xref: /openbmc/linux/drivers/net/ipa/gsi_trans.c (revision e2bd6bad)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/refcount.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_private.h"
16 #include "gsi_trans.h"
17 #include "ipa_gsi.h"
18 #include "ipa_data.h"
19 #include "ipa_cmd.h"
20 
21 /**
22  * DOC: GSI Transactions
23  *
24  * A GSI transaction abstracts the behavior of a GSI channel by representing
25  * everything about a related group of IPA commands in a single structure.
26  * (A "command" in this sense is either a data transfer or an IPA immediate
27  * command.)  Most details of interaction with the GSI hardware are managed
28  * by the GSI transaction core, allowing users to simply describe commands
29  * to be performed.  When a transaction has completed a callback function
30  * (dependent on the type of endpoint associated with the channel) allows
31  * cleanup of resources associated with the transaction.
32  *
33  * To perform a command (or set of them), a user of the GSI transaction
34  * interface allocates a transaction, indicating the number of TREs required
35  * (one per command).  If sufficient TREs are available, they are reserved
36  * for use in the transaction and the allocation succeeds.  This way
37  * exhaustion of the available TREs in a channel ring is detected
38  * as early as possible.  All resources required to complete a transaction
39  * are allocated at transaction allocation time.
40  *
41  * Commands performed as part of a transaction are represented in an array
42  * of Linux scatterlist structures.  This array is allocated with the
43  * transaction, and its entries are initialized using standard scatterlist
44  * functions (such as sg_set_buf() or skb_to_sgvec()).
45  *
46  * Once a transaction's scatterlist structures have been initialized, the
47  * transaction is committed.  The caller is responsible for mapping buffers
48  * for DMA if necessary, and this should be done *before* allocating
49  * the transaction.  Between a successful allocation and commit of a
50  * transaction no errors should occur.
51  *
52  * Committing transfers ownership of the entire transaction to the GSI
53  * transaction core.  The GSI transaction code formats the content of
54  * the scatterlist array into the channel ring buffer and informs the
55  * hardware that new TREs are available to process.
56  *
57  * The last TRE in each transaction is marked to interrupt the AP when the
58  * GSI hardware has completed it.  Because transfers described by TREs are
59  * performed strictly in order, signaling the completion of just the last
60  * TRE in the transaction is sufficient to indicate the full transaction
61  * is complete.
62  *
63  * When a transaction is complete, ipa_gsi_trans_complete() is called by the
64  * GSI code into the IPA layer, allowing it to perform any final cleanup
65  * required before the transaction is freed.
66  */
67 
68 /* Hardware values representing a transfer element type */
69 enum gsi_tre_type {
70 	GSI_RE_XFER	= 0x2,
71 	GSI_RE_IMMD_CMD	= 0x3,
72 };
73 
74 /* An entry in a channel ring */
75 struct gsi_tre {
76 	__le64 addr;		/* DMA address */
77 	__le16 len_opcode;	/* length in bytes or enum IPA_CMD_* */
78 	__le16 reserved;
79 	__le32 flags;		/* TRE_FLAGS_* */
80 };
81 
82 /* gsi_tre->flags mask values (in CPU byte order) */
83 #define TRE_FLAGS_CHAIN_FMASK	GENMASK(0, 0)
84 #define TRE_FLAGS_IEOT_FMASK	GENMASK(9, 9)
85 #define TRE_FLAGS_BEI_FMASK	GENMASK(10, 10)
86 #define TRE_FLAGS_TYPE_FMASK	GENMASK(23, 16)
87 
88 int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
89 			u32 max_alloc)
90 {
91 	void *virt;
92 
93 #ifdef IPA_VALIDATE
94 	if (!size)
95 		return -EINVAL;
96 	if (count < max_alloc)
97 		return -EINVAL;
98 	if (!max_alloc)
99 		return -EINVAL;
100 #endif /* IPA_VALIDATE */
101 
102 	/* By allocating a few extra entries in our pool (one less
103 	 * than the maximum number that will be requested in a
104 	 * single allocation), we can always satisfy requests without
105 	 * ever worrying about straddling the end of the pool array.
106 	 * If there aren't enough entries starting at the free index,
107 	 * we just allocate free entries from the beginning of the pool.
108 	 */
109 	virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL);
110 	if (!virt)
111 		return -ENOMEM;
112 
113 	pool->base = virt;
114 	/* If the allocator gave us any extra memory, use it */
115 	pool->count = ksize(pool->base) / size;
116 	pool->free = 0;
117 	pool->max_alloc = max_alloc;
118 	pool->size = size;
119 	pool->addr = 0;		/* Only used for DMA pools */
120 
121 	return 0;
122 }
123 
124 void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
125 {
126 	kfree(pool->base);
127 	memset(pool, 0, sizeof(*pool));
128 }
129 
130 /* Allocate the requested number of (zeroed) entries from the pool */
131 /* Home-grown DMA pool.  This way we can preallocate and use the tre_count
132  * to guarantee allocations will succeed.  Even though we specify max_alloc
133  * (and it can be more than one), we only allow allocation of a single
134  * element from a DMA pool.
135  */
136 int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
137 			    size_t size, u32 count, u32 max_alloc)
138 {
139 	size_t total_size;
140 	dma_addr_t addr;
141 	void *virt;
142 
143 #ifdef IPA_VALIDATE
144 	if (!size)
145 		return -EINVAL;
146 	if (count < max_alloc)
147 		return -EINVAL;
148 	if (!max_alloc)
149 		return -EINVAL;
150 #endif /* IPA_VALIDATE */
151 
152 	/* Don't let allocations cross a power-of-two boundary */
153 	size = __roundup_pow_of_two(size);
154 	total_size = (count + max_alloc - 1) * size;
155 
156 	/* The allocator will give us a power-of-2 number of pages
157 	 * sufficient to satisfy our request.  Round up our requested
158 	 * size to avoid any unused space in the allocation.  This way
159 	 * gsi_trans_pool_exit_dma() can assume the total allocated
160 	 * size is exactly (count * size).
161 	 */
162 	total_size = get_order(total_size) << PAGE_SHIFT;
163 
164 	virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
165 	if (!virt)
166 		return -ENOMEM;
167 
168 	pool->base = virt;
169 	pool->count = total_size / size;
170 	pool->free = 0;
171 	pool->size = size;
172 	pool->max_alloc = max_alloc;
173 	pool->addr = addr;
174 
175 	return 0;
176 }
177 
178 void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
179 {
180 	size_t total_size = pool->count * pool->size;
181 
182 	dma_free_coherent(dev, total_size, pool->base, pool->addr);
183 	memset(pool, 0, sizeof(*pool));
184 }
185 
186 /* Return the byte offset of the next free entry in the pool */
187 static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
188 {
189 	u32 offset;
190 
191 	/* assert(count > 0); */
192 	/* assert(count <= pool->max_alloc); */
193 
194 	/* Allocate from beginning if wrap would occur */
195 	if (count > pool->count - pool->free)
196 		pool->free = 0;
197 
198 	offset = pool->free * pool->size;
199 	pool->free += count;
200 	memset(pool->base + offset, 0, count * pool->size);
201 
202 	return offset;
203 }
204 
205 /* Allocate a contiguous block of zeroed entries from a pool */
206 void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
207 {
208 	return pool->base + gsi_trans_pool_alloc_common(pool, count);
209 }
210 
211 /* Allocate a single zeroed entry from a DMA pool */
212 void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
213 {
214 	u32 offset = gsi_trans_pool_alloc_common(pool, 1);
215 
216 	*addr = pool->addr + offset;
217 
218 	return pool->base + offset;
219 }
220 
221 /* Return the pool element that immediately follows the one given.
222  * This only works done if elements are allocated one at a time.
223  */
224 void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element)
225 {
226 	void *end = pool->base + pool->count * pool->size;
227 
228 	/* assert(element >= pool->base); */
229 	/* assert(element < end); */
230 	/* assert(pool->max_alloc == 1); */
231 	element += pool->size;
232 
233 	return element < end ? element : pool->base;
234 }
235 
236 /* Map a given ring entry index to the transaction associated with it */
237 static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index,
238 				  struct gsi_trans *trans)
239 {
240 	/* Note: index *must* be used modulo the ring count here */
241 	channel->trans_info.map[index % channel->tre_ring.count] = trans;
242 }
243 
244 /* Return the transaction mapped to a given ring entry */
245 struct gsi_trans *
246 gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index)
247 {
248 	/* Note: index *must* be used modulo the ring count here */
249 	return channel->trans_info.map[index % channel->tre_ring.count];
250 }
251 
252 /* Return the oldest completed transaction for a channel (or null) */
253 struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel)
254 {
255 	return list_first_entry_or_null(&channel->trans_info.complete,
256 					struct gsi_trans, links);
257 }
258 
259 /* Move a transaction from the allocated list to the pending list */
260 static void gsi_trans_move_pending(struct gsi_trans *trans)
261 {
262 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
263 	struct gsi_trans_info *trans_info = &channel->trans_info;
264 
265 	spin_lock_bh(&trans_info->spinlock);
266 
267 	list_move_tail(&trans->links, &trans_info->pending);
268 
269 	spin_unlock_bh(&trans_info->spinlock);
270 }
271 
272 /* Move a transaction and all of its predecessors from the pending list
273  * to the completed list.
274  */
275 void gsi_trans_move_complete(struct gsi_trans *trans)
276 {
277 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
278 	struct gsi_trans_info *trans_info = &channel->trans_info;
279 	struct list_head list;
280 
281 	spin_lock_bh(&trans_info->spinlock);
282 
283 	/* Move this transaction and all predecessors to completed list */
284 	list_cut_position(&list, &trans_info->pending, &trans->links);
285 	list_splice_tail(&list, &trans_info->complete);
286 
287 	spin_unlock_bh(&trans_info->spinlock);
288 }
289 
290 /* Move a transaction from the completed list to the polled list */
291 void gsi_trans_move_polled(struct gsi_trans *trans)
292 {
293 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
294 	struct gsi_trans_info *trans_info = &channel->trans_info;
295 
296 	spin_lock_bh(&trans_info->spinlock);
297 
298 	list_move_tail(&trans->links, &trans_info->polled);
299 
300 	spin_unlock_bh(&trans_info->spinlock);
301 }
302 
303 /* Reserve some number of TREs on a channel.  Returns true if successful */
304 static bool
305 gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count)
306 {
307 	int avail = atomic_read(&trans_info->tre_avail);
308 	int new;
309 
310 	do {
311 		new = avail - (int)tre_count;
312 		if (unlikely(new < 0))
313 			return false;
314 	} while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new));
315 
316 	return true;
317 }
318 
319 /* Release previously-reserved TRE entries to a channel */
320 static void
321 gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count)
322 {
323 	atomic_add(tre_count, &trans_info->tre_avail);
324 }
325 
326 /* Allocate a GSI transaction on a channel */
327 struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
328 					  u32 tre_count,
329 					  enum dma_data_direction direction)
330 {
331 	struct gsi_channel *channel = &gsi->channel[channel_id];
332 	struct gsi_trans_info *trans_info;
333 	struct gsi_trans *trans;
334 
335 	/* assert(tre_count <= gsi_channel_trans_tre_max(gsi, channel_id)); */
336 
337 	trans_info = &channel->trans_info;
338 
339 	/* We reserve the TREs now, but consume them at commit time.
340 	 * If there aren't enough available, we're done.
341 	 */
342 	if (!gsi_trans_tre_reserve(trans_info, tre_count))
343 		return NULL;
344 
345 	/* Allocate and initialize non-zero fields in the the transaction */
346 	trans = gsi_trans_pool_alloc(&trans_info->pool, 1);
347 	trans->gsi = gsi;
348 	trans->channel_id = channel_id;
349 	trans->tre_count = tre_count;
350 	init_completion(&trans->completion);
351 
352 	/* Allocate the scatterlist and (if requested) info entries. */
353 	trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count);
354 	sg_init_marker(trans->sgl, tre_count);
355 
356 	trans->direction = direction;
357 
358 	spin_lock_bh(&trans_info->spinlock);
359 
360 	list_add_tail(&trans->links, &trans_info->alloc);
361 
362 	spin_unlock_bh(&trans_info->spinlock);
363 
364 	refcount_set(&trans->refcount, 1);
365 
366 	return trans;
367 }
368 
369 /* Free a previously-allocated transaction */
370 void gsi_trans_free(struct gsi_trans *trans)
371 {
372 	refcount_t *refcount = &trans->refcount;
373 	struct gsi_trans_info *trans_info;
374 	bool last;
375 
376 	/* We must hold the lock to release the last reference */
377 	if (refcount_dec_not_one(refcount))
378 		return;
379 
380 	trans_info = &trans->gsi->channel[trans->channel_id].trans_info;
381 
382 	spin_lock_bh(&trans_info->spinlock);
383 
384 	/* Reference might have been added before we got the lock */
385 	last = refcount_dec_and_test(refcount);
386 	if (last)
387 		list_del(&trans->links);
388 
389 	spin_unlock_bh(&trans_info->spinlock);
390 
391 	if (!last)
392 		return;
393 
394 	ipa_gsi_trans_release(trans);
395 
396 	/* Releasing the reserved TREs implicitly frees the sgl[] and
397 	 * (if present) info[] arrays, plus the transaction itself.
398 	 */
399 	gsi_trans_tre_release(trans_info, trans->tre_count);
400 }
401 
402 /* Add an immediate command to a transaction */
403 void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
404 		       dma_addr_t addr, enum dma_data_direction direction,
405 		       enum ipa_cmd_opcode opcode)
406 {
407 	struct ipa_cmd_info *info;
408 	u32 which = trans->used++;
409 	struct scatterlist *sg;
410 
411 	/* assert(which < trans->tre_count); */
412 
413 	/* Commands are quite different from data transfer requests.
414 	 * Their payloads come from a pool whose memory is allocated
415 	 * using dma_alloc_coherent().  We therefore do *not* map them
416 	 * for DMA (unlike what we do for pages and skbs).
417 	 *
418 	 * When a transaction completes, the SGL is normally unmapped.
419 	 * A command transaction has direction DMA_NONE, which tells
420 	 * gsi_trans_complete() to skip the unmapping step.
421 	 *
422 	 * The only things we use directly in a command scatter/gather
423 	 * entry are the DMA address and length.  We still need the SG
424 	 * table flags to be maintained though, so assign a NULL page
425 	 * pointer for that purpose.
426 	 */
427 	sg = &trans->sgl[which];
428 	sg_assign_page(sg, NULL);
429 	sg_dma_address(sg) = addr;
430 	sg_dma_len(sg) = size;
431 
432 	info = &trans->info[which];
433 	info->opcode = opcode;
434 	info->direction = direction;
435 }
436 
437 /* Add a page transfer to a transaction.  It will fill the only TRE. */
438 int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
439 		       u32 offset)
440 {
441 	struct scatterlist *sg = &trans->sgl[0];
442 	int ret;
443 
444 	/* assert(trans->tre_count == 1); */
445 	/* assert(!trans->used); */
446 
447 	sg_set_page(sg, page, size, offset);
448 	ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction);
449 	if (!ret)
450 		return -ENOMEM;
451 
452 	trans->used++;	/* Transaction now owns the (DMA mapped) page */
453 
454 	return 0;
455 }
456 
457 /* Add an SKB transfer to a transaction.  No other TREs will be used. */
458 int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb)
459 {
460 	struct scatterlist *sg = &trans->sgl[0];
461 	u32 used;
462 	int ret;
463 
464 	/* assert(trans->tre_count == 1); */
465 	/* assert(!trans->used); */
466 
467 	/* skb->len will not be 0 (checked early) */
468 	ret = skb_to_sgvec(skb, sg, 0, skb->len);
469 	if (ret < 0)
470 		return ret;
471 	used = ret;
472 
473 	ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction);
474 	if (!ret)
475 		return -ENOMEM;
476 
477 	trans->used += used;	/* Transaction now owns the (DMA mapped) skb */
478 
479 	return 0;
480 }
481 
482 /* Compute the length/opcode value to use for a TRE */
483 static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len)
484 {
485 	return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len)
486 				      : cpu_to_le16((u16)opcode);
487 }
488 
489 /* Compute the flags value to use for a given TRE */
490 static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode)
491 {
492 	enum gsi_tre_type tre_type;
493 	u32 tre_flags;
494 
495 	tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD;
496 	tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK);
497 
498 	/* Last TRE contains interrupt flags */
499 	if (last_tre) {
500 		/* All transactions end in a transfer completion interrupt */
501 		tre_flags |= TRE_FLAGS_IEOT_FMASK;
502 		/* Don't interrupt when outbound commands are acknowledged */
503 		if (bei)
504 			tre_flags |= TRE_FLAGS_BEI_FMASK;
505 	} else {	/* All others indicate there's more to come */
506 		tre_flags |= TRE_FLAGS_CHAIN_FMASK;
507 	}
508 
509 	return cpu_to_le32(tre_flags);
510 }
511 
512 static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr,
513 			       u32 len, bool last_tre, bool bei,
514 			       enum ipa_cmd_opcode opcode)
515 {
516 	struct gsi_tre tre;
517 
518 	tre.addr = cpu_to_le64(addr);
519 	tre.len_opcode = gsi_tre_len_opcode(opcode, len);
520 	tre.reserved = 0;
521 	tre.flags = gsi_tre_flags(last_tre, bei, opcode);
522 
523 	/* ARM64 can write 16 bytes as a unit with a single instruction.
524 	 * Doing the assignment this way is an attempt to make that happen.
525 	 */
526 	*dest_tre = tre;
527 }
528 
529 /**
530  * __gsi_trans_commit() - Common GSI transaction commit code
531  * @trans:	Transaction to commit
532  * @ring_db:	Whether to tell the hardware about these queued transfers
533  *
534  * Formats channel ring TRE entries based on the content of the scatterlist.
535  * Maps a transaction pointer to the last ring entry used for the transaction,
536  * so it can be recovered when it completes.  Moves the transaction to the
537  * pending list.  Finally, updates the channel ring pointer and optionally
538  * rings the doorbell.
539  */
540 static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
541 {
542 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
543 	struct gsi_ring *ring = &channel->tre_ring;
544 	enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
545 	bool bei = channel->toward_ipa;
546 	struct ipa_cmd_info *info;
547 	struct gsi_tre *dest_tre;
548 	struct scatterlist *sg;
549 	u32 byte_count = 0;
550 	u32 avail;
551 	u32 i;
552 
553 	/* assert(trans->used > 0); */
554 
555 	/* Consume the entries.  If we cross the end of the ring while
556 	 * filling them we'll switch to the beginning to finish.
557 	 * If there is no info array we're doing a simple data
558 	 * transfer request, whose opcode is IPA_CMD_NONE.
559 	 */
560 	info = trans->info ? &trans->info[0] : NULL;
561 	avail = ring->count - ring->index % ring->count;
562 	dest_tre = gsi_ring_virt(ring, ring->index);
563 	for_each_sg(trans->sgl, sg, trans->used, i) {
564 		bool last_tre = i == trans->used - 1;
565 		dma_addr_t addr = sg_dma_address(sg);
566 		u32 len = sg_dma_len(sg);
567 
568 		byte_count += len;
569 		if (!avail--)
570 			dest_tre = gsi_ring_virt(ring, 0);
571 		if (info)
572 			opcode = info++->opcode;
573 
574 		gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode);
575 		dest_tre++;
576 	}
577 	ring->index += trans->used;
578 
579 	if (channel->toward_ipa) {
580 		/* We record TX bytes when they are sent */
581 		trans->len = byte_count;
582 		trans->trans_count = channel->trans_count;
583 		trans->byte_count = channel->byte_count;
584 		channel->trans_count++;
585 		channel->byte_count += byte_count;
586 	}
587 
588 	/* Associate the last TRE with the transaction */
589 	gsi_channel_trans_map(channel, ring->index - 1, trans);
590 
591 	gsi_trans_move_pending(trans);
592 
593 	/* Ring doorbell if requested, or if all TREs are allocated */
594 	if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) {
595 		/* Report what we're handing off to hardware for TX channels */
596 		if (channel->toward_ipa)
597 			gsi_channel_tx_queued(channel);
598 		gsi_channel_doorbell(channel);
599 	}
600 }
601 
602 /* Commit a GSI transaction */
603 void gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
604 {
605 	if (trans->used)
606 		__gsi_trans_commit(trans, ring_db);
607 	else
608 		gsi_trans_free(trans);
609 }
610 
611 /* Commit a GSI transaction and wait for it to complete */
612 void gsi_trans_commit_wait(struct gsi_trans *trans)
613 {
614 	if (!trans->used)
615 		goto out_trans_free;
616 
617 	refcount_inc(&trans->refcount);
618 
619 	__gsi_trans_commit(trans, true);
620 
621 	wait_for_completion(&trans->completion);
622 
623 out_trans_free:
624 	gsi_trans_free(trans);
625 }
626 
627 /* Commit a GSI transaction and wait for it to complete, with timeout */
628 int gsi_trans_commit_wait_timeout(struct gsi_trans *trans,
629 				  unsigned long timeout)
630 {
631 	unsigned long timeout_jiffies = msecs_to_jiffies(timeout);
632 	unsigned long remaining = 1;	/* In case of empty transaction */
633 
634 	if (!trans->used)
635 		goto out_trans_free;
636 
637 	refcount_inc(&trans->refcount);
638 
639 	__gsi_trans_commit(trans, true);
640 
641 	remaining = wait_for_completion_timeout(&trans->completion,
642 						timeout_jiffies);
643 out_trans_free:
644 	gsi_trans_free(trans);
645 
646 	return remaining ? 0 : -ETIMEDOUT;
647 }
648 
649 /* Process the completion of a transaction; called while polling */
650 void gsi_trans_complete(struct gsi_trans *trans)
651 {
652 	/* If the entire SGL was mapped when added, unmap it now */
653 	if (trans->direction != DMA_NONE)
654 		dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used,
655 			     trans->direction);
656 
657 	ipa_gsi_trans_complete(trans);
658 
659 	complete(&trans->completion);
660 
661 	gsi_trans_free(trans);
662 }
663 
664 /* Cancel a channel's pending transactions */
665 void gsi_channel_trans_cancel_pending(struct gsi_channel *channel)
666 {
667 	struct gsi_trans_info *trans_info = &channel->trans_info;
668 	struct gsi_trans *trans;
669 	bool cancelled;
670 
671 	/* channel->gsi->mutex is held by caller */
672 	spin_lock_bh(&trans_info->spinlock);
673 
674 	cancelled = !list_empty(&trans_info->pending);
675 	list_for_each_entry(trans, &trans_info->pending, links)
676 		trans->cancelled = true;
677 
678 	list_splice_tail_init(&trans_info->pending, &trans_info->complete);
679 
680 	spin_unlock_bh(&trans_info->spinlock);
681 
682 	/* Schedule NAPI polling to complete the cancelled transactions */
683 	if (cancelled)
684 		napi_schedule(&channel->napi);
685 }
686 
687 /* Issue a command to read a single byte from a channel */
688 int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr)
689 {
690 	struct gsi_channel *channel = &gsi->channel[channel_id];
691 	struct gsi_ring *ring = &channel->tre_ring;
692 	struct gsi_trans_info *trans_info;
693 	struct gsi_tre *dest_tre;
694 
695 	trans_info = &channel->trans_info;
696 
697 	/* First reserve the TRE, if possible */
698 	if (!gsi_trans_tre_reserve(trans_info, 1))
699 		return -EBUSY;
700 
701 	/* Now fill the the reserved TRE and tell the hardware */
702 
703 	dest_tre = gsi_ring_virt(ring, ring->index);
704 	gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE);
705 
706 	ring->index++;
707 	gsi_channel_doorbell(channel);
708 
709 	return 0;
710 }
711 
712 /* Mark a gsi_trans_read_byte() request done */
713 void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id)
714 {
715 	struct gsi_channel *channel = &gsi->channel[channel_id];
716 
717 	gsi_trans_tre_release(&channel->trans_info, 1);
718 }
719 
720 /* Initialize a channel's GSI transaction info */
721 int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id)
722 {
723 	struct gsi_channel *channel = &gsi->channel[channel_id];
724 	struct gsi_trans_info *trans_info;
725 	u32 tre_max;
726 	int ret;
727 
728 	/* Ensure the size of a channel element is what's expected */
729 	BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE);
730 
731 	/* The map array is used to determine what transaction is associated
732 	 * with a TRE that the hardware reports has completed.  We need one
733 	 * map entry per TRE.
734 	 */
735 	trans_info = &channel->trans_info;
736 	trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map),
737 				  GFP_KERNEL);
738 	if (!trans_info->map)
739 		return -ENOMEM;
740 
741 	/* We can't use more TREs than there are available in the ring.
742 	 * This limits the number of transactions that can be oustanding.
743 	 * Worst case is one TRE per transaction (but we actually limit
744 	 * it to something a little less than that).  We allocate resources
745 	 * for transactions (including transaction structures) based on
746 	 * this maximum number.
747 	 */
748 	tre_max = gsi_channel_tre_max(channel->gsi, channel_id);
749 
750 	/* Transactions are allocated one at a time. */
751 	ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans),
752 				  tre_max, 1);
753 	if (ret)
754 		goto err_kfree;
755 
756 	/* A transaction uses a scatterlist array to represent the data
757 	 * transfers implemented by the transaction.  Each scatterlist
758 	 * element is used to fill a single TRE when the transaction is
759 	 * committed.  So we need as many scatterlist elements as the
760 	 * maximum number of TREs that can be outstanding.
761 	 *
762 	 * All TREs in a transaction must fit within the channel's TLV FIFO.
763 	 * A transaction on a channel can allocate as many TREs as that but
764 	 * no more.
765 	 */
766 	ret = gsi_trans_pool_init(&trans_info->sg_pool,
767 				  sizeof(struct scatterlist),
768 				  tre_max, channel->tlv_count);
769 	if (ret)
770 		goto err_trans_pool_exit;
771 
772 	/* Finally, the tre_avail field is what ultimately limits the number
773 	 * of outstanding transactions and their resources.  A transaction
774 	 * allocation succeeds only if the TREs available are sufficient for
775 	 * what the transaction might need.  Transaction resource pools are
776 	 * sized based on the maximum number of outstanding TREs, so there
777 	 * will always be resources available if there are TREs available.
778 	 */
779 	atomic_set(&trans_info->tre_avail, tre_max);
780 
781 	spin_lock_init(&trans_info->spinlock);
782 	INIT_LIST_HEAD(&trans_info->alloc);
783 	INIT_LIST_HEAD(&trans_info->pending);
784 	INIT_LIST_HEAD(&trans_info->complete);
785 	INIT_LIST_HEAD(&trans_info->polled);
786 
787 	return 0;
788 
789 err_trans_pool_exit:
790 	gsi_trans_pool_exit(&trans_info->pool);
791 err_kfree:
792 	kfree(trans_info->map);
793 
794 	dev_err(gsi->dev, "error %d initializing channel %u transactions\n",
795 		ret, channel_id);
796 
797 	return ret;
798 }
799 
800 /* Inverse of gsi_channel_trans_init() */
801 void gsi_channel_trans_exit(struct gsi_channel *channel)
802 {
803 	struct gsi_trans_info *trans_info = &channel->trans_info;
804 
805 	gsi_trans_pool_exit(&trans_info->sg_pool);
806 	gsi_trans_pool_exit(&trans_info->pool);
807 	kfree(trans_info->map);
808 }
809