xref: /openbmc/linux/drivers/net/ipa/gsi_trans.c (revision 8eec7831)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/refcount.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_private.h"
16 #include "gsi_trans.h"
17 #include "ipa_gsi.h"
18 #include "ipa_data.h"
19 #include "ipa_cmd.h"
20 
21 /**
22  * DOC: GSI Transactions
23  *
24  * A GSI transaction abstracts the behavior of a GSI channel by representing
25  * everything about a related group of IPA commands in a single structure.
26  * (A "command" in this sense is either a data transfer or an IPA immediate
27  * command.)  Most details of interaction with the GSI hardware are managed
28  * by the GSI transaction core, allowing users to simply describe commands
29  * to be performed.  When a transaction has completed a callback function
30  * (dependent on the type of endpoint associated with the channel) allows
31  * cleanup of resources associated with the transaction.
32  *
33  * To perform a command (or set of them), a user of the GSI transaction
34  * interface allocates a transaction, indicating the number of TREs required
35  * (one per command).  If sufficient TREs are available, they are reserved
36  * for use in the transaction and the allocation succeeds.  This way
37  * exhaustion of the available TREs in a channel ring is detected
38  * as early as possible.  All resources required to complete a transaction
39  * are allocated at transaction allocation time.
40  *
41  * Commands performed as part of a transaction are represented in an array
42  * of Linux scatterlist structures.  This array is allocated with the
43  * transaction, and its entries are initialized using standard scatterlist
44  * functions (such as sg_set_buf() or skb_to_sgvec()).
45  *
46  * Once a transaction's scatterlist structures have been initialized, the
47  * transaction is committed.  The caller is responsible for mapping buffers
48  * for DMA if necessary, and this should be done *before* allocating
49  * the transaction.  Between a successful allocation and commit of a
50  * transaction no errors should occur.
51  *
52  * Committing transfers ownership of the entire transaction to the GSI
53  * transaction core.  The GSI transaction code formats the content of
54  * the scatterlist array into the channel ring buffer and informs the
55  * hardware that new TREs are available to process.
56  *
57  * The last TRE in each transaction is marked to interrupt the AP when the
58  * GSI hardware has completed it.  Because transfers described by TREs are
59  * performed strictly in order, signaling the completion of just the last
60  * TRE in the transaction is sufficient to indicate the full transaction
61  * is complete.
62  *
63  * When a transaction is complete, ipa_gsi_trans_complete() is called by the
64  * GSI code into the IPA layer, allowing it to perform any final cleanup
65  * required before the transaction is freed.
66  */
67 
68 /* Hardware values representing a transfer element type */
69 enum gsi_tre_type {
70 	GSI_RE_XFER	= 0x2,
71 	GSI_RE_IMMD_CMD	= 0x3,
72 };
73 
74 /* An entry in a channel ring */
75 struct gsi_tre {
76 	__le64 addr;		/* DMA address */
77 	__le16 len_opcode;	/* length in bytes or enum IPA_CMD_* */
78 	__le16 reserved;
79 	__le32 flags;		/* TRE_FLAGS_* */
80 };
81 
82 /* gsi_tre->flags mask values (in CPU byte order) */
83 #define TRE_FLAGS_CHAIN_FMASK	GENMASK(0, 0)
84 #define TRE_FLAGS_IEOT_FMASK	GENMASK(9, 9)
85 #define TRE_FLAGS_BEI_FMASK	GENMASK(10, 10)
86 #define TRE_FLAGS_TYPE_FMASK	GENMASK(23, 16)
87 
88 int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
89 			u32 max_alloc)
90 {
91 	void *virt;
92 
93 	if (!size)
94 		return -EINVAL;
95 	if (count < max_alloc)
96 		return -EINVAL;
97 	if (!max_alloc)
98 		return -EINVAL;
99 
100 	/* By allocating a few extra entries in our pool (one less
101 	 * than the maximum number that will be requested in a
102 	 * single allocation), we can always satisfy requests without
103 	 * ever worrying about straddling the end of the pool array.
104 	 * If there aren't enough entries starting at the free index,
105 	 * we just allocate free entries from the beginning of the pool.
106 	 */
107 	virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL);
108 	if (!virt)
109 		return -ENOMEM;
110 
111 	pool->base = virt;
112 	/* If the allocator gave us any extra memory, use it */
113 	pool->count = ksize(pool->base) / size;
114 	pool->free = 0;
115 	pool->max_alloc = max_alloc;
116 	pool->size = size;
117 	pool->addr = 0;		/* Only used for DMA pools */
118 
119 	return 0;
120 }
121 
122 void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
123 {
124 	kfree(pool->base);
125 	memset(pool, 0, sizeof(*pool));
126 }
127 
128 /* Allocate the requested number of (zeroed) entries from the pool */
129 /* Home-grown DMA pool.  This way we can preallocate and use the tre_count
130  * to guarantee allocations will succeed.  Even though we specify max_alloc
131  * (and it can be more than one), we only allow allocation of a single
132  * element from a DMA pool.
133  */
134 int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
135 			    size_t size, u32 count, u32 max_alloc)
136 {
137 	size_t total_size;
138 	dma_addr_t addr;
139 	void *virt;
140 
141 	if (!size)
142 		return -EINVAL;
143 	if (count < max_alloc)
144 		return -EINVAL;
145 	if (!max_alloc)
146 		return -EINVAL;
147 
148 	/* Don't let allocations cross a power-of-two boundary */
149 	size = __roundup_pow_of_two(size);
150 	total_size = (count + max_alloc - 1) * size;
151 
152 	/* The allocator will give us a power-of-2 number of pages
153 	 * sufficient to satisfy our request.  Round up our requested
154 	 * size to avoid any unused space in the allocation.  This way
155 	 * gsi_trans_pool_exit_dma() can assume the total allocated
156 	 * size is exactly (count * size).
157 	 */
158 	total_size = get_order(total_size) << PAGE_SHIFT;
159 
160 	virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
161 	if (!virt)
162 		return -ENOMEM;
163 
164 	pool->base = virt;
165 	pool->count = total_size / size;
166 	pool->free = 0;
167 	pool->size = size;
168 	pool->max_alloc = max_alloc;
169 	pool->addr = addr;
170 
171 	return 0;
172 }
173 
174 void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
175 {
176 	size_t total_size = pool->count * pool->size;
177 
178 	dma_free_coherent(dev, total_size, pool->base, pool->addr);
179 	memset(pool, 0, sizeof(*pool));
180 }
181 
182 /* Return the byte offset of the next free entry in the pool */
183 static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
184 {
185 	u32 offset;
186 
187 	WARN_ON(!count);
188 	WARN_ON(count > pool->max_alloc);
189 
190 	/* Allocate from beginning if wrap would occur */
191 	if (count > pool->count - pool->free)
192 		pool->free = 0;
193 
194 	offset = pool->free * pool->size;
195 	pool->free += count;
196 	memset(pool->base + offset, 0, count * pool->size);
197 
198 	return offset;
199 }
200 
201 /* Allocate a contiguous block of zeroed entries from a pool */
202 void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
203 {
204 	return pool->base + gsi_trans_pool_alloc_common(pool, count);
205 }
206 
207 /* Allocate a single zeroed entry from a DMA pool */
208 void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
209 {
210 	u32 offset = gsi_trans_pool_alloc_common(pool, 1);
211 
212 	*addr = pool->addr + offset;
213 
214 	return pool->base + offset;
215 }
216 
217 /* Map a TRE ring entry index to the transaction it is associated with */
218 static void gsi_trans_map(struct gsi_trans *trans, u32 index)
219 {
220 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
221 
222 	/* The completion event will indicate the last TRE used */
223 	index += trans->used_count - 1;
224 
225 	/* Note: index *must* be used modulo the ring count here */
226 	channel->trans_info.map[index % channel->tre_ring.count] = trans;
227 }
228 
229 /* Return the transaction mapped to a given ring entry */
230 struct gsi_trans *
231 gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index)
232 {
233 	/* Note: index *must* be used modulo the ring count here */
234 	return channel->trans_info.map[index % channel->tre_ring.count];
235 }
236 
237 /* Return the oldest completed transaction for a channel (or null) */
238 struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel)
239 {
240 	return list_first_entry_or_null(&channel->trans_info.complete,
241 					struct gsi_trans, links);
242 }
243 
244 /* Move a transaction from the allocated list to the pending list */
245 static void gsi_trans_move_pending(struct gsi_trans *trans)
246 {
247 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
248 	struct gsi_trans_info *trans_info = &channel->trans_info;
249 
250 	spin_lock_bh(&trans_info->spinlock);
251 
252 	list_move_tail(&trans->links, &trans_info->pending);
253 
254 	spin_unlock_bh(&trans_info->spinlock);
255 }
256 
257 /* Move a transaction and all of its predecessors from the pending list
258  * to the completed list.
259  */
260 void gsi_trans_move_complete(struct gsi_trans *trans)
261 {
262 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
263 	struct gsi_trans_info *trans_info = &channel->trans_info;
264 	struct list_head list;
265 
266 	spin_lock_bh(&trans_info->spinlock);
267 
268 	/* Move this transaction and all predecessors to completed list */
269 	list_cut_position(&list, &trans_info->pending, &trans->links);
270 	list_splice_tail(&list, &trans_info->complete);
271 
272 	spin_unlock_bh(&trans_info->spinlock);
273 }
274 
275 /* Move a transaction from the completed list to the polled list */
276 void gsi_trans_move_polled(struct gsi_trans *trans)
277 {
278 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
279 	struct gsi_trans_info *trans_info = &channel->trans_info;
280 
281 	spin_lock_bh(&trans_info->spinlock);
282 
283 	list_move_tail(&trans->links, &trans_info->polled);
284 
285 	spin_unlock_bh(&trans_info->spinlock);
286 }
287 
288 /* Reserve some number of TREs on a channel.  Returns true if successful */
289 static bool
290 gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count)
291 {
292 	int avail = atomic_read(&trans_info->tre_avail);
293 	int new;
294 
295 	do {
296 		new = avail - (int)tre_count;
297 		if (unlikely(new < 0))
298 			return false;
299 	} while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new));
300 
301 	return true;
302 }
303 
304 /* Release previously-reserved TRE entries to a channel */
305 static void
306 gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count)
307 {
308 	atomic_add(tre_count, &trans_info->tre_avail);
309 }
310 
311 /* Return true if no transactions are allocated, false otherwise */
312 bool gsi_channel_trans_idle(struct gsi *gsi, u32 channel_id)
313 {
314 	u32 tre_max = gsi_channel_tre_max(gsi, channel_id);
315 	struct gsi_trans_info *trans_info;
316 
317 	trans_info = &gsi->channel[channel_id].trans_info;
318 
319 	return atomic_read(&trans_info->tre_avail) == tre_max;
320 }
321 
322 /* Allocate a GSI transaction on a channel */
323 struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
324 					  u32 tre_count,
325 					  enum dma_data_direction direction)
326 {
327 	struct gsi_channel *channel = &gsi->channel[channel_id];
328 	struct gsi_trans_info *trans_info;
329 	struct gsi_trans *trans;
330 
331 	if (WARN_ON(tre_count > channel->trans_tre_max))
332 		return NULL;
333 
334 	trans_info = &channel->trans_info;
335 
336 	/* We reserve the TREs now, but consume them at commit time.
337 	 * If there aren't enough available, we're done.
338 	 */
339 	if (!gsi_trans_tre_reserve(trans_info, tre_count))
340 		return NULL;
341 
342 	/* Allocate and initialize non-zero fields in the the transaction */
343 	trans = gsi_trans_pool_alloc(&trans_info->pool, 1);
344 	trans->gsi = gsi;
345 	trans->channel_id = channel_id;
346 	trans->rsvd_count = tre_count;
347 	init_completion(&trans->completion);
348 
349 	/* Allocate the scatterlist and (if requested) info entries. */
350 	trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count);
351 	sg_init_marker(trans->sgl, tre_count);
352 
353 	trans->direction = direction;
354 
355 	spin_lock_bh(&trans_info->spinlock);
356 
357 	list_add_tail(&trans->links, &trans_info->alloc);
358 
359 	spin_unlock_bh(&trans_info->spinlock);
360 
361 	refcount_set(&trans->refcount, 1);
362 
363 	return trans;
364 }
365 
366 /* Free a previously-allocated transaction */
367 void gsi_trans_free(struct gsi_trans *trans)
368 {
369 	refcount_t *refcount = &trans->refcount;
370 	struct gsi_trans_info *trans_info;
371 	bool last;
372 
373 	/* We must hold the lock to release the last reference */
374 	if (refcount_dec_not_one(refcount))
375 		return;
376 
377 	trans_info = &trans->gsi->channel[trans->channel_id].trans_info;
378 
379 	spin_lock_bh(&trans_info->spinlock);
380 
381 	/* Reference might have been added before we got the lock */
382 	last = refcount_dec_and_test(refcount);
383 	if (last)
384 		list_del(&trans->links);
385 
386 	spin_unlock_bh(&trans_info->spinlock);
387 
388 	if (!last)
389 		return;
390 
391 	ipa_gsi_trans_release(trans);
392 
393 	/* Releasing the reserved TREs implicitly frees the sgl[] and
394 	 * (if present) info[] arrays, plus the transaction itself.
395 	 */
396 	gsi_trans_tre_release(trans_info, trans->rsvd_count);
397 }
398 
399 /* Add an immediate command to a transaction */
400 void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
401 		       dma_addr_t addr, enum ipa_cmd_opcode opcode)
402 {
403 	u32 which = trans->used_count++;
404 	struct scatterlist *sg;
405 
406 	WARN_ON(which >= trans->rsvd_count);
407 
408 	/* Commands are quite different from data transfer requests.
409 	 * Their payloads come from a pool whose memory is allocated
410 	 * using dma_alloc_coherent().  We therefore do *not* map them
411 	 * for DMA (unlike what we do for pages and skbs).
412 	 *
413 	 * When a transaction completes, the SGL is normally unmapped.
414 	 * A command transaction has direction DMA_NONE, which tells
415 	 * gsi_trans_complete() to skip the unmapping step.
416 	 *
417 	 * The only things we use directly in a command scatter/gather
418 	 * entry are the DMA address and length.  We still need the SG
419 	 * table flags to be maintained though, so assign a NULL page
420 	 * pointer for that purpose.
421 	 */
422 	sg = &trans->sgl[which];
423 	sg_assign_page(sg, NULL);
424 	sg_dma_address(sg) = addr;
425 	sg_dma_len(sg) = size;
426 
427 	trans->cmd_opcode[which] = opcode;
428 }
429 
430 /* Add a page transfer to a transaction.  It will fill the only TRE. */
431 int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
432 		       u32 offset)
433 {
434 	struct scatterlist *sg = &trans->sgl[0];
435 	int ret;
436 
437 	if (WARN_ON(trans->rsvd_count != 1))
438 		return -EINVAL;
439 	if (WARN_ON(trans->used_count))
440 		return -EINVAL;
441 
442 	sg_set_page(sg, page, size, offset);
443 	ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction);
444 	if (!ret)
445 		return -ENOMEM;
446 
447 	trans->used_count++;	/* Transaction now owns the (DMA mapped) page */
448 
449 	return 0;
450 }
451 
452 /* Add an SKB transfer to a transaction.  No other TREs will be used. */
453 int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb)
454 {
455 	struct scatterlist *sg = &trans->sgl[0];
456 	u32 used_count;
457 	int ret;
458 
459 	if (WARN_ON(trans->rsvd_count != 1))
460 		return -EINVAL;
461 	if (WARN_ON(trans->used_count))
462 		return -EINVAL;
463 
464 	/* skb->len will not be 0 (checked early) */
465 	ret = skb_to_sgvec(skb, sg, 0, skb->len);
466 	if (ret < 0)
467 		return ret;
468 	used_count = ret;
469 
470 	ret = dma_map_sg(trans->gsi->dev, sg, used_count, trans->direction);
471 	if (!ret)
472 		return -ENOMEM;
473 
474 	/* Transaction now owns the (DMA mapped) skb */
475 	trans->used_count += used_count;
476 
477 	return 0;
478 }
479 
480 /* Compute the length/opcode value to use for a TRE */
481 static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len)
482 {
483 	return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len)
484 				      : cpu_to_le16((u16)opcode);
485 }
486 
487 /* Compute the flags value to use for a given TRE */
488 static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode)
489 {
490 	enum gsi_tre_type tre_type;
491 	u32 tre_flags;
492 
493 	tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD;
494 	tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK);
495 
496 	/* Last TRE contains interrupt flags */
497 	if (last_tre) {
498 		/* All transactions end in a transfer completion interrupt */
499 		tre_flags |= TRE_FLAGS_IEOT_FMASK;
500 		/* Don't interrupt when outbound commands are acknowledged */
501 		if (bei)
502 			tre_flags |= TRE_FLAGS_BEI_FMASK;
503 	} else {	/* All others indicate there's more to come */
504 		tre_flags |= TRE_FLAGS_CHAIN_FMASK;
505 	}
506 
507 	return cpu_to_le32(tre_flags);
508 }
509 
510 static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr,
511 			       u32 len, bool last_tre, bool bei,
512 			       enum ipa_cmd_opcode opcode)
513 {
514 	struct gsi_tre tre;
515 
516 	tre.addr = cpu_to_le64(addr);
517 	tre.len_opcode = gsi_tre_len_opcode(opcode, len);
518 	tre.reserved = 0;
519 	tre.flags = gsi_tre_flags(last_tre, bei, opcode);
520 
521 	/* ARM64 can write 16 bytes as a unit with a single instruction.
522 	 * Doing the assignment this way is an attempt to make that happen.
523 	 */
524 	*dest_tre = tre;
525 }
526 
527 /**
528  * __gsi_trans_commit() - Common GSI transaction commit code
529  * @trans:	Transaction to commit
530  * @ring_db:	Whether to tell the hardware about these queued transfers
531  *
532  * Formats channel ring TRE entries based on the content of the scatterlist.
533  * Maps a transaction pointer to the last ring entry used for the transaction,
534  * so it can be recovered when it completes.  Moves the transaction to the
535  * pending list.  Finally, updates the channel ring pointer and optionally
536  * rings the doorbell.
537  */
538 static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
539 {
540 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
541 	struct gsi_ring *tre_ring = &channel->tre_ring;
542 	enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
543 	bool bei = channel->toward_ipa;
544 	struct gsi_tre *dest_tre;
545 	struct scatterlist *sg;
546 	u32 byte_count = 0;
547 	u8 *cmd_opcode;
548 	u32 avail;
549 	u32 i;
550 
551 	WARN_ON(!trans->used_count);
552 
553 	/* Consume the entries.  If we cross the end of the ring while
554 	 * filling them we'll switch to the beginning to finish.
555 	 * If there is no info array we're doing a simple data
556 	 * transfer request, whose opcode is IPA_CMD_NONE.
557 	 */
558 	cmd_opcode = channel->command ? &trans->cmd_opcode[0] : NULL;
559 	avail = tre_ring->count - tre_ring->index % tre_ring->count;
560 	dest_tre = gsi_ring_virt(tre_ring, tre_ring->index);
561 	for_each_sg(trans->sgl, sg, trans->used_count, i) {
562 		bool last_tre = i == trans->used_count - 1;
563 		dma_addr_t addr = sg_dma_address(sg);
564 		u32 len = sg_dma_len(sg);
565 
566 		byte_count += len;
567 		if (!avail--)
568 			dest_tre = gsi_ring_virt(tre_ring, 0);
569 		if (cmd_opcode)
570 			opcode = *cmd_opcode++;
571 
572 		gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode);
573 		dest_tre++;
574 	}
575 	/* Associate the TRE with the transaction */
576 	gsi_trans_map(trans, tre_ring->index);
577 
578 	tre_ring->index += trans->used_count;
579 
580 	trans->len = byte_count;
581 	if (channel->toward_ipa)
582 		gsi_trans_tx_committed(trans);
583 
584 	gsi_trans_move_pending(trans);
585 
586 	/* Ring doorbell if requested, or if all TREs are allocated */
587 	if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) {
588 		/* Report what we're handing off to hardware for TX channels */
589 		if (channel->toward_ipa)
590 			gsi_trans_tx_queued(trans);
591 		gsi_channel_doorbell(channel);
592 	}
593 }
594 
595 /* Commit a GSI transaction */
596 void gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
597 {
598 	if (trans->used_count)
599 		__gsi_trans_commit(trans, ring_db);
600 	else
601 		gsi_trans_free(trans);
602 }
603 
604 /* Commit a GSI transaction and wait for it to complete */
605 void gsi_trans_commit_wait(struct gsi_trans *trans)
606 {
607 	if (!trans->used_count)
608 		goto out_trans_free;
609 
610 	refcount_inc(&trans->refcount);
611 
612 	__gsi_trans_commit(trans, true);
613 
614 	wait_for_completion(&trans->completion);
615 
616 out_trans_free:
617 	gsi_trans_free(trans);
618 }
619 
620 /* Process the completion of a transaction; called while polling */
621 void gsi_trans_complete(struct gsi_trans *trans)
622 {
623 	/* If the entire SGL was mapped when added, unmap it now */
624 	if (trans->direction != DMA_NONE)
625 		dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used_count,
626 			     trans->direction);
627 
628 	ipa_gsi_trans_complete(trans);
629 
630 	complete(&trans->completion);
631 
632 	gsi_trans_free(trans);
633 }
634 
635 /* Cancel a channel's pending transactions */
636 void gsi_channel_trans_cancel_pending(struct gsi_channel *channel)
637 {
638 	struct gsi_trans_info *trans_info = &channel->trans_info;
639 	struct gsi_trans *trans;
640 	bool cancelled;
641 
642 	/* channel->gsi->mutex is held by caller */
643 	spin_lock_bh(&trans_info->spinlock);
644 
645 	cancelled = !list_empty(&trans_info->pending);
646 	list_for_each_entry(trans, &trans_info->pending, links)
647 		trans->cancelled = true;
648 
649 	list_splice_tail_init(&trans_info->pending, &trans_info->complete);
650 
651 	spin_unlock_bh(&trans_info->spinlock);
652 
653 	/* Schedule NAPI polling to complete the cancelled transactions */
654 	if (cancelled)
655 		napi_schedule(&channel->napi);
656 }
657 
658 /* Issue a command to read a single byte from a channel */
659 int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr)
660 {
661 	struct gsi_channel *channel = &gsi->channel[channel_id];
662 	struct gsi_ring *tre_ring = &channel->tre_ring;
663 	struct gsi_trans_info *trans_info;
664 	struct gsi_tre *dest_tre;
665 
666 	trans_info = &channel->trans_info;
667 
668 	/* First reserve the TRE, if possible */
669 	if (!gsi_trans_tre_reserve(trans_info, 1))
670 		return -EBUSY;
671 
672 	/* Now fill the the reserved TRE and tell the hardware */
673 
674 	dest_tre = gsi_ring_virt(tre_ring, tre_ring->index);
675 	gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE);
676 
677 	tre_ring->index++;
678 	gsi_channel_doorbell(channel);
679 
680 	return 0;
681 }
682 
683 /* Mark a gsi_trans_read_byte() request done */
684 void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id)
685 {
686 	struct gsi_channel *channel = &gsi->channel[channel_id];
687 
688 	gsi_trans_tre_release(&channel->trans_info, 1);
689 }
690 
691 /* Initialize a channel's GSI transaction info */
692 int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id)
693 {
694 	struct gsi_channel *channel = &gsi->channel[channel_id];
695 	struct gsi_trans_info *trans_info;
696 	u32 tre_max;
697 	int ret;
698 
699 	/* Ensure the size of a channel element is what's expected */
700 	BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE);
701 
702 	/* The map array is used to determine what transaction is associated
703 	 * with a TRE that the hardware reports has completed.  We need one
704 	 * map entry per TRE.
705 	 */
706 	trans_info = &channel->trans_info;
707 	trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map),
708 				  GFP_KERNEL);
709 	if (!trans_info->map)
710 		return -ENOMEM;
711 
712 	/* We can't use more TREs than there are available in the ring.
713 	 * This limits the number of transactions that can be oustanding.
714 	 * Worst case is one TRE per transaction (but we actually limit
715 	 * it to something a little less than that).  We allocate resources
716 	 * for transactions (including transaction structures) based on
717 	 * this maximum number.
718 	 */
719 	tre_max = gsi_channel_tre_max(channel->gsi, channel_id);
720 
721 	/* Transactions are allocated one at a time. */
722 	ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans),
723 				  tre_max, 1);
724 	if (ret)
725 		goto err_kfree;
726 
727 	/* A transaction uses a scatterlist array to represent the data
728 	 * transfers implemented by the transaction.  Each scatterlist
729 	 * element is used to fill a single TRE when the transaction is
730 	 * committed.  So we need as many scatterlist elements as the
731 	 * maximum number of TREs that can be outstanding.
732 	 */
733 	ret = gsi_trans_pool_init(&trans_info->sg_pool,
734 				  sizeof(struct scatterlist),
735 				  tre_max, channel->trans_tre_max);
736 	if (ret)
737 		goto err_trans_pool_exit;
738 
739 	/* Finally, the tre_avail field is what ultimately limits the number
740 	 * of outstanding transactions and their resources.  A transaction
741 	 * allocation succeeds only if the TREs available are sufficient for
742 	 * what the transaction might need.  Transaction resource pools are
743 	 * sized based on the maximum number of outstanding TREs, so there
744 	 * will always be resources available if there are TREs available.
745 	 */
746 	atomic_set(&trans_info->tre_avail, tre_max);
747 
748 	spin_lock_init(&trans_info->spinlock);
749 	INIT_LIST_HEAD(&trans_info->alloc);
750 	INIT_LIST_HEAD(&trans_info->pending);
751 	INIT_LIST_HEAD(&trans_info->complete);
752 	INIT_LIST_HEAD(&trans_info->polled);
753 
754 	return 0;
755 
756 err_trans_pool_exit:
757 	gsi_trans_pool_exit(&trans_info->pool);
758 err_kfree:
759 	kfree(trans_info->map);
760 
761 	dev_err(gsi->dev, "error %d initializing channel %u transactions\n",
762 		ret, channel_id);
763 
764 	return ret;
765 }
766 
767 /* Inverse of gsi_channel_trans_init() */
768 void gsi_channel_trans_exit(struct gsi_channel *channel)
769 {
770 	struct gsi_trans_info *trans_info = &channel->trans_info;
771 
772 	gsi_trans_pool_exit(&trans_info->sg_pool);
773 	gsi_trans_pool_exit(&trans_info->pool);
774 	kfree(trans_info->map);
775 }
776