xref: /openbmc/linux/drivers/net/ipa/gsi.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25 
26 /**
27  * DOC: The IPA Generic Software Interface
28  *
29  * The generic software interface (GSI) is an integral component of the IPA,
30  * providing a well-defined communication layer between the AP subsystem
31  * and the IPA core.  The modem uses the GSI layer as well.
32  *
33  *	--------	     ---------
34  *	|      |	     |	     |
35  *	|  AP  +<---.	.----+ Modem |
36  *	|      +--. |	| .->+	     |
37  *	|      |  | |	| |  |	     |
38  *	--------  | |	| |  ---------
39  *		  v |	v |
40  *		--+-+---+-+--
41  *		|    GSI    |
42  *		|-----------|
43  *		|	    |
44  *		|    IPA    |
45  *		|	    |
46  *		-------------
47  *
48  * In the above diagram, the AP and Modem represent "execution environments"
49  * (EEs), which are independent operating environments that use the IPA for
50  * data transfer.
51  *
52  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53  * of data to or from the IPA.  A channel is implemented as a ring buffer,
54  * with a DRAM-resident array of "transfer elements" (TREs) available to
55  * describe transfers to or from other EEs through the IPA.  A transfer
56  * element can also contain an immediate command, requesting the IPA perform
57  * actions other than data transfer.
58  *
59  * Each TRE refers to a block of data--also located DRAM.  After writing one
60  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
61  * doorbell register to inform the receiving side how many elements have
62  * been written.
63  *
64  * Each channel has a GSI "event ring" associated with it.  An event ring
65  * is implemented very much like a channel ring, but is always directed from
66  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
67  * events by adding an entry to the event ring associated with the channel.
68  * The GSI then writes its doorbell for the event ring, causing the target
69  * EE to be interrupted.  Each entry in an event ring contains a pointer
70  * to the channel TRE whose completion the event represents.
71  *
72  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
73  * the completion of the transfer operation generates an entry (and possibly
74  * an interrupt) in the channel's event ring.  Other flags allow transfer
75  * elements to be chained together, forming a single logical transaction.
76  * TRE flags are used to control whether and when interrupts are generated
77  * to signal completion of channel transfers.
78  *
79  * Elements in channel and event rings are completed (or consumed) strictly
80  * in order.  Completion of one entry implies the completion of all preceding
81  * entries.  A single completion interrupt can therefore communicate the
82  * completion of many transfers.
83  *
84  * Note that all GSI registers are little-endian, which is the assumed
85  * endianness of I/O space accesses.  The accessor functions perform byte
86  * swapping if needed (i.e., for a big endian CPU).
87  */
88 
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
91 
92 #define GSI_CMD_TIMEOUT			50	/* milliseconds */
93 
94 #define GSI_CHANNEL_STOP_RETRIES	10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES	10
96 
97 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
99 
100 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
101 
102 /* An entry in an event ring */
103 struct gsi_event {
104 	__le64 xfer_ptr;
105 	__le16 len;
106 	u8 reserved1;
107 	u8 code;
108 	__le16 reserved2;
109 	u8 type;
110 	u8 chid;
111 };
112 
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114  * @max_outstanding_tre:
115  *	Defines the maximum number of TREs allowed in a single transaction
116  *	on a channel (in bytes).  This determines the amount of prefetch
117  *	performed by the hardware.  We configure this to equal the size of
118  *	the TLV FIFO for the channel.
119  * @outstanding_threshold:
120  *	Defines the threshold (in bytes) determining when the sequencer
121  *	should update the channel doorbell.  We configure this to equal
122  *	the size of two TREs.
123  */
124 struct gsi_channel_scratch_gpi {
125 	u64 reserved1;
126 	u16 reserved2;
127 	u16 max_outstanding_tre;
128 	u16 reserved3;
129 	u16 outstanding_threshold;
130 };
131 
132 /** gsi_channel_scratch - channel scratch configuration area
133  *
134  * The exact interpretation of this register is protocol-specific.
135  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
136  */
137 union gsi_channel_scratch {
138 	struct gsi_channel_scratch_gpi gpi;
139 	struct {
140 		u32 word1;
141 		u32 word2;
142 		u32 word3;
143 		u32 word4;
144 	} data;
145 };
146 
147 /* Check things that can be validated at build time. */
148 static void gsi_validate_build(void)
149 {
150 	/* This is used as a divisor */
151 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
152 
153 	/* Code assumes the size of channel and event ring element are
154 	 * the same (and fixed).  Make sure the size of an event ring
155 	 * element is what's expected.
156 	 */
157 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
158 
159 	/* Hardware requires a 2^n ring size.  We ensure the number of
160 	 * elements in an event ring is a power of 2 elsewhere; this
161 	 * ensure the elements themselves meet the requirement.
162 	 */
163 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
164 
165 	/* The channel element size must fit in this field */
166 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
167 
168 	/* The event ring element size must fit in this field */
169 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
170 }
171 
172 /* Return the channel id associated with a given channel */
173 static u32 gsi_channel_id(struct gsi_channel *channel)
174 {
175 	return channel - &channel->gsi->channel[0];
176 }
177 
178 /* An initialized channel has a non-null GSI pointer */
179 static bool gsi_channel_initialized(struct gsi_channel *channel)
180 {
181 	return !!channel->gsi;
182 }
183 
184 /* Update the GSI IRQ type register with the cached value */
185 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
186 {
187 	gsi->type_enabled_bitmap = val;
188 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
189 }
190 
191 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
192 {
193 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
194 }
195 
196 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
197 {
198 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
199 }
200 
201 /* Event ring commands are performed one at a time.  Their completion
202  * is signaled by the event ring control GSI interrupt type, which is
203  * only enabled when we issue an event ring command.  Only the event
204  * ring being operated on has this interrupt enabled.
205  */
206 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
207 {
208 	u32 val = BIT(evt_ring_id);
209 
210 	/* There's a small chance that a previous command completed
211 	 * after the interrupt was disabled, so make sure we have no
212 	 * pending interrupts before we enable them.
213 	 */
214 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
215 
216 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
217 	gsi_irq_type_enable(gsi, GSI_EV_CTRL);
218 }
219 
220 /* Disable event ring control interrupts */
221 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
222 {
223 	gsi_irq_type_disable(gsi, GSI_EV_CTRL);
224 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
225 }
226 
227 /* Channel commands are performed one at a time.  Their completion is
228  * signaled by the channel control GSI interrupt type, which is only
229  * enabled when we issue a channel command.  Only the channel being
230  * operated on has this interrupt enabled.
231  */
232 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
233 {
234 	u32 val = BIT(channel_id);
235 
236 	/* There's a small chance that a previous command completed
237 	 * after the interrupt was disabled, so make sure we have no
238 	 * pending interrupts before we enable them.
239 	 */
240 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
241 
242 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
243 	gsi_irq_type_enable(gsi, GSI_CH_CTRL);
244 }
245 
246 /* Disable channel control interrupts */
247 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
248 {
249 	gsi_irq_type_disable(gsi, GSI_CH_CTRL);
250 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
251 }
252 
253 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
254 {
255 	bool enable_ieob = !gsi->ieob_enabled_bitmap;
256 	u32 val;
257 
258 	gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
259 	val = gsi->ieob_enabled_bitmap;
260 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
261 
262 	/* Enable the interrupt type if this is the first channel enabled */
263 	if (enable_ieob)
264 		gsi_irq_type_enable(gsi, GSI_IEOB);
265 }
266 
267 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
268 {
269 	u32 val;
270 
271 	gsi->ieob_enabled_bitmap &= ~event_mask;
272 
273 	/* Disable the interrupt type if this was the last enabled channel */
274 	if (!gsi->ieob_enabled_bitmap)
275 		gsi_irq_type_disable(gsi, GSI_IEOB);
276 
277 	val = gsi->ieob_enabled_bitmap;
278 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
279 }
280 
281 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
282 {
283 	gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
284 }
285 
286 /* Enable all GSI_interrupt types */
287 static void gsi_irq_enable(struct gsi *gsi)
288 {
289 	u32 val;
290 
291 	/* Global interrupts include hardware error reports.  Enable
292 	 * that so we can at least report the error should it occur.
293 	 */
294 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
295 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
296 
297 	/* General GSI interrupts are reported to all EEs; if they occur
298 	 * they are unrecoverable (without reset).  A breakpoint interrupt
299 	 * also exists, but we don't support that.  We want to be notified
300 	 * of errors so we can report them, even if they can't be handled.
301 	 */
302 	val = BIT(BUS_ERROR);
303 	val |= BIT(CMD_FIFO_OVRFLOW);
304 	val |= BIT(MCS_STACK_OVRFLOW);
305 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
306 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
307 }
308 
309 /* Disable all GSI interrupt types */
310 static void gsi_irq_disable(struct gsi *gsi)
311 {
312 	gsi_irq_type_update(gsi, 0);
313 
314 	/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
315 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
316 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
317 }
318 
319 /* Return the virtual address associated with a ring index */
320 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
321 {
322 	/* Note: index *must* be used modulo the ring count here */
323 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
324 }
325 
326 /* Return the 32-bit DMA address associated with a ring index */
327 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
328 {
329 	return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
330 }
331 
332 /* Return the ring index of a 32-bit ring offset */
333 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
334 {
335 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
336 }
337 
338 /* Issue a GSI command by writing a value to a register, then wait for
339  * completion to be signaled.  Returns true if the command completes
340  * or false if it times out.
341  */
342 static bool
343 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
344 {
345 	unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
346 
347 	reinit_completion(completion);
348 
349 	iowrite32(val, gsi->virt + reg);
350 
351 	return !!wait_for_completion_timeout(completion, timeout);
352 }
353 
354 /* Return the hardware's notion of the current state of an event ring */
355 static enum gsi_evt_ring_state
356 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
357 {
358 	u32 val;
359 
360 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
361 
362 	return u32_get_bits(val, EV_CHSTATE_FMASK);
363 }
364 
365 /* Issue an event ring command and wait for it to complete */
366 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
367 				 enum gsi_evt_cmd_opcode opcode)
368 {
369 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
370 	struct completion *completion = &evt_ring->completion;
371 	struct device *dev = gsi->dev;
372 	bool timeout;
373 	u32 val;
374 
375 	/* Enable the completion interrupt for the command */
376 	gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
377 
378 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
379 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
380 
381 	timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
382 
383 	gsi_irq_ev_ctrl_disable(gsi);
384 
385 	if (!timeout)
386 		return;
387 
388 	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
389 		opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
390 }
391 
392 /* Allocate an event ring in NOT_ALLOCATED state */
393 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
394 {
395 	enum gsi_evt_ring_state state;
396 
397 	/* Get initial event ring state */
398 	state = gsi_evt_ring_state(gsi, evt_ring_id);
399 	if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
400 		dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
401 			evt_ring_id, state);
402 		return -EINVAL;
403 	}
404 
405 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
406 
407 	/* If successful the event ring state will have changed */
408 	state = gsi_evt_ring_state(gsi, evt_ring_id);
409 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
410 		return 0;
411 
412 	dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
413 		evt_ring_id, state);
414 
415 	return -EIO;
416 }
417 
418 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
419 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
420 {
421 	enum gsi_evt_ring_state state;
422 
423 	state = gsi_evt_ring_state(gsi, evt_ring_id);
424 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
425 	    state != GSI_EVT_RING_STATE_ERROR) {
426 		dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
427 			evt_ring_id, state);
428 		return;
429 	}
430 
431 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
432 
433 	/* If successful the event ring state will have changed */
434 	state = gsi_evt_ring_state(gsi, evt_ring_id);
435 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
436 		return;
437 
438 	dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
439 		evt_ring_id, state);
440 }
441 
442 /* Issue a hardware de-allocation request for an allocated event ring */
443 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
444 {
445 	enum gsi_evt_ring_state state;
446 
447 	state = gsi_evt_ring_state(gsi, evt_ring_id);
448 	if (state != GSI_EVT_RING_STATE_ALLOCATED) {
449 		dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
450 			evt_ring_id, state);
451 		return;
452 	}
453 
454 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
455 
456 	/* If successful the event ring state will have changed */
457 	state = gsi_evt_ring_state(gsi, evt_ring_id);
458 	if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
459 		return;
460 
461 	dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
462 		evt_ring_id, state);
463 }
464 
465 /* Fetch the current state of a channel from hardware */
466 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
467 {
468 	u32 channel_id = gsi_channel_id(channel);
469 	void __iomem *virt = channel->gsi->virt;
470 	u32 val;
471 
472 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
473 
474 	return u32_get_bits(val, CHSTATE_FMASK);
475 }
476 
477 /* Issue a channel command and wait for it to complete */
478 static void
479 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
480 {
481 	struct completion *completion = &channel->completion;
482 	u32 channel_id = gsi_channel_id(channel);
483 	struct gsi *gsi = channel->gsi;
484 	struct device *dev = gsi->dev;
485 	bool timeout;
486 	u32 val;
487 
488 	/* Enable the completion interrupt for the command */
489 	gsi_irq_ch_ctrl_enable(gsi, channel_id);
490 
491 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
492 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
493 	timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
494 
495 	gsi_irq_ch_ctrl_disable(gsi);
496 
497 	if (!timeout)
498 		return;
499 
500 	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
501 		opcode, channel_id, gsi_channel_state(channel));
502 }
503 
504 /* Allocate GSI channel in NOT_ALLOCATED state */
505 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
506 {
507 	struct gsi_channel *channel = &gsi->channel[channel_id];
508 	struct device *dev = gsi->dev;
509 	enum gsi_channel_state state;
510 
511 	/* Get initial channel state */
512 	state = gsi_channel_state(channel);
513 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
514 		dev_err(dev, "channel %u bad state %u before alloc\n",
515 			channel_id, state);
516 		return -EINVAL;
517 	}
518 
519 	gsi_channel_command(channel, GSI_CH_ALLOCATE);
520 
521 	/* If successful the channel state will have changed */
522 	state = gsi_channel_state(channel);
523 	if (state == GSI_CHANNEL_STATE_ALLOCATED)
524 		return 0;
525 
526 	dev_err(dev, "channel %u bad state %u after alloc\n",
527 		channel_id, state);
528 
529 	return -EIO;
530 }
531 
532 /* Start an ALLOCATED channel */
533 static int gsi_channel_start_command(struct gsi_channel *channel)
534 {
535 	struct device *dev = channel->gsi->dev;
536 	enum gsi_channel_state state;
537 
538 	state = gsi_channel_state(channel);
539 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
540 	    state != GSI_CHANNEL_STATE_STOPPED) {
541 		dev_err(dev, "channel %u bad state %u before start\n",
542 			gsi_channel_id(channel), state);
543 		return -EINVAL;
544 	}
545 
546 	gsi_channel_command(channel, GSI_CH_START);
547 
548 	/* If successful the channel state will have changed */
549 	state = gsi_channel_state(channel);
550 	if (state == GSI_CHANNEL_STATE_STARTED)
551 		return 0;
552 
553 	dev_err(dev, "channel %u bad state %u after start\n",
554 		gsi_channel_id(channel), state);
555 
556 	return -EIO;
557 }
558 
559 /* Stop a GSI channel in STARTED state */
560 static int gsi_channel_stop_command(struct gsi_channel *channel)
561 {
562 	struct device *dev = channel->gsi->dev;
563 	enum gsi_channel_state state;
564 
565 	state = gsi_channel_state(channel);
566 
567 	/* Channel could have entered STOPPED state since last call
568 	 * if it timed out.  If so, we're done.
569 	 */
570 	if (state == GSI_CHANNEL_STATE_STOPPED)
571 		return 0;
572 
573 	if (state != GSI_CHANNEL_STATE_STARTED &&
574 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
575 		dev_err(dev, "channel %u bad state %u before stop\n",
576 			gsi_channel_id(channel), state);
577 		return -EINVAL;
578 	}
579 
580 	gsi_channel_command(channel, GSI_CH_STOP);
581 
582 	/* If successful the channel state will have changed */
583 	state = gsi_channel_state(channel);
584 	if (state == GSI_CHANNEL_STATE_STOPPED)
585 		return 0;
586 
587 	/* We may have to try again if stop is in progress */
588 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
589 		return -EAGAIN;
590 
591 	dev_err(dev, "channel %u bad state %u after stop\n",
592 		gsi_channel_id(channel), state);
593 
594 	return -EIO;
595 }
596 
597 /* Reset a GSI channel in ALLOCATED or ERROR state. */
598 static void gsi_channel_reset_command(struct gsi_channel *channel)
599 {
600 	struct device *dev = channel->gsi->dev;
601 	enum gsi_channel_state state;
602 
603 	/* A short delay is required before a RESET command */
604 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
605 
606 	state = gsi_channel_state(channel);
607 	if (state != GSI_CHANNEL_STATE_STOPPED &&
608 	    state != GSI_CHANNEL_STATE_ERROR) {
609 		/* No need to reset a channel already in ALLOCATED state */
610 		if (state != GSI_CHANNEL_STATE_ALLOCATED)
611 			dev_err(dev, "channel %u bad state %u before reset\n",
612 				gsi_channel_id(channel), state);
613 		return;
614 	}
615 
616 	gsi_channel_command(channel, GSI_CH_RESET);
617 
618 	/* If successful the channel state will have changed */
619 	state = gsi_channel_state(channel);
620 	if (state != GSI_CHANNEL_STATE_ALLOCATED)
621 		dev_err(dev, "channel %u bad state %u after reset\n",
622 			gsi_channel_id(channel), state);
623 }
624 
625 /* Deallocate an ALLOCATED GSI channel */
626 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
627 {
628 	struct gsi_channel *channel = &gsi->channel[channel_id];
629 	struct device *dev = gsi->dev;
630 	enum gsi_channel_state state;
631 
632 	state = gsi_channel_state(channel);
633 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
634 		dev_err(dev, "channel %u bad state %u before dealloc\n",
635 			channel_id, state);
636 		return;
637 	}
638 
639 	gsi_channel_command(channel, GSI_CH_DE_ALLOC);
640 
641 	/* If successful the channel state will have changed */
642 	state = gsi_channel_state(channel);
643 
644 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
645 		dev_err(dev, "channel %u bad state %u after dealloc\n",
646 			channel_id, state);
647 }
648 
649 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
650  * The index argument (modulo the ring count) is the first unfilled entry, so
651  * we supply one less than that with the doorbell.  Update the event ring
652  * index field with the value provided.
653  */
654 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
655 {
656 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
657 	u32 val;
658 
659 	ring->index = index;	/* Next unused entry */
660 
661 	/* Note: index *must* be used modulo the ring count here */
662 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
663 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
664 }
665 
666 /* Program an event ring for use */
667 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
668 {
669 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
670 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
671 	u32 val;
672 
673 	/* We program all event rings as GPI type/protocol */
674 	val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
675 	val |= EV_INTYPE_FMASK;
676 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
677 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
678 
679 	val = ev_r_length_encoded(gsi->version, size);
680 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
681 
682 	/* The context 2 and 3 registers store the low-order and
683 	 * high-order 32 bits of the address of the event ring,
684 	 * respectively.
685 	 */
686 	val = lower_32_bits(evt_ring->ring.addr);
687 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
688 	val = upper_32_bits(evt_ring->ring.addr);
689 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
690 
691 	/* Enable interrupt moderation by setting the moderation delay */
692 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
693 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
694 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
695 
696 	/* No MSI write data, and MSI address high and low address is 0 */
697 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
698 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
699 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
700 
701 	/* We don't need to get event read pointer updates */
702 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
703 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
704 
705 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
706 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
707 }
708 
709 /* Find the transaction whose completion indicates a channel is quiesced */
710 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
711 {
712 	struct gsi_trans_info *trans_info = &channel->trans_info;
713 	const struct list_head *list;
714 	struct gsi_trans *trans;
715 
716 	spin_lock_bh(&trans_info->spinlock);
717 
718 	/* There is a small chance a TX transaction got allocated just
719 	 * before we disabled transmits, so check for that.
720 	 */
721 	if (channel->toward_ipa) {
722 		list = &trans_info->alloc;
723 		if (!list_empty(list))
724 			goto done;
725 		list = &trans_info->pending;
726 		if (!list_empty(list))
727 			goto done;
728 	}
729 
730 	/* Otherwise (TX or RX) we want to wait for anything that
731 	 * has completed, or has been polled but not released yet.
732 	 */
733 	list = &trans_info->complete;
734 	if (!list_empty(list))
735 		goto done;
736 	list = &trans_info->polled;
737 	if (list_empty(list))
738 		list = NULL;
739 done:
740 	trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL;
741 
742 	/* Caller will wait for this, so take a reference */
743 	if (trans)
744 		refcount_inc(&trans->refcount);
745 
746 	spin_unlock_bh(&trans_info->spinlock);
747 
748 	return trans;
749 }
750 
751 /* Wait for transaction activity on a channel to complete */
752 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
753 {
754 	struct gsi_trans *trans;
755 
756 	/* Get the last transaction, and wait for it to complete */
757 	trans = gsi_channel_trans_last(channel);
758 	if (trans) {
759 		wait_for_completion(&trans->completion);
760 		gsi_trans_free(trans);
761 	}
762 }
763 
764 /* Program a channel for use; there is no gsi_channel_deprogram() */
765 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
766 {
767 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
768 	u32 channel_id = gsi_channel_id(channel);
769 	union gsi_channel_scratch scr = { };
770 	struct gsi_channel_scratch_gpi *gpi;
771 	struct gsi *gsi = channel->gsi;
772 	u32 wrr_weight = 0;
773 	u32 val;
774 
775 	/* Arbitrarily pick TRE 0 as the first channel element to use */
776 	channel->tre_ring.index = 0;
777 
778 	/* We program all channels as GPI type/protocol */
779 	val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI);
780 	if (channel->toward_ipa)
781 		val |= CHTYPE_DIR_FMASK;
782 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
783 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
784 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
785 
786 	val = r_length_encoded(gsi->version, size);
787 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
788 
789 	/* The context 2 and 3 registers store the low-order and
790 	 * high-order 32 bits of the address of the channel ring,
791 	 * respectively.
792 	 */
793 	val = lower_32_bits(channel->tre_ring.addr);
794 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
795 	val = upper_32_bits(channel->tre_ring.addr);
796 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
797 
798 	/* Command channel gets low weighted round-robin priority */
799 	if (channel->command)
800 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
801 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
802 
803 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
804 
805 	/* No need to use the doorbell engine starting at IPA v4.0 */
806 	if (gsi->version < IPA_VERSION_4_0 && doorbell)
807 		val |= USE_DB_ENG_FMASK;
808 
809 	/* v4.0 introduces an escape buffer for prefetch.  We use it
810 	 * on all but the AP command channel.
811 	 */
812 	if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
813 		/* If not otherwise set, prefetch buffers are used */
814 		if (gsi->version < IPA_VERSION_4_5)
815 			val |= USE_ESCAPE_BUF_ONLY_FMASK;
816 		else
817 			val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
818 					       PREFETCH_MODE_FMASK);
819 	}
820 	/* All channels set DB_IN_BYTES */
821 	if (gsi->version >= IPA_VERSION_4_9)
822 		val |= DB_IN_BYTES;
823 
824 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
825 
826 	/* Now update the scratch registers for GPI protocol */
827 	gpi = &scr.gpi;
828 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
829 					GSI_RING_ELEMENT_SIZE;
830 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
831 
832 	val = scr.data.word1;
833 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
834 
835 	val = scr.data.word2;
836 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
837 
838 	val = scr.data.word3;
839 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
840 
841 	/* We must preserve the upper 16 bits of the last scratch register.
842 	 * The next sequence assumes those bits remain unchanged between the
843 	 * read and the write.
844 	 */
845 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
846 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
847 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
848 
849 	/* All done! */
850 }
851 
852 static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
853 {
854 	struct gsi *gsi = channel->gsi;
855 	int ret;
856 
857 	/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
858 	if (resume && gsi->version < IPA_VERSION_4_0)
859 		return 0;
860 
861 	mutex_lock(&gsi->mutex);
862 
863 	ret = gsi_channel_start_command(channel);
864 
865 	mutex_unlock(&gsi->mutex);
866 
867 	return ret;
868 }
869 
870 /* Start an allocated GSI channel */
871 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
872 {
873 	struct gsi_channel *channel = &gsi->channel[channel_id];
874 	int ret;
875 
876 	/* Enable NAPI and the completion interrupt */
877 	napi_enable(&channel->napi);
878 	gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
879 
880 	ret = __gsi_channel_start(channel, false);
881 	if (ret) {
882 		gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
883 		napi_disable(&channel->napi);
884 	}
885 
886 	return ret;
887 }
888 
889 static int gsi_channel_stop_retry(struct gsi_channel *channel)
890 {
891 	u32 retries = GSI_CHANNEL_STOP_RETRIES;
892 	int ret;
893 
894 	do {
895 		ret = gsi_channel_stop_command(channel);
896 		if (ret != -EAGAIN)
897 			break;
898 		usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
899 	} while (retries--);
900 
901 	return ret;
902 }
903 
904 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
905 {
906 	struct gsi *gsi = channel->gsi;
907 	int ret;
908 
909 	/* Wait for any underway transactions to complete before stopping. */
910 	gsi_channel_trans_quiesce(channel);
911 
912 	/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
913 	if (suspend && gsi->version < IPA_VERSION_4_0)
914 		return 0;
915 
916 	mutex_lock(&gsi->mutex);
917 
918 	ret = gsi_channel_stop_retry(channel);
919 
920 	mutex_unlock(&gsi->mutex);
921 
922 	return ret;
923 }
924 
925 /* Stop a started channel */
926 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
927 {
928 	struct gsi_channel *channel = &gsi->channel[channel_id];
929 	int ret;
930 
931 	ret = __gsi_channel_stop(channel, false);
932 	if (ret)
933 		return ret;
934 
935 	/* Disable the completion interrupt and NAPI if successful */
936 	gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
937 	napi_disable(&channel->napi);
938 
939 	return 0;
940 }
941 
942 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
943 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
944 {
945 	struct gsi_channel *channel = &gsi->channel[channel_id];
946 
947 	mutex_lock(&gsi->mutex);
948 
949 	gsi_channel_reset_command(channel);
950 	/* Due to a hardware quirk we may need to reset RX channels twice. */
951 	if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
952 		gsi_channel_reset_command(channel);
953 
954 	gsi_channel_program(channel, doorbell);
955 	gsi_channel_trans_cancel_pending(channel);
956 
957 	mutex_unlock(&gsi->mutex);
958 }
959 
960 /* Stop a started channel for suspend */
961 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
962 {
963 	struct gsi_channel *channel = &gsi->channel[channel_id];
964 	int ret;
965 
966 	ret = __gsi_channel_stop(channel, true);
967 	if (ret)
968 		return ret;
969 
970 	/* Ensure NAPI polling has finished. */
971 	napi_synchronize(&channel->napi);
972 
973 	return 0;
974 }
975 
976 /* Resume a suspended channel (starting if stopped) */
977 int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
978 {
979 	struct gsi_channel *channel = &gsi->channel[channel_id];
980 
981 	return __gsi_channel_start(channel, true);
982 }
983 
984 /* Prevent all GSI interrupts while suspended */
985 void gsi_suspend(struct gsi *gsi)
986 {
987 	disable_irq(gsi->irq);
988 }
989 
990 /* Allow all GSI interrupts again when resuming */
991 void gsi_resume(struct gsi *gsi)
992 {
993 	enable_irq(gsi->irq);
994 }
995 
996 /**
997  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
998  * @channel:	Channel for which to report
999  *
1000  * Report to the network stack the number of bytes and transactions that
1001  * have been queued to hardware since last call.  This and the next function
1002  * supply information used by the network stack for throttling.
1003  *
1004  * For each channel we track the number of transactions used and bytes of
1005  * data those transactions represent.  We also track what those values are
1006  * each time this function is called.  Subtracting the two tells us
1007  * the number of bytes and transactions that have been added between
1008  * successive calls.
1009  *
1010  * Calling this each time we ring the channel doorbell allows us to
1011  * provide accurate information to the network stack about how much
1012  * work we've given the hardware at any point in time.
1013  */
1014 void gsi_channel_tx_queued(struct gsi_channel *channel)
1015 {
1016 	u32 trans_count;
1017 	u32 byte_count;
1018 
1019 	byte_count = channel->byte_count - channel->queued_byte_count;
1020 	trans_count = channel->trans_count - channel->queued_trans_count;
1021 	channel->queued_byte_count = channel->byte_count;
1022 	channel->queued_trans_count = channel->trans_count;
1023 
1024 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
1025 				  trans_count, byte_count);
1026 }
1027 
1028 /**
1029  * gsi_channel_tx_update() - Report completed TX transfers
1030  * @channel:	Channel that has completed transmitting packets
1031  * @trans:	Last transation known to be complete
1032  *
1033  * Compute the number of transactions and bytes that have been transferred
1034  * over a TX channel since the given transaction was committed.  Report this
1035  * information to the network stack.
1036  *
1037  * At the time a transaction is committed, we record its channel's
1038  * committed transaction and byte counts *in the transaction*.
1039  * Completions are signaled by the hardware with an interrupt, and
1040  * we can determine the latest completed transaction at that time.
1041  *
1042  * The difference between the byte/transaction count recorded in
1043  * the transaction and the count last time we recorded a completion
1044  * tells us exactly how much data has been transferred between
1045  * completions.
1046  *
1047  * Calling this each time we learn of a newly-completed transaction
1048  * allows us to provide accurate information to the network stack
1049  * about how much work has been completed by the hardware at a given
1050  * point in time.
1051  */
1052 static void
1053 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
1054 {
1055 	u64 byte_count = trans->byte_count + trans->len;
1056 	u64 trans_count = trans->trans_count + 1;
1057 
1058 	byte_count -= channel->compl_byte_count;
1059 	channel->compl_byte_count += byte_count;
1060 	trans_count -= channel->compl_trans_count;
1061 	channel->compl_trans_count += trans_count;
1062 
1063 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
1064 				     trans_count, byte_count);
1065 }
1066 
1067 /* Channel control interrupt handler */
1068 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1069 {
1070 	u32 channel_mask;
1071 
1072 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1073 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1074 
1075 	while (channel_mask) {
1076 		u32 channel_id = __ffs(channel_mask);
1077 		struct gsi_channel *channel;
1078 
1079 		channel_mask ^= BIT(channel_id);
1080 
1081 		channel = &gsi->channel[channel_id];
1082 
1083 		complete(&channel->completion);
1084 	}
1085 }
1086 
1087 /* Event ring control interrupt handler */
1088 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1089 {
1090 	u32 event_mask;
1091 
1092 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1093 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1094 
1095 	while (event_mask) {
1096 		u32 evt_ring_id = __ffs(event_mask);
1097 		struct gsi_evt_ring *evt_ring;
1098 
1099 		event_mask ^= BIT(evt_ring_id);
1100 
1101 		evt_ring = &gsi->evt_ring[evt_ring_id];
1102 
1103 		complete(&evt_ring->completion);
1104 	}
1105 }
1106 
1107 /* Global channel error interrupt handler */
1108 static void
1109 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1110 {
1111 	if (code == GSI_OUT_OF_RESOURCES) {
1112 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1113 		complete(&gsi->channel[channel_id].completion);
1114 		return;
1115 	}
1116 
1117 	/* Report, but otherwise ignore all other error codes */
1118 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1119 		channel_id, err_ee, code);
1120 }
1121 
1122 /* Global event error interrupt handler */
1123 static void
1124 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1125 {
1126 	if (code == GSI_OUT_OF_RESOURCES) {
1127 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1128 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1129 
1130 		complete(&evt_ring->completion);
1131 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1132 			channel_id);
1133 		return;
1134 	}
1135 
1136 	/* Report, but otherwise ignore all other error codes */
1137 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1138 		evt_ring_id, err_ee, code);
1139 }
1140 
1141 /* Global error interrupt handler */
1142 static void gsi_isr_glob_err(struct gsi *gsi)
1143 {
1144 	enum gsi_err_type type;
1145 	enum gsi_err_code code;
1146 	u32 which;
1147 	u32 val;
1148 	u32 ee;
1149 
1150 	/* Get the logged error, then reinitialize the log */
1151 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1152 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1153 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1154 
1155 	ee = u32_get_bits(val, ERR_EE_FMASK);
1156 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1157 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1158 	code = u32_get_bits(val, ERR_CODE_FMASK);
1159 
1160 	if (type == GSI_ERR_TYPE_CHAN)
1161 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1162 	else if (type == GSI_ERR_TYPE_EVT)
1163 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1164 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1165 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1166 }
1167 
1168 /* Generic EE interrupt handler */
1169 static void gsi_isr_gp_int1(struct gsi *gsi)
1170 {
1171 	u32 result;
1172 	u32 val;
1173 
1174 	/* This interrupt is used to handle completions of the two GENERIC
1175 	 * GSI commands.  We use these to allocate and halt channels on
1176 	 * the modem's behalf due to a hardware quirk on IPA v4.2.  Once
1177 	 * allocated, the modem "owns" these channels, and as a result we
1178 	 * have no way of knowing the channel's state at any given time.
1179 	 *
1180 	 * It is recommended that we halt the modem channels we allocated
1181 	 * when shutting down, but it's possible the channel isn't running
1182 	 * at the time we issue the HALT command.  We'll get an error in
1183 	 * that case, but it's harmless (the channel is already halted).
1184 	 *
1185 	 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error
1186 	 * if we receive it.
1187 	 */
1188 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1189 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1190 
1191 	switch (result) {
1192 	case GENERIC_EE_SUCCESS:
1193 	case GENERIC_EE_CHANNEL_NOT_RUNNING:
1194 		gsi->result = 0;
1195 		break;
1196 
1197 	case GENERIC_EE_RETRY:
1198 		gsi->result = -EAGAIN;
1199 		break;
1200 
1201 	default:
1202 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1203 		gsi->result = -EIO;
1204 		break;
1205 	}
1206 
1207 	complete(&gsi->completion);
1208 }
1209 
1210 /* Inter-EE interrupt handler */
1211 static void gsi_isr_glob_ee(struct gsi *gsi)
1212 {
1213 	u32 val;
1214 
1215 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1216 
1217 	if (val & BIT(ERROR_INT))
1218 		gsi_isr_glob_err(gsi);
1219 
1220 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1221 
1222 	val &= ~BIT(ERROR_INT);
1223 
1224 	if (val & BIT(GP_INT1)) {
1225 		val ^= BIT(GP_INT1);
1226 		gsi_isr_gp_int1(gsi);
1227 	}
1228 
1229 	if (val)
1230 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1231 }
1232 
1233 /* I/O completion interrupt event */
1234 static void gsi_isr_ieob(struct gsi *gsi)
1235 {
1236 	u32 event_mask;
1237 
1238 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1239 	gsi_irq_ieob_disable(gsi, event_mask);
1240 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1241 
1242 	while (event_mask) {
1243 		u32 evt_ring_id = __ffs(event_mask);
1244 
1245 		event_mask ^= BIT(evt_ring_id);
1246 
1247 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1248 	}
1249 }
1250 
1251 /* General event interrupts represent serious problems, so report them */
1252 static void gsi_isr_general(struct gsi *gsi)
1253 {
1254 	struct device *dev = gsi->dev;
1255 	u32 val;
1256 
1257 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1258 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1259 
1260 	dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1261 }
1262 
1263 /**
1264  * gsi_isr() - Top level GSI interrupt service routine
1265  * @irq:	Interrupt number (ignored)
1266  * @dev_id:	GSI pointer supplied to request_irq()
1267  *
1268  * This is the main handler function registered for the GSI IRQ. Each type
1269  * of interrupt has a separate handler function that is called from here.
1270  */
1271 static irqreturn_t gsi_isr(int irq, void *dev_id)
1272 {
1273 	struct gsi *gsi = dev_id;
1274 	u32 intr_mask;
1275 	u32 cnt = 0;
1276 
1277 	/* enum gsi_irq_type_id defines GSI interrupt types */
1278 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1279 		/* intr_mask contains bitmask of pending GSI interrupts */
1280 		do {
1281 			u32 gsi_intr = BIT(__ffs(intr_mask));
1282 
1283 			intr_mask ^= gsi_intr;
1284 
1285 			switch (gsi_intr) {
1286 			case BIT(GSI_CH_CTRL):
1287 				gsi_isr_chan_ctrl(gsi);
1288 				break;
1289 			case BIT(GSI_EV_CTRL):
1290 				gsi_isr_evt_ctrl(gsi);
1291 				break;
1292 			case BIT(GSI_GLOB_EE):
1293 				gsi_isr_glob_ee(gsi);
1294 				break;
1295 			case BIT(GSI_IEOB):
1296 				gsi_isr_ieob(gsi);
1297 				break;
1298 			case BIT(GSI_GENERAL):
1299 				gsi_isr_general(gsi);
1300 				break;
1301 			default:
1302 				dev_err(gsi->dev,
1303 					"unrecognized interrupt type 0x%08x\n",
1304 					gsi_intr);
1305 				break;
1306 			}
1307 		} while (intr_mask);
1308 
1309 		if (++cnt > GSI_ISR_MAX_ITER) {
1310 			dev_err(gsi->dev, "interrupt flood\n");
1311 			break;
1312 		}
1313 	}
1314 
1315 	return IRQ_HANDLED;
1316 }
1317 
1318 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
1319 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1320 {
1321 	int ret;
1322 
1323 	ret = platform_get_irq_byname(pdev, "gsi");
1324 	if (ret <= 0)
1325 		return ret ? : -EINVAL;
1326 
1327 	gsi->irq = ret;
1328 
1329 	return 0;
1330 }
1331 
1332 /* Return the transaction associated with a transfer completion event */
1333 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1334 					 struct gsi_event *event)
1335 {
1336 	u32 tre_offset;
1337 	u32 tre_index;
1338 
1339 	/* Event xfer_ptr records the TRE it's associated with */
1340 	tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1341 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1342 
1343 	return gsi_channel_trans_mapped(channel, tre_index);
1344 }
1345 
1346 /**
1347  * gsi_evt_ring_rx_update() - Record lengths of received data
1348  * @evt_ring:	Event ring associated with channel that received packets
1349  * @index:	Event index in ring reported by hardware
1350  *
1351  * Events for RX channels contain the actual number of bytes received into
1352  * the buffer.  Every event has a transaction associated with it, and here
1353  * we update transactions to record their actual received lengths.
1354  *
1355  * This function is called whenever we learn that the GSI hardware has filled
1356  * new events since the last time we checked.  The ring's index field tells
1357  * the first entry in need of processing.  The index provided is the
1358  * first *unfilled* event in the ring (following the last filled one).
1359  *
1360  * Events are sequential within the event ring, and transactions are
1361  * sequential within the transaction pool.
1362  *
1363  * Note that @index always refers to an element *within* the event ring.
1364  */
1365 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1366 {
1367 	struct gsi_channel *channel = evt_ring->channel;
1368 	struct gsi_ring *ring = &evt_ring->ring;
1369 	struct gsi_trans_info *trans_info;
1370 	struct gsi_event *event_done;
1371 	struct gsi_event *event;
1372 	struct gsi_trans *trans;
1373 	u32 byte_count = 0;
1374 	u32 old_index;
1375 	u32 event_avail;
1376 
1377 	trans_info = &channel->trans_info;
1378 
1379 	/* We'll start with the oldest un-processed event.  RX channels
1380 	 * replenish receive buffers in single-TRE transactions, so we
1381 	 * can just map that event to its transaction.  Transactions
1382 	 * associated with completion events are consecutive.
1383 	 */
1384 	old_index = ring->index;
1385 	event = gsi_ring_virt(ring, old_index);
1386 	trans = gsi_event_trans(channel, event);
1387 
1388 	/* Compute the number of events to process before we wrap,
1389 	 * and determine when we'll be done processing events.
1390 	 */
1391 	event_avail = ring->count - old_index % ring->count;
1392 	event_done = gsi_ring_virt(ring, index);
1393 	do {
1394 		trans->len = __le16_to_cpu(event->len);
1395 		byte_count += trans->len;
1396 
1397 		/* Move on to the next event and transaction */
1398 		if (--event_avail)
1399 			event++;
1400 		else
1401 			event = gsi_ring_virt(ring, 0);
1402 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1403 	} while (event != event_done);
1404 
1405 	/* We record RX bytes when they are received */
1406 	channel->byte_count += byte_count;
1407 	channel->trans_count++;
1408 }
1409 
1410 /* Initialize a ring, including allocating DMA memory for its entries */
1411 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1412 {
1413 	u32 size = count * GSI_RING_ELEMENT_SIZE;
1414 	struct device *dev = gsi->dev;
1415 	dma_addr_t addr;
1416 
1417 	/* Hardware requires a 2^n ring size, with alignment equal to size.
1418 	 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1419 	 * be a power-of-2 number of pages, which satisfies the requirement.
1420 	 */
1421 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1422 	if (!ring->virt)
1423 		return -ENOMEM;
1424 
1425 	ring->addr = addr;
1426 	ring->count = count;
1427 
1428 	return 0;
1429 }
1430 
1431 /* Free a previously-allocated ring */
1432 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1433 {
1434 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1435 
1436 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1437 }
1438 
1439 /* Allocate an available event ring id */
1440 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1441 {
1442 	u32 evt_ring_id;
1443 
1444 	if (gsi->event_bitmap == ~0U) {
1445 		dev_err(gsi->dev, "event rings exhausted\n");
1446 		return -ENOSPC;
1447 	}
1448 
1449 	evt_ring_id = ffz(gsi->event_bitmap);
1450 	gsi->event_bitmap |= BIT(evt_ring_id);
1451 
1452 	return (int)evt_ring_id;
1453 }
1454 
1455 /* Free a previously-allocated event ring id */
1456 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1457 {
1458 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1459 }
1460 
1461 /* Ring a channel doorbell, reporting the first un-filled entry */
1462 void gsi_channel_doorbell(struct gsi_channel *channel)
1463 {
1464 	struct gsi_ring *tre_ring = &channel->tre_ring;
1465 	u32 channel_id = gsi_channel_id(channel);
1466 	struct gsi *gsi = channel->gsi;
1467 	u32 val;
1468 
1469 	/* Note: index *must* be used modulo the ring count here */
1470 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1471 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1472 }
1473 
1474 /* Consult hardware, move any newly completed transactions to completed list */
1475 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel)
1476 {
1477 	u32 evt_ring_id = channel->evt_ring_id;
1478 	struct gsi *gsi = channel->gsi;
1479 	struct gsi_evt_ring *evt_ring;
1480 	struct gsi_trans *trans;
1481 	struct gsi_ring *ring;
1482 	u32 offset;
1483 	u32 index;
1484 
1485 	evt_ring = &gsi->evt_ring[evt_ring_id];
1486 	ring = &evt_ring->ring;
1487 
1488 	/* See if there's anything new to process; if not, we're done.  Note
1489 	 * that index always refers to an entry *within* the event ring.
1490 	 */
1491 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1492 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1493 	if (index == ring->index % ring->count)
1494 		return NULL;
1495 
1496 	/* Get the transaction for the latest completed event.  Take a
1497 	 * reference to keep it from completing before we give the events
1498 	 * for this and previous transactions back to the hardware.
1499 	 */
1500 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1501 	refcount_inc(&trans->refcount);
1502 
1503 	/* For RX channels, update each completed transaction with the number
1504 	 * of bytes that were actually received.  For TX channels, report
1505 	 * the number of transactions and bytes this completion represents
1506 	 * up the network stack.
1507 	 */
1508 	if (channel->toward_ipa)
1509 		gsi_channel_tx_update(channel, trans);
1510 	else
1511 		gsi_evt_ring_rx_update(evt_ring, index);
1512 
1513 	gsi_trans_move_complete(trans);
1514 
1515 	/* Tell the hardware we've handled these events */
1516 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1517 
1518 	gsi_trans_free(trans);
1519 
1520 	return gsi_channel_trans_complete(channel);
1521 }
1522 
1523 /**
1524  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1525  * @channel:	Channel to be polled
1526  *
1527  * Return:	Transaction pointer, or null if none are available
1528  *
1529  * This function returns the first entry on a channel's completed transaction
1530  * list.  If that list is empty, the hardware is consulted to determine
1531  * whether any new transactions have completed.  If so, they're moved to the
1532  * completed list and the new first entry is returned.  If there are no more
1533  * completed transactions, a null pointer is returned.
1534  */
1535 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1536 {
1537 	struct gsi_trans *trans;
1538 
1539 	/* Get the first transaction from the completed list */
1540 	trans = gsi_channel_trans_complete(channel);
1541 	if (!trans)	/* List is empty; see if there's more to do */
1542 		trans = gsi_channel_update(channel);
1543 
1544 	if (trans)
1545 		gsi_trans_move_polled(trans);
1546 
1547 	return trans;
1548 }
1549 
1550 /**
1551  * gsi_channel_poll() - NAPI poll function for a channel
1552  * @napi:	NAPI structure for the channel
1553  * @budget:	Budget supplied by NAPI core
1554  *
1555  * Return:	Number of items polled (<= budget)
1556  *
1557  * Single transactions completed by hardware are polled until either
1558  * the budget is exhausted, or there are no more.  Each transaction
1559  * polled is passed to gsi_trans_complete(), to perform remaining
1560  * completion processing and retire/free the transaction.
1561  */
1562 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1563 {
1564 	struct gsi_channel *channel;
1565 	int count;
1566 
1567 	channel = container_of(napi, struct gsi_channel, napi);
1568 	for (count = 0; count < budget; count++) {
1569 		struct gsi_trans *trans;
1570 
1571 		trans = gsi_channel_poll_one(channel);
1572 		if (!trans)
1573 			break;
1574 		gsi_trans_complete(trans);
1575 	}
1576 
1577 	if (count < budget && napi_complete(napi))
1578 		gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1579 
1580 	return count;
1581 }
1582 
1583 /* The event bitmap represents which event ids are available for allocation.
1584  * Set bits are not available, clear bits can be used.  This function
1585  * initializes the map so all events supported by the hardware are available,
1586  * then precludes any reserved events from being allocated.
1587  */
1588 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1589 {
1590 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1591 
1592 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1593 
1594 	return event_bitmap;
1595 }
1596 
1597 /* Setup function for a single channel */
1598 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1599 {
1600 	struct gsi_channel *channel = &gsi->channel[channel_id];
1601 	u32 evt_ring_id = channel->evt_ring_id;
1602 	int ret;
1603 
1604 	if (!gsi_channel_initialized(channel))
1605 		return 0;
1606 
1607 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1608 	if (ret)
1609 		return ret;
1610 
1611 	gsi_evt_ring_program(gsi, evt_ring_id);
1612 
1613 	ret = gsi_channel_alloc_command(gsi, channel_id);
1614 	if (ret)
1615 		goto err_evt_ring_de_alloc;
1616 
1617 	gsi_channel_program(channel, true);
1618 
1619 	if (channel->toward_ipa)
1620 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1621 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1622 	else
1623 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1624 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1625 
1626 	return 0;
1627 
1628 err_evt_ring_de_alloc:
1629 	/* We've done nothing with the event ring yet so don't reset */
1630 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1631 
1632 	return ret;
1633 }
1634 
1635 /* Inverse of gsi_channel_setup_one() */
1636 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1637 {
1638 	struct gsi_channel *channel = &gsi->channel[channel_id];
1639 	u32 evt_ring_id = channel->evt_ring_id;
1640 
1641 	if (!gsi_channel_initialized(channel))
1642 		return;
1643 
1644 	netif_napi_del(&channel->napi);
1645 
1646 	gsi_channel_de_alloc_command(gsi, channel_id);
1647 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1648 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1649 }
1650 
1651 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1652 			       enum gsi_generic_cmd_opcode opcode)
1653 {
1654 	struct completion *completion = &gsi->completion;
1655 	bool timeout;
1656 	u32 val;
1657 
1658 	/* The error global interrupt type is always enabled (until we
1659 	 * teardown), so we won't change that.  A generic EE command
1660 	 * completes with a GSI global interrupt of type GP_INT1.  We
1661 	 * only perform one generic command at a time (to allocate or
1662 	 * halt a modem channel) and only from this function.  So we
1663 	 * enable the GP_INT1 IRQ type here while we're expecting it.
1664 	 */
1665 	val = BIT(ERROR_INT) | BIT(GP_INT1);
1666 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1667 
1668 	/* First zero the result code field */
1669 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1670 	val &= ~GENERIC_EE_RESULT_FMASK;
1671 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1672 
1673 	/* Now issue the command */
1674 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1675 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1676 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1677 
1678 	timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
1679 
1680 	/* Disable the GP_INT1 IRQ type again */
1681 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1682 
1683 	if (!timeout)
1684 		return gsi->result;
1685 
1686 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1687 		opcode, channel_id);
1688 
1689 	return -ETIMEDOUT;
1690 }
1691 
1692 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1693 {
1694 	return gsi_generic_command(gsi, channel_id,
1695 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1696 }
1697 
1698 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1699 {
1700 	u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1701 	int ret;
1702 
1703 	do
1704 		ret = gsi_generic_command(gsi, channel_id,
1705 					  GSI_GENERIC_HALT_CHANNEL);
1706 	while (ret == -EAGAIN && retries--);
1707 
1708 	if (ret)
1709 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1710 			ret, channel_id);
1711 }
1712 
1713 /* Setup function for channels */
1714 static int gsi_channel_setup(struct gsi *gsi)
1715 {
1716 	u32 channel_id = 0;
1717 	u32 mask;
1718 	int ret;
1719 
1720 	gsi_irq_enable(gsi);
1721 
1722 	mutex_lock(&gsi->mutex);
1723 
1724 	do {
1725 		ret = gsi_channel_setup_one(gsi, channel_id);
1726 		if (ret)
1727 			goto err_unwind;
1728 	} while (++channel_id < gsi->channel_count);
1729 
1730 	/* Make sure no channels were defined that hardware does not support */
1731 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1732 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1733 
1734 		if (!gsi_channel_initialized(channel))
1735 			continue;
1736 
1737 		ret = -EINVAL;
1738 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1739 			channel_id - 1);
1740 		channel_id = gsi->channel_count;
1741 		goto err_unwind;
1742 	}
1743 
1744 	/* Allocate modem channels if necessary */
1745 	mask = gsi->modem_channel_bitmap;
1746 	while (mask) {
1747 		u32 modem_channel_id = __ffs(mask);
1748 
1749 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1750 		if (ret)
1751 			goto err_unwind_modem;
1752 
1753 		/* Clear bit from mask only after success (for unwind) */
1754 		mask ^= BIT(modem_channel_id);
1755 	}
1756 
1757 	mutex_unlock(&gsi->mutex);
1758 
1759 	return 0;
1760 
1761 err_unwind_modem:
1762 	/* Compute which modem channels need to be deallocated */
1763 	mask ^= gsi->modem_channel_bitmap;
1764 	while (mask) {
1765 		channel_id = __fls(mask);
1766 
1767 		mask ^= BIT(channel_id);
1768 
1769 		gsi_modem_channel_halt(gsi, channel_id);
1770 	}
1771 
1772 err_unwind:
1773 	while (channel_id--)
1774 		gsi_channel_teardown_one(gsi, channel_id);
1775 
1776 	mutex_unlock(&gsi->mutex);
1777 
1778 	gsi_irq_disable(gsi);
1779 
1780 	return ret;
1781 }
1782 
1783 /* Inverse of gsi_channel_setup() */
1784 static void gsi_channel_teardown(struct gsi *gsi)
1785 {
1786 	u32 mask = gsi->modem_channel_bitmap;
1787 	u32 channel_id;
1788 
1789 	mutex_lock(&gsi->mutex);
1790 
1791 	while (mask) {
1792 		channel_id = __fls(mask);
1793 
1794 		mask ^= BIT(channel_id);
1795 
1796 		gsi_modem_channel_halt(gsi, channel_id);
1797 	}
1798 
1799 	channel_id = gsi->channel_count - 1;
1800 	do
1801 		gsi_channel_teardown_one(gsi, channel_id);
1802 	while (channel_id--);
1803 
1804 	mutex_unlock(&gsi->mutex);
1805 
1806 	gsi_irq_disable(gsi);
1807 }
1808 
1809 /* Turn off all GSI interrupts initially */
1810 static int gsi_irq_setup(struct gsi *gsi)
1811 {
1812 	int ret;
1813 
1814 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1815 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1816 
1817 	/* Disable all interrupt types */
1818 	gsi_irq_type_update(gsi, 0);
1819 
1820 	/* Clear all type-specific interrupt masks */
1821 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
1822 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
1823 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1824 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
1825 
1826 	/* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
1827 	if (gsi->version > IPA_VERSION_3_1) {
1828 		u32 offset;
1829 
1830 		/* These registers are in the non-adjusted address range */
1831 		offset = GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET;
1832 		iowrite32(0, gsi->virt_raw + offset);
1833 		offset = GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET;
1834 		iowrite32(0, gsi->virt_raw + offset);
1835 	}
1836 
1837 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
1838 
1839 	ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
1840 	if (ret)
1841 		dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
1842 
1843 	return ret;
1844 }
1845 
1846 static void gsi_irq_teardown(struct gsi *gsi)
1847 {
1848 	free_irq(gsi->irq, gsi);
1849 }
1850 
1851 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */
1852 static int gsi_ring_setup(struct gsi *gsi)
1853 {
1854 	struct device *dev = gsi->dev;
1855 	u32 count;
1856 	u32 val;
1857 
1858 	if (gsi->version < IPA_VERSION_3_5_1) {
1859 		/* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
1860 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1861 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1862 
1863 		return 0;
1864 	}
1865 
1866 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1867 
1868 	count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1869 	if (!count) {
1870 		dev_err(dev, "GSI reports zero channels supported\n");
1871 		return -EINVAL;
1872 	}
1873 	if (count > GSI_CHANNEL_COUNT_MAX) {
1874 		dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
1875 			 GSI_CHANNEL_COUNT_MAX, count);
1876 		count = GSI_CHANNEL_COUNT_MAX;
1877 	}
1878 	gsi->channel_count = count;
1879 
1880 	count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1881 	if (!count) {
1882 		dev_err(dev, "GSI reports zero event rings supported\n");
1883 		return -EINVAL;
1884 	}
1885 	if (count > GSI_EVT_RING_COUNT_MAX) {
1886 		dev_warn(dev,
1887 			 "limiting to %u event rings; hardware supports %u\n",
1888 			 GSI_EVT_RING_COUNT_MAX, count);
1889 		count = GSI_EVT_RING_COUNT_MAX;
1890 	}
1891 	gsi->evt_ring_count = count;
1892 
1893 	return 0;
1894 }
1895 
1896 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1897 int gsi_setup(struct gsi *gsi)
1898 {
1899 	u32 val;
1900 	int ret;
1901 
1902 	/* Here is where we first touch the GSI hardware */
1903 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1904 	if (!(val & ENABLED_FMASK)) {
1905 		dev_err(gsi->dev, "GSI has not been enabled\n");
1906 		return -EIO;
1907 	}
1908 
1909 	ret = gsi_irq_setup(gsi);
1910 	if (ret)
1911 		return ret;
1912 
1913 	ret = gsi_ring_setup(gsi);	/* No matching teardown required */
1914 	if (ret)
1915 		goto err_irq_teardown;
1916 
1917 	/* Initialize the error log */
1918 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1919 
1920 	ret = gsi_channel_setup(gsi);
1921 	if (ret)
1922 		goto err_irq_teardown;
1923 
1924 	return 0;
1925 
1926 err_irq_teardown:
1927 	gsi_irq_teardown(gsi);
1928 
1929 	return ret;
1930 }
1931 
1932 /* Inverse of gsi_setup() */
1933 void gsi_teardown(struct gsi *gsi)
1934 {
1935 	gsi_channel_teardown(gsi);
1936 	gsi_irq_teardown(gsi);
1937 }
1938 
1939 /* Initialize a channel's event ring */
1940 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1941 {
1942 	struct gsi *gsi = channel->gsi;
1943 	struct gsi_evt_ring *evt_ring;
1944 	int ret;
1945 
1946 	ret = gsi_evt_ring_id_alloc(gsi);
1947 	if (ret < 0)
1948 		return ret;
1949 	channel->evt_ring_id = ret;
1950 
1951 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1952 	evt_ring->channel = channel;
1953 
1954 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1955 	if (!ret)
1956 		return 0;	/* Success! */
1957 
1958 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1959 		ret, gsi_channel_id(channel));
1960 
1961 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1962 
1963 	return ret;
1964 }
1965 
1966 /* Inverse of gsi_channel_evt_ring_init() */
1967 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1968 {
1969 	u32 evt_ring_id = channel->evt_ring_id;
1970 	struct gsi *gsi = channel->gsi;
1971 	struct gsi_evt_ring *evt_ring;
1972 
1973 	evt_ring = &gsi->evt_ring[evt_ring_id];
1974 	gsi_ring_free(gsi, &evt_ring->ring);
1975 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1976 }
1977 
1978 /* Init function for event rings; there is no gsi_evt_ring_exit() */
1979 static void gsi_evt_ring_init(struct gsi *gsi)
1980 {
1981 	u32 evt_ring_id = 0;
1982 
1983 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1984 	gsi->ieob_enabled_bitmap = 0;
1985 	do
1986 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1987 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1988 }
1989 
1990 static bool gsi_channel_data_valid(struct gsi *gsi,
1991 				   const struct ipa_gsi_endpoint_data *data)
1992 {
1993 	u32 channel_id = data->channel_id;
1994 	struct device *dev = gsi->dev;
1995 
1996 	/* Make sure channel ids are in the range driver supports */
1997 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1998 		dev_err(dev, "bad channel id %u; must be less than %u\n",
1999 			channel_id, GSI_CHANNEL_COUNT_MAX);
2000 		return false;
2001 	}
2002 
2003 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
2004 		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
2005 		return false;
2006 	}
2007 
2008 	if (!data->channel.tlv_count ||
2009 	    data->channel.tlv_count > GSI_TLV_MAX) {
2010 		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
2011 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
2012 		return false;
2013 	}
2014 
2015 	/* We have to allow at least one maximally-sized transaction to
2016 	 * be outstanding (which would use tlv_count TREs).  Given how
2017 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
2018 	 * twice the TLV FIFO size to satisfy this requirement.
2019 	 */
2020 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
2021 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
2022 			channel_id, data->channel.tlv_count,
2023 			data->channel.tre_count);
2024 		return false;
2025 	}
2026 
2027 	if (!is_power_of_2(data->channel.tre_count)) {
2028 		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2029 			channel_id, data->channel.tre_count);
2030 		return false;
2031 	}
2032 
2033 	if (!is_power_of_2(data->channel.event_count)) {
2034 		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2035 			channel_id, data->channel.event_count);
2036 		return false;
2037 	}
2038 
2039 	return true;
2040 }
2041 
2042 /* Init function for a single channel */
2043 static int gsi_channel_init_one(struct gsi *gsi,
2044 				const struct ipa_gsi_endpoint_data *data,
2045 				bool command)
2046 {
2047 	struct gsi_channel *channel;
2048 	u32 tre_count;
2049 	int ret;
2050 
2051 	if (!gsi_channel_data_valid(gsi, data))
2052 		return -EINVAL;
2053 
2054 	/* Worst case we need an event for every outstanding TRE */
2055 	if (data->channel.tre_count > data->channel.event_count) {
2056 		tre_count = data->channel.event_count;
2057 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2058 			 data->channel_id, tre_count);
2059 	} else {
2060 		tre_count = data->channel.tre_count;
2061 	}
2062 
2063 	channel = &gsi->channel[data->channel_id];
2064 	memset(channel, 0, sizeof(*channel));
2065 
2066 	channel->gsi = gsi;
2067 	channel->toward_ipa = data->toward_ipa;
2068 	channel->command = command;
2069 	channel->tlv_count = data->channel.tlv_count;
2070 	channel->tre_count = tre_count;
2071 	channel->event_count = data->channel.event_count;
2072 	init_completion(&channel->completion);
2073 
2074 	ret = gsi_channel_evt_ring_init(channel);
2075 	if (ret)
2076 		goto err_clear_gsi;
2077 
2078 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2079 	if (ret) {
2080 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2081 			ret, data->channel_id);
2082 		goto err_channel_evt_ring_exit;
2083 	}
2084 
2085 	ret = gsi_channel_trans_init(gsi, data->channel_id);
2086 	if (ret)
2087 		goto err_ring_free;
2088 
2089 	if (command) {
2090 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2091 
2092 		ret = ipa_cmd_pool_init(channel, tre_max);
2093 	}
2094 	if (!ret)
2095 		return 0;	/* Success! */
2096 
2097 	gsi_channel_trans_exit(channel);
2098 err_ring_free:
2099 	gsi_ring_free(gsi, &channel->tre_ring);
2100 err_channel_evt_ring_exit:
2101 	gsi_channel_evt_ring_exit(channel);
2102 err_clear_gsi:
2103 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
2104 
2105 	return ret;
2106 }
2107 
2108 /* Inverse of gsi_channel_init_one() */
2109 static void gsi_channel_exit_one(struct gsi_channel *channel)
2110 {
2111 	if (!gsi_channel_initialized(channel))
2112 		return;
2113 
2114 	if (channel->command)
2115 		ipa_cmd_pool_exit(channel);
2116 	gsi_channel_trans_exit(channel);
2117 	gsi_ring_free(channel->gsi, &channel->tre_ring);
2118 	gsi_channel_evt_ring_exit(channel);
2119 }
2120 
2121 /* Init function for channels */
2122 static int gsi_channel_init(struct gsi *gsi, u32 count,
2123 			    const struct ipa_gsi_endpoint_data *data)
2124 {
2125 	bool modem_alloc;
2126 	int ret = 0;
2127 	u32 i;
2128 
2129 	/* IPA v4.2 requires the AP to allocate channels for the modem */
2130 	modem_alloc = gsi->version == IPA_VERSION_4_2;
2131 
2132 	gsi_evt_ring_init(gsi);			/* No matching exit required */
2133 
2134 	/* The endpoint data array is indexed by endpoint name */
2135 	for (i = 0; i < count; i++) {
2136 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2137 
2138 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2139 			continue;	/* Skip over empty slots */
2140 
2141 		/* Mark modem channels to be allocated (hardware workaround) */
2142 		if (data[i].ee_id == GSI_EE_MODEM) {
2143 			if (modem_alloc)
2144 				gsi->modem_channel_bitmap |=
2145 						BIT(data[i].channel_id);
2146 			continue;
2147 		}
2148 
2149 		ret = gsi_channel_init_one(gsi, &data[i], command);
2150 		if (ret)
2151 			goto err_unwind;
2152 	}
2153 
2154 	return ret;
2155 
2156 err_unwind:
2157 	while (i--) {
2158 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2159 			continue;
2160 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2161 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2162 			continue;
2163 		}
2164 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2165 	}
2166 
2167 	return ret;
2168 }
2169 
2170 /* Inverse of gsi_channel_init() */
2171 static void gsi_channel_exit(struct gsi *gsi)
2172 {
2173 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2174 
2175 	do
2176 		gsi_channel_exit_one(&gsi->channel[channel_id]);
2177 	while (channel_id--);
2178 	gsi->modem_channel_bitmap = 0;
2179 }
2180 
2181 /* Init function for GSI.  GSI hardware does not need to be "ready" */
2182 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2183 	     enum ipa_version version, u32 count,
2184 	     const struct ipa_gsi_endpoint_data *data)
2185 {
2186 	struct device *dev = &pdev->dev;
2187 	struct resource *res;
2188 	resource_size_t size;
2189 	u32 adjust;
2190 	int ret;
2191 
2192 	gsi_validate_build();
2193 
2194 	gsi->dev = dev;
2195 	gsi->version = version;
2196 
2197 	/* GSI uses NAPI on all channels.  Create a dummy network device
2198 	 * for the channel NAPI contexts to be associated with.
2199 	 */
2200 	init_dummy_netdev(&gsi->dummy_dev);
2201 
2202 	/* Get GSI memory range and map it */
2203 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2204 	if (!res) {
2205 		dev_err(dev, "DT error getting \"gsi\" memory property\n");
2206 		return -ENODEV;
2207 	}
2208 
2209 	size = resource_size(res);
2210 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
2211 		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2212 		return -EINVAL;
2213 	}
2214 
2215 	/* Make sure we can make our pointer adjustment if necessary */
2216 	adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2217 	if (res->start < adjust) {
2218 		dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2219 			adjust);
2220 		return -EINVAL;
2221 	}
2222 
2223 	gsi->virt_raw = ioremap(res->start, size);
2224 	if (!gsi->virt_raw) {
2225 		dev_err(dev, "unable to remap \"gsi\" memory\n");
2226 		return -ENOMEM;
2227 	}
2228 	/* Most registers are accessed using an adjusted register range */
2229 	gsi->virt = gsi->virt_raw - adjust;
2230 
2231 	init_completion(&gsi->completion);
2232 
2233 	ret = gsi_irq_init(gsi, pdev);	/* No matching exit required */
2234 	if (ret)
2235 		goto err_iounmap;
2236 
2237 	ret = gsi_channel_init(gsi, count, data);
2238 	if (ret)
2239 		goto err_iounmap;
2240 
2241 	mutex_init(&gsi->mutex);
2242 
2243 	return 0;
2244 
2245 err_iounmap:
2246 	iounmap(gsi->virt_raw);
2247 
2248 	return ret;
2249 }
2250 
2251 /* Inverse of gsi_init() */
2252 void gsi_exit(struct gsi *gsi)
2253 {
2254 	mutex_destroy(&gsi->mutex);
2255 	gsi_channel_exit(gsi);
2256 	iounmap(gsi->virt_raw);
2257 }
2258 
2259 /* The maximum number of outstanding TREs on a channel.  This limits
2260  * a channel's maximum number of transactions outstanding (worst case
2261  * is one TRE per transaction).
2262  *
2263  * The absolute limit is the number of TREs in the channel's TRE ring,
2264  * and in theory we should be able use all of them.  But in practice,
2265  * doing that led to the hardware reporting exhaustion of event ring
2266  * slots for writing completion information.  So the hardware limit
2267  * would be (tre_count - 1).
2268  *
2269  * We reduce it a bit further though.  Transaction resource pools are
2270  * sized to be a little larger than this maximum, to allow resource
2271  * allocations to always be contiguous.  The number of entries in a
2272  * TRE ring buffer is a power of 2, and the extra resources in a pool
2273  * tends to nearly double the memory allocated for it.  Reducing the
2274  * maximum number of outstanding TREs allows the number of entries in
2275  * a pool to avoid crossing that power-of-2 boundary, and this can
2276  * substantially reduce pool memory requirements.  The number we
2277  * reduce it by matches the number added in gsi_trans_pool_init().
2278  */
2279 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2280 {
2281 	struct gsi_channel *channel = &gsi->channel[channel_id];
2282 
2283 	/* Hardware limit is channel->tre_count - 1 */
2284 	return channel->tre_count - (channel->tlv_count - 1);
2285 }
2286 
2287 /* Returns the maximum number of TREs in a single transaction for a channel */
2288 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2289 {
2290 	struct gsi_channel *channel = &gsi->channel[channel_id];
2291 
2292 	return channel->tlv_count;
2293 }
2294