1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/mutex.h> 11 #include <linux/completion.h> 12 #include <linux/io.h> 13 #include <linux/bug.h> 14 #include <linux/interrupt.h> 15 #include <linux/platform_device.h> 16 #include <linux/netdevice.h> 17 18 #include "gsi.h" 19 #include "gsi_reg.h" 20 #include "gsi_private.h" 21 #include "gsi_trans.h" 22 #include "ipa_gsi.h" 23 #include "ipa_data.h" 24 #include "ipa_version.h" 25 26 /** 27 * DOC: The IPA Generic Software Interface 28 * 29 * The generic software interface (GSI) is an integral component of the IPA, 30 * providing a well-defined communication layer between the AP subsystem 31 * and the IPA core. The modem uses the GSI layer as well. 32 * 33 * -------- --------- 34 * | | | | 35 * | AP +<---. .----+ Modem | 36 * | +--. | | .->+ | 37 * | | | | | | | | 38 * -------- | | | | --------- 39 * v | v | 40 * --+-+---+-+-- 41 * | GSI | 42 * |-----------| 43 * | | 44 * | IPA | 45 * | | 46 * ------------- 47 * 48 * In the above diagram, the AP and Modem represent "execution environments" 49 * (EEs), which are independent operating environments that use the IPA for 50 * data transfer. 51 * 52 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 53 * of data to or from the IPA. A channel is implemented as a ring buffer, 54 * with a DRAM-resident array of "transfer elements" (TREs) available to 55 * describe transfers to or from other EEs through the IPA. A transfer 56 * element can also contain an immediate command, requesting the IPA perform 57 * actions other than data transfer. 58 * 59 * Each TRE refers to a block of data--also located DRAM. After writing one 60 * or more TREs to a channel, the writer (either the IPA or an EE) writes a 61 * doorbell register to inform the receiving side how many elements have 62 * been written. 63 * 64 * Each channel has a GSI "event ring" associated with it. An event ring 65 * is implemented very much like a channel ring, but is always directed from 66 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 67 * events by adding an entry to the event ring associated with the channel. 68 * The GSI then writes its doorbell for the event ring, causing the target 69 * EE to be interrupted. Each entry in an event ring contains a pointer 70 * to the channel TRE whose completion the event represents. 71 * 72 * Each TRE in a channel ring has a set of flags. One flag indicates whether 73 * the completion of the transfer operation generates an entry (and possibly 74 * an interrupt) in the channel's event ring. Other flags allow transfer 75 * elements to be chained together, forming a single logical transaction. 76 * TRE flags are used to control whether and when interrupts are generated 77 * to signal completion of channel transfers. 78 * 79 * Elements in channel and event rings are completed (or consumed) strictly 80 * in order. Completion of one entry implies the completion of all preceding 81 * entries. A single completion interrupt can therefore communicate the 82 * completion of many transfers. 83 * 84 * Note that all GSI registers are little-endian, which is the assumed 85 * endianness of I/O space accesses. The accessor functions perform byte 86 * swapping if needed (i.e., for a big endian CPU). 87 */ 88 89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 90 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 91 92 #define GSI_CMD_TIMEOUT 50 /* milliseconds */ 93 94 #define GSI_CHANNEL_STOP_RETRIES 10 95 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10 96 97 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 98 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 99 100 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 101 102 /* An entry in an event ring */ 103 struct gsi_event { 104 __le64 xfer_ptr; 105 __le16 len; 106 u8 reserved1; 107 u8 code; 108 __le16 reserved2; 109 u8 type; 110 u8 chid; 111 }; 112 113 /** gsi_channel_scratch_gpi - GPI protocol scratch register 114 * @max_outstanding_tre: 115 * Defines the maximum number of TREs allowed in a single transaction 116 * on a channel (in bytes). This determines the amount of prefetch 117 * performed by the hardware. We configure this to equal the size of 118 * the TLV FIFO for the channel. 119 * @outstanding_threshold: 120 * Defines the threshold (in bytes) determining when the sequencer 121 * should update the channel doorbell. We configure this to equal 122 * the size of two TREs. 123 */ 124 struct gsi_channel_scratch_gpi { 125 u64 reserved1; 126 u16 reserved2; 127 u16 max_outstanding_tre; 128 u16 reserved3; 129 u16 outstanding_threshold; 130 }; 131 132 /** gsi_channel_scratch - channel scratch configuration area 133 * 134 * The exact interpretation of this register is protocol-specific. 135 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 136 */ 137 union gsi_channel_scratch { 138 struct gsi_channel_scratch_gpi gpi; 139 struct { 140 u32 word1; 141 u32 word2; 142 u32 word3; 143 u32 word4; 144 } data; 145 }; 146 147 /* Check things that can be validated at build time. */ 148 static void gsi_validate_build(void) 149 { 150 /* This is used as a divisor */ 151 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 152 153 /* Code assumes the size of channel and event ring element are 154 * the same (and fixed). Make sure the size of an event ring 155 * element is what's expected. 156 */ 157 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 158 159 /* Hardware requires a 2^n ring size. We ensure the number of 160 * elements in an event ring is a power of 2 elsewhere; this 161 * ensure the elements themselves meet the requirement. 162 */ 163 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 164 165 /* The channel element size must fit in this field */ 166 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); 167 168 /* The event ring element size must fit in this field */ 169 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); 170 } 171 172 /* Return the channel id associated with a given channel */ 173 static u32 gsi_channel_id(struct gsi_channel *channel) 174 { 175 return channel - &channel->gsi->channel[0]; 176 } 177 178 /* Update the GSI IRQ type register with the cached value */ 179 static void gsi_irq_type_update(struct gsi *gsi, u32 val) 180 { 181 gsi->type_enabled_bitmap = val; 182 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 183 } 184 185 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) 186 { 187 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id)); 188 } 189 190 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) 191 { 192 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id)); 193 } 194 195 /* Turn off all GSI interrupts initially */ 196 static void gsi_irq_setup(struct gsi *gsi) 197 { 198 u32 adjust; 199 200 /* Disable all interrupt types */ 201 gsi_irq_type_update(gsi, 0); 202 203 /* Clear all type-specific interrupt masks */ 204 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 205 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 206 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 207 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 208 209 /* Reverse the offset adjustment for inter-EE register offsets */ 210 adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; 211 iowrite32(0, gsi->virt + adjust + GSI_INTER_EE_SRC_CH_IRQ_OFFSET); 212 iowrite32(0, gsi->virt + adjust + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET); 213 214 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 215 } 216 217 /* Turn off all GSI interrupts when we're all done */ 218 static void gsi_irq_teardown(struct gsi *gsi) 219 { 220 /* Nothing to do */ 221 } 222 223 /* Event ring commands are performed one at a time. Their completion 224 * is signaled by the event ring control GSI interrupt type, which is 225 * only enabled when we issue an event ring command. Only the event 226 * ring being operated on has this interrupt enabled. 227 */ 228 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) 229 { 230 u32 val = BIT(evt_ring_id); 231 232 /* There's a small chance that a previous command completed 233 * after the interrupt was disabled, so make sure we have no 234 * pending interrupts before we enable them. 235 */ 236 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 237 238 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 239 gsi_irq_type_enable(gsi, GSI_EV_CTRL); 240 } 241 242 /* Disable event ring control interrupts */ 243 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) 244 { 245 gsi_irq_type_disable(gsi, GSI_EV_CTRL); 246 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 247 } 248 249 /* Channel commands are performed one at a time. Their completion is 250 * signaled by the channel control GSI interrupt type, which is only 251 * enabled when we issue a channel command. Only the channel being 252 * operated on has this interrupt enabled. 253 */ 254 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) 255 { 256 u32 val = BIT(channel_id); 257 258 /* There's a small chance that a previous command completed 259 * after the interrupt was disabled, so make sure we have no 260 * pending interrupts before we enable them. 261 */ 262 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 263 264 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 265 gsi_irq_type_enable(gsi, GSI_CH_CTRL); 266 } 267 268 /* Disable channel control interrupts */ 269 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) 270 { 271 gsi_irq_type_disable(gsi, GSI_CH_CTRL); 272 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 273 } 274 275 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) 276 { 277 bool enable_ieob = !gsi->ieob_enabled_bitmap; 278 u32 val; 279 280 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); 281 val = gsi->ieob_enabled_bitmap; 282 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 283 284 /* Enable the interrupt type if this is the first channel enabled */ 285 if (enable_ieob) 286 gsi_irq_type_enable(gsi, GSI_IEOB); 287 } 288 289 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) 290 { 291 u32 val; 292 293 gsi->ieob_enabled_bitmap &= ~event_mask; 294 295 /* Disable the interrupt type if this was the last enabled channel */ 296 if (!gsi->ieob_enabled_bitmap) 297 gsi_irq_type_disable(gsi, GSI_IEOB); 298 299 val = gsi->ieob_enabled_bitmap; 300 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 301 } 302 303 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) 304 { 305 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); 306 } 307 308 /* Enable all GSI_interrupt types */ 309 static void gsi_irq_enable(struct gsi *gsi) 310 { 311 u32 val; 312 313 /* Global interrupts include hardware error reports. Enable 314 * that so we can at least report the error should it occur. 315 */ 316 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 317 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE)); 318 319 /* General GSI interrupts are reported to all EEs; if they occur 320 * they are unrecoverable (without reset). A breakpoint interrupt 321 * also exists, but we don't support that. We want to be notified 322 * of errors so we can report them, even if they can't be handled. 323 */ 324 val = BIT(BUS_ERROR); 325 val |= BIT(CMD_FIFO_OVRFLOW); 326 val |= BIT(MCS_STACK_OVRFLOW); 327 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 328 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL)); 329 } 330 331 /* Disable all GSI interrupt types */ 332 static void gsi_irq_disable(struct gsi *gsi) 333 { 334 gsi_irq_type_update(gsi, 0); 335 336 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ 337 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 338 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 339 } 340 341 /* Return the virtual address associated with a ring index */ 342 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 343 { 344 /* Note: index *must* be used modulo the ring count here */ 345 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 346 } 347 348 /* Return the 32-bit DMA address associated with a ring index */ 349 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 350 { 351 return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE; 352 } 353 354 /* Return the ring index of a 32-bit ring offset */ 355 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 356 { 357 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 358 } 359 360 /* Issue a GSI command by writing a value to a register, then wait for 361 * completion to be signaled. Returns true if the command completes 362 * or false if it times out. 363 */ 364 static bool 365 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) 366 { 367 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); 368 369 reinit_completion(completion); 370 371 iowrite32(val, gsi->virt + reg); 372 373 return !!wait_for_completion_timeout(completion, timeout); 374 } 375 376 /* Return the hardware's notion of the current state of an event ring */ 377 static enum gsi_evt_ring_state 378 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 379 { 380 u32 val; 381 382 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 383 384 return u32_get_bits(val, EV_CHSTATE_FMASK); 385 } 386 387 /* Issue an event ring command and wait for it to complete */ 388 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 389 enum gsi_evt_cmd_opcode opcode) 390 { 391 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 392 struct completion *completion = &evt_ring->completion; 393 struct device *dev = gsi->dev; 394 bool timeout; 395 u32 val; 396 397 /* Enable the completion interrupt for the command */ 398 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); 399 400 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); 401 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); 402 403 timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion); 404 405 gsi_irq_ev_ctrl_disable(gsi); 406 407 if (!timeout) 408 return; 409 410 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", 411 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); 412 } 413 414 /* Allocate an event ring in NOT_ALLOCATED state */ 415 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 416 { 417 enum gsi_evt_ring_state state; 418 419 /* Get initial event ring state */ 420 state = gsi_evt_ring_state(gsi, evt_ring_id); 421 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { 422 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", 423 evt_ring_id, state); 424 return -EINVAL; 425 } 426 427 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 428 429 /* If successful the event ring state will have changed */ 430 state = gsi_evt_ring_state(gsi, evt_ring_id); 431 if (state == GSI_EVT_RING_STATE_ALLOCATED) 432 return 0; 433 434 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", 435 evt_ring_id, state); 436 437 return -EIO; 438 } 439 440 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 441 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 442 { 443 enum gsi_evt_ring_state state; 444 445 state = gsi_evt_ring_state(gsi, evt_ring_id); 446 if (state != GSI_EVT_RING_STATE_ALLOCATED && 447 state != GSI_EVT_RING_STATE_ERROR) { 448 dev_err(gsi->dev, "event ring %u bad state %u before reset\n", 449 evt_ring_id, state); 450 return; 451 } 452 453 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 454 455 /* If successful the event ring state will have changed */ 456 state = gsi_evt_ring_state(gsi, evt_ring_id); 457 if (state == GSI_EVT_RING_STATE_ALLOCATED) 458 return; 459 460 dev_err(gsi->dev, "event ring %u bad state %u after reset\n", 461 evt_ring_id, state); 462 } 463 464 /* Issue a hardware de-allocation request for an allocated event ring */ 465 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 466 { 467 enum gsi_evt_ring_state state; 468 469 state = gsi_evt_ring_state(gsi, evt_ring_id); 470 if (state != GSI_EVT_RING_STATE_ALLOCATED) { 471 dev_err(gsi->dev, "event ring %u state %u before dealloc\n", 472 evt_ring_id, state); 473 return; 474 } 475 476 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 477 478 /* If successful the event ring state will have changed */ 479 state = gsi_evt_ring_state(gsi, evt_ring_id); 480 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) 481 return; 482 483 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", 484 evt_ring_id, state); 485 } 486 487 /* Fetch the current state of a channel from hardware */ 488 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) 489 { 490 u32 channel_id = gsi_channel_id(channel); 491 void __iomem *virt = channel->gsi->virt; 492 u32 val; 493 494 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 495 496 return u32_get_bits(val, CHSTATE_FMASK); 497 } 498 499 /* Issue a channel command and wait for it to complete */ 500 static void 501 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 502 { 503 struct completion *completion = &channel->completion; 504 u32 channel_id = gsi_channel_id(channel); 505 struct gsi *gsi = channel->gsi; 506 struct device *dev = gsi->dev; 507 bool timeout; 508 u32 val; 509 510 /* Enable the completion interrupt for the command */ 511 gsi_irq_ch_ctrl_enable(gsi, channel_id); 512 513 val = u32_encode_bits(channel_id, CH_CHID_FMASK); 514 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); 515 timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion); 516 517 gsi_irq_ch_ctrl_disable(gsi); 518 519 if (!timeout) 520 return; 521 522 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", 523 opcode, channel_id, gsi_channel_state(channel)); 524 } 525 526 /* Allocate GSI channel in NOT_ALLOCATED state */ 527 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 528 { 529 struct gsi_channel *channel = &gsi->channel[channel_id]; 530 struct device *dev = gsi->dev; 531 enum gsi_channel_state state; 532 533 /* Get initial channel state */ 534 state = gsi_channel_state(channel); 535 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { 536 dev_err(dev, "channel %u bad state %u before alloc\n", 537 channel_id, state); 538 return -EINVAL; 539 } 540 541 gsi_channel_command(channel, GSI_CH_ALLOCATE); 542 543 /* If successful the channel state will have changed */ 544 state = gsi_channel_state(channel); 545 if (state == GSI_CHANNEL_STATE_ALLOCATED) 546 return 0; 547 548 dev_err(dev, "channel %u bad state %u after alloc\n", 549 channel_id, state); 550 551 return -EIO; 552 } 553 554 /* Start an ALLOCATED channel */ 555 static int gsi_channel_start_command(struct gsi_channel *channel) 556 { 557 struct device *dev = channel->gsi->dev; 558 enum gsi_channel_state state; 559 560 state = gsi_channel_state(channel); 561 if (state != GSI_CHANNEL_STATE_ALLOCATED && 562 state != GSI_CHANNEL_STATE_STOPPED) { 563 dev_err(dev, "channel %u bad state %u before start\n", 564 gsi_channel_id(channel), state); 565 return -EINVAL; 566 } 567 568 gsi_channel_command(channel, GSI_CH_START); 569 570 /* If successful the channel state will have changed */ 571 state = gsi_channel_state(channel); 572 if (state == GSI_CHANNEL_STATE_STARTED) 573 return 0; 574 575 dev_err(dev, "channel %u bad state %u after start\n", 576 gsi_channel_id(channel), state); 577 578 return -EIO; 579 } 580 581 /* Stop a GSI channel in STARTED state */ 582 static int gsi_channel_stop_command(struct gsi_channel *channel) 583 { 584 struct device *dev = channel->gsi->dev; 585 enum gsi_channel_state state; 586 587 state = gsi_channel_state(channel); 588 589 /* Channel could have entered STOPPED state since last call 590 * if it timed out. If so, we're done. 591 */ 592 if (state == GSI_CHANNEL_STATE_STOPPED) 593 return 0; 594 595 if (state != GSI_CHANNEL_STATE_STARTED && 596 state != GSI_CHANNEL_STATE_STOP_IN_PROC) { 597 dev_err(dev, "channel %u bad state %u before stop\n", 598 gsi_channel_id(channel), state); 599 return -EINVAL; 600 } 601 602 gsi_channel_command(channel, GSI_CH_STOP); 603 604 /* If successful the channel state will have changed */ 605 state = gsi_channel_state(channel); 606 if (state == GSI_CHANNEL_STATE_STOPPED) 607 return 0; 608 609 /* We may have to try again if stop is in progress */ 610 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) 611 return -EAGAIN; 612 613 dev_err(dev, "channel %u bad state %u after stop\n", 614 gsi_channel_id(channel), state); 615 616 return -EIO; 617 } 618 619 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 620 static void gsi_channel_reset_command(struct gsi_channel *channel) 621 { 622 struct device *dev = channel->gsi->dev; 623 enum gsi_channel_state state; 624 625 /* A short delay is required before a RESET command */ 626 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 627 628 state = gsi_channel_state(channel); 629 if (state != GSI_CHANNEL_STATE_STOPPED && 630 state != GSI_CHANNEL_STATE_ERROR) { 631 /* No need to reset a channel already in ALLOCATED state */ 632 if (state != GSI_CHANNEL_STATE_ALLOCATED) 633 dev_err(dev, "channel %u bad state %u before reset\n", 634 gsi_channel_id(channel), state); 635 return; 636 } 637 638 gsi_channel_command(channel, GSI_CH_RESET); 639 640 /* If successful the channel state will have changed */ 641 state = gsi_channel_state(channel); 642 if (state != GSI_CHANNEL_STATE_ALLOCATED) 643 dev_err(dev, "channel %u bad state %u after reset\n", 644 gsi_channel_id(channel), state); 645 } 646 647 /* Deallocate an ALLOCATED GSI channel */ 648 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 649 { 650 struct gsi_channel *channel = &gsi->channel[channel_id]; 651 struct device *dev = gsi->dev; 652 enum gsi_channel_state state; 653 654 state = gsi_channel_state(channel); 655 if (state != GSI_CHANNEL_STATE_ALLOCATED) { 656 dev_err(dev, "channel %u bad state %u before dealloc\n", 657 channel_id, state); 658 return; 659 } 660 661 gsi_channel_command(channel, GSI_CH_DE_ALLOC); 662 663 /* If successful the channel state will have changed */ 664 state = gsi_channel_state(channel); 665 666 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 667 dev_err(dev, "channel %u bad state %u after dealloc\n", 668 channel_id, state); 669 } 670 671 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 672 * The index argument (modulo the ring count) is the first unfilled entry, so 673 * we supply one less than that with the doorbell. Update the event ring 674 * index field with the value provided. 675 */ 676 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 677 { 678 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 679 u32 val; 680 681 ring->index = index; /* Next unused entry */ 682 683 /* Note: index *must* be used modulo the ring count here */ 684 val = gsi_ring_addr(ring, (index - 1) % ring->count); 685 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); 686 } 687 688 /* Program an event ring for use */ 689 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 690 { 691 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 692 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; 693 u32 val; 694 695 /* We program all event rings as GPI type/protocol */ 696 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK); 697 val |= EV_INTYPE_FMASK; 698 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); 699 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 700 701 val = u32_encode_bits(size, EV_R_LENGTH_FMASK); 702 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); 703 704 /* The context 2 and 3 registers store the low-order and 705 * high-order 32 bits of the address of the event ring, 706 * respectively. 707 */ 708 val = evt_ring->ring.addr & GENMASK(31, 0); 709 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); 710 711 val = evt_ring->ring.addr >> 32; 712 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); 713 714 /* Enable interrupt moderation by setting the moderation delay */ 715 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); 716 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ 717 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); 718 719 /* No MSI write data, and MSI address high and low address is 0 */ 720 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); 721 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); 722 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); 723 724 /* We don't need to get event read pointer updates */ 725 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); 726 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); 727 728 /* Finally, tell the hardware we've completed event 0 (arbitrary) */ 729 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); 730 } 731 732 /* Find the transaction whose completion indicates a channel is quiesced */ 733 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 734 { 735 struct gsi_trans_info *trans_info = &channel->trans_info; 736 const struct list_head *list; 737 struct gsi_trans *trans; 738 739 spin_lock_bh(&trans_info->spinlock); 740 741 /* There is a small chance a TX transaction got allocated just 742 * before we disabled transmits, so check for that. 743 */ 744 if (channel->toward_ipa) { 745 list = &trans_info->alloc; 746 if (!list_empty(list)) 747 goto done; 748 list = &trans_info->pending; 749 if (!list_empty(list)) 750 goto done; 751 } 752 753 /* Otherwise (TX or RX) we want to wait for anything that 754 * has completed, or has been polled but not released yet. 755 */ 756 list = &trans_info->complete; 757 if (!list_empty(list)) 758 goto done; 759 list = &trans_info->polled; 760 if (list_empty(list)) 761 list = NULL; 762 done: 763 trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL; 764 765 /* Caller will wait for this, so take a reference */ 766 if (trans) 767 refcount_inc(&trans->refcount); 768 769 spin_unlock_bh(&trans_info->spinlock); 770 771 return trans; 772 } 773 774 /* Wait for transaction activity on a channel to complete */ 775 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 776 { 777 struct gsi_trans *trans; 778 779 /* Get the last transaction, and wait for it to complete */ 780 trans = gsi_channel_trans_last(channel); 781 if (trans) { 782 wait_for_completion(&trans->completion); 783 gsi_trans_free(trans); 784 } 785 } 786 787 /* Program a channel for use */ 788 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 789 { 790 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 791 u32 channel_id = gsi_channel_id(channel); 792 union gsi_channel_scratch scr = { }; 793 struct gsi_channel_scratch_gpi *gpi; 794 struct gsi *gsi = channel->gsi; 795 u32 wrr_weight = 0; 796 u32 val; 797 798 /* Arbitrarily pick TRE 0 as the first channel element to use */ 799 channel->tre_ring.index = 0; 800 801 /* We program all channels as GPI type/protocol */ 802 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, CHTYPE_PROTOCOL_FMASK); 803 if (channel->toward_ipa) 804 val |= CHTYPE_DIR_FMASK; 805 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); 806 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); 807 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 808 809 val = u32_encode_bits(size, R_LENGTH_FMASK); 810 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); 811 812 /* The context 2 and 3 registers store the low-order and 813 * high-order 32 bits of the address of the channel ring, 814 * respectively. 815 */ 816 val = channel->tre_ring.addr & GENMASK(31, 0); 817 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); 818 819 val = channel->tre_ring.addr >> 32; 820 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); 821 822 /* Command channel gets low weighted round-robin priority */ 823 if (channel->command) 824 wrr_weight = field_max(WRR_WEIGHT_FMASK); 825 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); 826 827 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 828 829 /* We enable the doorbell engine for IPA v3.5.1 */ 830 if (gsi->version == IPA_VERSION_3_5_1 && doorbell) 831 val |= USE_DB_ENG_FMASK; 832 833 /* v4.0 introduces an escape buffer for prefetch. We use it 834 * on all but the AP command channel. 835 */ 836 if (gsi->version != IPA_VERSION_3_5_1 && !channel->command) { 837 /* If not otherwise set, prefetch buffers are used */ 838 if (gsi->version < IPA_VERSION_4_5) 839 val |= USE_ESCAPE_BUF_ONLY_FMASK; 840 else 841 val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY, 842 PREFETCH_MODE_FMASK); 843 } 844 845 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); 846 847 /* Now update the scratch registers for GPI protocol */ 848 gpi = &scr.gpi; 849 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * 850 GSI_RING_ELEMENT_SIZE; 851 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 852 853 val = scr.data.word1; 854 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); 855 856 val = scr.data.word2; 857 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); 858 859 val = scr.data.word3; 860 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); 861 862 /* We must preserve the upper 16 bits of the last scratch register. 863 * The next sequence assumes those bits remain unchanged between the 864 * read and the write. 865 */ 866 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 867 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 868 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 869 870 /* All done! */ 871 } 872 873 static void gsi_channel_deprogram(struct gsi_channel *channel) 874 { 875 /* Nothing to do */ 876 } 877 878 static int __gsi_channel_start(struct gsi_channel *channel, bool start) 879 { 880 struct gsi *gsi = channel->gsi; 881 int ret; 882 883 if (!start) 884 return 0; 885 886 mutex_lock(&gsi->mutex); 887 888 ret = gsi_channel_start_command(channel); 889 890 mutex_unlock(&gsi->mutex); 891 892 return ret; 893 } 894 895 /* Start an allocated GSI channel */ 896 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 897 { 898 struct gsi_channel *channel = &gsi->channel[channel_id]; 899 int ret; 900 901 /* Enable NAPI and the completion interrupt */ 902 napi_enable(&channel->napi); 903 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); 904 905 ret = __gsi_channel_start(channel, true); 906 if (ret) { 907 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 908 napi_disable(&channel->napi); 909 } 910 911 return ret; 912 } 913 914 static int gsi_channel_stop_retry(struct gsi_channel *channel) 915 { 916 u32 retries = GSI_CHANNEL_STOP_RETRIES; 917 int ret; 918 919 do { 920 ret = gsi_channel_stop_command(channel); 921 if (ret != -EAGAIN) 922 break; 923 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); 924 } while (retries--); 925 926 return ret; 927 } 928 929 static int __gsi_channel_stop(struct gsi_channel *channel, bool stop) 930 { 931 struct gsi *gsi = channel->gsi; 932 int ret; 933 934 /* Wait for any underway transactions to complete before stopping. */ 935 gsi_channel_trans_quiesce(channel); 936 937 if (!stop) 938 return 0; 939 940 mutex_lock(&gsi->mutex); 941 942 ret = gsi_channel_stop_retry(channel); 943 944 mutex_unlock(&gsi->mutex); 945 946 return ret; 947 } 948 949 /* Stop a started channel */ 950 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 951 { 952 struct gsi_channel *channel = &gsi->channel[channel_id]; 953 int ret; 954 955 ret = __gsi_channel_stop(channel, true); 956 if (ret) 957 return ret; 958 959 /* Disable the completion interrupt and NAPI if successful */ 960 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 961 napi_disable(&channel->napi); 962 963 return 0; 964 } 965 966 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ 967 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) 968 { 969 struct gsi_channel *channel = &gsi->channel[channel_id]; 970 971 mutex_lock(&gsi->mutex); 972 973 gsi_channel_reset_command(channel); 974 /* Due to a hardware quirk we may need to reset RX channels twice. */ 975 if (gsi->version == IPA_VERSION_3_5_1 && !channel->toward_ipa) 976 gsi_channel_reset_command(channel); 977 978 gsi_channel_program(channel, doorbell); 979 gsi_channel_trans_cancel_pending(channel); 980 981 mutex_unlock(&gsi->mutex); 982 } 983 984 /* Stop a STARTED channel for suspend (using stop if requested) */ 985 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop) 986 { 987 struct gsi_channel *channel = &gsi->channel[channel_id]; 988 int ret; 989 990 ret = __gsi_channel_stop(channel, stop); 991 if (ret) 992 return ret; 993 994 /* Ensure NAPI polling has finished. */ 995 napi_synchronize(&channel->napi); 996 997 return 0; 998 } 999 1000 /* Resume a suspended channel (starting will be requested if STOPPED) */ 1001 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start) 1002 { 1003 struct gsi_channel *channel = &gsi->channel[channel_id]; 1004 1005 return __gsi_channel_start(channel, start); 1006 } 1007 1008 /** 1009 * gsi_channel_tx_queued() - Report queued TX transfers for a channel 1010 * @channel: Channel for which to report 1011 * 1012 * Report to the network stack the number of bytes and transactions that 1013 * have been queued to hardware since last call. This and the next function 1014 * supply information used by the network stack for throttling. 1015 * 1016 * For each channel we track the number of transactions used and bytes of 1017 * data those transactions represent. We also track what those values are 1018 * each time this function is called. Subtracting the two tells us 1019 * the number of bytes and transactions that have been added between 1020 * successive calls. 1021 * 1022 * Calling this each time we ring the channel doorbell allows us to 1023 * provide accurate information to the network stack about how much 1024 * work we've given the hardware at any point in time. 1025 */ 1026 void gsi_channel_tx_queued(struct gsi_channel *channel) 1027 { 1028 u32 trans_count; 1029 u32 byte_count; 1030 1031 byte_count = channel->byte_count - channel->queued_byte_count; 1032 trans_count = channel->trans_count - channel->queued_trans_count; 1033 channel->queued_byte_count = channel->byte_count; 1034 channel->queued_trans_count = channel->trans_count; 1035 1036 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), 1037 trans_count, byte_count); 1038 } 1039 1040 /** 1041 * gsi_channel_tx_update() - Report completed TX transfers 1042 * @channel: Channel that has completed transmitting packets 1043 * @trans: Last transation known to be complete 1044 * 1045 * Compute the number of transactions and bytes that have been transferred 1046 * over a TX channel since the given transaction was committed. Report this 1047 * information to the network stack. 1048 * 1049 * At the time a transaction is committed, we record its channel's 1050 * committed transaction and byte counts *in the transaction*. 1051 * Completions are signaled by the hardware with an interrupt, and 1052 * we can determine the latest completed transaction at that time. 1053 * 1054 * The difference between the byte/transaction count recorded in 1055 * the transaction and the count last time we recorded a completion 1056 * tells us exactly how much data has been transferred between 1057 * completions. 1058 * 1059 * Calling this each time we learn of a newly-completed transaction 1060 * allows us to provide accurate information to the network stack 1061 * about how much work has been completed by the hardware at a given 1062 * point in time. 1063 */ 1064 static void 1065 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) 1066 { 1067 u64 byte_count = trans->byte_count + trans->len; 1068 u64 trans_count = trans->trans_count + 1; 1069 1070 byte_count -= channel->compl_byte_count; 1071 channel->compl_byte_count += byte_count; 1072 trans_count -= channel->compl_trans_count; 1073 channel->compl_trans_count += trans_count; 1074 1075 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), 1076 trans_count, byte_count); 1077 } 1078 1079 /* Channel control interrupt handler */ 1080 static void gsi_isr_chan_ctrl(struct gsi *gsi) 1081 { 1082 u32 channel_mask; 1083 1084 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); 1085 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 1086 1087 while (channel_mask) { 1088 u32 channel_id = __ffs(channel_mask); 1089 struct gsi_channel *channel; 1090 1091 channel_mask ^= BIT(channel_id); 1092 1093 channel = &gsi->channel[channel_id]; 1094 1095 complete(&channel->completion); 1096 } 1097 } 1098 1099 /* Event ring control interrupt handler */ 1100 static void gsi_isr_evt_ctrl(struct gsi *gsi) 1101 { 1102 u32 event_mask; 1103 1104 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); 1105 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 1106 1107 while (event_mask) { 1108 u32 evt_ring_id = __ffs(event_mask); 1109 struct gsi_evt_ring *evt_ring; 1110 1111 event_mask ^= BIT(evt_ring_id); 1112 1113 evt_ring = &gsi->evt_ring[evt_ring_id]; 1114 1115 complete(&evt_ring->completion); 1116 } 1117 } 1118 1119 /* Global channel error interrupt handler */ 1120 static void 1121 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 1122 { 1123 if (code == GSI_OUT_OF_RESOURCES) { 1124 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 1125 complete(&gsi->channel[channel_id].completion); 1126 return; 1127 } 1128 1129 /* Report, but otherwise ignore all other error codes */ 1130 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 1131 channel_id, err_ee, code); 1132 } 1133 1134 /* Global event error interrupt handler */ 1135 static void 1136 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 1137 { 1138 if (code == GSI_OUT_OF_RESOURCES) { 1139 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1140 u32 channel_id = gsi_channel_id(evt_ring->channel); 1141 1142 complete(&evt_ring->completion); 1143 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 1144 channel_id); 1145 return; 1146 } 1147 1148 /* Report, but otherwise ignore all other error codes */ 1149 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1150 evt_ring_id, err_ee, code); 1151 } 1152 1153 /* Global error interrupt handler */ 1154 static void gsi_isr_glob_err(struct gsi *gsi) 1155 { 1156 enum gsi_err_type type; 1157 enum gsi_err_code code; 1158 u32 which; 1159 u32 val; 1160 u32 ee; 1161 1162 /* Get the logged error, then reinitialize the log */ 1163 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); 1164 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1165 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); 1166 1167 ee = u32_get_bits(val, ERR_EE_FMASK); 1168 type = u32_get_bits(val, ERR_TYPE_FMASK); 1169 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); 1170 code = u32_get_bits(val, ERR_CODE_FMASK); 1171 1172 if (type == GSI_ERR_TYPE_CHAN) 1173 gsi_isr_glob_chan_err(gsi, ee, which, code); 1174 else if (type == GSI_ERR_TYPE_EVT) 1175 gsi_isr_glob_evt_err(gsi, ee, which, code); 1176 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1177 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1178 } 1179 1180 /* Generic EE interrupt handler */ 1181 static void gsi_isr_gp_int1(struct gsi *gsi) 1182 { 1183 u32 result; 1184 u32 val; 1185 1186 /* This interrupt is used to handle completions of the two GENERIC 1187 * GSI commands. We use these to allocate and halt channels on 1188 * the modem's behalf due to a hardware quirk on IPA v4.2. Once 1189 * allocated, the modem "owns" these channels, and as a result we 1190 * have no way of knowing the channel's state at any given time. 1191 * 1192 * It is recommended that we halt the modem channels we allocated 1193 * when shutting down, but it's possible the channel isn't running 1194 * at the time we issue the HALT command. We'll get an error in 1195 * that case, but it's harmless (the channel is already halted). 1196 * 1197 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error 1198 * if we receive it. 1199 */ 1200 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1201 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); 1202 1203 switch (result) { 1204 case GENERIC_EE_SUCCESS: 1205 case GENERIC_EE_CHANNEL_NOT_RUNNING: 1206 gsi->result = 0; 1207 break; 1208 1209 case GENERIC_EE_RETRY: 1210 gsi->result = -EAGAIN; 1211 break; 1212 1213 default: 1214 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1215 gsi->result = -EIO; 1216 break; 1217 } 1218 1219 complete(&gsi->completion); 1220 } 1221 1222 /* Inter-EE interrupt handler */ 1223 static void gsi_isr_glob_ee(struct gsi *gsi) 1224 { 1225 u32 val; 1226 1227 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); 1228 1229 if (val & BIT(ERROR_INT)) 1230 gsi_isr_glob_err(gsi); 1231 1232 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); 1233 1234 val &= ~BIT(ERROR_INT); 1235 1236 if (val & BIT(GP_INT1)) { 1237 val ^= BIT(GP_INT1); 1238 gsi_isr_gp_int1(gsi); 1239 } 1240 1241 if (val) 1242 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1243 } 1244 1245 /* I/O completion interrupt event */ 1246 static void gsi_isr_ieob(struct gsi *gsi) 1247 { 1248 u32 event_mask; 1249 1250 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); 1251 gsi_irq_ieob_disable(gsi, event_mask); 1252 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); 1253 1254 while (event_mask) { 1255 u32 evt_ring_id = __ffs(event_mask); 1256 1257 event_mask ^= BIT(evt_ring_id); 1258 1259 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1260 } 1261 } 1262 1263 /* General event interrupts represent serious problems, so report them */ 1264 static void gsi_isr_general(struct gsi *gsi) 1265 { 1266 struct device *dev = gsi->dev; 1267 u32 val; 1268 1269 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); 1270 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); 1271 1272 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1273 } 1274 1275 /** 1276 * gsi_isr() - Top level GSI interrupt service routine 1277 * @irq: Interrupt number (ignored) 1278 * @dev_id: GSI pointer supplied to request_irq() 1279 * 1280 * This is the main handler function registered for the GSI IRQ. Each type 1281 * of interrupt has a separate handler function that is called from here. 1282 */ 1283 static irqreturn_t gsi_isr(int irq, void *dev_id) 1284 { 1285 struct gsi *gsi = dev_id; 1286 u32 intr_mask; 1287 u32 cnt = 0; 1288 1289 /* enum gsi_irq_type_id defines GSI interrupt types */ 1290 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { 1291 /* intr_mask contains bitmask of pending GSI interrupts */ 1292 do { 1293 u32 gsi_intr = BIT(__ffs(intr_mask)); 1294 1295 intr_mask ^= gsi_intr; 1296 1297 switch (gsi_intr) { 1298 case BIT(GSI_CH_CTRL): 1299 gsi_isr_chan_ctrl(gsi); 1300 break; 1301 case BIT(GSI_EV_CTRL): 1302 gsi_isr_evt_ctrl(gsi); 1303 break; 1304 case BIT(GSI_GLOB_EE): 1305 gsi_isr_glob_ee(gsi); 1306 break; 1307 case BIT(GSI_IEOB): 1308 gsi_isr_ieob(gsi); 1309 break; 1310 case BIT(GSI_GENERAL): 1311 gsi_isr_general(gsi); 1312 break; 1313 default: 1314 dev_err(gsi->dev, 1315 "unrecognized interrupt type 0x%08x\n", 1316 gsi_intr); 1317 break; 1318 } 1319 } while (intr_mask); 1320 1321 if (++cnt > GSI_ISR_MAX_ITER) { 1322 dev_err(gsi->dev, "interrupt flood\n"); 1323 break; 1324 } 1325 } 1326 1327 return IRQ_HANDLED; 1328 } 1329 1330 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) 1331 { 1332 struct device *dev = &pdev->dev; 1333 unsigned int irq; 1334 int ret; 1335 1336 ret = platform_get_irq_byname(pdev, "gsi"); 1337 if (ret <= 0) { 1338 dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret); 1339 return ret ? : -EINVAL; 1340 } 1341 irq = ret; 1342 1343 ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); 1344 if (ret) { 1345 dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret); 1346 return ret; 1347 } 1348 gsi->irq = irq; 1349 1350 return 0; 1351 } 1352 1353 static void gsi_irq_exit(struct gsi *gsi) 1354 { 1355 free_irq(gsi->irq, gsi); 1356 } 1357 1358 /* Return the transaction associated with a transfer completion event */ 1359 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, 1360 struct gsi_event *event) 1361 { 1362 u32 tre_offset; 1363 u32 tre_index; 1364 1365 /* Event xfer_ptr records the TRE it's associated with */ 1366 tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0); 1367 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1368 1369 return gsi_channel_trans_mapped(channel, tre_index); 1370 } 1371 1372 /** 1373 * gsi_evt_ring_rx_update() - Record lengths of received data 1374 * @evt_ring: Event ring associated with channel that received packets 1375 * @index: Event index in ring reported by hardware 1376 * 1377 * Events for RX channels contain the actual number of bytes received into 1378 * the buffer. Every event has a transaction associated with it, and here 1379 * we update transactions to record their actual received lengths. 1380 * 1381 * This function is called whenever we learn that the GSI hardware has filled 1382 * new events since the last time we checked. The ring's index field tells 1383 * the first entry in need of processing. The index provided is the 1384 * first *unfilled* event in the ring (following the last filled one). 1385 * 1386 * Events are sequential within the event ring, and transactions are 1387 * sequential within the transaction pool. 1388 * 1389 * Note that @index always refers to an element *within* the event ring. 1390 */ 1391 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) 1392 { 1393 struct gsi_channel *channel = evt_ring->channel; 1394 struct gsi_ring *ring = &evt_ring->ring; 1395 struct gsi_trans_info *trans_info; 1396 struct gsi_event *event_done; 1397 struct gsi_event *event; 1398 struct gsi_trans *trans; 1399 u32 byte_count = 0; 1400 u32 old_index; 1401 u32 event_avail; 1402 1403 trans_info = &channel->trans_info; 1404 1405 /* We'll start with the oldest un-processed event. RX channels 1406 * replenish receive buffers in single-TRE transactions, so we 1407 * can just map that event to its transaction. Transactions 1408 * associated with completion events are consecutive. 1409 */ 1410 old_index = ring->index; 1411 event = gsi_ring_virt(ring, old_index); 1412 trans = gsi_event_trans(channel, event); 1413 1414 /* Compute the number of events to process before we wrap, 1415 * and determine when we'll be done processing events. 1416 */ 1417 event_avail = ring->count - old_index % ring->count; 1418 event_done = gsi_ring_virt(ring, index); 1419 do { 1420 trans->len = __le16_to_cpu(event->len); 1421 byte_count += trans->len; 1422 1423 /* Move on to the next event and transaction */ 1424 if (--event_avail) 1425 event++; 1426 else 1427 event = gsi_ring_virt(ring, 0); 1428 trans = gsi_trans_pool_next(&trans_info->pool, trans); 1429 } while (event != event_done); 1430 1431 /* We record RX bytes when they are received */ 1432 channel->byte_count += byte_count; 1433 channel->trans_count++; 1434 } 1435 1436 /* Initialize a ring, including allocating DMA memory for its entries */ 1437 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1438 { 1439 size_t size = count * GSI_RING_ELEMENT_SIZE; 1440 struct device *dev = gsi->dev; 1441 dma_addr_t addr; 1442 1443 /* Hardware requires a 2^n ring size, with alignment equal to size */ 1444 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1445 if (ring->virt && addr % size) { 1446 dma_free_coherent(dev, size, ring->virt, addr); 1447 dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n", 1448 size); 1449 return -EINVAL; /* Not a good error value, but distinct */ 1450 } else if (!ring->virt) { 1451 return -ENOMEM; 1452 } 1453 ring->addr = addr; 1454 ring->count = count; 1455 1456 return 0; 1457 } 1458 1459 /* Free a previously-allocated ring */ 1460 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1461 { 1462 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1463 1464 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1465 } 1466 1467 /* Allocate an available event ring id */ 1468 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1469 { 1470 u32 evt_ring_id; 1471 1472 if (gsi->event_bitmap == ~0U) { 1473 dev_err(gsi->dev, "event rings exhausted\n"); 1474 return -ENOSPC; 1475 } 1476 1477 evt_ring_id = ffz(gsi->event_bitmap); 1478 gsi->event_bitmap |= BIT(evt_ring_id); 1479 1480 return (int)evt_ring_id; 1481 } 1482 1483 /* Free a previously-allocated event ring id */ 1484 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1485 { 1486 gsi->event_bitmap &= ~BIT(evt_ring_id); 1487 } 1488 1489 /* Ring a channel doorbell, reporting the first un-filled entry */ 1490 void gsi_channel_doorbell(struct gsi_channel *channel) 1491 { 1492 struct gsi_ring *tre_ring = &channel->tre_ring; 1493 u32 channel_id = gsi_channel_id(channel); 1494 struct gsi *gsi = channel->gsi; 1495 u32 val; 1496 1497 /* Note: index *must* be used modulo the ring count here */ 1498 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1499 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); 1500 } 1501 1502 /* Consult hardware, move any newly completed transactions to completed list */ 1503 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel) 1504 { 1505 u32 evt_ring_id = channel->evt_ring_id; 1506 struct gsi *gsi = channel->gsi; 1507 struct gsi_evt_ring *evt_ring; 1508 struct gsi_trans *trans; 1509 struct gsi_ring *ring; 1510 u32 offset; 1511 u32 index; 1512 1513 evt_ring = &gsi->evt_ring[evt_ring_id]; 1514 ring = &evt_ring->ring; 1515 1516 /* See if there's anything new to process; if not, we're done. Note 1517 * that index always refers to an entry *within* the event ring. 1518 */ 1519 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); 1520 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1521 if (index == ring->index % ring->count) 1522 return NULL; 1523 1524 /* Get the transaction for the latest completed event. Take a 1525 * reference to keep it from completing before we give the events 1526 * for this and previous transactions back to the hardware. 1527 */ 1528 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); 1529 refcount_inc(&trans->refcount); 1530 1531 /* For RX channels, update each completed transaction with the number 1532 * of bytes that were actually received. For TX channels, report 1533 * the number of transactions and bytes this completion represents 1534 * up the network stack. 1535 */ 1536 if (channel->toward_ipa) 1537 gsi_channel_tx_update(channel, trans); 1538 else 1539 gsi_evt_ring_rx_update(evt_ring, index); 1540 1541 gsi_trans_move_complete(trans); 1542 1543 /* Tell the hardware we've handled these events */ 1544 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); 1545 1546 gsi_trans_free(trans); 1547 1548 return gsi_channel_trans_complete(channel); 1549 } 1550 1551 /** 1552 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1553 * @channel: Channel to be polled 1554 * 1555 * Return: Transaction pointer, or null if none are available 1556 * 1557 * This function returns the first entry on a channel's completed transaction 1558 * list. If that list is empty, the hardware is consulted to determine 1559 * whether any new transactions have completed. If so, they're moved to the 1560 * completed list and the new first entry is returned. If there are no more 1561 * completed transactions, a null pointer is returned. 1562 */ 1563 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1564 { 1565 struct gsi_trans *trans; 1566 1567 /* Get the first transaction from the completed list */ 1568 trans = gsi_channel_trans_complete(channel); 1569 if (!trans) /* List is empty; see if there's more to do */ 1570 trans = gsi_channel_update(channel); 1571 1572 if (trans) 1573 gsi_trans_move_polled(trans); 1574 1575 return trans; 1576 } 1577 1578 /** 1579 * gsi_channel_poll() - NAPI poll function for a channel 1580 * @napi: NAPI structure for the channel 1581 * @budget: Budget supplied by NAPI core 1582 * 1583 * Return: Number of items polled (<= budget) 1584 * 1585 * Single transactions completed by hardware are polled until either 1586 * the budget is exhausted, or there are no more. Each transaction 1587 * polled is passed to gsi_trans_complete(), to perform remaining 1588 * completion processing and retire/free the transaction. 1589 */ 1590 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1591 { 1592 struct gsi_channel *channel; 1593 int count; 1594 1595 channel = container_of(napi, struct gsi_channel, napi); 1596 for (count = 0; count < budget; count++) { 1597 struct gsi_trans *trans; 1598 1599 trans = gsi_channel_poll_one(channel); 1600 if (!trans) 1601 break; 1602 gsi_trans_complete(trans); 1603 } 1604 1605 if (count < budget && napi_complete(napi)) 1606 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); 1607 1608 return count; 1609 } 1610 1611 /* The event bitmap represents which event ids are available for allocation. 1612 * Set bits are not available, clear bits can be used. This function 1613 * initializes the map so all events supported by the hardware are available, 1614 * then precludes any reserved events from being allocated. 1615 */ 1616 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1617 { 1618 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1619 1620 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1621 1622 return event_bitmap; 1623 } 1624 1625 /* Setup function for event rings */ 1626 static void gsi_evt_ring_setup(struct gsi *gsi) 1627 { 1628 /* Nothing to do */ 1629 } 1630 1631 /* Inverse of gsi_evt_ring_setup() */ 1632 static void gsi_evt_ring_teardown(struct gsi *gsi) 1633 { 1634 /* Nothing to do */ 1635 } 1636 1637 /* Setup function for a single channel */ 1638 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) 1639 { 1640 struct gsi_channel *channel = &gsi->channel[channel_id]; 1641 u32 evt_ring_id = channel->evt_ring_id; 1642 int ret; 1643 1644 if (!channel->gsi) 1645 return 0; /* Ignore uninitialized channels */ 1646 1647 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1648 if (ret) 1649 return ret; 1650 1651 gsi_evt_ring_program(gsi, evt_ring_id); 1652 1653 ret = gsi_channel_alloc_command(gsi, channel_id); 1654 if (ret) 1655 goto err_evt_ring_de_alloc; 1656 1657 gsi_channel_program(channel, true); 1658 1659 if (channel->toward_ipa) 1660 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, 1661 gsi_channel_poll, NAPI_POLL_WEIGHT); 1662 else 1663 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1664 gsi_channel_poll, NAPI_POLL_WEIGHT); 1665 1666 return 0; 1667 1668 err_evt_ring_de_alloc: 1669 /* We've done nothing with the event ring yet so don't reset */ 1670 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1671 1672 return ret; 1673 } 1674 1675 /* Inverse of gsi_channel_setup_one() */ 1676 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1677 { 1678 struct gsi_channel *channel = &gsi->channel[channel_id]; 1679 u32 evt_ring_id = channel->evt_ring_id; 1680 1681 if (!channel->gsi) 1682 return; /* Ignore uninitialized channels */ 1683 1684 netif_napi_del(&channel->napi); 1685 1686 gsi_channel_deprogram(channel); 1687 gsi_channel_de_alloc_command(gsi, channel_id); 1688 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1689 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1690 } 1691 1692 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1693 enum gsi_generic_cmd_opcode opcode) 1694 { 1695 struct completion *completion = &gsi->completion; 1696 bool timeout; 1697 u32 val; 1698 1699 /* The error global interrupt type is always enabled (until we 1700 * teardown), so we won't change that. A generic EE command 1701 * completes with a GSI global interrupt of type GP_INT1. We 1702 * only perform one generic command at a time (to allocate or 1703 * halt a modem channel) and only from this function. So we 1704 * enable the GP_INT1 IRQ type here while we're expecting it. 1705 */ 1706 val = BIT(ERROR_INT) | BIT(GP_INT1); 1707 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1708 1709 /* First zero the result code field */ 1710 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1711 val &= ~GENERIC_EE_RESULT_FMASK; 1712 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1713 1714 /* Now issue the command */ 1715 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); 1716 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); 1717 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); 1718 1719 timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion); 1720 1721 /* Disable the GP_INT1 IRQ type again */ 1722 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1723 1724 if (!timeout) 1725 return gsi->result; 1726 1727 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1728 opcode, channel_id); 1729 1730 return -ETIMEDOUT; 1731 } 1732 1733 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1734 { 1735 return gsi_generic_command(gsi, channel_id, 1736 GSI_GENERIC_ALLOCATE_CHANNEL); 1737 } 1738 1739 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1740 { 1741 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; 1742 int ret; 1743 1744 do 1745 ret = gsi_generic_command(gsi, channel_id, 1746 GSI_GENERIC_HALT_CHANNEL); 1747 while (ret == -EAGAIN && retries--); 1748 1749 if (ret) 1750 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1751 ret, channel_id); 1752 } 1753 1754 /* Setup function for channels */ 1755 static int gsi_channel_setup(struct gsi *gsi) 1756 { 1757 u32 channel_id = 0; 1758 u32 mask; 1759 int ret; 1760 1761 gsi_evt_ring_setup(gsi); 1762 gsi_irq_enable(gsi); 1763 1764 mutex_lock(&gsi->mutex); 1765 1766 do { 1767 ret = gsi_channel_setup_one(gsi, channel_id); 1768 if (ret) 1769 goto err_unwind; 1770 } while (++channel_id < gsi->channel_count); 1771 1772 /* Make sure no channels were defined that hardware does not support */ 1773 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1774 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1775 1776 if (!channel->gsi) 1777 continue; /* Ignore uninitialized channels */ 1778 1779 ret = -EINVAL; 1780 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1781 channel_id - 1); 1782 channel_id = gsi->channel_count; 1783 goto err_unwind; 1784 } 1785 1786 /* Allocate modem channels if necessary */ 1787 mask = gsi->modem_channel_bitmap; 1788 while (mask) { 1789 u32 modem_channel_id = __ffs(mask); 1790 1791 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1792 if (ret) 1793 goto err_unwind_modem; 1794 1795 /* Clear bit from mask only after success (for unwind) */ 1796 mask ^= BIT(modem_channel_id); 1797 } 1798 1799 mutex_unlock(&gsi->mutex); 1800 1801 return 0; 1802 1803 err_unwind_modem: 1804 /* Compute which modem channels need to be deallocated */ 1805 mask ^= gsi->modem_channel_bitmap; 1806 while (mask) { 1807 channel_id = __fls(mask); 1808 1809 mask ^= BIT(channel_id); 1810 1811 gsi_modem_channel_halt(gsi, channel_id); 1812 } 1813 1814 err_unwind: 1815 while (channel_id--) 1816 gsi_channel_teardown_one(gsi, channel_id); 1817 1818 mutex_unlock(&gsi->mutex); 1819 1820 gsi_irq_disable(gsi); 1821 gsi_evt_ring_teardown(gsi); 1822 1823 return ret; 1824 } 1825 1826 /* Inverse of gsi_channel_setup() */ 1827 static void gsi_channel_teardown(struct gsi *gsi) 1828 { 1829 u32 mask = gsi->modem_channel_bitmap; 1830 u32 channel_id; 1831 1832 mutex_lock(&gsi->mutex); 1833 1834 while (mask) { 1835 channel_id = __fls(mask); 1836 1837 mask ^= BIT(channel_id); 1838 1839 gsi_modem_channel_halt(gsi, channel_id); 1840 } 1841 1842 channel_id = gsi->channel_count - 1; 1843 do 1844 gsi_channel_teardown_one(gsi, channel_id); 1845 while (channel_id--); 1846 1847 mutex_unlock(&gsi->mutex); 1848 1849 gsi_irq_disable(gsi); 1850 gsi_evt_ring_teardown(gsi); 1851 } 1852 1853 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 1854 int gsi_setup(struct gsi *gsi) 1855 { 1856 struct device *dev = gsi->dev; 1857 u32 val; 1858 int ret; 1859 1860 /* Here is where we first touch the GSI hardware */ 1861 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); 1862 if (!(val & ENABLED_FMASK)) { 1863 dev_err(dev, "GSI has not been enabled\n"); 1864 return -EIO; 1865 } 1866 1867 gsi_irq_setup(gsi); 1868 1869 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); 1870 1871 gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); 1872 if (!gsi->channel_count) { 1873 dev_err(dev, "GSI reports zero channels supported\n"); 1874 return -EINVAL; 1875 } 1876 if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) { 1877 dev_warn(dev, 1878 "limiting to %u channels; hardware supports %u\n", 1879 GSI_CHANNEL_COUNT_MAX, gsi->channel_count); 1880 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 1881 } 1882 1883 gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); 1884 if (!gsi->evt_ring_count) { 1885 dev_err(dev, "GSI reports zero event rings supported\n"); 1886 return -EINVAL; 1887 } 1888 if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) { 1889 dev_warn(dev, 1890 "limiting to %u event rings; hardware supports %u\n", 1891 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count); 1892 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 1893 } 1894 1895 /* Initialize the error log */ 1896 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1897 1898 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1899 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); 1900 1901 ret = gsi_channel_setup(gsi); 1902 if (ret) 1903 gsi_irq_teardown(gsi); 1904 1905 return ret; 1906 } 1907 1908 /* Inverse of gsi_setup() */ 1909 void gsi_teardown(struct gsi *gsi) 1910 { 1911 gsi_channel_teardown(gsi); 1912 gsi_irq_teardown(gsi); 1913 } 1914 1915 /* Initialize a channel's event ring */ 1916 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 1917 { 1918 struct gsi *gsi = channel->gsi; 1919 struct gsi_evt_ring *evt_ring; 1920 int ret; 1921 1922 ret = gsi_evt_ring_id_alloc(gsi); 1923 if (ret < 0) 1924 return ret; 1925 channel->evt_ring_id = ret; 1926 1927 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 1928 evt_ring->channel = channel; 1929 1930 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 1931 if (!ret) 1932 return 0; /* Success! */ 1933 1934 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 1935 ret, gsi_channel_id(channel)); 1936 1937 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 1938 1939 return ret; 1940 } 1941 1942 /* Inverse of gsi_channel_evt_ring_init() */ 1943 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 1944 { 1945 u32 evt_ring_id = channel->evt_ring_id; 1946 struct gsi *gsi = channel->gsi; 1947 struct gsi_evt_ring *evt_ring; 1948 1949 evt_ring = &gsi->evt_ring[evt_ring_id]; 1950 gsi_ring_free(gsi, &evt_ring->ring); 1951 gsi_evt_ring_id_free(gsi, evt_ring_id); 1952 } 1953 1954 /* Init function for event rings */ 1955 static void gsi_evt_ring_init(struct gsi *gsi) 1956 { 1957 u32 evt_ring_id = 0; 1958 1959 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 1960 gsi->ieob_enabled_bitmap = 0; 1961 do 1962 init_completion(&gsi->evt_ring[evt_ring_id].completion); 1963 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX); 1964 } 1965 1966 /* Inverse of gsi_evt_ring_init() */ 1967 static void gsi_evt_ring_exit(struct gsi *gsi) 1968 { 1969 /* Nothing to do */ 1970 } 1971 1972 static bool gsi_channel_data_valid(struct gsi *gsi, 1973 const struct ipa_gsi_endpoint_data *data) 1974 { 1975 #ifdef IPA_VALIDATION 1976 u32 channel_id = data->channel_id; 1977 struct device *dev = gsi->dev; 1978 1979 /* Make sure channel ids are in the range driver supports */ 1980 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 1981 dev_err(dev, "bad channel id %u; must be less than %u\n", 1982 channel_id, GSI_CHANNEL_COUNT_MAX); 1983 return false; 1984 } 1985 1986 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 1987 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); 1988 return false; 1989 } 1990 1991 if (!data->channel.tlv_count || 1992 data->channel.tlv_count > GSI_TLV_MAX) { 1993 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", 1994 channel_id, data->channel.tlv_count, GSI_TLV_MAX); 1995 return false; 1996 } 1997 1998 /* We have to allow at least one maximally-sized transaction to 1999 * be outstanding (which would use tlv_count TREs). Given how 2000 * gsi_channel_tre_max() is computed, tre_count has to be almost 2001 * twice the TLV FIFO size to satisfy this requirement. 2002 */ 2003 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { 2004 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 2005 channel_id, data->channel.tlv_count, 2006 data->channel.tre_count); 2007 return false; 2008 } 2009 2010 if (!is_power_of_2(data->channel.tre_count)) { 2011 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", 2012 channel_id, data->channel.tre_count); 2013 return false; 2014 } 2015 2016 if (!is_power_of_2(data->channel.event_count)) { 2017 dev_err(dev, "channel %u bad event_count %u; not power of 2\n", 2018 channel_id, data->channel.event_count); 2019 return false; 2020 } 2021 #endif /* IPA_VALIDATION */ 2022 2023 return true; 2024 } 2025 2026 /* Init function for a single channel */ 2027 static int gsi_channel_init_one(struct gsi *gsi, 2028 const struct ipa_gsi_endpoint_data *data, 2029 bool command) 2030 { 2031 struct gsi_channel *channel; 2032 u32 tre_count; 2033 int ret; 2034 2035 if (!gsi_channel_data_valid(gsi, data)) 2036 return -EINVAL; 2037 2038 /* Worst case we need an event for every outstanding TRE */ 2039 if (data->channel.tre_count > data->channel.event_count) { 2040 tre_count = data->channel.event_count; 2041 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 2042 data->channel_id, tre_count); 2043 } else { 2044 tre_count = data->channel.tre_count; 2045 } 2046 2047 channel = &gsi->channel[data->channel_id]; 2048 memset(channel, 0, sizeof(*channel)); 2049 2050 channel->gsi = gsi; 2051 channel->toward_ipa = data->toward_ipa; 2052 channel->command = command; 2053 channel->tlv_count = data->channel.tlv_count; 2054 channel->tre_count = tre_count; 2055 channel->event_count = data->channel.event_count; 2056 init_completion(&channel->completion); 2057 2058 ret = gsi_channel_evt_ring_init(channel); 2059 if (ret) 2060 goto err_clear_gsi; 2061 2062 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 2063 if (ret) { 2064 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 2065 ret, data->channel_id); 2066 goto err_channel_evt_ring_exit; 2067 } 2068 2069 ret = gsi_channel_trans_init(gsi, data->channel_id); 2070 if (ret) 2071 goto err_ring_free; 2072 2073 if (command) { 2074 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 2075 2076 ret = ipa_cmd_pool_init(channel, tre_max); 2077 } 2078 if (!ret) 2079 return 0; /* Success! */ 2080 2081 gsi_channel_trans_exit(channel); 2082 err_ring_free: 2083 gsi_ring_free(gsi, &channel->tre_ring); 2084 err_channel_evt_ring_exit: 2085 gsi_channel_evt_ring_exit(channel); 2086 err_clear_gsi: 2087 channel->gsi = NULL; /* Mark it not (fully) initialized */ 2088 2089 return ret; 2090 } 2091 2092 /* Inverse of gsi_channel_init_one() */ 2093 static void gsi_channel_exit_one(struct gsi_channel *channel) 2094 { 2095 if (!channel->gsi) 2096 return; /* Ignore uninitialized channels */ 2097 2098 if (channel->command) 2099 ipa_cmd_pool_exit(channel); 2100 gsi_channel_trans_exit(channel); 2101 gsi_ring_free(channel->gsi, &channel->tre_ring); 2102 gsi_channel_evt_ring_exit(channel); 2103 } 2104 2105 /* Init function for channels */ 2106 static int gsi_channel_init(struct gsi *gsi, u32 count, 2107 const struct ipa_gsi_endpoint_data *data) 2108 { 2109 bool modem_alloc; 2110 int ret = 0; 2111 u32 i; 2112 2113 /* IPA v4.2 requires the AP to allocate channels for the modem */ 2114 modem_alloc = gsi->version == IPA_VERSION_4_2; 2115 2116 gsi_evt_ring_init(gsi); 2117 2118 /* The endpoint data array is indexed by endpoint name */ 2119 for (i = 0; i < count; i++) { 2120 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 2121 2122 if (ipa_gsi_endpoint_data_empty(&data[i])) 2123 continue; /* Skip over empty slots */ 2124 2125 /* Mark modem channels to be allocated (hardware workaround) */ 2126 if (data[i].ee_id == GSI_EE_MODEM) { 2127 if (modem_alloc) 2128 gsi->modem_channel_bitmap |= 2129 BIT(data[i].channel_id); 2130 continue; 2131 } 2132 2133 ret = gsi_channel_init_one(gsi, &data[i], command); 2134 if (ret) 2135 goto err_unwind; 2136 } 2137 2138 return ret; 2139 2140 err_unwind: 2141 while (i--) { 2142 if (ipa_gsi_endpoint_data_empty(&data[i])) 2143 continue; 2144 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 2145 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 2146 continue; 2147 } 2148 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 2149 } 2150 gsi_evt_ring_exit(gsi); 2151 2152 return ret; 2153 } 2154 2155 /* Inverse of gsi_channel_init() */ 2156 static void gsi_channel_exit(struct gsi *gsi) 2157 { 2158 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 2159 2160 do 2161 gsi_channel_exit_one(&gsi->channel[channel_id]); 2162 while (channel_id--); 2163 gsi->modem_channel_bitmap = 0; 2164 2165 gsi_evt_ring_exit(gsi); 2166 } 2167 2168 /* Init function for GSI. GSI hardware does not need to be "ready" */ 2169 int gsi_init(struct gsi *gsi, struct platform_device *pdev, 2170 enum ipa_version version, u32 count, 2171 const struct ipa_gsi_endpoint_data *data) 2172 { 2173 struct device *dev = &pdev->dev; 2174 struct resource *res; 2175 resource_size_t size; 2176 u32 adjust; 2177 int ret; 2178 2179 gsi_validate_build(); 2180 2181 gsi->dev = dev; 2182 gsi->version = version; 2183 2184 /* The GSI layer performs NAPI on all endpoints. NAPI requires a 2185 * network device structure, but the GSI layer does not have one, 2186 * so we must create a dummy network device for this purpose. 2187 */ 2188 init_dummy_netdev(&gsi->dummy_dev); 2189 2190 /* Get GSI memory range and map it */ 2191 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); 2192 if (!res) { 2193 dev_err(dev, "DT error getting \"gsi\" memory property\n"); 2194 return -ENODEV; 2195 } 2196 2197 size = resource_size(res); 2198 if (res->start > U32_MAX || size > U32_MAX - res->start) { 2199 dev_err(dev, "DT memory resource \"gsi\" out of range\n"); 2200 return -EINVAL; 2201 } 2202 2203 /* Make sure we can make our pointer adjustment if necessary */ 2204 adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; 2205 if (res->start < adjust) { 2206 dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n", 2207 adjust); 2208 return -EINVAL; 2209 } 2210 2211 gsi->virt = ioremap(res->start, size); 2212 if (!gsi->virt) { 2213 dev_err(dev, "unable to remap \"gsi\" memory\n"); 2214 return -ENOMEM; 2215 } 2216 /* Adjust register range pointer downward for newer IPA versions */ 2217 gsi->virt -= adjust; 2218 2219 init_completion(&gsi->completion); 2220 2221 ret = gsi_irq_init(gsi, pdev); 2222 if (ret) 2223 goto err_iounmap; 2224 2225 ret = gsi_channel_init(gsi, count, data); 2226 if (ret) 2227 goto err_irq_exit; 2228 2229 mutex_init(&gsi->mutex); 2230 2231 return 0; 2232 2233 err_irq_exit: 2234 gsi_irq_exit(gsi); 2235 err_iounmap: 2236 iounmap(gsi->virt); 2237 2238 return ret; 2239 } 2240 2241 /* Inverse of gsi_init() */ 2242 void gsi_exit(struct gsi *gsi) 2243 { 2244 mutex_destroy(&gsi->mutex); 2245 gsi_channel_exit(gsi); 2246 gsi_irq_exit(gsi); 2247 iounmap(gsi->virt); 2248 } 2249 2250 /* The maximum number of outstanding TREs on a channel. This limits 2251 * a channel's maximum number of transactions outstanding (worst case 2252 * is one TRE per transaction). 2253 * 2254 * The absolute limit is the number of TREs in the channel's TRE ring, 2255 * and in theory we should be able use all of them. But in practice, 2256 * doing that led to the hardware reporting exhaustion of event ring 2257 * slots for writing completion information. So the hardware limit 2258 * would be (tre_count - 1). 2259 * 2260 * We reduce it a bit further though. Transaction resource pools are 2261 * sized to be a little larger than this maximum, to allow resource 2262 * allocations to always be contiguous. The number of entries in a 2263 * TRE ring buffer is a power of 2, and the extra resources in a pool 2264 * tends to nearly double the memory allocated for it. Reducing the 2265 * maximum number of outstanding TREs allows the number of entries in 2266 * a pool to avoid crossing that power-of-2 boundary, and this can 2267 * substantially reduce pool memory requirements. The number we 2268 * reduce it by matches the number added in gsi_trans_pool_init(). 2269 */ 2270 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2271 { 2272 struct gsi_channel *channel = &gsi->channel[channel_id]; 2273 2274 /* Hardware limit is channel->tre_count - 1 */ 2275 return channel->tre_count - (channel->tlv_count - 1); 2276 } 2277 2278 /* Returns the maximum number of TREs in a single transaction for a channel */ 2279 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) 2280 { 2281 struct gsi_channel *channel = &gsi->channel[channel_id]; 2282 2283 return channel->tlv_count; 2284 } 2285