xref: /openbmc/linux/drivers/net/ipa/gsi_trans.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/refcount.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_private.h"
16 #include "gsi_trans.h"
17 #include "ipa_gsi.h"
18 #include "ipa_data.h"
19 #include "ipa_cmd.h"
20 
21 /**
22  * DOC: GSI Transactions
23  *
24  * A GSI transaction abstracts the behavior of a GSI channel by representing
25  * everything about a related group of IPA commands in a single structure.
26  * (A "command" in this sense is either a data transfer or an IPA immediate
27  * command.)  Most details of interaction with the GSI hardware are managed
28  * by the GSI transaction core, allowing users to simply describe commands
29  * to be performed.  When a transaction has completed a callback function
30  * (dependent on the type of endpoint associated with the channel) allows
31  * cleanup of resources associated with the transaction.
32  *
33  * To perform a command (or set of them), a user of the GSI transaction
34  * interface allocates a transaction, indicating the number of TREs required
35  * (one per command).  If sufficient TREs are available, they are reserved
36  * for use in the transaction and the allocation succeeds.  This way
37  * exhaustion of the available TREs in a channel ring is detected
38  * as early as possible.  All resources required to complete a transaction
39  * are allocated at transaction allocation time.
40  *
41  * Commands performed as part of a transaction are represented in an array
42  * of Linux scatterlist structures.  This array is allocated with the
43  * transaction, and its entries are initialized using standard scatterlist
44  * functions (such as sg_set_buf() or skb_to_sgvec()).
45  *
46  * Once a transaction's scatterlist structures have been initialized, the
47  * transaction is committed.  The caller is responsible for mapping buffers
48  * for DMA if necessary, and this should be done *before* allocating
49  * the transaction.  Between a successful allocation and commit of a
50  * transaction no errors should occur.
51  *
52  * Committing transfers ownership of the entire transaction to the GSI
53  * transaction core.  The GSI transaction code formats the content of
54  * the scatterlist array into the channel ring buffer and informs the
55  * hardware that new TREs are available to process.
56  *
57  * The last TRE in each transaction is marked to interrupt the AP when the
58  * GSI hardware has completed it.  Because transfers described by TREs are
59  * performed strictly in order, signaling the completion of just the last
60  * TRE in the transaction is sufficient to indicate the full transaction
61  * is complete.
62  *
63  * When a transaction is complete, ipa_gsi_trans_complete() is called by the
64  * GSI code into the IPA layer, allowing it to perform any final cleanup
65  * required before the transaction is freed.
66  */
67 
68 /* Hardware values representing a transfer element type */
69 enum gsi_tre_type {
70 	GSI_RE_XFER	= 0x2,
71 	GSI_RE_IMMD_CMD	= 0x3,
72 };
73 
74 /* An entry in a channel ring */
75 struct gsi_tre {
76 	__le64 addr;		/* DMA address */
77 	__le16 len_opcode;	/* length in bytes or enum IPA_CMD_* */
78 	__le16 reserved;
79 	__le32 flags;		/* TRE_FLAGS_* */
80 };
81 
82 /* gsi_tre->flags mask values (in CPU byte order) */
83 #define TRE_FLAGS_CHAIN_FMASK	GENMASK(0, 0)
84 #define TRE_FLAGS_IEOT_FMASK	GENMASK(9, 9)
85 #define TRE_FLAGS_BEI_FMASK	GENMASK(10, 10)
86 #define TRE_FLAGS_TYPE_FMASK	GENMASK(23, 16)
87 
88 int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
89 			u32 max_alloc)
90 {
91 	void *virt;
92 
93 #ifdef IPA_VALIDATE
94 	if (!size || size % 8)
95 		return -EINVAL;
96 	if (count < max_alloc)
97 		return -EINVAL;
98 	if (!max_alloc)
99 		return -EINVAL;
100 #endif /* IPA_VALIDATE */
101 
102 	/* By allocating a few extra entries in our pool (one less
103 	 * than the maximum number that will be requested in a
104 	 * single allocation), we can always satisfy requests without
105 	 * ever worrying about straddling the end of the pool array.
106 	 * If there aren't enough entries starting at the free index,
107 	 * we just allocate free entries from the beginning of the pool.
108 	 */
109 	virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL);
110 	if (!virt)
111 		return -ENOMEM;
112 
113 	pool->base = virt;
114 	/* If the allocator gave us any extra memory, use it */
115 	pool->count = ksize(pool->base) / size;
116 	pool->free = 0;
117 	pool->max_alloc = max_alloc;
118 	pool->size = size;
119 	pool->addr = 0;		/* Only used for DMA pools */
120 
121 	return 0;
122 }
123 
124 void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
125 {
126 	kfree(pool->base);
127 	memset(pool, 0, sizeof(*pool));
128 }
129 
130 /* Allocate the requested number of (zeroed) entries from the pool */
131 /* Home-grown DMA pool.  This way we can preallocate and use the tre_count
132  * to guarantee allocations will succeed.  Even though we specify max_alloc
133  * (and it can be more than one), we only allow allocation of a single
134  * element from a DMA pool.
135  */
136 int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
137 			    size_t size, u32 count, u32 max_alloc)
138 {
139 	size_t total_size;
140 	dma_addr_t addr;
141 	void *virt;
142 
143 #ifdef IPA_VALIDATE
144 	if (!size || size % 8)
145 		return -EINVAL;
146 	if (count < max_alloc)
147 		return -EINVAL;
148 	if (!max_alloc)
149 		return -EINVAL;
150 #endif /* IPA_VALIDATE */
151 
152 	/* Don't let allocations cross a power-of-two boundary */
153 	size = __roundup_pow_of_two(size);
154 	total_size = (count + max_alloc - 1) * size;
155 
156 	/* The allocator will give us a power-of-2 number of pages.  But we
157 	 * can't guarantee that, so request it.  That way we won't waste any
158 	 * memory that would be available beyond the required space.
159 	 *
160 	 * Note that gsi_trans_pool_exit_dma() assumes the total allocated
161 	 * size is exactly (count * size).
162 	 */
163 	total_size = get_order(total_size) << PAGE_SHIFT;
164 
165 	virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
166 	if (!virt)
167 		return -ENOMEM;
168 
169 	pool->base = virt;
170 	pool->count = total_size / size;
171 	pool->free = 0;
172 	pool->size = size;
173 	pool->max_alloc = max_alloc;
174 	pool->addr = addr;
175 
176 	return 0;
177 }
178 
179 void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
180 {
181 	size_t total_size = pool->count * pool->size;
182 
183 	dma_free_coherent(dev, total_size, pool->base, pool->addr);
184 	memset(pool, 0, sizeof(*pool));
185 }
186 
187 /* Return the byte offset of the next free entry in the pool */
188 static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
189 {
190 	u32 offset;
191 
192 	/* assert(count > 0); */
193 	/* assert(count <= pool->max_alloc); */
194 
195 	/* Allocate from beginning if wrap would occur */
196 	if (count > pool->count - pool->free)
197 		pool->free = 0;
198 
199 	offset = pool->free * pool->size;
200 	pool->free += count;
201 	memset(pool->base + offset, 0, count * pool->size);
202 
203 	return offset;
204 }
205 
206 /* Allocate a contiguous block of zeroed entries from a pool */
207 void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
208 {
209 	return pool->base + gsi_trans_pool_alloc_common(pool, count);
210 }
211 
212 /* Allocate a single zeroed entry from a DMA pool */
213 void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
214 {
215 	u32 offset = gsi_trans_pool_alloc_common(pool, 1);
216 
217 	*addr = pool->addr + offset;
218 
219 	return pool->base + offset;
220 }
221 
222 /* Return the pool element that immediately follows the one given.
223  * This only works done if elements are allocated one at a time.
224  */
225 void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element)
226 {
227 	void *end = pool->base + pool->count * pool->size;
228 
229 	/* assert(element >= pool->base); */
230 	/* assert(element < end); */
231 	/* assert(pool->max_alloc == 1); */
232 	element += pool->size;
233 
234 	return element < end ? element : pool->base;
235 }
236 
237 /* Map a given ring entry index to the transaction associated with it */
238 static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index,
239 				  struct gsi_trans *trans)
240 {
241 	/* Note: index *must* be used modulo the ring count here */
242 	channel->trans_info.map[index % channel->tre_ring.count] = trans;
243 }
244 
245 /* Return the transaction mapped to a given ring entry */
246 struct gsi_trans *
247 gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index)
248 {
249 	/* Note: index *must* be used modulo the ring count here */
250 	return channel->trans_info.map[index % channel->tre_ring.count];
251 }
252 
253 /* Return the oldest completed transaction for a channel (or null) */
254 struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel)
255 {
256 	return list_first_entry_or_null(&channel->trans_info.complete,
257 					struct gsi_trans, links);
258 }
259 
260 /* Move a transaction from the allocated list to the pending list */
261 static void gsi_trans_move_pending(struct gsi_trans *trans)
262 {
263 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
264 	struct gsi_trans_info *trans_info = &channel->trans_info;
265 
266 	spin_lock_bh(&trans_info->spinlock);
267 
268 	list_move_tail(&trans->links, &trans_info->pending);
269 
270 	spin_unlock_bh(&trans_info->spinlock);
271 }
272 
273 /* Move a transaction and all of its predecessors from the pending list
274  * to the completed list.
275  */
276 void gsi_trans_move_complete(struct gsi_trans *trans)
277 {
278 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
279 	struct gsi_trans_info *trans_info = &channel->trans_info;
280 	struct list_head list;
281 
282 	spin_lock_bh(&trans_info->spinlock);
283 
284 	/* Move this transaction and all predecessors to completed list */
285 	list_cut_position(&list, &trans_info->pending, &trans->links);
286 	list_splice_tail(&list, &trans_info->complete);
287 
288 	spin_unlock_bh(&trans_info->spinlock);
289 }
290 
291 /* Move a transaction from the completed list to the polled list */
292 void gsi_trans_move_polled(struct gsi_trans *trans)
293 {
294 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
295 	struct gsi_trans_info *trans_info = &channel->trans_info;
296 
297 	spin_lock_bh(&trans_info->spinlock);
298 
299 	list_move_tail(&trans->links, &trans_info->polled);
300 
301 	spin_unlock_bh(&trans_info->spinlock);
302 }
303 
304 /* Reserve some number of TREs on a channel.  Returns true if successful */
305 static bool
306 gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count)
307 {
308 	int avail = atomic_read(&trans_info->tre_avail);
309 	int new;
310 
311 	do {
312 		new = avail - (int)tre_count;
313 		if (unlikely(new < 0))
314 			return false;
315 	} while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new));
316 
317 	return true;
318 }
319 
320 /* Release previously-reserved TRE entries to a channel */
321 static void
322 gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count)
323 {
324 	atomic_add(tre_count, &trans_info->tre_avail);
325 }
326 
327 /* Allocate a GSI transaction on a channel */
328 struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
329 					  u32 tre_count,
330 					  enum dma_data_direction direction)
331 {
332 	struct gsi_channel *channel = &gsi->channel[channel_id];
333 	struct gsi_trans_info *trans_info;
334 	struct gsi_trans *trans;
335 
336 	/* assert(tre_count <= gsi_channel_trans_tre_max(gsi, channel_id)); */
337 
338 	trans_info = &channel->trans_info;
339 
340 	/* We reserve the TREs now, but consume them at commit time.
341 	 * If there aren't enough available, we're done.
342 	 */
343 	if (!gsi_trans_tre_reserve(trans_info, tre_count))
344 		return NULL;
345 
346 	/* Allocate and initialize non-zero fields in the the transaction */
347 	trans = gsi_trans_pool_alloc(&trans_info->pool, 1);
348 	trans->gsi = gsi;
349 	trans->channel_id = channel_id;
350 	trans->tre_count = tre_count;
351 	init_completion(&trans->completion);
352 
353 	/* Allocate the scatterlist and (if requested) info entries. */
354 	trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count);
355 	sg_init_marker(trans->sgl, tre_count);
356 
357 	trans->direction = direction;
358 
359 	spin_lock_bh(&trans_info->spinlock);
360 
361 	list_add_tail(&trans->links, &trans_info->alloc);
362 
363 	spin_unlock_bh(&trans_info->spinlock);
364 
365 	refcount_set(&trans->refcount, 1);
366 
367 	return trans;
368 }
369 
370 /* Free a previously-allocated transaction */
371 void gsi_trans_free(struct gsi_trans *trans)
372 {
373 	refcount_t *refcount = &trans->refcount;
374 	struct gsi_trans_info *trans_info;
375 	bool last;
376 
377 	/* We must hold the lock to release the last reference */
378 	if (refcount_dec_not_one(refcount))
379 		return;
380 
381 	trans_info = &trans->gsi->channel[trans->channel_id].trans_info;
382 
383 	spin_lock_bh(&trans_info->spinlock);
384 
385 	/* Reference might have been added before we got the lock */
386 	last = refcount_dec_and_test(refcount);
387 	if (last)
388 		list_del(&trans->links);
389 
390 	spin_unlock_bh(&trans_info->spinlock);
391 
392 	if (!last)
393 		return;
394 
395 	ipa_gsi_trans_release(trans);
396 
397 	/* Releasing the reserved TREs implicitly frees the sgl[] and
398 	 * (if present) info[] arrays, plus the transaction itself.
399 	 */
400 	gsi_trans_tre_release(trans_info, trans->tre_count);
401 }
402 
403 /* Add an immediate command to a transaction */
404 void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
405 		       dma_addr_t addr, enum dma_data_direction direction,
406 		       enum ipa_cmd_opcode opcode)
407 {
408 	struct ipa_cmd_info *info;
409 	u32 which = trans->used++;
410 	struct scatterlist *sg;
411 
412 	/* assert(which < trans->tre_count); */
413 
414 	/* Commands are quite different from data transfer requests.
415 	 * Their payloads come from a pool whose memory is allocated
416 	 * using dma_alloc_coherent().  We therefore do *not* map them
417 	 * for DMA (unlike what we do for pages and skbs).
418 	 *
419 	 * When a transaction completes, the SGL is normally unmapped.
420 	 * A command transaction has direction DMA_NONE, which tells
421 	 * gsi_trans_complete() to skip the unmapping step.
422 	 *
423 	 * The only things we use directly in a command scatter/gather
424 	 * entry are the DMA address and length.  We still need the SG
425 	 * table flags to be maintained though, so assign a NULL page
426 	 * pointer for that purpose.
427 	 */
428 	sg = &trans->sgl[which];
429 	sg_assign_page(sg, NULL);
430 	sg_dma_address(sg) = addr;
431 	sg_dma_len(sg) = size;
432 
433 	info = &trans->info[which];
434 	info->opcode = opcode;
435 	info->direction = direction;
436 }
437 
438 /* Add a page transfer to a transaction.  It will fill the only TRE. */
439 int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
440 		       u32 offset)
441 {
442 	struct scatterlist *sg = &trans->sgl[0];
443 	int ret;
444 
445 	/* assert(trans->tre_count == 1); */
446 	/* assert(!trans->used); */
447 
448 	sg_set_page(sg, page, size, offset);
449 	ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction);
450 	if (!ret)
451 		return -ENOMEM;
452 
453 	trans->used++;	/* Transaction now owns the (DMA mapped) page */
454 
455 	return 0;
456 }
457 
458 /* Add an SKB transfer to a transaction.  No other TREs will be used. */
459 int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb)
460 {
461 	struct scatterlist *sg = &trans->sgl[0];
462 	u32 used;
463 	int ret;
464 
465 	/* assert(trans->tre_count == 1); */
466 	/* assert(!trans->used); */
467 
468 	/* skb->len will not be 0 (checked early) */
469 	ret = skb_to_sgvec(skb, sg, 0, skb->len);
470 	if (ret < 0)
471 		return ret;
472 	used = ret;
473 
474 	ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction);
475 	if (!ret)
476 		return -ENOMEM;
477 
478 	trans->used += used;	/* Transaction now owns the (DMA mapped) skb */
479 
480 	return 0;
481 }
482 
483 /* Compute the length/opcode value to use for a TRE */
484 static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len)
485 {
486 	return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len)
487 				      : cpu_to_le16((u16)opcode);
488 }
489 
490 /* Compute the flags value to use for a given TRE */
491 static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode)
492 {
493 	enum gsi_tre_type tre_type;
494 	u32 tre_flags;
495 
496 	tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD;
497 	tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK);
498 
499 	/* Last TRE contains interrupt flags */
500 	if (last_tre) {
501 		/* All transactions end in a transfer completion interrupt */
502 		tre_flags |= TRE_FLAGS_IEOT_FMASK;
503 		/* Don't interrupt when outbound commands are acknowledged */
504 		if (bei)
505 			tre_flags |= TRE_FLAGS_BEI_FMASK;
506 	} else {	/* All others indicate there's more to come */
507 		tre_flags |= TRE_FLAGS_CHAIN_FMASK;
508 	}
509 
510 	return cpu_to_le32(tre_flags);
511 }
512 
513 static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr,
514 			       u32 len, bool last_tre, bool bei,
515 			       enum ipa_cmd_opcode opcode)
516 {
517 	struct gsi_tre tre;
518 
519 	tre.addr = cpu_to_le64(addr);
520 	tre.len_opcode = gsi_tre_len_opcode(opcode, len);
521 	tre.reserved = 0;
522 	tre.flags = gsi_tre_flags(last_tre, bei, opcode);
523 
524 	/* ARM64 can write 16 bytes as a unit with a single instruction.
525 	 * Doing the assignment this way is an attempt to make that happen.
526 	 */
527 	*dest_tre = tre;
528 }
529 
530 /**
531  * __gsi_trans_commit() - Common GSI transaction commit code
532  * @trans:	Transaction to commit
533  * @ring_db:	Whether to tell the hardware about these queued transfers
534  *
535  * Formats channel ring TRE entries based on the content of the scatterlist.
536  * Maps a transaction pointer to the last ring entry used for the transaction,
537  * so it can be recovered when it completes.  Moves the transaction to the
538  * pending list.  Finally, updates the channel ring pointer and optionally
539  * rings the doorbell.
540  */
541 static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
542 {
543 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
544 	struct gsi_ring *ring = &channel->tre_ring;
545 	enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
546 	bool bei = channel->toward_ipa;
547 	struct ipa_cmd_info *info;
548 	struct gsi_tre *dest_tre;
549 	struct scatterlist *sg;
550 	u32 byte_count = 0;
551 	u32 avail;
552 	u32 i;
553 
554 	/* assert(trans->used > 0); */
555 
556 	/* Consume the entries.  If we cross the end of the ring while
557 	 * filling them we'll switch to the beginning to finish.
558 	 * If there is no info array we're doing a simple data
559 	 * transfer request, whose opcode is IPA_CMD_NONE.
560 	 */
561 	info = trans->info ? &trans->info[0] : NULL;
562 	avail = ring->count - ring->index % ring->count;
563 	dest_tre = gsi_ring_virt(ring, ring->index);
564 	for_each_sg(trans->sgl, sg, trans->used, i) {
565 		bool last_tre = i == trans->used - 1;
566 		dma_addr_t addr = sg_dma_address(sg);
567 		u32 len = sg_dma_len(sg);
568 
569 		byte_count += len;
570 		if (!avail--)
571 			dest_tre = gsi_ring_virt(ring, 0);
572 		if (info)
573 			opcode = info++->opcode;
574 
575 		gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode);
576 		dest_tre++;
577 	}
578 	ring->index += trans->used;
579 
580 	if (channel->toward_ipa) {
581 		/* We record TX bytes when they are sent */
582 		trans->len = byte_count;
583 		trans->trans_count = channel->trans_count;
584 		trans->byte_count = channel->byte_count;
585 		channel->trans_count++;
586 		channel->byte_count += byte_count;
587 	}
588 
589 	/* Associate the last TRE with the transaction */
590 	gsi_channel_trans_map(channel, ring->index - 1, trans);
591 
592 	gsi_trans_move_pending(trans);
593 
594 	/* Ring doorbell if requested, or if all TREs are allocated */
595 	if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) {
596 		/* Report what we're handing off to hardware for TX channels */
597 		if (channel->toward_ipa)
598 			gsi_channel_tx_queued(channel);
599 		gsi_channel_doorbell(channel);
600 	}
601 }
602 
603 /* Commit a GSI transaction */
604 void gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
605 {
606 	if (trans->used)
607 		__gsi_trans_commit(trans, ring_db);
608 	else
609 		gsi_trans_free(trans);
610 }
611 
612 /* Commit a GSI transaction and wait for it to complete */
613 void gsi_trans_commit_wait(struct gsi_trans *trans)
614 {
615 	if (!trans->used)
616 		goto out_trans_free;
617 
618 	refcount_inc(&trans->refcount);
619 
620 	__gsi_trans_commit(trans, true);
621 
622 	wait_for_completion(&trans->completion);
623 
624 out_trans_free:
625 	gsi_trans_free(trans);
626 }
627 
628 /* Commit a GSI transaction and wait for it to complete, with timeout */
629 int gsi_trans_commit_wait_timeout(struct gsi_trans *trans,
630 				  unsigned long timeout)
631 {
632 	unsigned long timeout_jiffies = msecs_to_jiffies(timeout);
633 	unsigned long remaining = 1;	/* In case of empty transaction */
634 
635 	if (!trans->used)
636 		goto out_trans_free;
637 
638 	refcount_inc(&trans->refcount);
639 
640 	__gsi_trans_commit(trans, true);
641 
642 	remaining = wait_for_completion_timeout(&trans->completion,
643 						timeout_jiffies);
644 out_trans_free:
645 	gsi_trans_free(trans);
646 
647 	return remaining ? 0 : -ETIMEDOUT;
648 }
649 
650 /* Process the completion of a transaction; called while polling */
651 void gsi_trans_complete(struct gsi_trans *trans)
652 {
653 	/* If the entire SGL was mapped when added, unmap it now */
654 	if (trans->direction != DMA_NONE)
655 		dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used,
656 			     trans->direction);
657 
658 	ipa_gsi_trans_complete(trans);
659 
660 	complete(&trans->completion);
661 
662 	gsi_trans_free(trans);
663 }
664 
665 /* Cancel a channel's pending transactions */
666 void gsi_channel_trans_cancel_pending(struct gsi_channel *channel)
667 {
668 	struct gsi_trans_info *trans_info = &channel->trans_info;
669 	struct gsi_trans *trans;
670 	bool cancelled;
671 
672 	/* channel->gsi->mutex is held by caller */
673 	spin_lock_bh(&trans_info->spinlock);
674 
675 	cancelled = !list_empty(&trans_info->pending);
676 	list_for_each_entry(trans, &trans_info->pending, links)
677 		trans->cancelled = true;
678 
679 	list_splice_tail_init(&trans_info->pending, &trans_info->complete);
680 
681 	spin_unlock_bh(&trans_info->spinlock);
682 
683 	/* Schedule NAPI polling to complete the cancelled transactions */
684 	if (cancelled)
685 		napi_schedule(&channel->napi);
686 }
687 
688 /* Issue a command to read a single byte from a channel */
689 int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr)
690 {
691 	struct gsi_channel *channel = &gsi->channel[channel_id];
692 	struct gsi_ring *ring = &channel->tre_ring;
693 	struct gsi_trans_info *trans_info;
694 	struct gsi_tre *dest_tre;
695 
696 	trans_info = &channel->trans_info;
697 
698 	/* First reserve the TRE, if possible */
699 	if (!gsi_trans_tre_reserve(trans_info, 1))
700 		return -EBUSY;
701 
702 	/* Now fill the the reserved TRE and tell the hardware */
703 
704 	dest_tre = gsi_ring_virt(ring, ring->index);
705 	gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE);
706 
707 	ring->index++;
708 	gsi_channel_doorbell(channel);
709 
710 	return 0;
711 }
712 
713 /* Mark a gsi_trans_read_byte() request done */
714 void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id)
715 {
716 	struct gsi_channel *channel = &gsi->channel[channel_id];
717 
718 	gsi_trans_tre_release(&channel->trans_info, 1);
719 }
720 
721 /* Initialize a channel's GSI transaction info */
722 int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id)
723 {
724 	struct gsi_channel *channel = &gsi->channel[channel_id];
725 	struct gsi_trans_info *trans_info;
726 	u32 tre_max;
727 	int ret;
728 
729 	/* Ensure the size of a channel element is what's expected */
730 	BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE);
731 
732 	/* The map array is used to determine what transaction is associated
733 	 * with a TRE that the hardware reports has completed.  We need one
734 	 * map entry per TRE.
735 	 */
736 	trans_info = &channel->trans_info;
737 	trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map),
738 				  GFP_KERNEL);
739 	if (!trans_info->map)
740 		return -ENOMEM;
741 
742 	/* We can't use more TREs than there are available in the ring.
743 	 * This limits the number of transactions that can be oustanding.
744 	 * Worst case is one TRE per transaction (but we actually limit
745 	 * it to something a little less than that).  We allocate resources
746 	 * for transactions (including transaction structures) based on
747 	 * this maximum number.
748 	 */
749 	tre_max = gsi_channel_tre_max(channel->gsi, channel_id);
750 
751 	/* Transactions are allocated one at a time. */
752 	ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans),
753 				  tre_max, 1);
754 	if (ret)
755 		goto err_kfree;
756 
757 	/* A transaction uses a scatterlist array to represent the data
758 	 * transfers implemented by the transaction.  Each scatterlist
759 	 * element is used to fill a single TRE when the transaction is
760 	 * committed.  So we need as many scatterlist elements as the
761 	 * maximum number of TREs that can be outstanding.
762 	 *
763 	 * All TREs in a transaction must fit within the channel's TLV FIFO.
764 	 * A transaction on a channel can allocate as many TREs as that but
765 	 * no more.
766 	 */
767 	ret = gsi_trans_pool_init(&trans_info->sg_pool,
768 				  sizeof(struct scatterlist),
769 				  tre_max, channel->tlv_count);
770 	if (ret)
771 		goto err_trans_pool_exit;
772 
773 	/* Finally, the tre_avail field is what ultimately limits the number
774 	 * of outstanding transactions and their resources.  A transaction
775 	 * allocation succeeds only if the TREs available are sufficient for
776 	 * what the transaction might need.  Transaction resource pools are
777 	 * sized based on the maximum number of outstanding TREs, so there
778 	 * will always be resources available if there are TREs available.
779 	 */
780 	atomic_set(&trans_info->tre_avail, tre_max);
781 
782 	spin_lock_init(&trans_info->spinlock);
783 	INIT_LIST_HEAD(&trans_info->alloc);
784 	INIT_LIST_HEAD(&trans_info->pending);
785 	INIT_LIST_HEAD(&trans_info->complete);
786 	INIT_LIST_HEAD(&trans_info->polled);
787 
788 	return 0;
789 
790 err_trans_pool_exit:
791 	gsi_trans_pool_exit(&trans_info->pool);
792 err_kfree:
793 	kfree(trans_info->map);
794 
795 	dev_err(gsi->dev, "error %d initializing channel %u transactions\n",
796 		ret, channel_id);
797 
798 	return ret;
799 }
800 
801 /* Inverse of gsi_channel_trans_init() */
802 void gsi_channel_trans_exit(struct gsi_channel *channel)
803 {
804 	struct gsi_trans_info *trans_info = &channel->trans_info;
805 
806 	gsi_trans_pool_exit(&trans_info->sg_pool);
807 	gsi_trans_pool_exit(&trans_info->pool);
808 	kfree(trans_info->map);
809 }
810