xref: /openbmc/linux/drivers/net/ipa/gsi.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 
25 /**
26  * DOC: The IPA Generic Software Interface
27  *
28  * The generic software interface (GSI) is an integral component of the IPA,
29  * providing a well-defined communication layer between the AP subsystem
30  * and the IPA core.  The modem uses the GSI layer as well.
31  *
32  *	--------	     ---------
33  *	|      |	     |	     |
34  *	|  AP  +<---.	.----+ Modem |
35  *	|      +--. |	| .->+	     |
36  *	|      |  | |	| |  |	     |
37  *	--------  | |	| |  ---------
38  *		  v |	v |
39  *		--+-+---+-+--
40  *		|    GSI    |
41  *		|-----------|
42  *		|	    |
43  *		|    IPA    |
44  *		|	    |
45  *		-------------
46  *
47  * In the above diagram, the AP and Modem represent "execution environments"
48  * (EEs), which are independent operating environments that use the IPA for
49  * data transfer.
50  *
51  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
52  * of data to or from the IPA.  A channel is implemented as a ring buffer,
53  * with a DRAM-resident array of "transfer elements" (TREs) available to
54  * describe transfers to or from other EEs through the IPA.  A transfer
55  * element can also contain an immediate command, requesting the IPA perform
56  * actions other than data transfer.
57  *
58  * Each TRE refers to a block of data--also located DRAM.  After writing one
59  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
60  * doorbell register to inform the receiving side how many elements have
61  * been written.
62  *
63  * Each channel has a GSI "event ring" associated with it.  An event ring
64  * is implemented very much like a channel ring, but is always directed from
65  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
66  * events by adding an entry to the event ring associated with the channel.
67  * The GSI then writes its doorbell for the event ring, causing the target
68  * EE to be interrupted.  Each entry in an event ring contains a pointer
69  * to the channel TRE whose completion the event represents.
70  *
71  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
72  * the completion of the transfer operation generates an entry (and possibly
73  * an interrupt) in the channel's event ring.  Other flags allow transfer
74  * elements to be chained together, forming a single logical transaction.
75  * TRE flags are used to control whether and when interrupts are generated
76  * to signal completion of channel transfers.
77  *
78  * Elements in channel and event rings are completed (or consumed) strictly
79  * in order.  Completion of one entry implies the completion of all preceding
80  * entries.  A single completion interrupt can therefore communicate the
81  * completion of many transfers.
82  *
83  * Note that all GSI registers are little-endian, which is the assumed
84  * endianness of I/O space accesses.  The accessor functions perform byte
85  * swapping if needed (i.e., for a big endian CPU).
86  */
87 
88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
89 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
90 
91 #define GSI_CMD_TIMEOUT			5	/* seconds */
92 
93 #define GSI_CHANNEL_STOP_RX_RETRIES	10
94 
95 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
96 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
97 
98 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
99 
100 /* An entry in an event ring */
101 struct gsi_event {
102 	__le64 xfer_ptr;
103 	__le16 len;
104 	u8 reserved1;
105 	u8 code;
106 	__le16 reserved2;
107 	u8 type;
108 	u8 chid;
109 };
110 
111 /* Hardware values from the error log register error code field */
112 enum gsi_err_code {
113 	GSI_INVALID_TRE_ERR			= 0x1,
114 	GSI_OUT_OF_BUFFERS_ERR			= 0x2,
115 	GSI_OUT_OF_RESOURCES_ERR		= 0x3,
116 	GSI_UNSUPPORTED_INTER_EE_OP_ERR		= 0x4,
117 	GSI_EVT_RING_EMPTY_ERR			= 0x5,
118 	GSI_NON_ALLOCATED_EVT_ACCESS_ERR	= 0x6,
119 	GSI_HWO_1_ERR				= 0x8,
120 };
121 
122 /* Hardware values from the error log register error type field */
123 enum gsi_err_type {
124 	GSI_ERR_TYPE_GLOB	= 0x1,
125 	GSI_ERR_TYPE_CHAN	= 0x2,
126 	GSI_ERR_TYPE_EVT	= 0x3,
127 };
128 
129 /* Hardware values used when programming an event ring */
130 enum gsi_evt_chtype {
131 	GSI_EVT_CHTYPE_MHI_EV	= 0x0,
132 	GSI_EVT_CHTYPE_XHCI_EV	= 0x1,
133 	GSI_EVT_CHTYPE_GPI_EV	= 0x2,
134 	GSI_EVT_CHTYPE_XDCI_EV	= 0x3,
135 };
136 
137 /* Hardware values used when programming a channel */
138 enum gsi_channel_protocol {
139 	GSI_CHANNEL_PROTOCOL_MHI	= 0x0,
140 	GSI_CHANNEL_PROTOCOL_XHCI	= 0x1,
141 	GSI_CHANNEL_PROTOCOL_GPI	= 0x2,
142 	GSI_CHANNEL_PROTOCOL_XDCI	= 0x3,
143 };
144 
145 /* Hardware values representing an event ring immediate command opcode */
146 enum gsi_evt_cmd_opcode {
147 	GSI_EVT_ALLOCATE	= 0x0,
148 	GSI_EVT_RESET		= 0x9,
149 	GSI_EVT_DE_ALLOC	= 0xa,
150 };
151 
152 /* Hardware values representing a generic immediate command opcode */
153 enum gsi_generic_cmd_opcode {
154 	GSI_GENERIC_HALT_CHANNEL	= 0x1,
155 	GSI_GENERIC_ALLOCATE_CHANNEL	= 0x2,
156 };
157 
158 /* Hardware values representing a channel immediate command opcode */
159 enum gsi_ch_cmd_opcode {
160 	GSI_CH_ALLOCATE	= 0x0,
161 	GSI_CH_START	= 0x1,
162 	GSI_CH_STOP	= 0x2,
163 	GSI_CH_RESET	= 0x9,
164 	GSI_CH_DE_ALLOC	= 0xa,
165 };
166 
167 /** gsi_channel_scratch_gpi - GPI protocol scratch register
168  * @max_outstanding_tre:
169  *	Defines the maximum number of TREs allowed in a single transaction
170  *	on a channel (in bytes).  This determines the amount of prefetch
171  *	performed by the hardware.  We configure this to equal the size of
172  *	the TLV FIFO for the channel.
173  * @outstanding_threshold:
174  *	Defines the threshold (in bytes) determining when the sequencer
175  *	should update the channel doorbell.  We configure this to equal
176  *	the size of two TREs.
177  */
178 struct gsi_channel_scratch_gpi {
179 	u64 reserved1;
180 	u16 reserved2;
181 	u16 max_outstanding_tre;
182 	u16 reserved3;
183 	u16 outstanding_threshold;
184 };
185 
186 /** gsi_channel_scratch - channel scratch configuration area
187  *
188  * The exact interpretation of this register is protocol-specific.
189  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
190  */
191 union gsi_channel_scratch {
192 	struct gsi_channel_scratch_gpi gpi;
193 	struct {
194 		u32 word1;
195 		u32 word2;
196 		u32 word3;
197 		u32 word4;
198 	} data;
199 };
200 
201 /* Check things that can be validated at build time. */
202 static void gsi_validate_build(void)
203 {
204 	/* This is used as a divisor */
205 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
206 
207 	/* Code assumes the size of channel and event ring element are
208 	 * the same (and fixed).  Make sure the size of an event ring
209 	 * element is what's expected.
210 	 */
211 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
212 
213 	/* Hardware requires a 2^n ring size.  We ensure the number of
214 	 * elements in an event ring is a power of 2 elsewhere; this
215 	 * ensure the elements themselves meet the requirement.
216 	 */
217 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
218 
219 	/* The channel element size must fit in this field */
220 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
221 
222 	/* The event ring element size must fit in this field */
223 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
224 }
225 
226 /* Return the channel id associated with a given channel */
227 static u32 gsi_channel_id(struct gsi_channel *channel)
228 {
229 	return channel - &channel->gsi->channel[0];
230 }
231 
232 static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
233 {
234 	u32 val;
235 
236 	gsi->event_enable_bitmap |= BIT(evt_ring_id);
237 	val = gsi->event_enable_bitmap;
238 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
239 }
240 
241 static void gsi_isr_ieob_clear(struct gsi *gsi, u32 mask)
242 {
243 	iowrite32(mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
244 }
245 
246 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
247 {
248 	u32 val;
249 
250 	gsi->event_enable_bitmap &= ~BIT(evt_ring_id);
251 	val = gsi->event_enable_bitmap;
252 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
253 }
254 
255 /* Enable all GSI_interrupt types */
256 static void gsi_irq_enable(struct gsi *gsi)
257 {
258 	u32 val;
259 
260 	/* We don't use inter-EE channel or event interrupts */
261 	val = GSI_CNTXT_TYPE_IRQ_MSK_ALL;
262 	val &= ~MSK_INTER_EE_CH_CTRL_FMASK;
263 	val &= ~MSK_INTER_EE_EV_CTRL_FMASK;
264 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
265 
266 	val = GENMASK(gsi->channel_count - 1, 0);
267 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
268 
269 	val = GENMASK(gsi->evt_ring_count - 1, 0);
270 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
271 
272 	/* Each IEOB interrupt is enabled (later) as needed by channels */
273 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
274 
275 	val = GSI_CNTXT_GLOB_IRQ_ALL;
276 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
277 
278 	/* Never enable GSI_BREAK_POINT */
279 	val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK;
280 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
281 }
282 
283 /* Disable all GSI_interrupt types */
284 static void gsi_irq_disable(struct gsi *gsi)
285 {
286 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
287 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
288 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
289 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
290 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
291 	iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
292 }
293 
294 /* Return the virtual address associated with a ring index */
295 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
296 {
297 	/* Note: index *must* be used modulo the ring count here */
298 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
299 }
300 
301 /* Return the 32-bit DMA address associated with a ring index */
302 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
303 {
304 	return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
305 }
306 
307 /* Return the ring index of a 32-bit ring offset */
308 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
309 {
310 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
311 }
312 
313 /* Issue a GSI command by writing a value to a register, then wait for
314  * completion to be signaled.  Returns true if the command completes
315  * or false if it times out.
316  */
317 static bool
318 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
319 {
320 	reinit_completion(completion);
321 
322 	iowrite32(val, gsi->virt + reg);
323 
324 	return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
325 }
326 
327 /* Return the hardware's notion of the current state of an event ring */
328 static enum gsi_evt_ring_state
329 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
330 {
331 	u32 val;
332 
333 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
334 
335 	return u32_get_bits(val, EV_CHSTATE_FMASK);
336 }
337 
338 /* Issue an event ring command and wait for it to complete */
339 static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
340 			    enum gsi_evt_cmd_opcode opcode)
341 {
342 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
343 	struct completion *completion = &evt_ring->completion;
344 	u32 val;
345 
346 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
347 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
348 
349 	if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion))
350 		return 0;	/* Success! */
351 
352 	dev_err(gsi->dev, "GSI command %u to event ring %u timed out "
353 		"(state is %u)\n", opcode, evt_ring_id, evt_ring->state);
354 
355 	return -ETIMEDOUT;
356 }
357 
358 /* Allocate an event ring in NOT_ALLOCATED state */
359 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
360 {
361 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
362 	int ret;
363 
364 	/* Get initial event ring state */
365 	evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
366 
367 	if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
368 		return -EINVAL;
369 
370 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
371 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
372 		dev_err(gsi->dev, "bad event ring state (%u) after alloc\n",
373 			evt_ring->state);
374 		ret = -EIO;
375 	}
376 
377 	return ret;
378 }
379 
380 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
381 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
382 {
383 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
384 	enum gsi_evt_ring_state state = evt_ring->state;
385 	int ret;
386 
387 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
388 	    state != GSI_EVT_RING_STATE_ERROR) {
389 		dev_err(gsi->dev, "bad event ring state (%u) before reset\n",
390 			evt_ring->state);
391 		return;
392 	}
393 
394 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
395 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED)
396 		dev_err(gsi->dev, "bad event ring state (%u) after reset\n",
397 			evt_ring->state);
398 }
399 
400 /* Issue a hardware de-allocation request for an allocated event ring */
401 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
402 {
403 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
404 	int ret;
405 
406 	if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
407 		dev_err(gsi->dev, "bad event ring state (%u) before dealloc\n",
408 			evt_ring->state);
409 		return;
410 	}
411 
412 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
413 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
414 		dev_err(gsi->dev, "bad event ring state (%u) after dealloc\n",
415 			evt_ring->state);
416 }
417 
418 /* Return the hardware's notion of the current state of a channel */
419 static enum gsi_channel_state
420 gsi_channel_state(struct gsi *gsi, u32 channel_id)
421 {
422 	u32 val;
423 
424 	val = ioread32(gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
425 
426 	return u32_get_bits(val, CHSTATE_FMASK);
427 }
428 
429 /* Issue a channel command and wait for it to complete */
430 static int
431 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
432 {
433 	struct completion *completion = &channel->completion;
434 	u32 channel_id = gsi_channel_id(channel);
435 	u32 val;
436 
437 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
438 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
439 
440 	if (gsi_command(channel->gsi, GSI_CH_CMD_OFFSET, val, completion))
441 		return 0;	/* Success! */
442 
443 	dev_err(channel->gsi->dev, "GSI command %u to channel %u timed out "
444 		"(state is %u)\n", opcode, channel_id, channel->state);
445 
446 	return -ETIMEDOUT;
447 }
448 
449 /* Allocate GSI channel in NOT_ALLOCATED state */
450 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
451 {
452 	struct gsi_channel *channel = &gsi->channel[channel_id];
453 	int ret;
454 
455 	/* Get initial channel state */
456 	channel->state = gsi_channel_state(gsi, channel_id);
457 
458 	if (channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
459 		return -EINVAL;
460 
461 	ret = gsi_channel_command(channel, GSI_CH_ALLOCATE);
462 	if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED) {
463 		dev_err(gsi->dev, "bad channel state (%u) after alloc\n",
464 			channel->state);
465 		ret = -EIO;
466 	}
467 
468 	return ret;
469 }
470 
471 /* Start an ALLOCATED channel */
472 static int gsi_channel_start_command(struct gsi_channel *channel)
473 {
474 	enum gsi_channel_state state = channel->state;
475 	int ret;
476 
477 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
478 	    state != GSI_CHANNEL_STATE_STOPPED)
479 		return -EINVAL;
480 
481 	ret = gsi_channel_command(channel, GSI_CH_START);
482 	if (!ret && channel->state != GSI_CHANNEL_STATE_STARTED) {
483 		dev_err(channel->gsi->dev,
484 			"bad channel state (%u) after start\n",
485 			channel->state);
486 		ret = -EIO;
487 	}
488 
489 	return ret;
490 }
491 
492 /* Stop a GSI channel in STARTED state */
493 static int gsi_channel_stop_command(struct gsi_channel *channel)
494 {
495 	enum gsi_channel_state state = channel->state;
496 	int ret;
497 
498 	if (state != GSI_CHANNEL_STATE_STARTED &&
499 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC)
500 		return -EINVAL;
501 
502 	ret = gsi_channel_command(channel, GSI_CH_STOP);
503 	if (ret || channel->state == GSI_CHANNEL_STATE_STOPPED)
504 		return ret;
505 
506 	/* We may have to try again if stop is in progress */
507 	if (channel->state == GSI_CHANNEL_STATE_STOP_IN_PROC)
508 		return -EAGAIN;
509 
510 	dev_err(channel->gsi->dev, "bad channel state (%u) after stop\n",
511 		channel->state);
512 
513 	return -EIO;
514 }
515 
516 /* Reset a GSI channel in ALLOCATED or ERROR state. */
517 static void gsi_channel_reset_command(struct gsi_channel *channel)
518 {
519 	int ret;
520 
521 	msleep(1);	/* A short delay is required before a RESET command */
522 
523 	if (channel->state != GSI_CHANNEL_STATE_STOPPED &&
524 	    channel->state != GSI_CHANNEL_STATE_ERROR) {
525 		dev_err(channel->gsi->dev,
526 			"bad channel state (%u) before reset\n",
527 			channel->state);
528 		return;
529 	}
530 
531 	ret = gsi_channel_command(channel, GSI_CH_RESET);
532 	if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED)
533 		dev_err(channel->gsi->dev,
534 			"bad channel state (%u) after reset\n",
535 			channel->state);
536 }
537 
538 /* Deallocate an ALLOCATED GSI channel */
539 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
540 {
541 	struct gsi_channel *channel = &gsi->channel[channel_id];
542 	int ret;
543 
544 	if (channel->state != GSI_CHANNEL_STATE_ALLOCATED) {
545 		dev_err(gsi->dev, "bad channel state (%u) before dealloc\n",
546 			channel->state);
547 		return;
548 	}
549 
550 	ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC);
551 	if (!ret && channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
552 		dev_err(gsi->dev, "bad channel state (%u) after dealloc\n",
553 			channel->state);
554 }
555 
556 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
557  * The index argument (modulo the ring count) is the first unfilled entry, so
558  * we supply one less than that with the doorbell.  Update the event ring
559  * index field with the value provided.
560  */
561 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
562 {
563 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
564 	u32 val;
565 
566 	ring->index = index;	/* Next unused entry */
567 
568 	/* Note: index *must* be used modulo the ring count here */
569 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
570 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
571 }
572 
573 /* Program an event ring for use */
574 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
575 {
576 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
577 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
578 	u32 val;
579 
580 	val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
581 	val |= EV_INTYPE_FMASK;
582 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
583 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
584 
585 	val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
586 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
587 
588 	/* The context 2 and 3 registers store the low-order and
589 	 * high-order 32 bits of the address of the event ring,
590 	 * respectively.
591 	 */
592 	val = evt_ring->ring.addr & GENMASK(31, 0);
593 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
594 
595 	val = evt_ring->ring.addr >> 32;
596 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
597 
598 	/* Enable interrupt moderation by setting the moderation delay */
599 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
600 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
601 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
602 
603 	/* No MSI write data, and MSI address high and low address is 0 */
604 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
605 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
606 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
607 
608 	/* We don't need to get event read pointer updates */
609 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
610 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
611 
612 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
613 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
614 }
615 
616 /* Return the last (most recent) transaction completed on a channel. */
617 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
618 {
619 	struct gsi_trans_info *trans_info = &channel->trans_info;
620 	struct gsi_trans *trans;
621 
622 	spin_lock_bh(&trans_info->spinlock);
623 
624 	if (!list_empty(&trans_info->complete))
625 		trans = list_last_entry(&trans_info->complete,
626 					struct gsi_trans, links);
627 	else if (!list_empty(&trans_info->polled))
628 		trans = list_last_entry(&trans_info->polled,
629 					struct gsi_trans, links);
630 	else
631 		trans = NULL;
632 
633 	/* Caller will wait for this, so take a reference */
634 	if (trans)
635 		refcount_inc(&trans->refcount);
636 
637 	spin_unlock_bh(&trans_info->spinlock);
638 
639 	return trans;
640 }
641 
642 /* Wait for transaction activity on a channel to complete */
643 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
644 {
645 	struct gsi_trans *trans;
646 
647 	/* Get the last transaction, and wait for it to complete */
648 	trans = gsi_channel_trans_last(channel);
649 	if (trans) {
650 		wait_for_completion(&trans->completion);
651 		gsi_trans_free(trans);
652 	}
653 }
654 
655 /* Stop channel activity.  Transactions may not be allocated until thawed. */
656 static void gsi_channel_freeze(struct gsi_channel *channel)
657 {
658 	gsi_channel_trans_quiesce(channel);
659 
660 	napi_disable(&channel->napi);
661 
662 	gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
663 }
664 
665 /* Allow transactions to be used on the channel again. */
666 static void gsi_channel_thaw(struct gsi_channel *channel)
667 {
668 	gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
669 
670 	napi_enable(&channel->napi);
671 }
672 
673 /* Program a channel for use */
674 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
675 {
676 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
677 	u32 channel_id = gsi_channel_id(channel);
678 	union gsi_channel_scratch scr = { };
679 	struct gsi_channel_scratch_gpi *gpi;
680 	struct gsi *gsi = channel->gsi;
681 	u32 wrr_weight = 0;
682 	u32 val;
683 
684 	/* Arbitrarily pick TRE 0 as the first channel element to use */
685 	channel->tre_ring.index = 0;
686 
687 	/* We program all channels to use GPI protocol */
688 	val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
689 	if (channel->toward_ipa)
690 		val |= CHTYPE_DIR_FMASK;
691 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
692 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
693 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
694 
695 	val = u32_encode_bits(size, R_LENGTH_FMASK);
696 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
697 
698 	/* The context 2 and 3 registers store the low-order and
699 	 * high-order 32 bits of the address of the channel ring,
700 	 * respectively.
701 	 */
702 	val = channel->tre_ring.addr & GENMASK(31, 0);
703 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
704 
705 	val = channel->tre_ring.addr >> 32;
706 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
707 
708 	/* Command channel gets low weighted round-robin priority */
709 	if (channel->command)
710 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
711 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
712 
713 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
714 
715 	/* Enable the doorbell engine if requested */
716 	if (doorbell)
717 		val |= USE_DB_ENG_FMASK;
718 
719 	if (!channel->use_prefetch)
720 		val |= USE_ESCAPE_BUF_ONLY_FMASK;
721 
722 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
723 
724 	/* Now update the scratch registers for GPI protocol */
725 	gpi = &scr.gpi;
726 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
727 					GSI_RING_ELEMENT_SIZE;
728 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
729 
730 	val = scr.data.word1;
731 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
732 
733 	val = scr.data.word2;
734 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
735 
736 	val = scr.data.word3;
737 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
738 
739 	/* We must preserve the upper 16 bits of the last scratch register.
740 	 * The next sequence assumes those bits remain unchanged between the
741 	 * read and the write.
742 	 */
743 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
744 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
745 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
746 
747 	/* All done! */
748 }
749 
750 static void gsi_channel_deprogram(struct gsi_channel *channel)
751 {
752 	/* Nothing to do */
753 }
754 
755 /* Start an allocated GSI channel */
756 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
757 {
758 	struct gsi_channel *channel = &gsi->channel[channel_id];
759 	u32 evt_ring_id = channel->evt_ring_id;
760 	int ret;
761 
762 	mutex_lock(&gsi->mutex);
763 
764 	ret = gsi_channel_start_command(channel);
765 
766 	mutex_unlock(&gsi->mutex);
767 
768 	/* Clear the channel's event ring interrupt in case it's pending */
769 	gsi_isr_ieob_clear(gsi, BIT(evt_ring_id));
770 
771 	gsi_channel_thaw(channel);
772 
773 	return ret;
774 }
775 
776 /* Stop a started channel */
777 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
778 {
779 	struct gsi_channel *channel = &gsi->channel[channel_id];
780 	u32 retries;
781 	int ret;
782 
783 	gsi_channel_freeze(channel);
784 
785 	/* Channel could have entered STOPPED state since last call if the
786 	 * STOP command timed out.  We won't stop a channel if stopping it
787 	 * was successful previously (so we still want the freeze above).
788 	 */
789 	if (channel->state == GSI_CHANNEL_STATE_STOPPED)
790 		return 0;
791 
792 	/* RX channels might require a little time to enter STOPPED state */
793 	retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;
794 
795 	mutex_lock(&gsi->mutex);
796 
797 	do {
798 		ret = gsi_channel_stop_command(channel);
799 		if (ret != -EAGAIN)
800 			break;
801 		msleep(1);
802 	} while (retries--);
803 
804 	mutex_unlock(&gsi->mutex);
805 
806 	/* Thaw the channel if we need to retry (or on error) */
807 	if (ret)
808 		gsi_channel_thaw(channel);
809 
810 	return ret;
811 }
812 
813 /* Reset and reconfigure a channel (possibly leaving doorbell disabled) */
814 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool db_enable)
815 {
816 	struct gsi_channel *channel = &gsi->channel[channel_id];
817 
818 	mutex_lock(&gsi->mutex);
819 
820 	/* Due to a hardware quirk we need to reset RX channels twice. */
821 	gsi_channel_reset_command(channel);
822 	if (!channel->toward_ipa)
823 		gsi_channel_reset_command(channel);
824 
825 	gsi_channel_program(channel, db_enable);
826 	gsi_channel_trans_cancel_pending(channel);
827 
828 	mutex_unlock(&gsi->mutex);
829 }
830 
831 /* Stop a STARTED channel for suspend (using stop if requested) */
832 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
833 {
834 	struct gsi_channel *channel = &gsi->channel[channel_id];
835 
836 	if (stop)
837 		return gsi_channel_stop(gsi, channel_id);
838 
839 	gsi_channel_freeze(channel);
840 
841 	return 0;
842 }
843 
844 /* Resume a suspended channel (starting will be requested if STOPPED) */
845 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
846 {
847 	struct gsi_channel *channel = &gsi->channel[channel_id];
848 
849 	if (start)
850 		return gsi_channel_start(gsi, channel_id);
851 
852 	gsi_channel_thaw(channel);
853 
854 	return 0;
855 }
856 
857 /**
858  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
859  * @channel:	Channel for which to report
860  *
861  * Report to the network stack the number of bytes and transactions that
862  * have been queued to hardware since last call.  This and the next function
863  * supply information used by the network stack for throttling.
864  *
865  * For each channel we track the number of transactions used and bytes of
866  * data those transactions represent.  We also track what those values are
867  * each time this function is called.  Subtracting the two tells us
868  * the number of bytes and transactions that have been added between
869  * successive calls.
870  *
871  * Calling this each time we ring the channel doorbell allows us to
872  * provide accurate information to the network stack about how much
873  * work we've given the hardware at any point in time.
874  */
875 void gsi_channel_tx_queued(struct gsi_channel *channel)
876 {
877 	u32 trans_count;
878 	u32 byte_count;
879 
880 	byte_count = channel->byte_count - channel->queued_byte_count;
881 	trans_count = channel->trans_count - channel->queued_trans_count;
882 	channel->queued_byte_count = channel->byte_count;
883 	channel->queued_trans_count = channel->trans_count;
884 
885 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
886 				  trans_count, byte_count);
887 }
888 
889 /**
890  * gsi_channel_tx_update() - Report completed TX transfers
891  * @channel:	Channel that has completed transmitting packets
892  * @trans:	Last transation known to be complete
893  *
894  * Compute the number of transactions and bytes that have been transferred
895  * over a TX channel since the given transaction was committed.  Report this
896  * information to the network stack.
897  *
898  * At the time a transaction is committed, we record its channel's
899  * committed transaction and byte counts *in the transaction*.
900  * Completions are signaled by the hardware with an interrupt, and
901  * we can determine the latest completed transaction at that time.
902  *
903  * The difference between the byte/transaction count recorded in
904  * the transaction and the count last time we recorded a completion
905  * tells us exactly how much data has been transferred between
906  * completions.
907  *
908  * Calling this each time we learn of a newly-completed transaction
909  * allows us to provide accurate information to the network stack
910  * about how much work has been completed by the hardware at a given
911  * point in time.
912  */
913 static void
914 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
915 {
916 	u64 byte_count = trans->byte_count + trans->len;
917 	u64 trans_count = trans->trans_count + 1;
918 
919 	byte_count -= channel->compl_byte_count;
920 	channel->compl_byte_count += byte_count;
921 	trans_count -= channel->compl_trans_count;
922 	channel->compl_trans_count += trans_count;
923 
924 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
925 				     trans_count, byte_count);
926 }
927 
928 /* Channel control interrupt handler */
929 static void gsi_isr_chan_ctrl(struct gsi *gsi)
930 {
931 	u32 channel_mask;
932 
933 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
934 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
935 
936 	while (channel_mask) {
937 		u32 channel_id = __ffs(channel_mask);
938 		struct gsi_channel *channel;
939 
940 		channel_mask ^= BIT(channel_id);
941 
942 		channel = &gsi->channel[channel_id];
943 		channel->state = gsi_channel_state(gsi, channel_id);
944 
945 		complete(&channel->completion);
946 	}
947 }
948 
949 /* Event ring control interrupt handler */
950 static void gsi_isr_evt_ctrl(struct gsi *gsi)
951 {
952 	u32 event_mask;
953 
954 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
955 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
956 
957 	while (event_mask) {
958 		u32 evt_ring_id = __ffs(event_mask);
959 		struct gsi_evt_ring *evt_ring;
960 
961 		event_mask ^= BIT(evt_ring_id);
962 
963 		evt_ring = &gsi->evt_ring[evt_ring_id];
964 		evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
965 
966 		complete(&evt_ring->completion);
967 	}
968 }
969 
970 /* Global channel error interrupt handler */
971 static void
972 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
973 {
974 	if (code == GSI_OUT_OF_RESOURCES_ERR) {
975 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
976 		complete(&gsi->channel[channel_id].completion);
977 		return;
978 	}
979 
980 	/* Report, but otherwise ignore all other error codes */
981 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
982 		channel_id, err_ee, code);
983 }
984 
985 /* Global event error interrupt handler */
986 static void
987 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
988 {
989 	if (code == GSI_OUT_OF_RESOURCES_ERR) {
990 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
991 		u32 channel_id = gsi_channel_id(evt_ring->channel);
992 
993 		complete(&evt_ring->completion);
994 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
995 			channel_id);
996 		return;
997 	}
998 
999 	/* Report, but otherwise ignore all other error codes */
1000 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1001 		evt_ring_id, err_ee, code);
1002 }
1003 
1004 /* Global error interrupt handler */
1005 static void gsi_isr_glob_err(struct gsi *gsi)
1006 {
1007 	enum gsi_err_type type;
1008 	enum gsi_err_code code;
1009 	u32 which;
1010 	u32 val;
1011 	u32 ee;
1012 
1013 	/* Get the logged error, then reinitialize the log */
1014 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1015 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1016 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1017 
1018 	ee = u32_get_bits(val, ERR_EE_FMASK);
1019 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1020 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1021 	code = u32_get_bits(val, ERR_CODE_FMASK);
1022 
1023 	if (type == GSI_ERR_TYPE_CHAN)
1024 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1025 	else if (type == GSI_ERR_TYPE_EVT)
1026 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1027 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1028 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1029 }
1030 
1031 /* Generic EE interrupt handler */
1032 static void gsi_isr_gp_int1(struct gsi *gsi)
1033 {
1034 	u32 result;
1035 	u32 val;
1036 
1037 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1038 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1039 	if (result != GENERIC_EE_SUCCESS_FVAL)
1040 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1041 
1042 	complete(&gsi->completion);
1043 }
1044 /* Inter-EE interrupt handler */
1045 static void gsi_isr_glob_ee(struct gsi *gsi)
1046 {
1047 	u32 val;
1048 
1049 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1050 
1051 	if (val & ERROR_INT_FMASK)
1052 		gsi_isr_glob_err(gsi);
1053 
1054 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1055 
1056 	val &= ~ERROR_INT_FMASK;
1057 
1058 	if (val & EN_GP_INT1_FMASK) {
1059 		val ^= EN_GP_INT1_FMASK;
1060 		gsi_isr_gp_int1(gsi);
1061 	}
1062 
1063 	if (val)
1064 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1065 }
1066 
1067 /* I/O completion interrupt event */
1068 static void gsi_isr_ieob(struct gsi *gsi)
1069 {
1070 	u32 event_mask;
1071 
1072 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1073 	gsi_isr_ieob_clear(gsi, event_mask);
1074 
1075 	while (event_mask) {
1076 		u32 evt_ring_id = __ffs(event_mask);
1077 
1078 		event_mask ^= BIT(evt_ring_id);
1079 
1080 		gsi_irq_ieob_disable(gsi, evt_ring_id);
1081 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1082 	}
1083 }
1084 
1085 /* General event interrupts represent serious problems, so report them */
1086 static void gsi_isr_general(struct gsi *gsi)
1087 {
1088 	struct device *dev = gsi->dev;
1089 	u32 val;
1090 
1091 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1092 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1093 
1094 	if (val)
1095 		dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1096 }
1097 
1098 /**
1099  * gsi_isr() - Top level GSI interrupt service routine
1100  * @irq:	Interrupt number (ignored)
1101  * @dev_id:	GSI pointer supplied to request_irq()
1102  *
1103  * This is the main handler function registered for the GSI IRQ. Each type
1104  * of interrupt has a separate handler function that is called from here.
1105  */
1106 static irqreturn_t gsi_isr(int irq, void *dev_id)
1107 {
1108 	struct gsi *gsi = dev_id;
1109 	u32 intr_mask;
1110 	u32 cnt = 0;
1111 
1112 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1113 		/* intr_mask contains bitmask of pending GSI interrupts */
1114 		do {
1115 			u32 gsi_intr = BIT(__ffs(intr_mask));
1116 
1117 			intr_mask ^= gsi_intr;
1118 
1119 			switch (gsi_intr) {
1120 			case CH_CTRL_FMASK:
1121 				gsi_isr_chan_ctrl(gsi);
1122 				break;
1123 			case EV_CTRL_FMASK:
1124 				gsi_isr_evt_ctrl(gsi);
1125 				break;
1126 			case GLOB_EE_FMASK:
1127 				gsi_isr_glob_ee(gsi);
1128 				break;
1129 			case IEOB_FMASK:
1130 				gsi_isr_ieob(gsi);
1131 				break;
1132 			case GENERAL_FMASK:
1133 				gsi_isr_general(gsi);
1134 				break;
1135 			default:
1136 				dev_err(gsi->dev,
1137 					"%s: unrecognized type 0x%08x\n",
1138 					__func__, gsi_intr);
1139 				break;
1140 			}
1141 		} while (intr_mask);
1142 
1143 		if (++cnt > GSI_ISR_MAX_ITER) {
1144 			dev_err(gsi->dev, "interrupt flood\n");
1145 			break;
1146 		}
1147 	}
1148 
1149 	return IRQ_HANDLED;
1150 }
1151 
1152 /* Return the transaction associated with a transfer completion event */
1153 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1154 					 struct gsi_event *event)
1155 {
1156 	u32 tre_offset;
1157 	u32 tre_index;
1158 
1159 	/* Event xfer_ptr records the TRE it's associated with */
1160 	tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
1161 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1162 
1163 	return gsi_channel_trans_mapped(channel, tre_index);
1164 }
1165 
1166 /**
1167  * gsi_evt_ring_rx_update() - Record lengths of received data
1168  * @evt_ring:	Event ring associated with channel that received packets
1169  * @index:	Event index in ring reported by hardware
1170  *
1171  * Events for RX channels contain the actual number of bytes received into
1172  * the buffer.  Every event has a transaction associated with it, and here
1173  * we update transactions to record their actual received lengths.
1174  *
1175  * This function is called whenever we learn that the GSI hardware has filled
1176  * new events since the last time we checked.  The ring's index field tells
1177  * the first entry in need of processing.  The index provided is the
1178  * first *unfilled* event in the ring (following the last filled one).
1179  *
1180  * Events are sequential within the event ring, and transactions are
1181  * sequential within the transaction pool.
1182  *
1183  * Note that @index always refers to an element *within* the event ring.
1184  */
1185 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1186 {
1187 	struct gsi_channel *channel = evt_ring->channel;
1188 	struct gsi_ring *ring = &evt_ring->ring;
1189 	struct gsi_trans_info *trans_info;
1190 	struct gsi_event *event_done;
1191 	struct gsi_event *event;
1192 	struct gsi_trans *trans;
1193 	u32 byte_count = 0;
1194 	u32 old_index;
1195 	u32 event_avail;
1196 
1197 	trans_info = &channel->trans_info;
1198 
1199 	/* We'll start with the oldest un-processed event.  RX channels
1200 	 * replenish receive buffers in single-TRE transactions, so we
1201 	 * can just map that event to its transaction.  Transactions
1202 	 * associated with completion events are consecutive.
1203 	 */
1204 	old_index = ring->index;
1205 	event = gsi_ring_virt(ring, old_index);
1206 	trans = gsi_event_trans(channel, event);
1207 
1208 	/* Compute the number of events to process before we wrap,
1209 	 * and determine when we'll be done processing events.
1210 	 */
1211 	event_avail = ring->count - old_index % ring->count;
1212 	event_done = gsi_ring_virt(ring, index);
1213 	do {
1214 		trans->len = __le16_to_cpu(event->len);
1215 		byte_count += trans->len;
1216 
1217 		/* Move on to the next event and transaction */
1218 		if (--event_avail)
1219 			event++;
1220 		else
1221 			event = gsi_ring_virt(ring, 0);
1222 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1223 	} while (event != event_done);
1224 
1225 	/* We record RX bytes when they are received */
1226 	channel->byte_count += byte_count;
1227 	channel->trans_count++;
1228 }
1229 
1230 /* Initialize a ring, including allocating DMA memory for its entries */
1231 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1232 {
1233 	size_t size = count * GSI_RING_ELEMENT_SIZE;
1234 	struct device *dev = gsi->dev;
1235 	dma_addr_t addr;
1236 
1237 	/* Hardware requires a 2^n ring size, with alignment equal to size */
1238 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1239 	if (ring->virt && addr % size) {
1240 		dma_free_coherent(dev, size, ring->virt, ring->addr);
1241 		dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
1242 				size);
1243 		return -EINVAL;	/* Not a good error value, but distinct */
1244 	} else if (!ring->virt) {
1245 		return -ENOMEM;
1246 	}
1247 	ring->addr = addr;
1248 	ring->count = count;
1249 
1250 	return 0;
1251 }
1252 
1253 /* Free a previously-allocated ring */
1254 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1255 {
1256 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1257 
1258 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1259 }
1260 
1261 /* Allocate an available event ring id */
1262 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1263 {
1264 	u32 evt_ring_id;
1265 
1266 	if (gsi->event_bitmap == ~0U) {
1267 		dev_err(gsi->dev, "event rings exhausted\n");
1268 		return -ENOSPC;
1269 	}
1270 
1271 	evt_ring_id = ffz(gsi->event_bitmap);
1272 	gsi->event_bitmap |= BIT(evt_ring_id);
1273 
1274 	return (int)evt_ring_id;
1275 }
1276 
1277 /* Free a previously-allocated event ring id */
1278 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1279 {
1280 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1281 }
1282 
1283 /* Ring a channel doorbell, reporting the first un-filled entry */
1284 void gsi_channel_doorbell(struct gsi_channel *channel)
1285 {
1286 	struct gsi_ring *tre_ring = &channel->tre_ring;
1287 	u32 channel_id = gsi_channel_id(channel);
1288 	struct gsi *gsi = channel->gsi;
1289 	u32 val;
1290 
1291 	/* Note: index *must* be used modulo the ring count here */
1292 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1293 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1294 }
1295 
1296 /* Consult hardware, move any newly completed transactions to completed list */
1297 static void gsi_channel_update(struct gsi_channel *channel)
1298 {
1299 	u32 evt_ring_id = channel->evt_ring_id;
1300 	struct gsi *gsi = channel->gsi;
1301 	struct gsi_evt_ring *evt_ring;
1302 	struct gsi_trans *trans;
1303 	struct gsi_ring *ring;
1304 	u32 offset;
1305 	u32 index;
1306 
1307 	evt_ring = &gsi->evt_ring[evt_ring_id];
1308 	ring = &evt_ring->ring;
1309 
1310 	/* See if there's anything new to process; if not, we're done.  Note
1311 	 * that index always refers to an entry *within* the event ring.
1312 	 */
1313 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1314 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1315 	if (index == ring->index % ring->count)
1316 		return;
1317 
1318 	/* Get the transaction for the latest completed event.  Take a
1319 	 * reference to keep it from completing before we give the events
1320 	 * for this and previous transactions back to the hardware.
1321 	 */
1322 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1323 	refcount_inc(&trans->refcount);
1324 
1325 	/* For RX channels, update each completed transaction with the number
1326 	 * of bytes that were actually received.  For TX channels, report
1327 	 * the number of transactions and bytes this completion represents
1328 	 * up the network stack.
1329 	 */
1330 	if (channel->toward_ipa)
1331 		gsi_channel_tx_update(channel, trans);
1332 	else
1333 		gsi_evt_ring_rx_update(evt_ring, index);
1334 
1335 	gsi_trans_move_complete(trans);
1336 
1337 	/* Tell the hardware we've handled these events */
1338 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1339 
1340 	gsi_trans_free(trans);
1341 }
1342 
1343 /**
1344  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1345  * @channel:	Channel to be polled
1346  *
1347  * @Return:	 Transaction pointer, or null if none are available
1348  *
1349  * This function returns the first entry on a channel's completed transaction
1350  * list.  If that list is empty, the hardware is consulted to determine
1351  * whether any new transactions have completed.  If so, they're moved to the
1352  * completed list and the new first entry is returned.  If there are no more
1353  * completed transactions, a null pointer is returned.
1354  */
1355 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1356 {
1357 	struct gsi_trans *trans;
1358 
1359 	/* Get the first transaction from the completed list */
1360 	trans = gsi_channel_trans_complete(channel);
1361 	if (!trans) {
1362 		/* List is empty; see if there's more to do */
1363 		gsi_channel_update(channel);
1364 		trans = gsi_channel_trans_complete(channel);
1365 	}
1366 
1367 	if (trans)
1368 		gsi_trans_move_polled(trans);
1369 
1370 	return trans;
1371 }
1372 
1373 /**
1374  * gsi_channel_poll() - NAPI poll function for a channel
1375  * @napi:	NAPI structure for the channel
1376  * @budget:	Budget supplied by NAPI core
1377 
1378  * @Return:	 Number of items polled (<= budget)
1379  *
1380  * Single transactions completed by hardware are polled until either
1381  * the budget is exhausted, or there are no more.  Each transaction
1382  * polled is passed to gsi_trans_complete(), to perform remaining
1383  * completion processing and retire/free the transaction.
1384  */
1385 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1386 {
1387 	struct gsi_channel *channel;
1388 	int count = 0;
1389 
1390 	channel = container_of(napi, struct gsi_channel, napi);
1391 	while (count < budget) {
1392 		struct gsi_trans *trans;
1393 
1394 		trans = gsi_channel_poll_one(channel);
1395 		if (!trans)
1396 			break;
1397 		gsi_trans_complete(trans);
1398 	}
1399 
1400 	if (count < budget) {
1401 		napi_complete(&channel->napi);
1402 		gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
1403 	}
1404 
1405 	return count;
1406 }
1407 
1408 /* The event bitmap represents which event ids are available for allocation.
1409  * Set bits are not available, clear bits can be used.  This function
1410  * initializes the map so all events supported by the hardware are available,
1411  * then precludes any reserved events from being allocated.
1412  */
1413 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1414 {
1415 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1416 
1417 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1418 
1419 	return event_bitmap;
1420 }
1421 
1422 /* Setup function for event rings */
1423 static void gsi_evt_ring_setup(struct gsi *gsi)
1424 {
1425 	/* Nothing to do */
1426 }
1427 
1428 /* Inverse of gsi_evt_ring_setup() */
1429 static void gsi_evt_ring_teardown(struct gsi *gsi)
1430 {
1431 	/* Nothing to do */
1432 }
1433 
1434 /* Setup function for a single channel */
1435 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id,
1436 				 bool db_enable)
1437 {
1438 	struct gsi_channel *channel = &gsi->channel[channel_id];
1439 	u32 evt_ring_id = channel->evt_ring_id;
1440 	int ret;
1441 
1442 	if (!channel->gsi)
1443 		return 0;	/* Ignore uninitialized channels */
1444 
1445 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1446 	if (ret)
1447 		return ret;
1448 
1449 	gsi_evt_ring_program(gsi, evt_ring_id);
1450 
1451 	ret = gsi_channel_alloc_command(gsi, channel_id);
1452 	if (ret)
1453 		goto err_evt_ring_de_alloc;
1454 
1455 	gsi_channel_program(channel, db_enable);
1456 
1457 	if (channel->toward_ipa)
1458 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1459 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1460 	else
1461 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1462 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1463 
1464 	return 0;
1465 
1466 err_evt_ring_de_alloc:
1467 	/* We've done nothing with the event ring yet so don't reset */
1468 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1469 
1470 	return ret;
1471 }
1472 
1473 /* Inverse of gsi_channel_setup_one() */
1474 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1475 {
1476 	struct gsi_channel *channel = &gsi->channel[channel_id];
1477 	u32 evt_ring_id = channel->evt_ring_id;
1478 
1479 	if (!channel->gsi)
1480 		return;		/* Ignore uninitialized channels */
1481 
1482 	netif_napi_del(&channel->napi);
1483 
1484 	gsi_channel_deprogram(channel);
1485 	gsi_channel_de_alloc_command(gsi, channel_id);
1486 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1487 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1488 }
1489 
1490 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1491 			       enum gsi_generic_cmd_opcode opcode)
1492 {
1493 	struct completion *completion = &gsi->completion;
1494 	u32 val;
1495 
1496 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1497 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1498 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1499 
1500 	if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion))
1501 		return 0;	/* Success! */
1502 
1503 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1504 		opcode, channel_id);
1505 
1506 	return -ETIMEDOUT;
1507 }
1508 
1509 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1510 {
1511 	return gsi_generic_command(gsi, channel_id,
1512 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1513 }
1514 
1515 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1516 {
1517 	int ret;
1518 
1519 	ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL);
1520 	if (ret)
1521 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1522 			ret, channel_id);
1523 }
1524 
1525 /* Setup function for channels */
1526 static int gsi_channel_setup(struct gsi *gsi, bool db_enable)
1527 {
1528 	u32 channel_id = 0;
1529 	u32 mask;
1530 	int ret;
1531 
1532 	gsi_evt_ring_setup(gsi);
1533 	gsi_irq_enable(gsi);
1534 
1535 	mutex_lock(&gsi->mutex);
1536 
1537 	do {
1538 		ret = gsi_channel_setup_one(gsi, channel_id, db_enable);
1539 		if (ret)
1540 			goto err_unwind;
1541 	} while (++channel_id < gsi->channel_count);
1542 
1543 	/* Make sure no channels were defined that hardware does not support */
1544 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1545 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1546 
1547 		if (!channel->gsi)
1548 			continue;	/* Ignore uninitialized channels */
1549 
1550 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1551 			channel_id - 1);
1552 		channel_id = gsi->channel_count;
1553 		goto err_unwind;
1554 	}
1555 
1556 	/* Allocate modem channels if necessary */
1557 	mask = gsi->modem_channel_bitmap;
1558 	while (mask) {
1559 		u32 modem_channel_id = __ffs(mask);
1560 
1561 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1562 		if (ret)
1563 			goto err_unwind_modem;
1564 
1565 		/* Clear bit from mask only after success (for unwind) */
1566 		mask ^= BIT(modem_channel_id);
1567 	}
1568 
1569 	mutex_unlock(&gsi->mutex);
1570 
1571 	return 0;
1572 
1573 err_unwind_modem:
1574 	/* Compute which modem channels need to be deallocated */
1575 	mask ^= gsi->modem_channel_bitmap;
1576 	while (mask) {
1577 		u32 channel_id = __fls(mask);
1578 
1579 		mask ^= BIT(channel_id);
1580 
1581 		gsi_modem_channel_halt(gsi, channel_id);
1582 	}
1583 
1584 err_unwind:
1585 	while (channel_id--)
1586 		gsi_channel_teardown_one(gsi, channel_id);
1587 
1588 	mutex_unlock(&gsi->mutex);
1589 
1590 	gsi_irq_disable(gsi);
1591 	gsi_evt_ring_teardown(gsi);
1592 
1593 	return ret;
1594 }
1595 
1596 /* Inverse of gsi_channel_setup() */
1597 static void gsi_channel_teardown(struct gsi *gsi)
1598 {
1599 	u32 mask = gsi->modem_channel_bitmap;
1600 	u32 channel_id;
1601 
1602 	mutex_lock(&gsi->mutex);
1603 
1604 	while (mask) {
1605 		u32 channel_id = __fls(mask);
1606 
1607 		mask ^= BIT(channel_id);
1608 
1609 		gsi_modem_channel_halt(gsi, channel_id);
1610 	}
1611 
1612 	channel_id = gsi->channel_count - 1;
1613 	do
1614 		gsi_channel_teardown_one(gsi, channel_id);
1615 	while (channel_id--);
1616 
1617 	mutex_unlock(&gsi->mutex);
1618 
1619 	gsi_irq_disable(gsi);
1620 	gsi_evt_ring_teardown(gsi);
1621 }
1622 
1623 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1624 int gsi_setup(struct gsi *gsi, bool db_enable)
1625 {
1626 	u32 val;
1627 
1628 	/* Here is where we first touch the GSI hardware */
1629 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1630 	if (!(val & ENABLED_FMASK)) {
1631 		dev_err(gsi->dev, "GSI has not been enabled\n");
1632 		return -EIO;
1633 	}
1634 
1635 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1636 
1637 	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1638 	if (!gsi->channel_count) {
1639 		dev_err(gsi->dev, "GSI reports zero channels supported\n");
1640 		return -EINVAL;
1641 	}
1642 	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1643 		dev_warn(gsi->dev,
1644 			"limiting to %u channels (hardware supports %u)\n",
1645 			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1646 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1647 	}
1648 
1649 	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1650 	if (!gsi->evt_ring_count) {
1651 		dev_err(gsi->dev, "GSI reports zero event rings supported\n");
1652 		return -EINVAL;
1653 	}
1654 	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1655 		dev_warn(gsi->dev,
1656 			"limiting to %u event rings (hardware supports %u)\n",
1657 			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1658 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1659 	}
1660 
1661 	/* Initialize the error log */
1662 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1663 
1664 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1665 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1666 
1667 	return gsi_channel_setup(gsi, db_enable);
1668 }
1669 
1670 /* Inverse of gsi_setup() */
1671 void gsi_teardown(struct gsi *gsi)
1672 {
1673 	gsi_channel_teardown(gsi);
1674 }
1675 
1676 /* Initialize a channel's event ring */
1677 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1678 {
1679 	struct gsi *gsi = channel->gsi;
1680 	struct gsi_evt_ring *evt_ring;
1681 	int ret;
1682 
1683 	ret = gsi_evt_ring_id_alloc(gsi);
1684 	if (ret < 0)
1685 		return ret;
1686 	channel->evt_ring_id = ret;
1687 
1688 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1689 	evt_ring->channel = channel;
1690 
1691 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1692 	if (!ret)
1693 		return 0;	/* Success! */
1694 
1695 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1696 		ret, gsi_channel_id(channel));
1697 
1698 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1699 
1700 	return ret;
1701 }
1702 
1703 /* Inverse of gsi_channel_evt_ring_init() */
1704 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1705 {
1706 	u32 evt_ring_id = channel->evt_ring_id;
1707 	struct gsi *gsi = channel->gsi;
1708 	struct gsi_evt_ring *evt_ring;
1709 
1710 	evt_ring = &gsi->evt_ring[evt_ring_id];
1711 	gsi_ring_free(gsi, &evt_ring->ring);
1712 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1713 }
1714 
1715 /* Init function for event rings */
1716 static void gsi_evt_ring_init(struct gsi *gsi)
1717 {
1718 	u32 evt_ring_id = 0;
1719 
1720 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1721 	gsi->event_enable_bitmap = 0;
1722 	do
1723 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1724 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1725 }
1726 
1727 /* Inverse of gsi_evt_ring_init() */
1728 static void gsi_evt_ring_exit(struct gsi *gsi)
1729 {
1730 	/* Nothing to do */
1731 }
1732 
1733 static bool gsi_channel_data_valid(struct gsi *gsi,
1734 				   const struct ipa_gsi_endpoint_data *data)
1735 {
1736 #ifdef IPA_VALIDATION
1737 	u32 channel_id = data->channel_id;
1738 	struct device *dev = gsi->dev;
1739 
1740 	/* Make sure channel ids are in the range driver supports */
1741 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1742 		dev_err(dev, "bad channel id %u (must be less than %u)\n",
1743 			channel_id, GSI_CHANNEL_COUNT_MAX);
1744 		return false;
1745 	}
1746 
1747 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1748 		dev_err(dev, "bad EE id %u (AP or modem)\n", data->ee_id);
1749 		return false;
1750 	}
1751 
1752 	if (!data->channel.tlv_count ||
1753 	    data->channel.tlv_count > GSI_TLV_MAX) {
1754 		dev_err(dev, "channel %u bad tlv_count %u (must be 1..%u)\n",
1755 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1756 		return false;
1757 	}
1758 
1759 	/* We have to allow at least one maximally-sized transaction to
1760 	 * be outstanding (which would use tlv_count TREs).  Given how
1761 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
1762 	 * twice the TLV FIFO size to satisfy this requirement.
1763 	 */
1764 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1765 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1766 			channel_id, data->channel.tlv_count,
1767 			data->channel.tre_count);
1768 		return false;
1769 	}
1770 
1771 	if (!is_power_of_2(data->channel.tre_count)) {
1772 		dev_err(dev, "channel %u bad tre_count %u (not power of 2)\n",
1773 			channel_id, data->channel.tre_count);
1774 		return false;
1775 	}
1776 
1777 	if (!is_power_of_2(data->channel.event_count)) {
1778 		dev_err(dev, "channel %u bad event_count %u (not power of 2)\n",
1779 			channel_id, data->channel.event_count);
1780 		return false;
1781 	}
1782 #endif /* IPA_VALIDATION */
1783 
1784 	return true;
1785 }
1786 
1787 /* Init function for a single channel */
1788 static int gsi_channel_init_one(struct gsi *gsi,
1789 				const struct ipa_gsi_endpoint_data *data,
1790 				bool command, bool prefetch)
1791 {
1792 	struct gsi_channel *channel;
1793 	u32 tre_count;
1794 	int ret;
1795 
1796 	if (!gsi_channel_data_valid(gsi, data))
1797 		return -EINVAL;
1798 
1799 	/* Worst case we need an event for every outstanding TRE */
1800 	if (data->channel.tre_count > data->channel.event_count) {
1801 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
1802 			data->channel_id, data->channel.tre_count);
1803 		tre_count = data->channel.event_count;
1804 	} else {
1805 		tre_count = data->channel.tre_count;
1806 	}
1807 
1808 	channel = &gsi->channel[data->channel_id];
1809 	memset(channel, 0, sizeof(*channel));
1810 
1811 	channel->gsi = gsi;
1812 	channel->toward_ipa = data->toward_ipa;
1813 	channel->command = command;
1814 	channel->use_prefetch = command && prefetch;
1815 	channel->tlv_count = data->channel.tlv_count;
1816 	channel->tre_count = tre_count;
1817 	channel->event_count = data->channel.event_count;
1818 	init_completion(&channel->completion);
1819 
1820 	ret = gsi_channel_evt_ring_init(channel);
1821 	if (ret)
1822 		goto err_clear_gsi;
1823 
1824 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
1825 	if (ret) {
1826 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
1827 			ret, data->channel_id);
1828 		goto err_channel_evt_ring_exit;
1829 	}
1830 
1831 	ret = gsi_channel_trans_init(gsi, data->channel_id);
1832 	if (ret)
1833 		goto err_ring_free;
1834 
1835 	if (command) {
1836 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
1837 
1838 		ret = ipa_cmd_pool_init(channel, tre_max);
1839 	}
1840 	if (!ret)
1841 		return 0;	/* Success! */
1842 
1843 	gsi_channel_trans_exit(channel);
1844 err_ring_free:
1845 	gsi_ring_free(gsi, &channel->tre_ring);
1846 err_channel_evt_ring_exit:
1847 	gsi_channel_evt_ring_exit(channel);
1848 err_clear_gsi:
1849 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
1850 
1851 	return ret;
1852 }
1853 
1854 /* Inverse of gsi_channel_init_one() */
1855 static void gsi_channel_exit_one(struct gsi_channel *channel)
1856 {
1857 	if (!channel->gsi)
1858 		return;		/* Ignore uninitialized channels */
1859 
1860 	if (channel->command)
1861 		ipa_cmd_pool_exit(channel);
1862 	gsi_channel_trans_exit(channel);
1863 	gsi_ring_free(channel->gsi, &channel->tre_ring);
1864 	gsi_channel_evt_ring_exit(channel);
1865 }
1866 
1867 /* Init function for channels */
1868 static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count,
1869 			    const struct ipa_gsi_endpoint_data *data,
1870 			    bool modem_alloc)
1871 {
1872 	int ret = 0;
1873 	u32 i;
1874 
1875 	gsi_evt_ring_init(gsi);
1876 
1877 	/* The endpoint data array is indexed by endpoint name */
1878 	for (i = 0; i < count; i++) {
1879 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
1880 
1881 		if (ipa_gsi_endpoint_data_empty(&data[i]))
1882 			continue;	/* Skip over empty slots */
1883 
1884 		/* Mark modem channels to be allocated (hardware workaround) */
1885 		if (data[i].ee_id == GSI_EE_MODEM) {
1886 			if (modem_alloc)
1887 				gsi->modem_channel_bitmap |=
1888 						BIT(data[i].channel_id);
1889 			continue;
1890 		}
1891 
1892 		ret = gsi_channel_init_one(gsi, &data[i], command, prefetch);
1893 		if (ret)
1894 			goto err_unwind;
1895 	}
1896 
1897 	return ret;
1898 
1899 err_unwind:
1900 	while (i--) {
1901 		if (ipa_gsi_endpoint_data_empty(&data[i]))
1902 			continue;
1903 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
1904 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
1905 			continue;
1906 		}
1907 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
1908 	}
1909 	gsi_evt_ring_exit(gsi);
1910 
1911 	return ret;
1912 }
1913 
1914 /* Inverse of gsi_channel_init() */
1915 static void gsi_channel_exit(struct gsi *gsi)
1916 {
1917 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
1918 
1919 	do
1920 		gsi_channel_exit_one(&gsi->channel[channel_id]);
1921 	while (channel_id--);
1922 	gsi->modem_channel_bitmap = 0;
1923 
1924 	gsi_evt_ring_exit(gsi);
1925 }
1926 
1927 /* Init function for GSI.  GSI hardware does not need to be "ready" */
1928 int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch,
1929 	     u32 count, const struct ipa_gsi_endpoint_data *data,
1930 	     bool modem_alloc)
1931 {
1932 	struct resource *res;
1933 	resource_size_t size;
1934 	unsigned int irq;
1935 	int ret;
1936 
1937 	gsi_validate_build();
1938 
1939 	gsi->dev = &pdev->dev;
1940 
1941 	/* The GSI layer performs NAPI on all endpoints.  NAPI requires a
1942 	 * network device structure, but the GSI layer does not have one,
1943 	 * so we must create a dummy network device for this purpose.
1944 	 */
1945 	init_dummy_netdev(&gsi->dummy_dev);
1946 
1947 	/* Get the GSI IRQ and request for it to wake the system */
1948 	ret = platform_get_irq_byname(pdev, "gsi");
1949 	if (ret <= 0) {
1950 		dev_err(gsi->dev,
1951 			"DT error %d getting \"gsi\" IRQ property\n", ret);
1952 		return ret ? : -EINVAL;
1953 	}
1954 	irq = ret;
1955 
1956 	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1957 	if (ret) {
1958 		dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
1959 		return ret;
1960 	}
1961 	gsi->irq = irq;
1962 
1963 	ret = enable_irq_wake(gsi->irq);
1964 	if (ret)
1965 		dev_warn(gsi->dev, "error %d enabling gsi wake irq\n", ret);
1966 	gsi->irq_wake_enabled = !ret;
1967 
1968 	/* Get GSI memory range and map it */
1969 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
1970 	if (!res) {
1971 		dev_err(gsi->dev,
1972 			"DT error getting \"gsi\" memory property\n");
1973 		ret = -ENODEV;
1974 		goto err_disable_irq_wake;
1975 	}
1976 
1977 	size = resource_size(res);
1978 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
1979 		dev_err(gsi->dev, "DT memory resource \"gsi\" out of range\n");
1980 		ret = -EINVAL;
1981 		goto err_disable_irq_wake;
1982 	}
1983 
1984 	gsi->virt = ioremap(res->start, size);
1985 	if (!gsi->virt) {
1986 		dev_err(gsi->dev, "unable to remap \"gsi\" memory\n");
1987 		ret = -ENOMEM;
1988 		goto err_disable_irq_wake;
1989 	}
1990 
1991 	ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc);
1992 	if (ret)
1993 		goto err_iounmap;
1994 
1995 	mutex_init(&gsi->mutex);
1996 	init_completion(&gsi->completion);
1997 
1998 	return 0;
1999 
2000 err_iounmap:
2001 	iounmap(gsi->virt);
2002 err_disable_irq_wake:
2003 	if (gsi->irq_wake_enabled)
2004 		(void)disable_irq_wake(gsi->irq);
2005 	free_irq(gsi->irq, gsi);
2006 
2007 	return ret;
2008 }
2009 
2010 /* Inverse of gsi_init() */
2011 void gsi_exit(struct gsi *gsi)
2012 {
2013 	mutex_destroy(&gsi->mutex);
2014 	gsi_channel_exit(gsi);
2015 	if (gsi->irq_wake_enabled)
2016 		(void)disable_irq_wake(gsi->irq);
2017 	free_irq(gsi->irq, gsi);
2018 	iounmap(gsi->virt);
2019 }
2020 
2021 /* The maximum number of outstanding TREs on a channel.  This limits
2022  * a channel's maximum number of transactions outstanding (worst case
2023  * is one TRE per transaction).
2024  *
2025  * The absolute limit is the number of TREs in the channel's TRE ring,
2026  * and in theory we should be able use all of them.  But in practice,
2027  * doing that led to the hardware reporting exhaustion of event ring
2028  * slots for writing completion information.  So the hardware limit
2029  * would be (tre_count - 1).
2030  *
2031  * We reduce it a bit further though.  Transaction resource pools are
2032  * sized to be a little larger than this maximum, to allow resource
2033  * allocations to always be contiguous.  The number of entries in a
2034  * TRE ring buffer is a power of 2, and the extra resources in a pool
2035  * tends to nearly double the memory allocated for it.  Reducing the
2036  * maximum number of outstanding TREs allows the number of entries in
2037  * a pool to avoid crossing that power-of-2 boundary, and this can
2038  * substantially reduce pool memory requirements.  The number we
2039  * reduce it by matches the number added in gsi_trans_pool_init().
2040  */
2041 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2042 {
2043 	struct gsi_channel *channel = &gsi->channel[channel_id];
2044 
2045 	/* Hardware limit is channel->tre_count - 1 */
2046 	return channel->tre_count - (channel->tlv_count - 1);
2047 }
2048 
2049 /* Returns the maximum number of TREs in a single transaction for a channel */
2050 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2051 {
2052 	struct gsi_channel *channel = &gsi->channel[channel_id];
2053 
2054 	return channel->tlv_count;
2055 }
2056