. 742 * A transaction on a channel can allocate as many TREs as that but 743 * no more. 744 */ 745 ret = gsi_trans_pool_init(&trans_info->sg_pool, 746 sizeof(struct scatterlist), 747 tre_max, channel->tlv_count); 748 if (ret) 749 goto err_trans_pool_exit; 750 751 /* Finally, the tre_avail field is what ultimately limits the number 752 * of outstanding transactions and their resources. A transaction 753 * allocation succeeds only if the TREs available are sufficient for 754 * what the transaction might need. Transaction resource pools are 755 * sized based on the maximum number of outstanding TREs, so there 756 * will always be resources available if there are TREs available. 757 */ 758 atomic_set(&trans_info->tre_avail, tre_max); 759 760 spin_lock_init(&trans_info->spinlock); 761 INIT_LIST_HEAD(&trans_info->alloc); 762 INIT_LIST_HEAD(&trans_info->pending); 763 INIT_LIST_HEAD(&trans_info->complete); 764 INIT_LIST_HEAD(&trans_info->polled); 765 766 return 0; 767 768 err_trans_pool_exit: 769 gsi_trans_pool_exit(&trans_info->pool); 770 err_kfree: 771 kfree(trans_info->map); 772 773 dev_err(gsi->dev, "error %d initializing channel %u transactions\n", 774 ret, channel_id); 775 776 return ret; 777 } 778 779 /* Inverse of gsi_channel_trans_init() */ 780 void gsi_channel_trans_exit(struct gsi_channel *channel) 781 { 782 struct gsi_trans_info *trans_info = &channel->trans_info; 783 784 gsi_trans_pool_exit(&trans_info->sg_pool); 785 gsi_trans_pool_exit(&trans_info->pool); 786 kfree(trans_info->map); 787 } 788