xref: /openbmc/linux/drivers/net/ipa/gsi.c (revision c79fe9b436690209954f908a41b19e0bf575877a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25 
26 /**
27  * DOC: The IPA Generic Software Interface
28  *
29  * The generic software interface (GSI) is an integral component of the IPA,
30  * providing a well-defined communication layer between the AP subsystem
31  * and the IPA core.  The modem uses the GSI layer as well.
32  *
33  *	--------	     ---------
34  *	|      |	     |	     |
35  *	|  AP  +<---.	.----+ Modem |
36  *	|      +--. |	| .->+	     |
37  *	|      |  | |	| |  |	     |
38  *	--------  | |	| |  ---------
39  *		  v |	v |
40  *		--+-+---+-+--
41  *		|    GSI    |
42  *		|-----------|
43  *		|	    |
44  *		|    IPA    |
45  *		|	    |
46  *		-------------
47  *
48  * In the above diagram, the AP and Modem represent "execution environments"
49  * (EEs), which are independent operating environments that use the IPA for
50  * data transfer.
51  *
52  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53  * of data to or from the IPA.  A channel is implemented as a ring buffer,
54  * with a DRAM-resident array of "transfer elements" (TREs) available to
55  * describe transfers to or from other EEs through the IPA.  A transfer
56  * element can also contain an immediate command, requesting the IPA perform
57  * actions other than data transfer.
58  *
59  * Each TRE refers to a block of data--also located DRAM.  After writing one
60  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
61  * doorbell register to inform the receiving side how many elements have
62  * been written.
63  *
64  * Each channel has a GSI "event ring" associated with it.  An event ring
65  * is implemented very much like a channel ring, but is always directed from
66  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
67  * events by adding an entry to the event ring associated with the channel.
68  * The GSI then writes its doorbell for the event ring, causing the target
69  * EE to be interrupted.  Each entry in an event ring contains a pointer
70  * to the channel TRE whose completion the event represents.
71  *
72  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
73  * the completion of the transfer operation generates an entry (and possibly
74  * an interrupt) in the channel's event ring.  Other flags allow transfer
75  * elements to be chained together, forming a single logical transaction.
76  * TRE flags are used to control whether and when interrupts are generated
77  * to signal completion of channel transfers.
78  *
79  * Elements in channel and event rings are completed (or consumed) strictly
80  * in order.  Completion of one entry implies the completion of all preceding
81  * entries.  A single completion interrupt can therefore communicate the
82  * completion of many transfers.
83  *
84  * Note that all GSI registers are little-endian, which is the assumed
85  * endianness of I/O space accesses.  The accessor functions perform byte
86  * swapping if needed (i.e., for a big endian CPU).
87  */
88 
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
91 
92 #define GSI_CMD_TIMEOUT			5	/* seconds */
93 
94 #define GSI_CHANNEL_STOP_RX_RETRIES	10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES	10
96 
97 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
99 
100 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
101 
102 /* An entry in an event ring */
103 struct gsi_event {
104 	__le64 xfer_ptr;
105 	__le16 len;
106 	u8 reserved1;
107 	u8 code;
108 	__le16 reserved2;
109 	u8 type;
110 	u8 chid;
111 };
112 
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114  * @max_outstanding_tre:
115  *	Defines the maximum number of TREs allowed in a single transaction
116  *	on a channel (in bytes).  This determines the amount of prefetch
117  *	performed by the hardware.  We configure this to equal the size of
118  *	the TLV FIFO for the channel.
119  * @outstanding_threshold:
120  *	Defines the threshold (in bytes) determining when the sequencer
121  *	should update the channel doorbell.  We configure this to equal
122  *	the size of two TREs.
123  */
124 struct gsi_channel_scratch_gpi {
125 	u64 reserved1;
126 	u16 reserved2;
127 	u16 max_outstanding_tre;
128 	u16 reserved3;
129 	u16 outstanding_threshold;
130 };
131 
132 /** gsi_channel_scratch - channel scratch configuration area
133  *
134  * The exact interpretation of this register is protocol-specific.
135  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
136  */
137 union gsi_channel_scratch {
138 	struct gsi_channel_scratch_gpi gpi;
139 	struct {
140 		u32 word1;
141 		u32 word2;
142 		u32 word3;
143 		u32 word4;
144 	} data;
145 };
146 
147 /* Check things that can be validated at build time. */
148 static void gsi_validate_build(void)
149 {
150 	/* This is used as a divisor */
151 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
152 
153 	/* Code assumes the size of channel and event ring element are
154 	 * the same (and fixed).  Make sure the size of an event ring
155 	 * element is what's expected.
156 	 */
157 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
158 
159 	/* Hardware requires a 2^n ring size.  We ensure the number of
160 	 * elements in an event ring is a power of 2 elsewhere; this
161 	 * ensure the elements themselves meet the requirement.
162 	 */
163 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
164 
165 	/* The channel element size must fit in this field */
166 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
167 
168 	/* The event ring element size must fit in this field */
169 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
170 }
171 
172 /* Return the channel id associated with a given channel */
173 static u32 gsi_channel_id(struct gsi_channel *channel)
174 {
175 	return channel - &channel->gsi->channel[0];
176 }
177 
178 /* Update the GSI IRQ type register with the cached value */
179 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
180 {
181 	gsi->type_enabled_bitmap = val;
182 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
183 }
184 
185 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
186 {
187 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
188 }
189 
190 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
191 {
192 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
193 }
194 
195 /* Turn off all GSI interrupts initially */
196 static void gsi_irq_setup(struct gsi *gsi)
197 {
198 	u32 adjust;
199 
200 	/* Disable all interrupt types */
201 	gsi_irq_type_update(gsi, 0);
202 
203 	/* Clear all type-specific interrupt masks */
204 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
205 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
206 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
207 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
208 
209 	/* Reverse the offset adjustment for inter-EE register offsets */
210 	adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
211 	iowrite32(0, gsi->virt + adjust + GSI_INTER_EE_SRC_CH_IRQ_OFFSET);
212 	iowrite32(0, gsi->virt + adjust + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET);
213 
214 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
215 }
216 
217 /* Turn off all GSI interrupts when we're all done */
218 static void gsi_irq_teardown(struct gsi *gsi)
219 {
220 	/* Nothing to do */
221 }
222 
223 static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
224 {
225 	bool enable_ieob = !gsi->ieob_enabled_bitmap;
226 	u32 val;
227 
228 	gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
229 	val = gsi->ieob_enabled_bitmap;
230 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
231 
232 	/* Enable the interrupt type if this is the first channel enabled */
233 	if (enable_ieob)
234 		gsi_irq_type_enable(gsi, GSI_IEOB);
235 }
236 
237 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
238 {
239 	u32 val;
240 
241 	gsi->ieob_enabled_bitmap &= ~BIT(evt_ring_id);
242 
243 	/* Disable the interrupt type if this was the last enabled channel */
244 	if (!gsi->ieob_enabled_bitmap)
245 		gsi_irq_type_disable(gsi, GSI_IEOB);
246 
247 	val = gsi->ieob_enabled_bitmap;
248 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
249 }
250 
251 /* Enable all GSI_interrupt types */
252 static void gsi_irq_enable(struct gsi *gsi)
253 {
254 	u32 val;
255 
256 	/* Global interrupts include hardware error reports.  Enable
257 	 * that so we can at least report the error should it occur.
258 	 */
259 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
260 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
261 
262 	/* General GSI interrupts are reported to all EEs; if they occur
263 	 * they are unrecoverable (without reset).  A breakpoint interrupt
264 	 * also exists, but we don't support that.  We want to be notified
265 	 * of errors so we can report them, even if they can't be handled.
266 	 */
267 	val = BIT(BUS_ERROR);
268 	val |= BIT(CMD_FIFO_OVRFLOW);
269 	val |= BIT(MCS_STACK_OVRFLOW);
270 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
271 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
272 }
273 
274 /* Disable all GSI interrupt types */
275 static void gsi_irq_disable(struct gsi *gsi)
276 {
277 	gsi_irq_type_update(gsi, 0);
278 
279 	/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
280 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
281 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
282 }
283 
284 /* Return the virtual address associated with a ring index */
285 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
286 {
287 	/* Note: index *must* be used modulo the ring count here */
288 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
289 }
290 
291 /* Return the 32-bit DMA address associated with a ring index */
292 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
293 {
294 	return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
295 }
296 
297 /* Return the ring index of a 32-bit ring offset */
298 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
299 {
300 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
301 }
302 
303 /* Issue a GSI command by writing a value to a register, then wait for
304  * completion to be signaled.  Returns true if the command completes
305  * or false if it times out.
306  */
307 static bool
308 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
309 {
310 	reinit_completion(completion);
311 
312 	iowrite32(val, gsi->virt + reg);
313 
314 	return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
315 }
316 
317 /* Return the hardware's notion of the current state of an event ring */
318 static enum gsi_evt_ring_state
319 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
320 {
321 	u32 val;
322 
323 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
324 
325 	return u32_get_bits(val, EV_CHSTATE_FMASK);
326 }
327 
328 /* Issue an event ring command and wait for it to complete */
329 static void evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
330 			     enum gsi_evt_cmd_opcode opcode)
331 {
332 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
333 	struct completion *completion = &evt_ring->completion;
334 	struct device *dev = gsi->dev;
335 	bool success;
336 	u32 val;
337 
338 	/* We only perform one event ring command at a time, and event
339 	 * control interrupts should only occur when such a command
340 	 * is issued here.  Only permit *this* event ring to trigger
341 	 * an interrupt, and only enable the event control IRQ type
342 	 * when we expect it to occur.
343 	 *
344 	 * There's a small chance that a previous command completed
345 	 * after the interrupt was disabled, so make sure we have no
346 	 * pending interrupts before we enable them.
347 	 */
348 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
349 
350 	val = BIT(evt_ring_id);
351 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
352 	gsi_irq_type_enable(gsi, GSI_EV_CTRL);
353 
354 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
355 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
356 
357 	success = gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
358 
359 	/* Disable the interrupt again */
360 	gsi_irq_type_disable(gsi, GSI_EV_CTRL);
361 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
362 
363 	if (success)
364 		return;
365 
366 	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
367 		opcode, evt_ring_id, evt_ring->state);
368 }
369 
370 /* Allocate an event ring in NOT_ALLOCATED state */
371 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
372 {
373 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
374 
375 	/* Get initial event ring state */
376 	evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
377 	if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
378 		dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
379 			evt_ring_id, evt_ring->state);
380 		return -EINVAL;
381 	}
382 
383 	evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
384 
385 	/* If successful the event ring state will have changed */
386 	if (evt_ring->state == GSI_EVT_RING_STATE_ALLOCATED)
387 		return 0;
388 
389 	dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
390 		evt_ring_id, evt_ring->state);
391 
392 	return -EIO;
393 }
394 
395 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
396 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
397 {
398 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
399 	enum gsi_evt_ring_state state = evt_ring->state;
400 
401 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
402 	    state != GSI_EVT_RING_STATE_ERROR) {
403 		dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
404 			evt_ring_id, evt_ring->state);
405 		return;
406 	}
407 
408 	evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
409 
410 	/* If successful the event ring state will have changed */
411 	if (evt_ring->state == GSI_EVT_RING_STATE_ALLOCATED)
412 		return;
413 
414 	dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
415 		evt_ring_id, evt_ring->state);
416 }
417 
418 /* Issue a hardware de-allocation request for an allocated event ring */
419 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
420 {
421 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
422 
423 	if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
424 		dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
425 			evt_ring_id, evt_ring->state);
426 		return;
427 	}
428 
429 	evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
430 
431 	/* If successful the event ring state will have changed */
432 	if (evt_ring->state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
433 		return;
434 
435 	dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
436 		evt_ring_id, evt_ring->state);
437 }
438 
439 /* Fetch the current state of a channel from hardware */
440 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
441 {
442 	u32 channel_id = gsi_channel_id(channel);
443 	void *virt = channel->gsi->virt;
444 	u32 val;
445 
446 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
447 
448 	return u32_get_bits(val, CHSTATE_FMASK);
449 }
450 
451 /* Issue a channel command and wait for it to complete */
452 static void
453 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
454 {
455 	struct completion *completion = &channel->completion;
456 	u32 channel_id = gsi_channel_id(channel);
457 	struct gsi *gsi = channel->gsi;
458 	struct device *dev = gsi->dev;
459 	bool success;
460 	u32 val;
461 
462 	/* We only perform one channel command at a time, and channel
463 	 * control interrupts should only occur when such a command is
464 	 * issued here.  So we only permit *this* channel to trigger
465 	 * an interrupt and only enable the channel control IRQ type
466 	 * when we expect it to occur.
467 	 *
468 	 * There's a small chance that a previous command completed
469 	 * after the interrupt was disabled, so make sure we have no
470 	 * pending interrupts before we enable them.
471 	 */
472 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
473 
474 	val = BIT(channel_id);
475 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
476 	gsi_irq_type_enable(gsi, GSI_CH_CTRL);
477 
478 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
479 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
480 	success = gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
481 
482 	/* Disable the interrupt again */
483 	gsi_irq_type_disable(gsi, GSI_CH_CTRL);
484 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
485 
486 	if (success)
487 		return;
488 
489 	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
490 		opcode, channel_id, gsi_channel_state(channel));
491 }
492 
493 /* Allocate GSI channel in NOT_ALLOCATED state */
494 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
495 {
496 	struct gsi_channel *channel = &gsi->channel[channel_id];
497 	struct device *dev = gsi->dev;
498 	enum gsi_channel_state state;
499 
500 	/* Get initial channel state */
501 	state = gsi_channel_state(channel);
502 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
503 		dev_err(dev, "channel %u bad state %u before alloc\n",
504 			channel_id, state);
505 		return -EINVAL;
506 	}
507 
508 	gsi_channel_command(channel, GSI_CH_ALLOCATE);
509 
510 	/* If successful the channel state will have changed */
511 	state = gsi_channel_state(channel);
512 	if (state == GSI_CHANNEL_STATE_ALLOCATED)
513 		return 0;
514 
515 	dev_err(dev, "channel %u bad state %u after alloc\n",
516 		channel_id, state);
517 
518 	return -EIO;
519 }
520 
521 /* Start an ALLOCATED channel */
522 static int gsi_channel_start_command(struct gsi_channel *channel)
523 {
524 	struct device *dev = channel->gsi->dev;
525 	enum gsi_channel_state state;
526 
527 	state = gsi_channel_state(channel);
528 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
529 	    state != GSI_CHANNEL_STATE_STOPPED) {
530 		dev_err(dev, "channel %u bad state %u before start\n",
531 			gsi_channel_id(channel), state);
532 		return -EINVAL;
533 	}
534 
535 	gsi_channel_command(channel, GSI_CH_START);
536 
537 	/* If successful the channel state will have changed */
538 	state = gsi_channel_state(channel);
539 	if (state == GSI_CHANNEL_STATE_STARTED)
540 		return 0;
541 
542 	dev_err(dev, "channel %u bad state %u after start\n",
543 		gsi_channel_id(channel), state);
544 
545 	return -EIO;
546 }
547 
548 /* Stop a GSI channel in STARTED state */
549 static int gsi_channel_stop_command(struct gsi_channel *channel)
550 {
551 	struct device *dev = channel->gsi->dev;
552 	enum gsi_channel_state state;
553 
554 	state = gsi_channel_state(channel);
555 
556 	/* Channel could have entered STOPPED state since last call
557 	 * if it timed out.  If so, we're done.
558 	 */
559 	if (state == GSI_CHANNEL_STATE_STOPPED)
560 		return 0;
561 
562 	if (state != GSI_CHANNEL_STATE_STARTED &&
563 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
564 		dev_err(dev, "channel %u bad state %u before stop\n",
565 			gsi_channel_id(channel), state);
566 		return -EINVAL;
567 	}
568 
569 	gsi_channel_command(channel, GSI_CH_STOP);
570 
571 	/* If successful the channel state will have changed */
572 	state = gsi_channel_state(channel);
573 	if (state == GSI_CHANNEL_STATE_STOPPED)
574 		return 0;
575 
576 	/* We may have to try again if stop is in progress */
577 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
578 		return -EAGAIN;
579 
580 	dev_err(dev, "channel %u bad state %u after stop\n",
581 		gsi_channel_id(channel), state);
582 
583 	return -EIO;
584 }
585 
586 /* Reset a GSI channel in ALLOCATED or ERROR state. */
587 static void gsi_channel_reset_command(struct gsi_channel *channel)
588 {
589 	struct device *dev = channel->gsi->dev;
590 	enum gsi_channel_state state;
591 
592 	msleep(1);	/* A short delay is required before a RESET command */
593 
594 	state = gsi_channel_state(channel);
595 	if (state != GSI_CHANNEL_STATE_STOPPED &&
596 	    state != GSI_CHANNEL_STATE_ERROR) {
597 		/* No need to reset a channel already in ALLOCATED state */
598 		if (state != GSI_CHANNEL_STATE_ALLOCATED)
599 			dev_err(dev, "channel %u bad state %u before reset\n",
600 				gsi_channel_id(channel), state);
601 		return;
602 	}
603 
604 	gsi_channel_command(channel, GSI_CH_RESET);
605 
606 	/* If successful the channel state will have changed */
607 	state = gsi_channel_state(channel);
608 	if (state != GSI_CHANNEL_STATE_ALLOCATED)
609 		dev_err(dev, "channel %u bad state %u after reset\n",
610 			gsi_channel_id(channel), state);
611 }
612 
613 /* Deallocate an ALLOCATED GSI channel */
614 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
615 {
616 	struct gsi_channel *channel = &gsi->channel[channel_id];
617 	struct device *dev = gsi->dev;
618 	enum gsi_channel_state state;
619 
620 	state = gsi_channel_state(channel);
621 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
622 		dev_err(dev, "channel %u bad state %u before dealloc\n",
623 			channel_id, state);
624 		return;
625 	}
626 
627 	gsi_channel_command(channel, GSI_CH_DE_ALLOC);
628 
629 	/* If successful the channel state will have changed */
630 	state = gsi_channel_state(channel);
631 
632 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
633 		dev_err(dev, "channel %u bad state %u after dealloc\n",
634 			channel_id, state);
635 }
636 
637 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
638  * The index argument (modulo the ring count) is the first unfilled entry, so
639  * we supply one less than that with the doorbell.  Update the event ring
640  * index field with the value provided.
641  */
642 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
643 {
644 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
645 	u32 val;
646 
647 	ring->index = index;	/* Next unused entry */
648 
649 	/* Note: index *must* be used modulo the ring count here */
650 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
651 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
652 }
653 
654 /* Program an event ring for use */
655 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
656 {
657 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
658 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
659 	u32 val;
660 
661 	/* We program all event rings as GPI type/protocol */
662 	val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
663 	val |= EV_INTYPE_FMASK;
664 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
665 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
666 
667 	val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
668 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
669 
670 	/* The context 2 and 3 registers store the low-order and
671 	 * high-order 32 bits of the address of the event ring,
672 	 * respectively.
673 	 */
674 	val = evt_ring->ring.addr & GENMASK(31, 0);
675 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
676 
677 	val = evt_ring->ring.addr >> 32;
678 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
679 
680 	/* Enable interrupt moderation by setting the moderation delay */
681 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
682 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
683 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
684 
685 	/* No MSI write data, and MSI address high and low address is 0 */
686 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
687 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
688 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
689 
690 	/* We don't need to get event read pointer updates */
691 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
692 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
693 
694 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
695 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
696 }
697 
698 /* Return the last (most recent) transaction completed on a channel. */
699 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
700 {
701 	struct gsi_trans_info *trans_info = &channel->trans_info;
702 	struct gsi_trans *trans;
703 
704 	spin_lock_bh(&trans_info->spinlock);
705 
706 	if (!list_empty(&trans_info->complete))
707 		trans = list_last_entry(&trans_info->complete,
708 					struct gsi_trans, links);
709 	else if (!list_empty(&trans_info->polled))
710 		trans = list_last_entry(&trans_info->polled,
711 					struct gsi_trans, links);
712 	else
713 		trans = NULL;
714 
715 	/* Caller will wait for this, so take a reference */
716 	if (trans)
717 		refcount_inc(&trans->refcount);
718 
719 	spin_unlock_bh(&trans_info->spinlock);
720 
721 	return trans;
722 }
723 
724 /* Wait for transaction activity on a channel to complete */
725 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
726 {
727 	struct gsi_trans *trans;
728 
729 	/* Get the last transaction, and wait for it to complete */
730 	trans = gsi_channel_trans_last(channel);
731 	if (trans) {
732 		wait_for_completion(&trans->completion);
733 		gsi_trans_free(trans);
734 	}
735 }
736 
737 /* Stop channel activity.  Transactions may not be allocated until thawed. */
738 static void gsi_channel_freeze(struct gsi_channel *channel)
739 {
740 	gsi_channel_trans_quiesce(channel);
741 
742 	napi_disable(&channel->napi);
743 
744 	gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
745 }
746 
747 /* Allow transactions to be used on the channel again. */
748 static void gsi_channel_thaw(struct gsi_channel *channel)
749 {
750 	gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
751 
752 	napi_enable(&channel->napi);
753 }
754 
755 /* Program a channel for use */
756 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
757 {
758 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
759 	u32 channel_id = gsi_channel_id(channel);
760 	union gsi_channel_scratch scr = { };
761 	struct gsi_channel_scratch_gpi *gpi;
762 	struct gsi *gsi = channel->gsi;
763 	u32 wrr_weight = 0;
764 	u32 val;
765 
766 	/* Arbitrarily pick TRE 0 as the first channel element to use */
767 	channel->tre_ring.index = 0;
768 
769 	/* We program all channels as GPI type/protocol */
770 	val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, CHTYPE_PROTOCOL_FMASK);
771 	if (channel->toward_ipa)
772 		val |= CHTYPE_DIR_FMASK;
773 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
774 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
775 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
776 
777 	val = u32_encode_bits(size, R_LENGTH_FMASK);
778 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
779 
780 	/* The context 2 and 3 registers store the low-order and
781 	 * high-order 32 bits of the address of the channel ring,
782 	 * respectively.
783 	 */
784 	val = channel->tre_ring.addr & GENMASK(31, 0);
785 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
786 
787 	val = channel->tre_ring.addr >> 32;
788 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
789 
790 	/* Command channel gets low weighted round-robin priority */
791 	if (channel->command)
792 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
793 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
794 
795 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
796 
797 	/* We enable the doorbell engine for IPA v3.5.1 */
798 	if (gsi->version == IPA_VERSION_3_5_1 && doorbell)
799 		val |= USE_DB_ENG_FMASK;
800 
801 	/* v4.0 introduces an escape buffer for prefetch.  We use it
802 	 * on all but the AP command channel.
803 	 */
804 	if (gsi->version != IPA_VERSION_3_5_1 && !channel->command) {
805 		/* If not otherwise set, prefetch buffers are used */
806 		if (gsi->version < IPA_VERSION_4_5)
807 			val |= USE_ESCAPE_BUF_ONLY_FMASK;
808 		else
809 			val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
810 					       PREFETCH_MODE_FMASK);
811 	}
812 
813 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
814 
815 	/* Now update the scratch registers for GPI protocol */
816 	gpi = &scr.gpi;
817 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
818 					GSI_RING_ELEMENT_SIZE;
819 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
820 
821 	val = scr.data.word1;
822 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
823 
824 	val = scr.data.word2;
825 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
826 
827 	val = scr.data.word3;
828 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
829 
830 	/* We must preserve the upper 16 bits of the last scratch register.
831 	 * The next sequence assumes those bits remain unchanged between the
832 	 * read and the write.
833 	 */
834 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
835 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
836 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
837 
838 	/* All done! */
839 }
840 
841 static void gsi_channel_deprogram(struct gsi_channel *channel)
842 {
843 	/* Nothing to do */
844 }
845 
846 /* Start an allocated GSI channel */
847 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
848 {
849 	struct gsi_channel *channel = &gsi->channel[channel_id];
850 	int ret;
851 
852 	mutex_lock(&gsi->mutex);
853 
854 	ret = gsi_channel_start_command(channel);
855 
856 	mutex_unlock(&gsi->mutex);
857 
858 	gsi_channel_thaw(channel);
859 
860 	return ret;
861 }
862 
863 /* Stop a started channel */
864 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
865 {
866 	struct gsi_channel *channel = &gsi->channel[channel_id];
867 	u32 retries;
868 	int ret;
869 
870 	gsi_channel_freeze(channel);
871 
872 	/* RX channels might require a little time to enter STOPPED state */
873 	retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;
874 
875 	mutex_lock(&gsi->mutex);
876 
877 	do {
878 		ret = gsi_channel_stop_command(channel);
879 		if (ret != -EAGAIN)
880 			break;
881 		msleep(1);
882 	} while (retries--);
883 
884 	mutex_unlock(&gsi->mutex);
885 
886 	/* Thaw the channel if we need to retry (or on error) */
887 	if (ret)
888 		gsi_channel_thaw(channel);
889 
890 	return ret;
891 }
892 
893 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
894 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
895 {
896 	struct gsi_channel *channel = &gsi->channel[channel_id];
897 
898 	mutex_lock(&gsi->mutex);
899 
900 	gsi_channel_reset_command(channel);
901 	/* Due to a hardware quirk we may need to reset RX channels twice. */
902 	if (gsi->version == IPA_VERSION_3_5_1 && !channel->toward_ipa)
903 		gsi_channel_reset_command(channel);
904 
905 	gsi_channel_program(channel, doorbell);
906 	gsi_channel_trans_cancel_pending(channel);
907 
908 	mutex_unlock(&gsi->mutex);
909 }
910 
911 /* Stop a STARTED channel for suspend (using stop if requested) */
912 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
913 {
914 	struct gsi_channel *channel = &gsi->channel[channel_id];
915 
916 	if (stop)
917 		return gsi_channel_stop(gsi, channel_id);
918 
919 	gsi_channel_freeze(channel);
920 
921 	return 0;
922 }
923 
924 /* Resume a suspended channel (starting will be requested if STOPPED) */
925 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
926 {
927 	struct gsi_channel *channel = &gsi->channel[channel_id];
928 
929 	if (start)
930 		return gsi_channel_start(gsi, channel_id);
931 
932 	gsi_channel_thaw(channel);
933 
934 	return 0;
935 }
936 
937 /**
938  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
939  * @channel:	Channel for which to report
940  *
941  * Report to the network stack the number of bytes and transactions that
942  * have been queued to hardware since last call.  This and the next function
943  * supply information used by the network stack for throttling.
944  *
945  * For each channel we track the number of transactions used and bytes of
946  * data those transactions represent.  We also track what those values are
947  * each time this function is called.  Subtracting the two tells us
948  * the number of bytes and transactions that have been added between
949  * successive calls.
950  *
951  * Calling this each time we ring the channel doorbell allows us to
952  * provide accurate information to the network stack about how much
953  * work we've given the hardware at any point in time.
954  */
955 void gsi_channel_tx_queued(struct gsi_channel *channel)
956 {
957 	u32 trans_count;
958 	u32 byte_count;
959 
960 	byte_count = channel->byte_count - channel->queued_byte_count;
961 	trans_count = channel->trans_count - channel->queued_trans_count;
962 	channel->queued_byte_count = channel->byte_count;
963 	channel->queued_trans_count = channel->trans_count;
964 
965 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
966 				  trans_count, byte_count);
967 }
968 
969 /**
970  * gsi_channel_tx_update() - Report completed TX transfers
971  * @channel:	Channel that has completed transmitting packets
972  * @trans:	Last transation known to be complete
973  *
974  * Compute the number of transactions and bytes that have been transferred
975  * over a TX channel since the given transaction was committed.  Report this
976  * information to the network stack.
977  *
978  * At the time a transaction is committed, we record its channel's
979  * committed transaction and byte counts *in the transaction*.
980  * Completions are signaled by the hardware with an interrupt, and
981  * we can determine the latest completed transaction at that time.
982  *
983  * The difference between the byte/transaction count recorded in
984  * the transaction and the count last time we recorded a completion
985  * tells us exactly how much data has been transferred between
986  * completions.
987  *
988  * Calling this each time we learn of a newly-completed transaction
989  * allows us to provide accurate information to the network stack
990  * about how much work has been completed by the hardware at a given
991  * point in time.
992  */
993 static void
994 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
995 {
996 	u64 byte_count = trans->byte_count + trans->len;
997 	u64 trans_count = trans->trans_count + 1;
998 
999 	byte_count -= channel->compl_byte_count;
1000 	channel->compl_byte_count += byte_count;
1001 	trans_count -= channel->compl_trans_count;
1002 	channel->compl_trans_count += trans_count;
1003 
1004 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
1005 				     trans_count, byte_count);
1006 }
1007 
1008 /* Channel control interrupt handler */
1009 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1010 {
1011 	u32 channel_mask;
1012 
1013 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1014 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1015 
1016 	while (channel_mask) {
1017 		u32 channel_id = __ffs(channel_mask);
1018 		struct gsi_channel *channel;
1019 
1020 		channel_mask ^= BIT(channel_id);
1021 
1022 		channel = &gsi->channel[channel_id];
1023 
1024 		complete(&channel->completion);
1025 	}
1026 }
1027 
1028 /* Event ring control interrupt handler */
1029 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1030 {
1031 	u32 event_mask;
1032 
1033 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1034 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1035 
1036 	while (event_mask) {
1037 		u32 evt_ring_id = __ffs(event_mask);
1038 		struct gsi_evt_ring *evt_ring;
1039 
1040 		event_mask ^= BIT(evt_ring_id);
1041 
1042 		evt_ring = &gsi->evt_ring[evt_ring_id];
1043 		evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
1044 
1045 		complete(&evt_ring->completion);
1046 	}
1047 }
1048 
1049 /* Global channel error interrupt handler */
1050 static void
1051 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1052 {
1053 	if (code == GSI_OUT_OF_RESOURCES) {
1054 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1055 		complete(&gsi->channel[channel_id].completion);
1056 		return;
1057 	}
1058 
1059 	/* Report, but otherwise ignore all other error codes */
1060 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1061 		channel_id, err_ee, code);
1062 }
1063 
1064 /* Global event error interrupt handler */
1065 static void
1066 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1067 {
1068 	if (code == GSI_OUT_OF_RESOURCES) {
1069 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1070 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1071 
1072 		complete(&evt_ring->completion);
1073 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1074 			channel_id);
1075 		return;
1076 	}
1077 
1078 	/* Report, but otherwise ignore all other error codes */
1079 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1080 		evt_ring_id, err_ee, code);
1081 }
1082 
1083 /* Global error interrupt handler */
1084 static void gsi_isr_glob_err(struct gsi *gsi)
1085 {
1086 	enum gsi_err_type type;
1087 	enum gsi_err_code code;
1088 	u32 which;
1089 	u32 val;
1090 	u32 ee;
1091 
1092 	/* Get the logged error, then reinitialize the log */
1093 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1094 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1095 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1096 
1097 	ee = u32_get_bits(val, ERR_EE_FMASK);
1098 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1099 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1100 	code = u32_get_bits(val, ERR_CODE_FMASK);
1101 
1102 	if (type == GSI_ERR_TYPE_CHAN)
1103 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1104 	else if (type == GSI_ERR_TYPE_EVT)
1105 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1106 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1107 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1108 }
1109 
1110 /* Generic EE interrupt handler */
1111 static void gsi_isr_gp_int1(struct gsi *gsi)
1112 {
1113 	u32 result;
1114 	u32 val;
1115 
1116 	/* This interrupt is used to handle completions of the two GENERIC
1117 	 * GSI commands.  We use these to allocate and halt channels on
1118 	 * the modem's behalf due to a hardware quirk on IPA v4.2.  Once
1119 	 * allocated, the modem "owns" these channels, and as a result we
1120 	 * have no way of knowing the channel's state at any given time.
1121 	 *
1122 	 * It is recommended that we halt the modem channels we allocated
1123 	 * when shutting down, but it's possible the channel isn't running
1124 	 * at the time we issue the HALT command.  We'll get an error in
1125 	 * that case, but it's harmless (the channel is already halted).
1126 	 *
1127 	 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error
1128 	 * if we receive it.
1129 	 */
1130 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1131 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1132 
1133 	switch (result) {
1134 	case GENERIC_EE_SUCCESS:
1135 	case GENERIC_EE_CHANNEL_NOT_RUNNING:
1136 		gsi->result = 0;
1137 		break;
1138 
1139 	case GENERIC_EE_RETRY:
1140 		gsi->result = -EAGAIN;
1141 		break;
1142 
1143 	default:
1144 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1145 		gsi->result = -EIO;
1146 		break;
1147 	}
1148 
1149 	complete(&gsi->completion);
1150 }
1151 
1152 /* Inter-EE interrupt handler */
1153 static void gsi_isr_glob_ee(struct gsi *gsi)
1154 {
1155 	u32 val;
1156 
1157 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1158 
1159 	if (val & BIT(ERROR_INT))
1160 		gsi_isr_glob_err(gsi);
1161 
1162 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1163 
1164 	val &= ~BIT(ERROR_INT);
1165 
1166 	if (val & BIT(GP_INT1)) {
1167 		val ^= BIT(GP_INT1);
1168 		gsi_isr_gp_int1(gsi);
1169 	}
1170 
1171 	if (val)
1172 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1173 }
1174 
1175 /* I/O completion interrupt event */
1176 static void gsi_isr_ieob(struct gsi *gsi)
1177 {
1178 	u32 event_mask;
1179 
1180 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1181 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1182 
1183 	while (event_mask) {
1184 		u32 evt_ring_id = __ffs(event_mask);
1185 
1186 		event_mask ^= BIT(evt_ring_id);
1187 
1188 		gsi_irq_ieob_disable(gsi, evt_ring_id);
1189 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1190 	}
1191 }
1192 
1193 /* General event interrupts represent serious problems, so report them */
1194 static void gsi_isr_general(struct gsi *gsi)
1195 {
1196 	struct device *dev = gsi->dev;
1197 	u32 val;
1198 
1199 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1200 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1201 
1202 	dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1203 }
1204 
1205 /**
1206  * gsi_isr() - Top level GSI interrupt service routine
1207  * @irq:	Interrupt number (ignored)
1208  * @dev_id:	GSI pointer supplied to request_irq()
1209  *
1210  * This is the main handler function registered for the GSI IRQ. Each type
1211  * of interrupt has a separate handler function that is called from here.
1212  */
1213 static irqreturn_t gsi_isr(int irq, void *dev_id)
1214 {
1215 	struct gsi *gsi = dev_id;
1216 	u32 intr_mask;
1217 	u32 cnt = 0;
1218 
1219 	/* enum gsi_irq_type_id defines GSI interrupt types */
1220 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1221 		/* intr_mask contains bitmask of pending GSI interrupts */
1222 		do {
1223 			u32 gsi_intr = BIT(__ffs(intr_mask));
1224 
1225 			intr_mask ^= gsi_intr;
1226 
1227 			switch (gsi_intr) {
1228 			case BIT(GSI_CH_CTRL):
1229 				gsi_isr_chan_ctrl(gsi);
1230 				break;
1231 			case BIT(GSI_EV_CTRL):
1232 				gsi_isr_evt_ctrl(gsi);
1233 				break;
1234 			case BIT(GSI_GLOB_EE):
1235 				gsi_isr_glob_ee(gsi);
1236 				break;
1237 			case BIT(GSI_IEOB):
1238 				gsi_isr_ieob(gsi);
1239 				break;
1240 			case BIT(GSI_GENERAL):
1241 				gsi_isr_general(gsi);
1242 				break;
1243 			default:
1244 				dev_err(gsi->dev,
1245 					"unrecognized interrupt type 0x%08x\n",
1246 					gsi_intr);
1247 				break;
1248 			}
1249 		} while (intr_mask);
1250 
1251 		if (++cnt > GSI_ISR_MAX_ITER) {
1252 			dev_err(gsi->dev, "interrupt flood\n");
1253 			break;
1254 		}
1255 	}
1256 
1257 	return IRQ_HANDLED;
1258 }
1259 
1260 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1261 {
1262 	struct device *dev = &pdev->dev;
1263 	unsigned int irq;
1264 	int ret;
1265 
1266 	ret = platform_get_irq_byname(pdev, "gsi");
1267 	if (ret <= 0) {
1268 		dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret);
1269 		return ret ? : -EINVAL;
1270 	}
1271 	irq = ret;
1272 
1273 	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1274 	if (ret) {
1275 		dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1276 		return ret;
1277 	}
1278 	gsi->irq = irq;
1279 
1280 	return 0;
1281 }
1282 
1283 static void gsi_irq_exit(struct gsi *gsi)
1284 {
1285 	free_irq(gsi->irq, gsi);
1286 }
1287 
1288 /* Return the transaction associated with a transfer completion event */
1289 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1290 					 struct gsi_event *event)
1291 {
1292 	u32 tre_offset;
1293 	u32 tre_index;
1294 
1295 	/* Event xfer_ptr records the TRE it's associated with */
1296 	tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
1297 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1298 
1299 	return gsi_channel_trans_mapped(channel, tre_index);
1300 }
1301 
1302 /**
1303  * gsi_evt_ring_rx_update() - Record lengths of received data
1304  * @evt_ring:	Event ring associated with channel that received packets
1305  * @index:	Event index in ring reported by hardware
1306  *
1307  * Events for RX channels contain the actual number of bytes received into
1308  * the buffer.  Every event has a transaction associated with it, and here
1309  * we update transactions to record their actual received lengths.
1310  *
1311  * This function is called whenever we learn that the GSI hardware has filled
1312  * new events since the last time we checked.  The ring's index field tells
1313  * the first entry in need of processing.  The index provided is the
1314  * first *unfilled* event in the ring (following the last filled one).
1315  *
1316  * Events are sequential within the event ring, and transactions are
1317  * sequential within the transaction pool.
1318  *
1319  * Note that @index always refers to an element *within* the event ring.
1320  */
1321 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1322 {
1323 	struct gsi_channel *channel = evt_ring->channel;
1324 	struct gsi_ring *ring = &evt_ring->ring;
1325 	struct gsi_trans_info *trans_info;
1326 	struct gsi_event *event_done;
1327 	struct gsi_event *event;
1328 	struct gsi_trans *trans;
1329 	u32 byte_count = 0;
1330 	u32 old_index;
1331 	u32 event_avail;
1332 
1333 	trans_info = &channel->trans_info;
1334 
1335 	/* We'll start with the oldest un-processed event.  RX channels
1336 	 * replenish receive buffers in single-TRE transactions, so we
1337 	 * can just map that event to its transaction.  Transactions
1338 	 * associated with completion events are consecutive.
1339 	 */
1340 	old_index = ring->index;
1341 	event = gsi_ring_virt(ring, old_index);
1342 	trans = gsi_event_trans(channel, event);
1343 
1344 	/* Compute the number of events to process before we wrap,
1345 	 * and determine when we'll be done processing events.
1346 	 */
1347 	event_avail = ring->count - old_index % ring->count;
1348 	event_done = gsi_ring_virt(ring, index);
1349 	do {
1350 		trans->len = __le16_to_cpu(event->len);
1351 		byte_count += trans->len;
1352 
1353 		/* Move on to the next event and transaction */
1354 		if (--event_avail)
1355 			event++;
1356 		else
1357 			event = gsi_ring_virt(ring, 0);
1358 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1359 	} while (event != event_done);
1360 
1361 	/* We record RX bytes when they are received */
1362 	channel->byte_count += byte_count;
1363 	channel->trans_count++;
1364 }
1365 
1366 /* Initialize a ring, including allocating DMA memory for its entries */
1367 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1368 {
1369 	size_t size = count * GSI_RING_ELEMENT_SIZE;
1370 	struct device *dev = gsi->dev;
1371 	dma_addr_t addr;
1372 
1373 	/* Hardware requires a 2^n ring size, with alignment equal to size */
1374 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1375 	if (ring->virt && addr % size) {
1376 		dma_free_coherent(dev, size, ring->virt, ring->addr);
1377 		dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
1378 			size);
1379 		return -EINVAL;	/* Not a good error value, but distinct */
1380 	} else if (!ring->virt) {
1381 		return -ENOMEM;
1382 	}
1383 	ring->addr = addr;
1384 	ring->count = count;
1385 
1386 	return 0;
1387 }
1388 
1389 /* Free a previously-allocated ring */
1390 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1391 {
1392 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1393 
1394 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1395 }
1396 
1397 /* Allocate an available event ring id */
1398 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1399 {
1400 	u32 evt_ring_id;
1401 
1402 	if (gsi->event_bitmap == ~0U) {
1403 		dev_err(gsi->dev, "event rings exhausted\n");
1404 		return -ENOSPC;
1405 	}
1406 
1407 	evt_ring_id = ffz(gsi->event_bitmap);
1408 	gsi->event_bitmap |= BIT(evt_ring_id);
1409 
1410 	return (int)evt_ring_id;
1411 }
1412 
1413 /* Free a previously-allocated event ring id */
1414 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1415 {
1416 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1417 }
1418 
1419 /* Ring a channel doorbell, reporting the first un-filled entry */
1420 void gsi_channel_doorbell(struct gsi_channel *channel)
1421 {
1422 	struct gsi_ring *tre_ring = &channel->tre_ring;
1423 	u32 channel_id = gsi_channel_id(channel);
1424 	struct gsi *gsi = channel->gsi;
1425 	u32 val;
1426 
1427 	/* Note: index *must* be used modulo the ring count here */
1428 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1429 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1430 }
1431 
1432 /* Consult hardware, move any newly completed transactions to completed list */
1433 static void gsi_channel_update(struct gsi_channel *channel)
1434 {
1435 	u32 evt_ring_id = channel->evt_ring_id;
1436 	struct gsi *gsi = channel->gsi;
1437 	struct gsi_evt_ring *evt_ring;
1438 	struct gsi_trans *trans;
1439 	struct gsi_ring *ring;
1440 	u32 offset;
1441 	u32 index;
1442 
1443 	evt_ring = &gsi->evt_ring[evt_ring_id];
1444 	ring = &evt_ring->ring;
1445 
1446 	/* See if there's anything new to process; if not, we're done.  Note
1447 	 * that index always refers to an entry *within* the event ring.
1448 	 */
1449 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1450 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1451 	if (index == ring->index % ring->count)
1452 		return;
1453 
1454 	/* Get the transaction for the latest completed event.  Take a
1455 	 * reference to keep it from completing before we give the events
1456 	 * for this and previous transactions back to the hardware.
1457 	 */
1458 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1459 	refcount_inc(&trans->refcount);
1460 
1461 	/* For RX channels, update each completed transaction with the number
1462 	 * of bytes that were actually received.  For TX channels, report
1463 	 * the number of transactions and bytes this completion represents
1464 	 * up the network stack.
1465 	 */
1466 	if (channel->toward_ipa)
1467 		gsi_channel_tx_update(channel, trans);
1468 	else
1469 		gsi_evt_ring_rx_update(evt_ring, index);
1470 
1471 	gsi_trans_move_complete(trans);
1472 
1473 	/* Tell the hardware we've handled these events */
1474 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1475 
1476 	gsi_trans_free(trans);
1477 }
1478 
1479 /**
1480  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1481  * @channel:	Channel to be polled
1482  *
1483  * Return:	Transaction pointer, or null if none are available
1484  *
1485  * This function returns the first entry on a channel's completed transaction
1486  * list.  If that list is empty, the hardware is consulted to determine
1487  * whether any new transactions have completed.  If so, they're moved to the
1488  * completed list and the new first entry is returned.  If there are no more
1489  * completed transactions, a null pointer is returned.
1490  */
1491 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1492 {
1493 	struct gsi_trans *trans;
1494 
1495 	/* Get the first transaction from the completed list */
1496 	trans = gsi_channel_trans_complete(channel);
1497 	if (!trans) {
1498 		/* List is empty; see if there's more to do */
1499 		gsi_channel_update(channel);
1500 		trans = gsi_channel_trans_complete(channel);
1501 	}
1502 
1503 	if (trans)
1504 		gsi_trans_move_polled(trans);
1505 
1506 	return trans;
1507 }
1508 
1509 /**
1510  * gsi_channel_poll() - NAPI poll function for a channel
1511  * @napi:	NAPI structure for the channel
1512  * @budget:	Budget supplied by NAPI core
1513  *
1514  * Return:	Number of items polled (<= budget)
1515  *
1516  * Single transactions completed by hardware are polled until either
1517  * the budget is exhausted, or there are no more.  Each transaction
1518  * polled is passed to gsi_trans_complete(), to perform remaining
1519  * completion processing and retire/free the transaction.
1520  */
1521 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1522 {
1523 	struct gsi_channel *channel;
1524 	int count = 0;
1525 
1526 	channel = container_of(napi, struct gsi_channel, napi);
1527 	while (count < budget) {
1528 		struct gsi_trans *trans;
1529 
1530 		count++;
1531 		trans = gsi_channel_poll_one(channel);
1532 		if (!trans)
1533 			break;
1534 		gsi_trans_complete(trans);
1535 	}
1536 
1537 	if (count < budget) {
1538 		napi_complete(&channel->napi);
1539 		gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
1540 	}
1541 
1542 	return count;
1543 }
1544 
1545 /* The event bitmap represents which event ids are available for allocation.
1546  * Set bits are not available, clear bits can be used.  This function
1547  * initializes the map so all events supported by the hardware are available,
1548  * then precludes any reserved events from being allocated.
1549  */
1550 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1551 {
1552 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1553 
1554 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1555 
1556 	return event_bitmap;
1557 }
1558 
1559 /* Setup function for event rings */
1560 static void gsi_evt_ring_setup(struct gsi *gsi)
1561 {
1562 	/* Nothing to do */
1563 }
1564 
1565 /* Inverse of gsi_evt_ring_setup() */
1566 static void gsi_evt_ring_teardown(struct gsi *gsi)
1567 {
1568 	/* Nothing to do */
1569 }
1570 
1571 /* Setup function for a single channel */
1572 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1573 {
1574 	struct gsi_channel *channel = &gsi->channel[channel_id];
1575 	u32 evt_ring_id = channel->evt_ring_id;
1576 	int ret;
1577 
1578 	if (!channel->gsi)
1579 		return 0;	/* Ignore uninitialized channels */
1580 
1581 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1582 	if (ret)
1583 		return ret;
1584 
1585 	gsi_evt_ring_program(gsi, evt_ring_id);
1586 
1587 	ret = gsi_channel_alloc_command(gsi, channel_id);
1588 	if (ret)
1589 		goto err_evt_ring_de_alloc;
1590 
1591 	gsi_channel_program(channel, true);
1592 
1593 	if (channel->toward_ipa)
1594 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1595 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1596 	else
1597 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1598 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1599 
1600 	return 0;
1601 
1602 err_evt_ring_de_alloc:
1603 	/* We've done nothing with the event ring yet so don't reset */
1604 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1605 
1606 	return ret;
1607 }
1608 
1609 /* Inverse of gsi_channel_setup_one() */
1610 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1611 {
1612 	struct gsi_channel *channel = &gsi->channel[channel_id];
1613 	u32 evt_ring_id = channel->evt_ring_id;
1614 
1615 	if (!channel->gsi)
1616 		return;		/* Ignore uninitialized channels */
1617 
1618 	netif_napi_del(&channel->napi);
1619 
1620 	gsi_channel_deprogram(channel);
1621 	gsi_channel_de_alloc_command(gsi, channel_id);
1622 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1623 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1624 }
1625 
1626 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1627 			       enum gsi_generic_cmd_opcode opcode)
1628 {
1629 	struct completion *completion = &gsi->completion;
1630 	bool success;
1631 	u32 val;
1632 
1633 	/* The error global interrupt type is always enabled (until we
1634 	 * teardown), so we won't change that.  A generic EE command
1635 	 * completes with a GSI global interrupt of type GP_INT1.  We
1636 	 * only perform one generic command at a time (to allocate or
1637 	 * halt a modem channel) and only from this function.  So we
1638 	 * enable the GP_INT1 IRQ type here while we're expecting it.
1639 	 */
1640 	val = BIT(ERROR_INT) | BIT(GP_INT1);
1641 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1642 
1643 	/* First zero the result code field */
1644 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1645 	val &= ~GENERIC_EE_RESULT_FMASK;
1646 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1647 
1648 	/* Now issue the command */
1649 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1650 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1651 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1652 
1653 	success = gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
1654 
1655 	/* Disable the GP_INT1 IRQ type again */
1656 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1657 
1658 	if (success)
1659 		return gsi->result;
1660 
1661 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1662 		opcode, channel_id);
1663 
1664 	return -ETIMEDOUT;
1665 }
1666 
1667 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1668 {
1669 	return gsi_generic_command(gsi, channel_id,
1670 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1671 }
1672 
1673 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1674 {
1675 	u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1676 	int ret;
1677 
1678 	do
1679 		ret = gsi_generic_command(gsi, channel_id,
1680 					  GSI_GENERIC_HALT_CHANNEL);
1681 	while (ret == -EAGAIN && retries--);
1682 
1683 	if (ret)
1684 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1685 			ret, channel_id);
1686 }
1687 
1688 /* Setup function for channels */
1689 static int gsi_channel_setup(struct gsi *gsi)
1690 {
1691 	u32 channel_id = 0;
1692 	u32 mask;
1693 	int ret;
1694 
1695 	gsi_evt_ring_setup(gsi);
1696 	gsi_irq_enable(gsi);
1697 
1698 	mutex_lock(&gsi->mutex);
1699 
1700 	do {
1701 		ret = gsi_channel_setup_one(gsi, channel_id);
1702 		if (ret)
1703 			goto err_unwind;
1704 	} while (++channel_id < gsi->channel_count);
1705 
1706 	/* Make sure no channels were defined that hardware does not support */
1707 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1708 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1709 
1710 		if (!channel->gsi)
1711 			continue;	/* Ignore uninitialized channels */
1712 
1713 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1714 			channel_id - 1);
1715 		channel_id = gsi->channel_count;
1716 		goto err_unwind;
1717 	}
1718 
1719 	/* Allocate modem channels if necessary */
1720 	mask = gsi->modem_channel_bitmap;
1721 	while (mask) {
1722 		u32 modem_channel_id = __ffs(mask);
1723 
1724 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1725 		if (ret)
1726 			goto err_unwind_modem;
1727 
1728 		/* Clear bit from mask only after success (for unwind) */
1729 		mask ^= BIT(modem_channel_id);
1730 	}
1731 
1732 	mutex_unlock(&gsi->mutex);
1733 
1734 	return 0;
1735 
1736 err_unwind_modem:
1737 	/* Compute which modem channels need to be deallocated */
1738 	mask ^= gsi->modem_channel_bitmap;
1739 	while (mask) {
1740 		channel_id = __fls(mask);
1741 
1742 		mask ^= BIT(channel_id);
1743 
1744 		gsi_modem_channel_halt(gsi, channel_id);
1745 	}
1746 
1747 err_unwind:
1748 	while (channel_id--)
1749 		gsi_channel_teardown_one(gsi, channel_id);
1750 
1751 	mutex_unlock(&gsi->mutex);
1752 
1753 	gsi_irq_disable(gsi);
1754 	gsi_evt_ring_teardown(gsi);
1755 
1756 	return ret;
1757 }
1758 
1759 /* Inverse of gsi_channel_setup() */
1760 static void gsi_channel_teardown(struct gsi *gsi)
1761 {
1762 	u32 mask = gsi->modem_channel_bitmap;
1763 	u32 channel_id;
1764 
1765 	mutex_lock(&gsi->mutex);
1766 
1767 	while (mask) {
1768 		channel_id = __fls(mask);
1769 
1770 		mask ^= BIT(channel_id);
1771 
1772 		gsi_modem_channel_halt(gsi, channel_id);
1773 	}
1774 
1775 	channel_id = gsi->channel_count - 1;
1776 	do
1777 		gsi_channel_teardown_one(gsi, channel_id);
1778 	while (channel_id--);
1779 
1780 	mutex_unlock(&gsi->mutex);
1781 
1782 	gsi_irq_disable(gsi);
1783 	gsi_evt_ring_teardown(gsi);
1784 }
1785 
1786 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1787 int gsi_setup(struct gsi *gsi)
1788 {
1789 	struct device *dev = gsi->dev;
1790 	u32 val;
1791 	int ret;
1792 
1793 	/* Here is where we first touch the GSI hardware */
1794 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1795 	if (!(val & ENABLED_FMASK)) {
1796 		dev_err(dev, "GSI has not been enabled\n");
1797 		return -EIO;
1798 	}
1799 
1800 	gsi_irq_setup(gsi);
1801 
1802 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1803 
1804 	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1805 	if (!gsi->channel_count) {
1806 		dev_err(dev, "GSI reports zero channels supported\n");
1807 		return -EINVAL;
1808 	}
1809 	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1810 		dev_warn(dev,
1811 			 "limiting to %u channels; hardware supports %u\n",
1812 			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1813 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1814 	}
1815 
1816 	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1817 	if (!gsi->evt_ring_count) {
1818 		dev_err(dev, "GSI reports zero event rings supported\n");
1819 		return -EINVAL;
1820 	}
1821 	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1822 		dev_warn(dev,
1823 			 "limiting to %u event rings; hardware supports %u\n",
1824 			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1825 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1826 	}
1827 
1828 	/* Initialize the error log */
1829 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1830 
1831 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1832 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1833 
1834 	ret = gsi_channel_setup(gsi);
1835 	if (ret)
1836 		gsi_irq_teardown(gsi);
1837 
1838 	return ret;
1839 }
1840 
1841 /* Inverse of gsi_setup() */
1842 void gsi_teardown(struct gsi *gsi)
1843 {
1844 	gsi_channel_teardown(gsi);
1845 	gsi_irq_teardown(gsi);
1846 }
1847 
1848 /* Initialize a channel's event ring */
1849 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1850 {
1851 	struct gsi *gsi = channel->gsi;
1852 	struct gsi_evt_ring *evt_ring;
1853 	int ret;
1854 
1855 	ret = gsi_evt_ring_id_alloc(gsi);
1856 	if (ret < 0)
1857 		return ret;
1858 	channel->evt_ring_id = ret;
1859 
1860 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1861 	evt_ring->channel = channel;
1862 
1863 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1864 	if (!ret)
1865 		return 0;	/* Success! */
1866 
1867 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1868 		ret, gsi_channel_id(channel));
1869 
1870 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1871 
1872 	return ret;
1873 }
1874 
1875 /* Inverse of gsi_channel_evt_ring_init() */
1876 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1877 {
1878 	u32 evt_ring_id = channel->evt_ring_id;
1879 	struct gsi *gsi = channel->gsi;
1880 	struct gsi_evt_ring *evt_ring;
1881 
1882 	evt_ring = &gsi->evt_ring[evt_ring_id];
1883 	gsi_ring_free(gsi, &evt_ring->ring);
1884 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1885 }
1886 
1887 /* Init function for event rings */
1888 static void gsi_evt_ring_init(struct gsi *gsi)
1889 {
1890 	u32 evt_ring_id = 0;
1891 
1892 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1893 	gsi->ieob_enabled_bitmap = 0;
1894 	do
1895 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1896 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1897 }
1898 
1899 /* Inverse of gsi_evt_ring_init() */
1900 static void gsi_evt_ring_exit(struct gsi *gsi)
1901 {
1902 	/* Nothing to do */
1903 }
1904 
1905 static bool gsi_channel_data_valid(struct gsi *gsi,
1906 				   const struct ipa_gsi_endpoint_data *data)
1907 {
1908 #ifdef IPA_VALIDATION
1909 	u32 channel_id = data->channel_id;
1910 	struct device *dev = gsi->dev;
1911 
1912 	/* Make sure channel ids are in the range driver supports */
1913 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1914 		dev_err(dev, "bad channel id %u; must be less than %u\n",
1915 			channel_id, GSI_CHANNEL_COUNT_MAX);
1916 		return false;
1917 	}
1918 
1919 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1920 		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
1921 		return false;
1922 	}
1923 
1924 	if (!data->channel.tlv_count ||
1925 	    data->channel.tlv_count > GSI_TLV_MAX) {
1926 		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
1927 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1928 		return false;
1929 	}
1930 
1931 	/* We have to allow at least one maximally-sized transaction to
1932 	 * be outstanding (which would use tlv_count TREs).  Given how
1933 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
1934 	 * twice the TLV FIFO size to satisfy this requirement.
1935 	 */
1936 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1937 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1938 			channel_id, data->channel.tlv_count,
1939 			data->channel.tre_count);
1940 		return false;
1941 	}
1942 
1943 	if (!is_power_of_2(data->channel.tre_count)) {
1944 		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
1945 			channel_id, data->channel.tre_count);
1946 		return false;
1947 	}
1948 
1949 	if (!is_power_of_2(data->channel.event_count)) {
1950 		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
1951 			channel_id, data->channel.event_count);
1952 		return false;
1953 	}
1954 #endif /* IPA_VALIDATION */
1955 
1956 	return true;
1957 }
1958 
1959 /* Init function for a single channel */
1960 static int gsi_channel_init_one(struct gsi *gsi,
1961 				const struct ipa_gsi_endpoint_data *data,
1962 				bool command)
1963 {
1964 	struct gsi_channel *channel;
1965 	u32 tre_count;
1966 	int ret;
1967 
1968 	if (!gsi_channel_data_valid(gsi, data))
1969 		return -EINVAL;
1970 
1971 	/* Worst case we need an event for every outstanding TRE */
1972 	if (data->channel.tre_count > data->channel.event_count) {
1973 		tre_count = data->channel.event_count;
1974 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
1975 			 data->channel_id, tre_count);
1976 	} else {
1977 		tre_count = data->channel.tre_count;
1978 	}
1979 
1980 	channel = &gsi->channel[data->channel_id];
1981 	memset(channel, 0, sizeof(*channel));
1982 
1983 	channel->gsi = gsi;
1984 	channel->toward_ipa = data->toward_ipa;
1985 	channel->command = command;
1986 	channel->tlv_count = data->channel.tlv_count;
1987 	channel->tre_count = tre_count;
1988 	channel->event_count = data->channel.event_count;
1989 	init_completion(&channel->completion);
1990 
1991 	ret = gsi_channel_evt_ring_init(channel);
1992 	if (ret)
1993 		goto err_clear_gsi;
1994 
1995 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
1996 	if (ret) {
1997 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
1998 			ret, data->channel_id);
1999 		goto err_channel_evt_ring_exit;
2000 	}
2001 
2002 	ret = gsi_channel_trans_init(gsi, data->channel_id);
2003 	if (ret)
2004 		goto err_ring_free;
2005 
2006 	if (command) {
2007 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2008 
2009 		ret = ipa_cmd_pool_init(channel, tre_max);
2010 	}
2011 	if (!ret)
2012 		return 0;	/* Success! */
2013 
2014 	gsi_channel_trans_exit(channel);
2015 err_ring_free:
2016 	gsi_ring_free(gsi, &channel->tre_ring);
2017 err_channel_evt_ring_exit:
2018 	gsi_channel_evt_ring_exit(channel);
2019 err_clear_gsi:
2020 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
2021 
2022 	return ret;
2023 }
2024 
2025 /* Inverse of gsi_channel_init_one() */
2026 static void gsi_channel_exit_one(struct gsi_channel *channel)
2027 {
2028 	if (!channel->gsi)
2029 		return;		/* Ignore uninitialized channels */
2030 
2031 	if (channel->command)
2032 		ipa_cmd_pool_exit(channel);
2033 	gsi_channel_trans_exit(channel);
2034 	gsi_ring_free(channel->gsi, &channel->tre_ring);
2035 	gsi_channel_evt_ring_exit(channel);
2036 }
2037 
2038 /* Init function for channels */
2039 static int gsi_channel_init(struct gsi *gsi, u32 count,
2040 			    const struct ipa_gsi_endpoint_data *data)
2041 {
2042 	bool modem_alloc;
2043 	int ret = 0;
2044 	u32 i;
2045 
2046 	/* IPA v4.2 requires the AP to allocate channels for the modem */
2047 	modem_alloc = gsi->version == IPA_VERSION_4_2;
2048 
2049 	gsi_evt_ring_init(gsi);
2050 
2051 	/* The endpoint data array is indexed by endpoint name */
2052 	for (i = 0; i < count; i++) {
2053 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2054 
2055 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2056 			continue;	/* Skip over empty slots */
2057 
2058 		/* Mark modem channels to be allocated (hardware workaround) */
2059 		if (data[i].ee_id == GSI_EE_MODEM) {
2060 			if (modem_alloc)
2061 				gsi->modem_channel_bitmap |=
2062 						BIT(data[i].channel_id);
2063 			continue;
2064 		}
2065 
2066 		ret = gsi_channel_init_one(gsi, &data[i], command);
2067 		if (ret)
2068 			goto err_unwind;
2069 	}
2070 
2071 	return ret;
2072 
2073 err_unwind:
2074 	while (i--) {
2075 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2076 			continue;
2077 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2078 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2079 			continue;
2080 		}
2081 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2082 	}
2083 	gsi_evt_ring_exit(gsi);
2084 
2085 	return ret;
2086 }
2087 
2088 /* Inverse of gsi_channel_init() */
2089 static void gsi_channel_exit(struct gsi *gsi)
2090 {
2091 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2092 
2093 	do
2094 		gsi_channel_exit_one(&gsi->channel[channel_id]);
2095 	while (channel_id--);
2096 	gsi->modem_channel_bitmap = 0;
2097 
2098 	gsi_evt_ring_exit(gsi);
2099 }
2100 
2101 /* Init function for GSI.  GSI hardware does not need to be "ready" */
2102 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2103 	     enum ipa_version version, u32 count,
2104 	     const struct ipa_gsi_endpoint_data *data)
2105 {
2106 	struct device *dev = &pdev->dev;
2107 	struct resource *res;
2108 	resource_size_t size;
2109 	u32 adjust;
2110 	int ret;
2111 
2112 	gsi_validate_build();
2113 
2114 	gsi->dev = dev;
2115 	gsi->version = version;
2116 
2117 	/* The GSI layer performs NAPI on all endpoints.  NAPI requires a
2118 	 * network device structure, but the GSI layer does not have one,
2119 	 * so we must create a dummy network device for this purpose.
2120 	 */
2121 	init_dummy_netdev(&gsi->dummy_dev);
2122 
2123 	/* Get GSI memory range and map it */
2124 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2125 	if (!res) {
2126 		dev_err(dev, "DT error getting \"gsi\" memory property\n");
2127 		return -ENODEV;
2128 	}
2129 
2130 	size = resource_size(res);
2131 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
2132 		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2133 		return -EINVAL;
2134 	}
2135 
2136 	/* Make sure we can make our pointer adjustment if necessary */
2137 	adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2138 	if (res->start < adjust) {
2139 		dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2140 			adjust);
2141 		return -EINVAL;
2142 	}
2143 
2144 	gsi->virt = ioremap(res->start, size);
2145 	if (!gsi->virt) {
2146 		dev_err(dev, "unable to remap \"gsi\" memory\n");
2147 		return -ENOMEM;
2148 	}
2149 	/* Adjust register range pointer downward for newer IPA versions */
2150 	gsi->virt -= adjust;
2151 
2152 	init_completion(&gsi->completion);
2153 
2154 	ret = gsi_irq_init(gsi, pdev);
2155 	if (ret)
2156 		goto err_iounmap;
2157 
2158 	ret = gsi_channel_init(gsi, count, data);
2159 	if (ret)
2160 		goto err_irq_exit;
2161 
2162 	mutex_init(&gsi->mutex);
2163 
2164 	return 0;
2165 
2166 err_irq_exit:
2167 	gsi_irq_exit(gsi);
2168 err_iounmap:
2169 	iounmap(gsi->virt);
2170 
2171 	return ret;
2172 }
2173 
2174 /* Inverse of gsi_init() */
2175 void gsi_exit(struct gsi *gsi)
2176 {
2177 	mutex_destroy(&gsi->mutex);
2178 	gsi_channel_exit(gsi);
2179 	gsi_irq_exit(gsi);
2180 	iounmap(gsi->virt);
2181 }
2182 
2183 /* The maximum number of outstanding TREs on a channel.  This limits
2184  * a channel's maximum number of transactions outstanding (worst case
2185  * is one TRE per transaction).
2186  *
2187  * The absolute limit is the number of TREs in the channel's TRE ring,
2188  * and in theory we should be able use all of them.  But in practice,
2189  * doing that led to the hardware reporting exhaustion of event ring
2190  * slots for writing completion information.  So the hardware limit
2191  * would be (tre_count - 1).
2192  *
2193  * We reduce it a bit further though.  Transaction resource pools are
2194  * sized to be a little larger than this maximum, to allow resource
2195  * allocations to always be contiguous.  The number of entries in a
2196  * TRE ring buffer is a power of 2, and the extra resources in a pool
2197  * tends to nearly double the memory allocated for it.  Reducing the
2198  * maximum number of outstanding TREs allows the number of entries in
2199  * a pool to avoid crossing that power-of-2 boundary, and this can
2200  * substantially reduce pool memory requirements.  The number we
2201  * reduce it by matches the number added in gsi_trans_pool_init().
2202  */
2203 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2204 {
2205 	struct gsi_channel *channel = &gsi->channel[channel_id];
2206 
2207 	/* Hardware limit is channel->tre_count - 1 */
2208 	return channel->tre_count - (channel->tlv_count - 1);
2209 }
2210 
2211 /* Returns the maximum number of TREs in a single transaction for a channel */
2212 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2213 {
2214 	struct gsi_channel *channel = &gsi->channel[channel_id];
2215 
2216 	return channel->tlv_count;
2217 }
2218