1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2019-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/refcount.h> 11 #include <linux/scatterlist.h> 12 #include <linux/dma-direction.h> 13 14 #include "gsi.h" 15 #include "gsi_private.h" 16 #include "gsi_trans.h" 17 #include "ipa_gsi.h" 18 #include "ipa_data.h" 19 #include "ipa_cmd.h" 20 21 /** 22 * DOC: GSI Transactions 23 * 24 * A GSI transaction abstracts the behavior of a GSI channel by representing 25 * everything about a related group of IPA commands in a single structure. 26 * (A "command" in this sense is either a data transfer or an IPA immediate 27 * command.) Most details of interaction with the GSI hardware are managed 28 * by the GSI transaction core, allowing users to simply describe commands 29 * to be performed. When a transaction has completed a callback function 30 * (dependent on the type of endpoint associated with the channel) allows 31 * cleanup of resources associated with the transaction. 32 * 33 * To perform a command (or set of them), a user of the GSI transaction 34 * interface allocates a transaction, indicating the number of TREs required 35 * (one per command). If sufficient TREs are available, they are reserved 36 * for use in the transaction and the allocation succeeds. This way 37 * exhaustion of the available TREs in a channel ring is detected 38 * as early as possible. All resources required to complete a transaction 39 * are allocated at transaction allocation time. 40 * 41 * Commands performed as part of a transaction are represented in an array 42 * of Linux scatterlist structures. This array is allocated with the 43 * transaction, and its entries are initialized using standard scatterlist 44 * functions (such as sg_set_buf() or skb_to_sgvec()). 45 * 46 * Once a transaction's scatterlist structures have been initialized, the 47 * transaction is committed. The caller is responsible for mapping buffers 48 * for DMA if necessary, and this should be done *before* allocating 49 * the transaction. Between a successful allocation and commit of a 50 * transaction no errors should occur. 51 * 52 * Committing transfers ownership of the entire transaction to the GSI 53 * transaction core. The GSI transaction code formats the content of 54 * the scatterlist array into the channel ring buffer and informs the 55 * hardware that new TREs are available to process. 56 * 57 * The last TRE in each transaction is marked to interrupt the AP when the 58 * GSI hardware has completed it. Because transfers described by TREs are 59 * performed strictly in order, signaling the completion of just the last 60 * TRE in the transaction is sufficient to indicate the full transaction 61 * is complete. 62 * 63 * When a transaction is complete, ipa_gsi_trans_complete() is called by the 64 * GSI code into the IPA layer, allowing it to perform any final cleanup 65 * required before the transaction is freed. 66 */ 67 68 /* Hardware values representing a transfer element type */ 69 enum gsi_tre_type { 70 GSI_RE_XFER = 0x2, 71 GSI_RE_IMMD_CMD = 0x3, 72 }; 73 74 /* An entry in a channel ring */ 75 struct gsi_tre { 76 __le64 addr; /* DMA address */ 77 __le16 len_opcode; /* length in bytes or enum IPA_CMD_* */ 78 __le16 reserved; 79 __le32 flags; /* TRE_FLAGS_* */ 80 }; 81 82 /* gsi_tre->flags mask values (in CPU byte order) */ 83 #define TRE_FLAGS_CHAIN_FMASK GENMASK(0, 0) 84 #define TRE_FLAGS_IEOT_FMASK GENMASK(9, 9) 85 #define TRE_FLAGS_BEI_FMASK GENMASK(10, 10) 86 #define TRE_FLAGS_TYPE_FMASK GENMASK(23, 16) 87 88 int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count, 89 u32 max_alloc) 90 { 91 void *virt; 92 93 #ifdef IPA_VALIDATE 94 if (!size || size % 8) 95 return -EINVAL; 96 if (count < max_alloc) 97 return -EINVAL; 98 if (!max_alloc) 99 return -EINVAL; 100 #endif /* IPA_VALIDATE */ 101 102 /* By allocating a few extra entries in our pool (one less 103 * than the maximum number that will be requested in a 104 * single allocation), we can always satisfy requests without 105 * ever worrying about straddling the end of the pool array. 106 * If there aren't enough entries starting at the free index, 107 * we just allocate free entries from the beginning of the pool. 108 */ 109 virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL); 110 if (!virt) 111 return -ENOMEM; 112 113 pool->base = virt; 114 /* If the allocator gave us any extra memory, use it */ 115 pool->count = ksize(pool->base) / size; 116 pool->free = 0; 117 pool->max_alloc = max_alloc; 118 pool->size = size; 119 pool->addr = 0; /* Only used for DMA pools */ 120 121 return 0; 122 } 123 124 void gsi_trans_pool_exit(struct gsi_trans_pool *pool) 125 { 126 kfree(pool->base); 127 memset(pool, 0, sizeof(*pool)); 128 } 129 130 /* Allocate the requested number of (zeroed) entries from the pool */ 131 /* Home-grown DMA pool. This way we can preallocate and use the tre_count 132 * to guarantee allocations will succeed. Even though we specify max_alloc 133 * (and it can be more than one), we only allow allocation of a single 134 * element from a DMA pool. 135 */ 136 int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool, 137 size_t size, u32 count, u32 max_alloc) 138 { 139 size_t total_size; 140 dma_addr_t addr; 141 void *virt; 142 143 #ifdef IPA_VALIDATE 144 if (!size || size % 8) 145 return -EINVAL; 146 if (count < max_alloc) 147 return -EINVAL; 148 if (!max_alloc) 149 return -EINVAL; 150 #endif /* IPA_VALIDATE */ 151 152 /* Don't let allocations cross a power-of-two boundary */ 153 size = __roundup_pow_of_two(size); 154 total_size = (count + max_alloc - 1) * size; 155 156 /* The allocator will give us a power-of-2 number of pages. But we 157 * can't guarantee that, so request it. That way we won't waste any 158 * memory that would be available beyond the required space. 159 * 160 * Note that gsi_trans_pool_exit_dma() assumes the total allocated 161 * size is exactly (count * size). 162 */ 163 total_size = get_order(total_size) << PAGE_SHIFT; 164 165 virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL); 166 if (!virt) 167 return -ENOMEM; 168 169 pool->base = virt; 170 pool->count = total_size / size; 171 pool->free = 0; 172 pool->size = size; 173 pool->max_alloc = max_alloc; 174 pool->addr = addr; 175 176 return 0; 177 } 178 179 void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool) 180 { 181 size_t total_size = pool->count * pool->size; 182 183 dma_free_coherent(dev, total_size, pool->base, pool->addr); 184 memset(pool, 0, sizeof(*pool)); 185 } 186 187 /* Return the byte offset of the next free entry in the pool */ 188 static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count) 189 { 190 u32 offset; 191 192 /* assert(count > 0); */ 193 /* assert(count <= pool->max_alloc); */ 194 195 /* Allocate from beginning if wrap would occur */ 196 if (count > pool->count - pool->free) 197 pool->free = 0; 198 199 offset = pool->free * pool->size; 200 pool->free += count; 201 memset(pool->base + offset, 0, count * pool->size); 202 203 return offset; 204 } 205 206 /* Allocate a contiguous block of zeroed entries from a pool */ 207 void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count) 208 { 209 return pool->base + gsi_trans_pool_alloc_common(pool, count); 210 } 211 212 /* Allocate a single zeroed entry from a DMA pool */ 213 void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr) 214 { 215 u32 offset = gsi_trans_pool_alloc_common(pool, 1); 216 217 *addr = pool->addr + offset; 218 219 return pool->base + offset; 220 } 221 222 /* Return the pool element that immediately follows the one given. 223 * This only works done if elements are allocated one at a time. 224 */ 225 void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element) 226 { 227 void *end = pool->base + pool->count * pool->size; 228 229 /* assert(element >= pool->base); */ 230 /* assert(element < end); */ 231 /* assert(pool->max_alloc == 1); */ 232 element += pool->size; 233 234 return element < end ? element : pool->base; 235 } 236 237 /* Map a given ring entry index to the transaction associated with it */ 238 static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index, 239 struct gsi_trans *trans) 240 { 241 /* Note: index *must* be used modulo the ring count here */ 242 channel->trans_info.map[index % channel->tre_ring.count] = trans; 243 } 244 245 /* Return the transaction mapped to a given ring entry */ 246 struct gsi_trans * 247 gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index) 248 { 249 /* Note: index *must* be used modulo the ring count here */ 250 return channel->trans_info.map[index % channel->tre_ring.count]; 251 } 252 253 /* Return the oldest completed transaction for a channel (or null) */ 254 struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel) 255 { 256 return list_first_entry_or_null(&channel->trans_info.complete, 257 struct gsi_trans, links); 258 } 259 260 /* Move a transaction from the allocated list to the pending list */ 261 static void gsi_trans_move_pending(struct gsi_trans *trans) 262 { 263 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 264 struct gsi_trans_info *trans_info = &channel->trans_info; 265 266 spin_lock_bh(&trans_info->spinlock); 267 268 list_move_tail(&trans->links, &trans_info->pending); 269 270 spin_unlock_bh(&trans_info->spinlock); 271 } 272 273 /* Move a transaction and all of its predecessors from the pending list 274 * to the completed list. 275 */ 276 void gsi_trans_move_complete(struct gsi_trans *trans) 277 { 278 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 279 struct gsi_trans_info *trans_info = &channel->trans_info; 280 struct list_head list; 281 282 spin_lock_bh(&trans_info->spinlock); 283 284 /* Move this transaction and all predecessors to completed list */ 285 list_cut_position(&list, &trans_info->pending, &trans->links); 286 list_splice_tail(&list, &trans_info->complete); 287 288 spin_unlock_bh(&trans_info->spinlock); 289 } 290 291 /* Move a transaction from the completed list to the polled list */ 292 void gsi_trans_move_polled(struct gsi_trans *trans) 293 { 294 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 295 struct gsi_trans_info *trans_info = &channel->trans_info; 296 297 spin_lock_bh(&trans_info->spinlock); 298 299 list_move_tail(&trans->links, &trans_info->polled); 300 301 spin_unlock_bh(&trans_info->spinlock); 302 } 303 304 /* Reserve some number of TREs on a channel. Returns true if successful */ 305 static bool 306 gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count) 307 { 308 int avail = atomic_read(&trans_info->tre_avail); 309 int new; 310 311 do { 312 new = avail - (int)tre_count; 313 if (unlikely(new < 0)) 314 return false; 315 } while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new)); 316 317 return true; 318 } 319 320 /* Release previously-reserved TRE entries to a channel */ 321 static void 322 gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count) 323 { 324 atomic_add(tre_count, &trans_info->tre_avail); 325 } 326 327 /* Allocate a GSI transaction on a channel */ 328 struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id, 329 u32 tre_count, 330 enum dma_data_direction direction) 331 { 332 struct gsi_channel *channel = &gsi->channel[channel_id]; 333 struct gsi_trans_info *trans_info; 334 struct gsi_trans *trans; 335 336 /* assert(tre_count <= gsi_channel_trans_tre_max(gsi, channel_id)); */ 337 338 trans_info = &channel->trans_info; 339 340 /* We reserve the TREs now, but consume them at commit time. 341 * If there aren't enough available, we're done. 342 */ 343 if (!gsi_trans_tre_reserve(trans_info, tre_count)) 344 return NULL; 345 346 /* Allocate and initialize non-zero fields in the the transaction */ 347 trans = gsi_trans_pool_alloc(&trans_info->pool, 1); 348 trans->gsi = gsi; 349 trans->channel_id = channel_id; 350 trans->tre_count = tre_count; 351 init_completion(&trans->completion); 352 353 /* Allocate the scatterlist and (if requested) info entries. */ 354 trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count); 355 sg_init_marker(trans->sgl, tre_count); 356 357 trans->direction = direction; 358 359 spin_lock_bh(&trans_info->spinlock); 360 361 list_add_tail(&trans->links, &trans_info->alloc); 362 363 spin_unlock_bh(&trans_info->spinlock); 364 365 refcount_set(&trans->refcount, 1); 366 367 return trans; 368 } 369 370 /* Free a previously-allocated transaction */ 371 void gsi_trans_free(struct gsi_trans *trans) 372 { 373 refcount_t *refcount = &trans->refcount; 374 struct gsi_trans_info *trans_info; 375 bool last; 376 377 /* We must hold the lock to release the last reference */ 378 if (refcount_dec_not_one(refcount)) 379 return; 380 381 trans_info = &trans->gsi->channel[trans->channel_id].trans_info; 382 383 spin_lock_bh(&trans_info->spinlock); 384 385 /* Reference might have been added before we got the lock */ 386 last = refcount_dec_and_test(refcount); 387 if (last) 388 list_del(&trans->links); 389 390 spin_unlock_bh(&trans_info->spinlock); 391 392 if (!last) 393 return; 394 395 ipa_gsi_trans_release(trans); 396 397 /* Releasing the reserved TREs implicitly frees the sgl[] and 398 * (if present) info[] arrays, plus the transaction itself. 399 */ 400 gsi_trans_tre_release(trans_info, trans->tre_count); 401 } 402 403 /* Add an immediate command to a transaction */ 404 void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size, 405 dma_addr_t addr, enum dma_data_direction direction, 406 enum ipa_cmd_opcode opcode) 407 { 408 struct ipa_cmd_info *info; 409 u32 which = trans->used++; 410 struct scatterlist *sg; 411 412 /* assert(which < trans->tre_count); */ 413 414 /* Commands are quite different from data transfer requests. 415 * Their payloads come from a pool whose memory is allocated 416 * using dma_alloc_coherent(). We therefore do *not* map them 417 * for DMA (unlike what we do for pages and skbs). 418 * 419 * When a transaction completes, the SGL is normally unmapped. 420 * A command transaction has direction DMA_NONE, which tells 421 * gsi_trans_complete() to skip the unmapping step. 422 * 423 * The only things we use directly in a command scatter/gather 424 * entry are the DMA address and length. We still need the SG 425 * table flags to be maintained though, so assign a NULL page 426 * pointer for that purpose. 427 */ 428 sg = &trans->sgl[which]; 429 sg_assign_page(sg, NULL); 430 sg_dma_address(sg) = addr; 431 sg_dma_len(sg) = size; 432 433 info = &trans->info[which]; 434 info->opcode = opcode; 435 info->direction = direction; 436 } 437 438 /* Add a page transfer to a transaction. It will fill the only TRE. */ 439 int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size, 440 u32 offset) 441 { 442 struct scatterlist *sg = &trans->sgl[0]; 443 int ret; 444 445 /* assert(trans->tre_count == 1); */ 446 /* assert(!trans->used); */ 447 448 sg_set_page(sg, page, size, offset); 449 ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction); 450 if (!ret) 451 return -ENOMEM; 452 453 trans->used++; /* Transaction now owns the (DMA mapped) page */ 454 455 return 0; 456 } 457 458 /* Add an SKB transfer to a transaction. No other TREs will be used. */ 459 int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb) 460 { 461 struct scatterlist *sg = &trans->sgl[0]; 462 u32 used; 463 int ret; 464 465 /* assert(trans->tre_count == 1); */ 466 /* assert(!trans->used); */ 467 468 /* skb->len will not be 0 (checked early) */ 469 ret = skb_to_sgvec(skb, sg, 0, skb->len); 470 if (ret < 0) 471 return ret; 472 used = ret; 473 474 ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction); 475 if (!ret) 476 return -ENOMEM; 477 478 trans->used += used; /* Transaction now owns the (DMA mapped) skb */ 479 480 return 0; 481 } 482 483 /* Compute the length/opcode value to use for a TRE */ 484 static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len) 485 { 486 return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len) 487 : cpu_to_le16((u16)opcode); 488 } 489 490 /* Compute the flags value to use for a given TRE */ 491 static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode) 492 { 493 enum gsi_tre_type tre_type; 494 u32 tre_flags; 495 496 tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD; 497 tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK); 498 499 /* Last TRE contains interrupt flags */ 500 if (last_tre) { 501 /* All transactions end in a transfer completion interrupt */ 502 tre_flags |= TRE_FLAGS_IEOT_FMASK; 503 /* Don't interrupt when outbound commands are acknowledged */ 504 if (bei) 505 tre_flags |= TRE_FLAGS_BEI_FMASK; 506 } else { /* All others indicate there's more to come */ 507 tre_flags |= TRE_FLAGS_CHAIN_FMASK; 508 } 509 510 return cpu_to_le32(tre_flags); 511 } 512 513 static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr, 514 u32 len, bool last_tre, bool bei, 515 enum ipa_cmd_opcode opcode) 516 { 517 struct gsi_tre tre; 518 519 tre.addr = cpu_to_le64(addr); 520 tre.len_opcode = gsi_tre_len_opcode(opcode, len); 521 tre.reserved = 0; 522 tre.flags = gsi_tre_flags(last_tre, bei, opcode); 523 524 /* ARM64 can write 16 bytes as a unit with a single instruction. 525 * Doing the assignment this way is an attempt to make that happen. 526 */ 527 *dest_tre = tre; 528 } 529 530 /** 531 * __gsi_trans_commit() - Common GSI transaction commit code 532 * @trans: Transaction to commit 533 * @ring_db: Whether to tell the hardware about these queued transfers 534 * 535 * Formats channel ring TRE entries based on the content of the scatterlist. 536 * Maps a transaction pointer to the last ring entry used for the transaction, 537 * so it can be recovered when it completes. Moves the transaction to the 538 * pending list. Finally, updates the channel ring pointer and optionally 539 * rings the doorbell. 540 */ 541 static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db) 542 { 543 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; 544 struct gsi_ring *ring = &channel->tre_ring; 545 enum ipa_cmd_opcode opcode = IPA_CMD_NONE; 546 bool bei = channel->toward_ipa; 547 struct ipa_cmd_info *info; 548 struct gsi_tre *dest_tre; 549 struct scatterlist *sg; 550 u32 byte_count = 0; 551 u32 avail; 552 u32 i; 553 554 /* assert(trans->used > 0); */ 555 556 /* Consume the entries. If we cross the end of the ring while 557 * filling them we'll switch to the beginning to finish. 558 * If there is no info array we're doing a simple data 559 * transfer request, whose opcode is IPA_CMD_NONE. 560 */ 561 info = trans->info ? &trans->info[0] : NULL; 562 avail = ring->count - ring->index % ring->count; 563 dest_tre = gsi_ring_virt(ring, ring->index); 564 for_each_sg(trans->sgl, sg, trans->used, i) { 565 bool last_tre = i == trans->used - 1; 566 dma_addr_t addr = sg_dma_address(sg); 567 u32 len = sg_dma_len(sg); 568 569 byte_count += len; 570 if (!avail--) 571 dest_tre = gsi_ring_virt(ring, 0); 572 if (info) 573 opcode = info++->opcode; 574 575 gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode); 576 dest_tre++; 577 } 578 ring->index += trans->used; 579 580 if (channel->toward_ipa) { 581 /* We record TX bytes when they are sent */ 582 trans->len = byte_count; 583 trans->trans_count = channel->trans_count; 584 trans->byte_count = channel->byte_count; 585 channel->trans_count++; 586 channel->byte_count += byte_count; 587 } 588 589 /* Associate the last TRE with the transaction */ 590 gsi_channel_trans_map(channel, ring->index - 1, trans); 591 592 gsi_trans_move_pending(trans); 593 594 /* Ring doorbell if requested, or if all TREs are allocated */ 595 if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) { 596 /* Report what we're handing off to hardware for TX channels */ 597 if (channel->toward_ipa) 598 gsi_channel_tx_queued(channel); 599 gsi_channel_doorbell(channel); 600 } 601 } 602 603 /* Commit a GSI transaction */ 604 void gsi_trans_commit(struct gsi_trans *trans, bool ring_db) 605 { 606 if (trans->used) 607 __gsi_trans_commit(trans, ring_db); 608 else 609 gsi_trans_free(trans); 610 } 611 612 /* Commit a GSI transaction and wait for it to complete */ 613 void gsi_trans_commit_wait(struct gsi_trans *trans) 614 { 615 if (!trans->used) 616 goto out_trans_free; 617 618 refcount_inc(&trans->refcount); 619 620 __gsi_trans_commit(trans, true); 621 622 wait_for_completion(&trans->completion); 623 624 out_trans_free: 625 gsi_trans_free(trans); 626 } 627 628 /* Commit a GSI transaction and wait for it to complete, with timeout */ 629 int gsi_trans_commit_wait_timeout(struct gsi_trans *trans, 630 unsigned long timeout) 631 { 632 unsigned long timeout_jiffies = msecs_to_jiffies(timeout); 633 unsigned long remaining = 1; /* In case of empty transaction */ 634 635 if (!trans->used) 636 goto out_trans_free; 637 638 refcount_inc(&trans->refcount); 639 640 __gsi_trans_commit(trans, true); 641 642 remaining = wait_for_completion_timeout(&trans->completion, 643 timeout_jiffies); 644 out_trans_free: 645 gsi_trans_free(trans); 646 647 return remaining ? 0 : -ETIMEDOUT; 648 } 649 650 /* Process the completion of a transaction; called while polling */ 651 void gsi_trans_complete(struct gsi_trans *trans) 652 { 653 /* If the entire SGL was mapped when added, unmap it now */ 654 if (trans->direction != DMA_NONE) 655 dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used, 656 trans->direction); 657 658 ipa_gsi_trans_complete(trans); 659 660 complete(&trans->completion); 661 662 gsi_trans_free(trans); 663 } 664 665 /* Cancel a channel's pending transactions */ 666 void gsi_channel_trans_cancel_pending(struct gsi_channel *channel) 667 { 668 struct gsi_trans_info *trans_info = &channel->trans_info; 669 struct gsi_trans *trans; 670 bool cancelled; 671 672 /* channel->gsi->mutex is held by caller */ 673 spin_lock_bh(&trans_info->spinlock); 674 675 cancelled = !list_empty(&trans_info->pending); 676 list_for_each_entry(trans, &trans_info->pending, links) 677 trans->cancelled = true; 678 679 list_splice_tail_init(&trans_info->pending, &trans_info->complete); 680 681 spin_unlock_bh(&trans_info->spinlock); 682 683 /* Schedule NAPI polling to complete the cancelled transactions */ 684 if (cancelled) 685 napi_schedule(&channel->napi); 686 } 687 688 /* Issue a command to read a single byte from a channel */ 689 int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr) 690 { 691 struct gsi_channel *channel = &gsi->channel[channel_id]; 692 struct gsi_ring *ring = &channel->tre_ring; 693 struct gsi_trans_info *trans_info; 694 struct gsi_tre *dest_tre; 695 696 trans_info = &channel->trans_info; 697 698 /* First reserve the TRE, if possible */ 699 if (!gsi_trans_tre_reserve(trans_info, 1)) 700 return -EBUSY; 701 702 /* Now fill the the reserved TRE and tell the hardware */ 703 704 dest_tre = gsi_ring_virt(ring, ring->index); 705 gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE); 706 707 ring->index++; 708 gsi_channel_doorbell(channel); 709 710 return 0; 711 } 712 713 /* Mark a gsi_trans_read_byte() request done */ 714 void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id) 715 { 716 struct gsi_channel *channel = &gsi->channel[channel_id]; 717 718 gsi_trans_tre_release(&channel->trans_info, 1); 719 } 720 721 /* Initialize a channel's GSI transaction info */ 722 int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id) 723 { 724 struct gsi_channel *channel = &gsi->channel[channel_id]; 725 struct gsi_trans_info *trans_info; 726 u32 tre_max; 727 int ret; 728 729 /* Ensure the size of a channel element is what's expected */ 730 BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE); 731 732 /* The map array is used to determine what transaction is associated 733 * with a TRE that the hardware reports has completed. We need one 734 * map entry per TRE. 735 */ 736 trans_info = &channel->trans_info; 737 trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map), 738 GFP_KERNEL); 739 if (!trans_info->map) 740 return -ENOMEM; 741 742 /* We can't use more TREs than there are available in the ring. 743 * This limits the number of transactions that can be oustanding. 744 * Worst case is one TRE per transaction (but we actually limit 745 * it to something a little less than that). We allocate resources 746 * for transactions (including transaction structures) based on 747 * this maximum number. 748 */ 749 tre_max = gsi_channel_tre_max(channel->gsi, channel_id); 750 751 /* Transactions are allocated one at a time. */ 752 ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans), 753 tre_max, 1); 754 if (ret) 755 goto err_kfree; 756 757 /* A transaction uses a scatterlist array to represent the data 758 * transfers implemented by the transaction. Each scatterlist 759 * element is used to fill a single TRE when the transaction is 760 * committed. So we need as many scatterlist elements as the 761 * maximum number of TREs that can be outstanding. 762 * 763 * All TREs in a transaction must fit within the channel's TLV FIFO. 764 * A transaction on a channel can allocate as many TREs as that but 765 * no more. 766 */ 767 ret = gsi_trans_pool_init(&trans_info->sg_pool, 768 sizeof(struct scatterlist), 769 tre_max, channel->tlv_count); 770 if (ret) 771 goto err_trans_pool_exit; 772 773 /* Finally, the tre_avail field is what ultimately limits the number 774 * of outstanding transactions and their resources. A transaction 775 * allocation succeeds only if the TREs available are sufficient for 776 * what the transaction might need. Transaction resource pools are 777 * sized based on the maximum number of outstanding TREs, so there 778 * will always be resources available if there are TREs available. 779 */ 780 atomic_set(&trans_info->tre_avail, tre_max); 781 782 spin_lock_init(&trans_info->spinlock); 783 INIT_LIST_HEAD(&trans_info->alloc); 784 INIT_LIST_HEAD(&trans_info->pending); 785 INIT_LIST_HEAD(&trans_info->complete); 786 INIT_LIST_HEAD(&trans_info->polled); 787 788 return 0; 789 790 err_trans_pool_exit: 791 gsi_trans_pool_exit(&trans_info->pool); 792 err_kfree: 793 kfree(trans_info->map); 794 795 dev_err(gsi->dev, "error %d initializing channel %u transactions\n", 796 ret, channel_id); 797 798 return ret; 799 } 800 801 /* Inverse of gsi_channel_trans_init() */ 802 void gsi_channel_trans_exit(struct gsi_channel *channel) 803 { 804 struct gsi_trans_info *trans_info = &channel->trans_info; 805 806 gsi_trans_pool_exit(&trans_info->sg_pool); 807 gsi_trans_pool_exit(&trans_info->pool); 808 kfree(trans_info->map); 809 } 810