1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/refcount.h> 11 #include <linux/scatterlist.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_private.h" 16 #include "gsi_trans.h" 17 #include "ipa_gsi.h" 18 #include "ipa_data.h" 19 #include "ipa_cmd.h" 20 21 /** 22 * DOC: GSI Transactions 23 * 24 * A GSI transaction abstracts the behavior of a GSI channel by representing 25 * everything about a related group of IPA commands in a single structure. 26 * (A "command" in this sense is either a data transfer or an IPA immediate 27 * command.) Most details of interaction with the GSI hardware are managed 28 * by the GSI transaction core, allowing users to simply describe commands 29 * to be performed. When a transaction has completed a callback function 30 * (dependent on the type of endpoint associated with the channel) allows 31 * cleanup of resources associated with the transaction. 32 * 33 * To perform a command (or set of them), a user of the GSI transaction 34 * interface allocates a transaction, indicating the number of TREs required 35 * (one per command). If sufficient TREs are available, they are reserved 36 * for use in the transaction and the allocation succeeds. This way 37 * exhaustion of the available TREs in a channel ring is detected 38 * as early as possible. All resources required to complete a transaction 39 * are allocated at transaction allocation time. 40 * 41 * Commands performed as part of a transaction are represented in an array 42 * of Linux scatterlist structures. This array is allocated with the 43 * transaction, and its entries are initialized using standard scatterlist 44 * functions (such as sg_set_buf() or skb_to_sgvec()). 45 * 46 * Once a transaction's scatterlist structures have been initialized, the 47 * transaction is committed. The caller is responsible for mapping buffers 48 * for DMA if necessary, and this should be done *before* allocating 49 * the transaction. Between a successful allocation and commit of a 50 * transaction no errors should occur. 51 * 52 * Committing transfers ownership of the entire transaction to the GSI 53 * transaction core. The GSI transaction code formats the content of 54 * the scatterlist array into the channel ring buffer and informs the 55 * hardware that new TREs are available to process. 56 * 57 * The last TRE in each transaction is marked to interrupt the AP when the 58 * GSI hardware has completed it. Because transfers described by TREs are 59 * performed strictly in order, signaling the completion of just the last 60 * TRE in the transaction is sufficient to indicate the full transaction 61 * is complete. 62 * 63 * When a transaction is complete, ipa_gsi_trans_complete() is called by the 64 * GSI code into the IPA layer, allowing it to perform any final cleanup 65 * required before the transaction is freed. 66 */ 67 68 /* Hardware values representing a transfer element type */ 69 enum gsi_tre_type { 70 GSI_RE_XFER = 0x2, 71 GSI_RE_IMMD_CMD = 0x3, 72 }; 73 74 /* An entry in a channel ring */ 75 struct gsi_tre { 76 __le64 addr; /* DMA address */ 77 __le16 len_opcode; /* length in bytes or enum IPA_CMD_* */ 78 __le16 reserved; 79 __le32 flags; /* TRE_FLAGS_* */ 80 }; 81 82 /* gsi_tre->flags mask values (in CPU byte order) */ 83 #define TRE_FLAGS_CHAIN_FMASK GENMASK(0, 0) 84 #define TRE_FLAGS_IEOT_FMASK GENMASK(9, 9) 85 #define TRE_FLAGS_BEI_FMASK GENMASK(10, 10) 86 #define TRE_FLAGS_TYPE_FMASK GENMASK(23, 16) 87 88 int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count, 89 u32 max_alloc) 90 { 91 void *virt; 92 93 if (!size) 94 return -EINVAL; 95 if (count < max_alloc) 96 return -EINVAL; 97 if (!max_alloc) 98 return -EINVAL; 99 100 /* By allocating a few extra entries in our pool (one less 101 * than the maximum number that will be requested in a 102 * single allocation), we can always satisfy requests without 103 * ever worrying about straddling the end of the pool array. 104 * If there aren't enough entries starting at the free index, 105 * we just allocate free entries from the beginning of the pool. 106 */ 107 virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL); 108 if (!virt) 109 return -ENOMEM; 110 111 pool->base = virt; 112 /* If the allocator gave us any extra memory, use it */ 113 pool->count = ksize(pool->base) / size; 114 pool->free = 0; 115 pool->max_alloc = max_alloc; 116 pool->size = size; 117 pool->addr = 0; /* Only used for DMA pools */ 118 119 return 0; 120 } 121 122 void gsi_trans_pool_exit(struct gsi_trans_pool *pool) 123 { 124 kfree(pool->base); 125 memset(pool, 0, sizeof(*pool)); 126 } 127 128 /* Allocate the requested number of (zeroed) entries from the pool */ 129 /* Home-grown DMA pool. This way we can preallocate and use the tre_count 130 * to guarantee allocations will succeed. Even though we specify max_alloc 131 * (and it can be more than one), we only allow allocation of a single 132 * element from a DMA pool. 133 */ 134 int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool, 135 size_t size, u32 count, u32 max_alloc) 136 { 137 size_t total_size; 138 dma_addr_t addr; 139 void *virt; 140 141 if (!size) 142 return -EINVAL; 143 if (count < max_alloc) 144 return -EINVAL; 145 if (!max_alloc) 146 return -EINVAL; 147 148 /* Don't let allocations cross a power-of-two boundary */ 149 size = __roundup_pow_of_two(size); 150 total_size = (count + max_alloc - 1) * size; 151 152 /* The allocator will give us a power-of-2 number of pages 153 * sufficient to satisfy our request. Round up our requested 154 * size to avoid any unused space in the allocation. This way 155 * gsi_trans_pool_exit_dma() can assume the total allocated 156 * size is exactly (count * size). 157 */ 158 total_size = get_order(total_size) << PAGE_SHIFT; 159 160 virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL); 161 if (!virt) 162 return -ENOMEM; 163 164 pool->base = virt; 165 pool->count = total_size / size; 166 pool->free = 0; 167 pool->size = size; 168 pool->max_alloc = max_alloc; 169 pool->addr = addr; 170 171 return 0; 172 } 173 174 void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool) 175 { 176 size_t total_size = pool->count * pool->size; 177 178 dma_free_coherent(dev, total_size, pool->base, pool->addr); 179 memset(pool, 0, sizeof(*pool)); 180 } 181 182 /* Return the byte offset of the next free entry in the pool */ 183 static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count) 184 { 185 u32 offset; 186 187 WARN_ON(!count); 188 WARN_ON(count > pool->max_alloc); 189 190 /* Allocate from beginning if wrap would occur */ 191 if (count > pool->count - pool->free) 192 pool->free = 0; 193 194 offset = pool->free * pool->size; 195 pool->free += count; 196 memset(pool->base + offset, 0, count * pool->size); 197 198 return offset; 199 } 200 201 /* Allocate a contiguous block of zeroed entries from a pool */ 202 void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count) 203 { 204 return pool->base + gsi_trans_pool_alloc_common(pool, count); 205 } 206 207 /* Allocate a single zeroed entry from a DMA pool */ 208 void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr) 209 { 210 u32 offset = gsi_trans_pool_alloc_common(pool, 1); 211 212 *addr = pool->addr + offset; 213 214 return pool->base + offset; 215 } 216 217 /* Map a TRE ring entry index to the transaction it is associated with */ 218 static void gsi_trans_map(struct gsi_trans *trans, u32 index) 219 { 220 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 221 222 /* The completion event will indicate the last TRE used */ 223 index += trans->used_count - 1; 224 225 /* Note: index *must* be used modulo the ring count here */ 226 channel->trans_info.map[index % channel->tre_ring.count] = trans; 227 } 228 229 /* Return the transaction mapped to a given ring entry */ 230 struct gsi_trans * 231 gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index) 232 { 233 /* Note: index *must* be used modulo the ring count here */ 234 return channel->trans_info.map[index % channel->tre_ring.count]; 235 } 236 237 /* Return the oldest completed transaction for a channel (or null) */ 238 struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel) 239 { 240 return list_first_entry_or_null(&channel->trans_info.complete, 241 struct gsi_trans, links); 242 } 243 244 /* Move a transaction from the allocated list to the committed list */ 245 static void gsi_trans_move_committed(struct gsi_trans *trans) 246 { 247 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 248 struct gsi_trans_info *trans_info = &channel->trans_info; 249 250 spin_lock_bh(&trans_info->spinlock); 251 252 list_move_tail(&trans->links, &trans_info->committed); 253 254 spin_unlock_bh(&trans_info->spinlock); 255 } 256 257 /* Move transactions from the committed list to the pending list */ 258 static void gsi_trans_move_pending(struct gsi_trans *trans) 259 { 260 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 261 struct gsi_trans_info *trans_info = &channel->trans_info; 262 struct list_head list; 263 264 spin_lock_bh(&trans_info->spinlock); 265 266 /* Move this transaction and all predecessors to the pending list */ 267 list_cut_position(&list, &trans_info->committed, &trans->links); 268 list_splice_tail(&list, &trans_info->pending); 269 270 spin_unlock_bh(&trans_info->spinlock); 271 } 272 273 /* Move a transaction and all of its predecessors from the pending list 274 * to the completed list. 275 */ 276 void gsi_trans_move_complete(struct gsi_trans *trans) 277 { 278 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 279 struct gsi_trans_info *trans_info = &channel->trans_info; 280 struct list_head list; 281 282 spin_lock_bh(&trans_info->spinlock); 283 284 /* Move this transaction and all predecessors to completed list */ 285 list_cut_position(&list, &trans_info->pending, &trans->links); 286 list_splice_tail(&list, &trans_info->complete); 287 288 spin_unlock_bh(&trans_info->spinlock); 289 } 290 291 /* Move a transaction from the completed list to the polled list */ 292 void gsi_trans_move_polled(struct gsi_trans *trans) 293 { 294 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 295 struct gsi_trans_info *trans_info = &channel->trans_info; 296 297 spin_lock_bh(&trans_info->spinlock); 298 299 list_move_tail(&trans->links, &trans_info->polled); 300 301 spin_unlock_bh(&trans_info->spinlock); 302 } 303 304 /* Reserve some number of TREs on a channel. Returns true if successful */ 305 static bool 306 gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count) 307 { 308 int avail = atomic_read(&trans_info->tre_avail); 309 int new; 310 311 do { 312 new = avail - (int)tre_count; 313 if (unlikely(new < 0)) 314 return false; 315 } while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new)); 316 317 return true; 318 } 319 320 /* Release previously-reserved TRE entries to a channel */ 321 static void 322 gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count) 323 { 324 atomic_add(tre_count, &trans_info->tre_avail); 325 } 326 327 /* Return true if no transactions are allocated, false otherwise */ 328 bool gsi_channel_trans_idle(struct gsi *gsi, u32 channel_id) 329 { 330 u32 tre_max = gsi_channel_tre_max(gsi, channel_id); 331 struct gsi_trans_info *trans_info; 332 333 trans_info = &gsi->channel[channel_id].trans_info; 334 335 return atomic_read(&trans_info->tre_avail) == tre_max; 336 } 337 338 /* Allocate a GSI transaction on a channel */ 339 struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id, 340 u32 tre_count, 341 enum dma_data_direction direction) 342 { 343 struct gsi_channel *channel = &gsi->channel[channel_id]; 344 struct gsi_trans_info *trans_info; 345 struct gsi_trans *trans; 346 347 if (WARN_ON(tre_count > channel->trans_tre_max)) 348 return NULL; 349 350 trans_info = &channel->trans_info; 351 352 /* We reserve the TREs now, but consume them at commit time. 353 * If there aren't enough available, we're done. 354 */ 355 if (!gsi_trans_tre_reserve(trans_info, tre_count)) 356 return NULL; 357 358 /* Allocate and initialize non-zero fields in the transaction */ 359 trans = gsi_trans_pool_alloc(&trans_info->pool, 1); 360 trans->gsi = gsi; 361 trans->channel_id = channel_id; 362 trans->rsvd_count = tre_count; 363 init_completion(&trans->completion); 364 365 /* Allocate the scatterlist */ 366 trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count); 367 sg_init_marker(trans->sgl, tre_count); 368 369 trans->direction = direction; 370 371 spin_lock_bh(&trans_info->spinlock); 372 373 list_add_tail(&trans->links, &trans_info->alloc); 374 375 spin_unlock_bh(&trans_info->spinlock); 376 377 refcount_set(&trans->refcount, 1); 378 379 return trans; 380 } 381 382 /* Free a previously-allocated transaction */ 383 void gsi_trans_free(struct gsi_trans *trans) 384 { 385 refcount_t *refcount = &trans->refcount; 386 struct gsi_trans_info *trans_info; 387 bool last; 388 389 /* We must hold the lock to release the last reference */ 390 if (refcount_dec_not_one(refcount)) 391 return; 392 393 trans_info = &trans->gsi->channel[trans->channel_id].trans_info; 394 395 spin_lock_bh(&trans_info->spinlock); 396 397 /* Reference might have been added before we got the lock */ 398 last = refcount_dec_and_test(refcount); 399 if (last) 400 list_del(&trans->links); 401 402 spin_unlock_bh(&trans_info->spinlock); 403 404 if (!last) 405 return; 406 407 if (trans->used_count) 408 ipa_gsi_trans_release(trans); 409 410 /* Releasing the reserved TREs implicitly frees the sgl[] and 411 * (if present) info[] arrays, plus the transaction itself. 412 */ 413 gsi_trans_tre_release(trans_info, trans->rsvd_count); 414 } 415 416 /* Add an immediate command to a transaction */ 417 void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size, 418 dma_addr_t addr, enum ipa_cmd_opcode opcode) 419 { 420 u32 which = trans->used_count++; 421 struct scatterlist *sg; 422 423 WARN_ON(which >= trans->rsvd_count); 424 425 /* Commands are quite different from data transfer requests. 426 * Their payloads come from a pool whose memory is allocated 427 * using dma_alloc_coherent(). We therefore do *not* map them 428 * for DMA (unlike what we do for pages and skbs). 429 * 430 * When a transaction completes, the SGL is normally unmapped. 431 * A command transaction has direction DMA_NONE, which tells 432 * gsi_trans_complete() to skip the unmapping step. 433 * 434 * The only things we use directly in a command scatter/gather 435 * entry are the DMA address and length. We still need the SG 436 * table flags to be maintained though, so assign a NULL page 437 * pointer for that purpose. 438 */ 439 sg = &trans->sgl[which]; 440 sg_assign_page(sg, NULL); 441 sg_dma_address(sg) = addr; 442 sg_dma_len(sg) = size; 443 444 trans->cmd_opcode[which] = opcode; 445 } 446 447 /* Add a page transfer to a transaction. It will fill the only TRE. */ 448 int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size, 449 u32 offset) 450 { 451 struct scatterlist *sg = &trans->sgl[0]; 452 int ret; 453 454 if (WARN_ON(trans->rsvd_count != 1)) 455 return -EINVAL; 456 if (WARN_ON(trans->used_count)) 457 return -EINVAL; 458 459 sg_set_page(sg, page, size, offset); 460 ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction); 461 if (!ret) 462 return -ENOMEM; 463 464 trans->used_count++; /* Transaction now owns the (DMA mapped) page */ 465 466 return 0; 467 } 468 469 /* Add an SKB transfer to a transaction. No other TREs will be used. */ 470 int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb) 471 { 472 struct scatterlist *sg = &trans->sgl[0]; 473 u32 used_count; 474 int ret; 475 476 if (WARN_ON(trans->rsvd_count != 1)) 477 return -EINVAL; 478 if (WARN_ON(trans->used_count)) 479 return -EINVAL; 480 481 /* skb->len will not be 0 (checked early) */ 482 ret = skb_to_sgvec(skb, sg, 0, skb->len); 483 if (ret < 0) 484 return ret; 485 used_count = ret; 486 487 ret = dma_map_sg(trans->gsi->dev, sg, used_count, trans->direction); 488 if (!ret) 489 return -ENOMEM; 490 491 /* Transaction now owns the (DMA mapped) skb */ 492 trans->used_count += used_count; 493 494 return 0; 495 } 496 497 /* Compute the length/opcode value to use for a TRE */ 498 static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len) 499 { 500 return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len) 501 : cpu_to_le16((u16)opcode); 502 } 503 504 /* Compute the flags value to use for a given TRE */ 505 static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode) 506 { 507 enum gsi_tre_type tre_type; 508 u32 tre_flags; 509 510 tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD; 511 tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK); 512 513 /* Last TRE contains interrupt flags */ 514 if (last_tre) { 515 /* All transactions end in a transfer completion interrupt */ 516 tre_flags |= TRE_FLAGS_IEOT_FMASK; 517 /* Don't interrupt when outbound commands are acknowledged */ 518 if (bei) 519 tre_flags |= TRE_FLAGS_BEI_FMASK; 520 } else { /* All others indicate there's more to come */ 521 tre_flags |= TRE_FLAGS_CHAIN_FMASK; 522 } 523 524 return cpu_to_le32(tre_flags); 525 } 526 527 static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr, 528 u32 len, bool last_tre, bool bei, 529 enum ipa_cmd_opcode opcode) 530 { 531 struct gsi_tre tre; 532 533 tre.addr = cpu_to_le64(addr); 534 tre.len_opcode = gsi_tre_len_opcode(opcode, len); 535 tre.reserved = 0; 536 tre.flags = gsi_tre_flags(last_tre, bei, opcode); 537 538 /* ARM64 can write 16 bytes as a unit with a single instruction. 539 * Doing the assignment this way is an attempt to make that happen. 540 */ 541 *dest_tre = tre; 542 } 543 544 /** 545 * __gsi_trans_commit() - Common GSI transaction commit code 546 * @trans: Transaction to commit 547 * @ring_db: Whether to tell the hardware about these queued transfers 548 * 549 * Formats channel ring TRE entries based on the content of the scatterlist. 550 * Maps a transaction pointer to the last ring entry used for the transaction, 551 * so it can be recovered when it completes. Moves the transaction to the 552 * pending list. Finally, updates the channel ring pointer and optionally 553 * rings the doorbell. 554 */ 555 static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db) 556 { 557 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 558 struct gsi_ring *tre_ring = &channel->tre_ring; 559 enum ipa_cmd_opcode opcode = IPA_CMD_NONE; 560 bool bei = channel->toward_ipa; 561 struct gsi_tre *dest_tre; 562 struct scatterlist *sg; 563 u32 byte_count = 0; 564 u8 *cmd_opcode; 565 u32 avail; 566 u32 i; 567 568 WARN_ON(!trans->used_count); 569 570 /* Consume the entries. If we cross the end of the ring while 571 * filling them we'll switch to the beginning to finish. 572 * If there is no info array we're doing a simple data 573 * transfer request, whose opcode is IPA_CMD_NONE. 574 */ 575 cmd_opcode = channel->command ? &trans->cmd_opcode[0] : NULL; 576 avail = tre_ring->count - tre_ring->index % tre_ring->count; 577 dest_tre = gsi_ring_virt(tre_ring, tre_ring->index); 578 for_each_sg(trans->sgl, sg, trans->used_count, i) { 579 bool last_tre = i == trans->used_count - 1; 580 dma_addr_t addr = sg_dma_address(sg); 581 u32 len = sg_dma_len(sg); 582 583 byte_count += len; 584 if (!avail--) 585 dest_tre = gsi_ring_virt(tre_ring, 0); 586 if (cmd_opcode) 587 opcode = *cmd_opcode++; 588 589 gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode); 590 dest_tre++; 591 } 592 /* Associate the TRE with the transaction */ 593 gsi_trans_map(trans, tre_ring->index); 594 595 tre_ring->index += trans->used_count; 596 597 trans->len = byte_count; 598 if (channel->toward_ipa) 599 gsi_trans_tx_committed(trans); 600 601 gsi_trans_move_committed(trans); 602 603 /* Ring doorbell if requested, or if all TREs are allocated */ 604 if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) { 605 /* Report what we're handing off to hardware for TX channels */ 606 if (channel->toward_ipa) 607 gsi_trans_tx_queued(trans); 608 gsi_trans_move_pending(trans); 609 gsi_channel_doorbell(channel); 610 } 611 } 612 613 /* Commit a GSI transaction */ 614 void gsi_trans_commit(struct gsi_trans *trans, bool ring_db) 615 { 616 if (trans->used_count) 617 __gsi_trans_commit(trans, ring_db); 618 else 619 gsi_trans_free(trans); 620 } 621 622 /* Commit a GSI transaction and wait for it to complete */ 623 void gsi_trans_commit_wait(struct gsi_trans *trans) 624 { 625 if (!trans->used_count) 626 goto out_trans_free; 627 628 refcount_inc(&trans->refcount); 629 630 __gsi_trans_commit(trans, true); 631 632 wait_for_completion(&trans->completion); 633 634 out_trans_free: 635 gsi_trans_free(trans); 636 } 637 638 /* Process the completion of a transaction; called while polling */ 639 void gsi_trans_complete(struct gsi_trans *trans) 640 { 641 /* If the entire SGL was mapped when added, unmap it now */ 642 if (trans->direction != DMA_NONE) 643 dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used_count, 644 trans->direction); 645 646 ipa_gsi_trans_complete(trans); 647 648 complete(&trans->completion); 649 650 gsi_trans_free(trans); 651 } 652 653 /* Cancel a channel's pending transactions */ 654 void gsi_channel_trans_cancel_pending(struct gsi_channel *channel) 655 { 656 struct gsi_trans_info *trans_info = &channel->trans_info; 657 struct gsi_trans *trans; 658 bool cancelled; 659 660 /* channel->gsi->mutex is held by caller */ 661 spin_lock_bh(&trans_info->spinlock); 662 663 cancelled = !list_empty(&trans_info->pending); 664 list_for_each_entry(trans, &trans_info->pending, links) 665 trans->cancelled = true; 666 667 list_splice_tail_init(&trans_info->pending, &trans_info->complete); 668 669 spin_unlock_bh(&trans_info->spinlock); 670 671 /* Schedule NAPI polling to complete the cancelled transactions */ 672 if (cancelled) 673 napi_schedule(&channel->napi); 674 } 675 676 /* Issue a command to read a single byte from a channel */ 677 int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr) 678 { 679 struct gsi_channel *channel = &gsi->channel[channel_id]; 680 struct gsi_ring *tre_ring = &channel->tre_ring; 681 struct gsi_trans_info *trans_info; 682 struct gsi_tre *dest_tre; 683 684 trans_info = &channel->trans_info; 685 686 /* First reserve the TRE, if possible */ 687 if (!gsi_trans_tre_reserve(trans_info, 1)) 688 return -EBUSY; 689 690 /* Now fill the reserved TRE and tell the hardware */ 691 692 dest_tre = gsi_ring_virt(tre_ring, tre_ring->index); 693 gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE); 694 695 tre_ring->index++; 696 gsi_channel_doorbell(channel); 697 698 return 0; 699 } 700 701 /* Mark a gsi_trans_read_byte() request done */ 702 void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id) 703 { 704 struct gsi_channel *channel = &gsi->channel[channel_id]; 705 706 gsi_trans_tre_release(&channel->trans_info, 1); 707 } 708 709 /* Initialize a channel's GSI transaction info */ 710 int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id) 711 { 712 struct gsi_channel *channel = &gsi->channel[channel_id]; 713 u32 tre_count = channel->tre_count; 714 struct gsi_trans_info *trans_info; 715 u32 tre_max; 716 int ret; 717 718 /* Ensure the size of a channel element is what's expected */ 719 BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE); 720 721 trans_info = &channel->trans_info; 722 723 /* The tre_avail field is what ultimately limits the number of 724 * outstanding transactions and their resources. A transaction 725 * allocation succeeds only if the TREs available are sufficient 726 * for what the transaction might need. 727 */ 728 tre_max = gsi_channel_tre_max(channel->gsi, channel_id); 729 atomic_set(&trans_info->tre_avail, tre_max); 730 731 /* We can't use more TREs than the number available in the ring. 732 * This limits the number of transactions that can be outstanding. 733 * Worst case is one TRE per transaction (but we actually limit 734 * it to something a little less than that). By allocating a 735 * power-of-two number of transactions we can use an index 736 * modulo that number to determine the next one that's free. 737 * Transactions are allocated one at a time. 738 */ 739 ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans), 740 tre_max, 1); 741 if (ret) 742 return -ENOMEM; 743 744 /* A completion event contains a pointer to the TRE that caused 745 * the event (which will be the last one used by the transaction). 746 * Each entry in this map records the transaction associated 747 * with a corresponding completed TRE. 748 */ 749 trans_info->map = kcalloc(tre_count, sizeof(*trans_info->map), 750 GFP_KERNEL); 751 if (!trans_info->map) { 752 ret = -ENOMEM; 753 goto err_trans_free; 754 } 755 756 /* A transaction uses a scatterlist array to represent the data 757 * transfers implemented by the transaction. Each scatterlist 758 * element is used to fill a single TRE when the transaction is 759 * committed. So we need as many scatterlist elements as the 760 * maximum number of TREs that can be outstanding. 761 */ 762 ret = gsi_trans_pool_init(&trans_info->sg_pool, 763 sizeof(struct scatterlist), 764 tre_max, channel->trans_tre_max); 765 if (ret) 766 goto err_map_free; 767 768 spin_lock_init(&trans_info->spinlock); 769 INIT_LIST_HEAD(&trans_info->alloc); 770 INIT_LIST_HEAD(&trans_info->committed); 771 INIT_LIST_HEAD(&trans_info->pending); 772 INIT_LIST_HEAD(&trans_info->complete); 773 INIT_LIST_HEAD(&trans_info->polled); 774 775 return 0; 776 777 err_map_free: 778 kfree(trans_info->map); 779 err_trans_free: 780 gsi_trans_pool_exit(&trans_info->pool); 781 782 dev_err(gsi->dev, "error %d initializing channel %u transactions\n", 783 ret, channel_id); 784 785 return ret; 786 } 787 788 /* Inverse of gsi_channel_trans_init() */ 789 void gsi_channel_trans_exit(struct gsi_channel *channel) 790 { 791 struct gsi_trans_info *trans_info = &channel->trans_info; 792 793 gsi_trans_pool_exit(&trans_info->sg_pool); 794 gsi_trans_pool_exit(&trans_info->pool); 795 kfree(trans_info->map); 796 } 797