xref: /openbmc/linux/drivers/net/ipa/gsi.c (revision a701d28e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 
25 /**
26  * DOC: The IPA Generic Software Interface
27  *
28  * The generic software interface (GSI) is an integral component of the IPA,
29  * providing a well-defined communication layer between the AP subsystem
30  * and the IPA core.  The modem uses the GSI layer as well.
31  *
32  *	--------	     ---------
33  *	|      |	     |	     |
34  *	|  AP  +<---.	.----+ Modem |
35  *	|      +--. |	| .->+	     |
36  *	|      |  | |	| |  |	     |
37  *	--------  | |	| |  ---------
38  *		  v |	v |
39  *		--+-+---+-+--
40  *		|    GSI    |
41  *		|-----------|
42  *		|	    |
43  *		|    IPA    |
44  *		|	    |
45  *		-------------
46  *
47  * In the above diagram, the AP and Modem represent "execution environments"
48  * (EEs), which are independent operating environments that use the IPA for
49  * data transfer.
50  *
51  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
52  * of data to or from the IPA.  A channel is implemented as a ring buffer,
53  * with a DRAM-resident array of "transfer elements" (TREs) available to
54  * describe transfers to or from other EEs through the IPA.  A transfer
55  * element can also contain an immediate command, requesting the IPA perform
56  * actions other than data transfer.
57  *
58  * Each TRE refers to a block of data--also located DRAM.  After writing one
59  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
60  * doorbell register to inform the receiving side how many elements have
61  * been written.
62  *
63  * Each channel has a GSI "event ring" associated with it.  An event ring
64  * is implemented very much like a channel ring, but is always directed from
65  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
66  * events by adding an entry to the event ring associated with the channel.
67  * The GSI then writes its doorbell for the event ring, causing the target
68  * EE to be interrupted.  Each entry in an event ring contains a pointer
69  * to the channel TRE whose completion the event represents.
70  *
71  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
72  * the completion of the transfer operation generates an entry (and possibly
73  * an interrupt) in the channel's event ring.  Other flags allow transfer
74  * elements to be chained together, forming a single logical transaction.
75  * TRE flags are used to control whether and when interrupts are generated
76  * to signal completion of channel transfers.
77  *
78  * Elements in channel and event rings are completed (or consumed) strictly
79  * in order.  Completion of one entry implies the completion of all preceding
80  * entries.  A single completion interrupt can therefore communicate the
81  * completion of many transfers.
82  *
83  * Note that all GSI registers are little-endian, which is the assumed
84  * endianness of I/O space accesses.  The accessor functions perform byte
85  * swapping if needed (i.e., for a big endian CPU).
86  */
87 
88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
89 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
90 
91 #define GSI_CMD_TIMEOUT			5	/* seconds */
92 
93 #define GSI_CHANNEL_STOP_RX_RETRIES	10
94 
95 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
96 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
97 
98 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
99 
100 /* An entry in an event ring */
101 struct gsi_event {
102 	__le64 xfer_ptr;
103 	__le16 len;
104 	u8 reserved1;
105 	u8 code;
106 	__le16 reserved2;
107 	u8 type;
108 	u8 chid;
109 };
110 
111 /* Hardware values from the error log register error code field */
112 enum gsi_err_code {
113 	GSI_INVALID_TRE_ERR			= 0x1,
114 	GSI_OUT_OF_BUFFERS_ERR			= 0x2,
115 	GSI_OUT_OF_RESOURCES_ERR		= 0x3,
116 	GSI_UNSUPPORTED_INTER_EE_OP_ERR		= 0x4,
117 	GSI_EVT_RING_EMPTY_ERR			= 0x5,
118 	GSI_NON_ALLOCATED_EVT_ACCESS_ERR	= 0x6,
119 	GSI_HWO_1_ERR				= 0x8,
120 };
121 
122 /* Hardware values from the error log register error type field */
123 enum gsi_err_type {
124 	GSI_ERR_TYPE_GLOB	= 0x1,
125 	GSI_ERR_TYPE_CHAN	= 0x2,
126 	GSI_ERR_TYPE_EVT	= 0x3,
127 };
128 
129 /* Hardware values used when programming an event ring */
130 enum gsi_evt_chtype {
131 	GSI_EVT_CHTYPE_MHI_EV	= 0x0,
132 	GSI_EVT_CHTYPE_XHCI_EV	= 0x1,
133 	GSI_EVT_CHTYPE_GPI_EV	= 0x2,
134 	GSI_EVT_CHTYPE_XDCI_EV	= 0x3,
135 };
136 
137 /* Hardware values used when programming a channel */
138 enum gsi_channel_protocol {
139 	GSI_CHANNEL_PROTOCOL_MHI	= 0x0,
140 	GSI_CHANNEL_PROTOCOL_XHCI	= 0x1,
141 	GSI_CHANNEL_PROTOCOL_GPI	= 0x2,
142 	GSI_CHANNEL_PROTOCOL_XDCI	= 0x3,
143 };
144 
145 /* Hardware values representing an event ring immediate command opcode */
146 enum gsi_evt_cmd_opcode {
147 	GSI_EVT_ALLOCATE	= 0x0,
148 	GSI_EVT_RESET		= 0x9,
149 	GSI_EVT_DE_ALLOC	= 0xa,
150 };
151 
152 /* Hardware values representing a generic immediate command opcode */
153 enum gsi_generic_cmd_opcode {
154 	GSI_GENERIC_HALT_CHANNEL	= 0x1,
155 	GSI_GENERIC_ALLOCATE_CHANNEL	= 0x2,
156 };
157 
158 /* Hardware values representing a channel immediate command opcode */
159 enum gsi_ch_cmd_opcode {
160 	GSI_CH_ALLOCATE	= 0x0,
161 	GSI_CH_START	= 0x1,
162 	GSI_CH_STOP	= 0x2,
163 	GSI_CH_RESET	= 0x9,
164 	GSI_CH_DE_ALLOC	= 0xa,
165 };
166 
167 /** gsi_channel_scratch_gpi - GPI protocol scratch register
168  * @max_outstanding_tre:
169  *	Defines the maximum number of TREs allowed in a single transaction
170  *	on a channel (in bytes).  This determines the amount of prefetch
171  *	performed by the hardware.  We configure this to equal the size of
172  *	the TLV FIFO for the channel.
173  * @outstanding_threshold:
174  *	Defines the threshold (in bytes) determining when the sequencer
175  *	should update the channel doorbell.  We configure this to equal
176  *	the size of two TREs.
177  */
178 struct gsi_channel_scratch_gpi {
179 	u64 reserved1;
180 	u16 reserved2;
181 	u16 max_outstanding_tre;
182 	u16 reserved3;
183 	u16 outstanding_threshold;
184 };
185 
186 /** gsi_channel_scratch - channel scratch configuration area
187  *
188  * The exact interpretation of this register is protocol-specific.
189  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
190  */
191 union gsi_channel_scratch {
192 	struct gsi_channel_scratch_gpi gpi;
193 	struct {
194 		u32 word1;
195 		u32 word2;
196 		u32 word3;
197 		u32 word4;
198 	} data;
199 };
200 
201 /* Check things that can be validated at build time. */
202 static void gsi_validate_build(void)
203 {
204 	/* This is used as a divisor */
205 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
206 
207 	/* Code assumes the size of channel and event ring element are
208 	 * the same (and fixed).  Make sure the size of an event ring
209 	 * element is what's expected.
210 	 */
211 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
212 
213 	/* Hardware requires a 2^n ring size.  We ensure the number of
214 	 * elements in an event ring is a power of 2 elsewhere; this
215 	 * ensure the elements themselves meet the requirement.
216 	 */
217 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
218 
219 	/* The channel element size must fit in this field */
220 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
221 
222 	/* The event ring element size must fit in this field */
223 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
224 }
225 
226 /* Return the channel id associated with a given channel */
227 static u32 gsi_channel_id(struct gsi_channel *channel)
228 {
229 	return channel - &channel->gsi->channel[0];
230 }
231 
232 static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
233 {
234 	u32 val;
235 
236 	gsi->event_enable_bitmap |= BIT(evt_ring_id);
237 	val = gsi->event_enable_bitmap;
238 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
239 }
240 
241 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
242 {
243 	u32 val;
244 
245 	gsi->event_enable_bitmap &= ~BIT(evt_ring_id);
246 	val = gsi->event_enable_bitmap;
247 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
248 }
249 
250 /* Enable all GSI_interrupt types */
251 static void gsi_irq_enable(struct gsi *gsi)
252 {
253 	u32 val;
254 
255 	/* We don't use inter-EE channel or event interrupts */
256 	val = GSI_CNTXT_TYPE_IRQ_MSK_ALL;
257 	val &= ~INTER_EE_CH_CTRL_FMASK;
258 	val &= ~INTER_EE_EV_CTRL_FMASK;
259 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
260 
261 	val = GENMASK(gsi->channel_count - 1, 0);
262 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
263 
264 	val = GENMASK(gsi->evt_ring_count - 1, 0);
265 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
266 
267 	/* Each IEOB interrupt is enabled (later) as needed by channels */
268 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
269 
270 	val = GSI_CNTXT_GLOB_IRQ_ALL;
271 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
272 
273 	/* Never enable GSI_BREAK_POINT */
274 	val = GSI_CNTXT_GSI_IRQ_ALL & ~BREAK_POINT_FMASK;
275 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
276 }
277 
278 /* Disable all GSI_interrupt types */
279 static void gsi_irq_disable(struct gsi *gsi)
280 {
281 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
282 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
283 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
284 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
285 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
286 	iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
287 }
288 
289 /* Return the virtual address associated with a ring index */
290 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
291 {
292 	/* Note: index *must* be used modulo the ring count here */
293 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
294 }
295 
296 /* Return the 32-bit DMA address associated with a ring index */
297 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
298 {
299 	return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
300 }
301 
302 /* Return the ring index of a 32-bit ring offset */
303 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
304 {
305 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
306 }
307 
308 /* Issue a GSI command by writing a value to a register, then wait for
309  * completion to be signaled.  Returns true if the command completes
310  * or false if it times out.
311  */
312 static bool
313 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
314 {
315 	reinit_completion(completion);
316 
317 	iowrite32(val, gsi->virt + reg);
318 
319 	return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
320 }
321 
322 /* Return the hardware's notion of the current state of an event ring */
323 static enum gsi_evt_ring_state
324 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
325 {
326 	u32 val;
327 
328 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
329 
330 	return u32_get_bits(val, EV_CHSTATE_FMASK);
331 }
332 
333 /* Issue an event ring command and wait for it to complete */
334 static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
335 			    enum gsi_evt_cmd_opcode opcode)
336 {
337 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
338 	struct completion *completion = &evt_ring->completion;
339 	struct device *dev = gsi->dev;
340 	u32 val;
341 
342 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
343 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
344 
345 	if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion))
346 		return 0;	/* Success! */
347 
348 	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
349 		opcode, evt_ring_id, evt_ring->state);
350 
351 	return -ETIMEDOUT;
352 }
353 
354 /* Allocate an event ring in NOT_ALLOCATED state */
355 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
356 {
357 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
358 	int ret;
359 
360 	/* Get initial event ring state */
361 	evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
362 	if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
363 		dev_err(gsi->dev, "bad event ring state %u before alloc\n",
364 			evt_ring->state);
365 		return -EINVAL;
366 	}
367 
368 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
369 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
370 		dev_err(gsi->dev, "bad event ring state %u after alloc\n",
371 			evt_ring->state);
372 		ret = -EIO;
373 	}
374 
375 	return ret;
376 }
377 
378 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
379 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
380 {
381 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
382 	enum gsi_evt_ring_state state = evt_ring->state;
383 	int ret;
384 
385 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
386 	    state != GSI_EVT_RING_STATE_ERROR) {
387 		dev_err(gsi->dev, "bad event ring state %u before reset\n",
388 			evt_ring->state);
389 		return;
390 	}
391 
392 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
393 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED)
394 		dev_err(gsi->dev, "bad event ring state %u after reset\n",
395 			evt_ring->state);
396 }
397 
398 /* Issue a hardware de-allocation request for an allocated event ring */
399 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
400 {
401 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
402 	int ret;
403 
404 	if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
405 		dev_err(gsi->dev, "bad event ring state %u before dealloc\n",
406 			evt_ring->state);
407 		return;
408 	}
409 
410 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
411 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
412 		dev_err(gsi->dev, "bad event ring state %u after dealloc\n",
413 			evt_ring->state);
414 }
415 
416 /* Fetch the current state of a channel from hardware */
417 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
418 {
419 	u32 channel_id = gsi_channel_id(channel);
420 	void *virt = channel->gsi->virt;
421 	u32 val;
422 
423 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
424 
425 	return u32_get_bits(val, CHSTATE_FMASK);
426 }
427 
428 /* Issue a channel command and wait for it to complete */
429 static int
430 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
431 {
432 	struct completion *completion = &channel->completion;
433 	u32 channel_id = gsi_channel_id(channel);
434 	struct gsi *gsi = channel->gsi;
435 	struct device *dev = gsi->dev;
436 	u32 val;
437 
438 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
439 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
440 
441 	if (gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion))
442 		return 0;	/* Success! */
443 
444 	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
445 		opcode, channel_id, gsi_channel_state(channel));
446 
447 	return -ETIMEDOUT;
448 }
449 
450 /* Allocate GSI channel in NOT_ALLOCATED state */
451 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
452 {
453 	struct gsi_channel *channel = &gsi->channel[channel_id];
454 	struct device *dev = gsi->dev;
455 	enum gsi_channel_state state;
456 	int ret;
457 
458 	/* Get initial channel state */
459 	state = gsi_channel_state(channel);
460 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
461 		dev_err(dev, "bad channel state %u before alloc\n", state);
462 		return -EINVAL;
463 	}
464 
465 	ret = gsi_channel_command(channel, GSI_CH_ALLOCATE);
466 
467 	/* Channel state will normally have been updated */
468 	state = gsi_channel_state(channel);
469 	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) {
470 		dev_err(dev, "bad channel state %u after alloc\n", state);
471 		ret = -EIO;
472 	}
473 
474 	return ret;
475 }
476 
477 /* Start an ALLOCATED channel */
478 static int gsi_channel_start_command(struct gsi_channel *channel)
479 {
480 	struct device *dev = channel->gsi->dev;
481 	enum gsi_channel_state state;
482 	int ret;
483 
484 	state = gsi_channel_state(channel);
485 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
486 	    state != GSI_CHANNEL_STATE_STOPPED) {
487 		dev_err(dev, "bad channel state %u before start\n", state);
488 		return -EINVAL;
489 	}
490 
491 	ret = gsi_channel_command(channel, GSI_CH_START);
492 
493 	/* Channel state will normally have been updated */
494 	state = gsi_channel_state(channel);
495 	if (!ret && state != GSI_CHANNEL_STATE_STARTED) {
496 		dev_err(dev, "bad channel state %u after start\n", state);
497 		ret = -EIO;
498 	}
499 
500 	return ret;
501 }
502 
503 /* Stop a GSI channel in STARTED state */
504 static int gsi_channel_stop_command(struct gsi_channel *channel)
505 {
506 	struct device *dev = channel->gsi->dev;
507 	enum gsi_channel_state state;
508 	int ret;
509 
510 	state = gsi_channel_state(channel);
511 
512 	/* Channel could have entered STOPPED state since last call
513 	 * if it timed out.  If so, we're done.
514 	 */
515 	if (state == GSI_CHANNEL_STATE_STOPPED)
516 		return 0;
517 
518 	if (state != GSI_CHANNEL_STATE_STARTED &&
519 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
520 		dev_err(dev, "bad channel state %u before stop\n", state);
521 		return -EINVAL;
522 	}
523 
524 	ret = gsi_channel_command(channel, GSI_CH_STOP);
525 
526 	/* Channel state will normally have been updated */
527 	state = gsi_channel_state(channel);
528 	if (ret || state == GSI_CHANNEL_STATE_STOPPED)
529 		return ret;
530 
531 	/* We may have to try again if stop is in progress */
532 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
533 		return -EAGAIN;
534 
535 	dev_err(dev, "bad channel state %u after stop\n", state);
536 
537 	return -EIO;
538 }
539 
540 /* Reset a GSI channel in ALLOCATED or ERROR state. */
541 static void gsi_channel_reset_command(struct gsi_channel *channel)
542 {
543 	struct device *dev = channel->gsi->dev;
544 	enum gsi_channel_state state;
545 	int ret;
546 
547 	msleep(1);	/* A short delay is required before a RESET command */
548 
549 	state = gsi_channel_state(channel);
550 	if (state != GSI_CHANNEL_STATE_STOPPED &&
551 	    state != GSI_CHANNEL_STATE_ERROR) {
552 		dev_err(dev, "bad channel state %u before reset\n", state);
553 		return;
554 	}
555 
556 	ret = gsi_channel_command(channel, GSI_CH_RESET);
557 
558 	/* Channel state will normally have been updated */
559 	state = gsi_channel_state(channel);
560 	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED)
561 		dev_err(dev, "bad channel state %u after reset\n", state);
562 }
563 
564 /* Deallocate an ALLOCATED GSI channel */
565 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
566 {
567 	struct gsi_channel *channel = &gsi->channel[channel_id];
568 	struct device *dev = gsi->dev;
569 	enum gsi_channel_state state;
570 	int ret;
571 
572 	state = gsi_channel_state(channel);
573 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
574 		dev_err(dev, "bad channel state %u before dealloc\n", state);
575 		return;
576 	}
577 
578 	ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC);
579 
580 	/* Channel state will normally have been updated */
581 	state = gsi_channel_state(channel);
582 	if (!ret && state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
583 		dev_err(dev, "bad channel state %u after dealloc\n", state);
584 }
585 
586 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
587  * The index argument (modulo the ring count) is the first unfilled entry, so
588  * we supply one less than that with the doorbell.  Update the event ring
589  * index field with the value provided.
590  */
591 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
592 {
593 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
594 	u32 val;
595 
596 	ring->index = index;	/* Next unused entry */
597 
598 	/* Note: index *must* be used modulo the ring count here */
599 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
600 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
601 }
602 
603 /* Program an event ring for use */
604 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
605 {
606 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
607 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
608 	u32 val;
609 
610 	val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
611 	val |= EV_INTYPE_FMASK;
612 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
613 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
614 
615 	val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
616 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
617 
618 	/* The context 2 and 3 registers store the low-order and
619 	 * high-order 32 bits of the address of the event ring,
620 	 * respectively.
621 	 */
622 	val = evt_ring->ring.addr & GENMASK(31, 0);
623 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
624 
625 	val = evt_ring->ring.addr >> 32;
626 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
627 
628 	/* Enable interrupt moderation by setting the moderation delay */
629 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
630 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
631 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
632 
633 	/* No MSI write data, and MSI address high and low address is 0 */
634 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
635 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
636 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
637 
638 	/* We don't need to get event read pointer updates */
639 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
640 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
641 
642 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
643 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
644 }
645 
646 /* Return the last (most recent) transaction completed on a channel. */
647 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
648 {
649 	struct gsi_trans_info *trans_info = &channel->trans_info;
650 	struct gsi_trans *trans;
651 
652 	spin_lock_bh(&trans_info->spinlock);
653 
654 	if (!list_empty(&trans_info->complete))
655 		trans = list_last_entry(&trans_info->complete,
656 					struct gsi_trans, links);
657 	else if (!list_empty(&trans_info->polled))
658 		trans = list_last_entry(&trans_info->polled,
659 					struct gsi_trans, links);
660 	else
661 		trans = NULL;
662 
663 	/* Caller will wait for this, so take a reference */
664 	if (trans)
665 		refcount_inc(&trans->refcount);
666 
667 	spin_unlock_bh(&trans_info->spinlock);
668 
669 	return trans;
670 }
671 
672 /* Wait for transaction activity on a channel to complete */
673 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
674 {
675 	struct gsi_trans *trans;
676 
677 	/* Get the last transaction, and wait for it to complete */
678 	trans = gsi_channel_trans_last(channel);
679 	if (trans) {
680 		wait_for_completion(&trans->completion);
681 		gsi_trans_free(trans);
682 	}
683 }
684 
685 /* Stop channel activity.  Transactions may not be allocated until thawed. */
686 static void gsi_channel_freeze(struct gsi_channel *channel)
687 {
688 	gsi_channel_trans_quiesce(channel);
689 
690 	napi_disable(&channel->napi);
691 
692 	gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
693 }
694 
695 /* Allow transactions to be used on the channel again. */
696 static void gsi_channel_thaw(struct gsi_channel *channel)
697 {
698 	gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
699 
700 	napi_enable(&channel->napi);
701 }
702 
703 /* Program a channel for use */
704 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
705 {
706 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
707 	u32 channel_id = gsi_channel_id(channel);
708 	union gsi_channel_scratch scr = { };
709 	struct gsi_channel_scratch_gpi *gpi;
710 	struct gsi *gsi = channel->gsi;
711 	u32 wrr_weight = 0;
712 	u32 val;
713 
714 	/* Arbitrarily pick TRE 0 as the first channel element to use */
715 	channel->tre_ring.index = 0;
716 
717 	/* We program all channels to use GPI protocol */
718 	val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
719 	if (channel->toward_ipa)
720 		val |= CHTYPE_DIR_FMASK;
721 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
722 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
723 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
724 
725 	val = u32_encode_bits(size, R_LENGTH_FMASK);
726 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
727 
728 	/* The context 2 and 3 registers store the low-order and
729 	 * high-order 32 bits of the address of the channel ring,
730 	 * respectively.
731 	 */
732 	val = channel->tre_ring.addr & GENMASK(31, 0);
733 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
734 
735 	val = channel->tre_ring.addr >> 32;
736 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
737 
738 	/* Command channel gets low weighted round-robin priority */
739 	if (channel->command)
740 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
741 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
742 
743 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
744 
745 	/* Enable the doorbell engine if requested */
746 	if (doorbell)
747 		val |= USE_DB_ENG_FMASK;
748 
749 	if (!channel->use_prefetch)
750 		val |= USE_ESCAPE_BUF_ONLY_FMASK;
751 
752 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
753 
754 	/* Now update the scratch registers for GPI protocol */
755 	gpi = &scr.gpi;
756 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
757 					GSI_RING_ELEMENT_SIZE;
758 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
759 
760 	val = scr.data.word1;
761 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
762 
763 	val = scr.data.word2;
764 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
765 
766 	val = scr.data.word3;
767 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
768 
769 	/* We must preserve the upper 16 bits of the last scratch register.
770 	 * The next sequence assumes those bits remain unchanged between the
771 	 * read and the write.
772 	 */
773 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
774 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
775 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
776 
777 	/* All done! */
778 }
779 
780 static void gsi_channel_deprogram(struct gsi_channel *channel)
781 {
782 	/* Nothing to do */
783 }
784 
785 /* Start an allocated GSI channel */
786 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
787 {
788 	struct gsi_channel *channel = &gsi->channel[channel_id];
789 	int ret;
790 
791 	mutex_lock(&gsi->mutex);
792 
793 	ret = gsi_channel_start_command(channel);
794 
795 	mutex_unlock(&gsi->mutex);
796 
797 	gsi_channel_thaw(channel);
798 
799 	return ret;
800 }
801 
802 /* Stop a started channel */
803 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
804 {
805 	struct gsi_channel *channel = &gsi->channel[channel_id];
806 	u32 retries;
807 	int ret;
808 
809 	gsi_channel_freeze(channel);
810 
811 	/* RX channels might require a little time to enter STOPPED state */
812 	retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;
813 
814 	mutex_lock(&gsi->mutex);
815 
816 	do {
817 		ret = gsi_channel_stop_command(channel);
818 		if (ret != -EAGAIN)
819 			break;
820 		msleep(1);
821 	} while (retries--);
822 
823 	mutex_unlock(&gsi->mutex);
824 
825 	/* Thaw the channel if we need to retry (or on error) */
826 	if (ret)
827 		gsi_channel_thaw(channel);
828 
829 	return ret;
830 }
831 
832 /* Reset and reconfigure a channel (possibly leaving doorbell disabled) */
833 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool legacy)
834 {
835 	struct gsi_channel *channel = &gsi->channel[channel_id];
836 
837 	mutex_lock(&gsi->mutex);
838 
839 	gsi_channel_reset_command(channel);
840 	/* Due to a hardware quirk we may need to reset RX channels twice. */
841 	if (legacy && !channel->toward_ipa)
842 		gsi_channel_reset_command(channel);
843 
844 	gsi_channel_program(channel, legacy);
845 	gsi_channel_trans_cancel_pending(channel);
846 
847 	mutex_unlock(&gsi->mutex);
848 }
849 
850 /* Stop a STARTED channel for suspend (using stop if requested) */
851 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
852 {
853 	struct gsi_channel *channel = &gsi->channel[channel_id];
854 
855 	if (stop)
856 		return gsi_channel_stop(gsi, channel_id);
857 
858 	gsi_channel_freeze(channel);
859 
860 	return 0;
861 }
862 
863 /* Resume a suspended channel (starting will be requested if STOPPED) */
864 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
865 {
866 	struct gsi_channel *channel = &gsi->channel[channel_id];
867 
868 	if (start)
869 		return gsi_channel_start(gsi, channel_id);
870 
871 	gsi_channel_thaw(channel);
872 
873 	return 0;
874 }
875 
876 /**
877  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
878  * @channel:	Channel for which to report
879  *
880  * Report to the network stack the number of bytes and transactions that
881  * have been queued to hardware since last call.  This and the next function
882  * supply information used by the network stack for throttling.
883  *
884  * For each channel we track the number of transactions used and bytes of
885  * data those transactions represent.  We also track what those values are
886  * each time this function is called.  Subtracting the two tells us
887  * the number of bytes and transactions that have been added between
888  * successive calls.
889  *
890  * Calling this each time we ring the channel doorbell allows us to
891  * provide accurate information to the network stack about how much
892  * work we've given the hardware at any point in time.
893  */
894 void gsi_channel_tx_queued(struct gsi_channel *channel)
895 {
896 	u32 trans_count;
897 	u32 byte_count;
898 
899 	byte_count = channel->byte_count - channel->queued_byte_count;
900 	trans_count = channel->trans_count - channel->queued_trans_count;
901 	channel->queued_byte_count = channel->byte_count;
902 	channel->queued_trans_count = channel->trans_count;
903 
904 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
905 				  trans_count, byte_count);
906 }
907 
908 /**
909  * gsi_channel_tx_update() - Report completed TX transfers
910  * @channel:	Channel that has completed transmitting packets
911  * @trans:	Last transation known to be complete
912  *
913  * Compute the number of transactions and bytes that have been transferred
914  * over a TX channel since the given transaction was committed.  Report this
915  * information to the network stack.
916  *
917  * At the time a transaction is committed, we record its channel's
918  * committed transaction and byte counts *in the transaction*.
919  * Completions are signaled by the hardware with an interrupt, and
920  * we can determine the latest completed transaction at that time.
921  *
922  * The difference between the byte/transaction count recorded in
923  * the transaction and the count last time we recorded a completion
924  * tells us exactly how much data has been transferred between
925  * completions.
926  *
927  * Calling this each time we learn of a newly-completed transaction
928  * allows us to provide accurate information to the network stack
929  * about how much work has been completed by the hardware at a given
930  * point in time.
931  */
932 static void
933 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
934 {
935 	u64 byte_count = trans->byte_count + trans->len;
936 	u64 trans_count = trans->trans_count + 1;
937 
938 	byte_count -= channel->compl_byte_count;
939 	channel->compl_byte_count += byte_count;
940 	trans_count -= channel->compl_trans_count;
941 	channel->compl_trans_count += trans_count;
942 
943 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
944 				     trans_count, byte_count);
945 }
946 
947 /* Channel control interrupt handler */
948 static void gsi_isr_chan_ctrl(struct gsi *gsi)
949 {
950 	u32 channel_mask;
951 
952 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
953 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
954 
955 	while (channel_mask) {
956 		u32 channel_id = __ffs(channel_mask);
957 		struct gsi_channel *channel;
958 
959 		channel_mask ^= BIT(channel_id);
960 
961 		channel = &gsi->channel[channel_id];
962 
963 		complete(&channel->completion);
964 	}
965 }
966 
967 /* Event ring control interrupt handler */
968 static void gsi_isr_evt_ctrl(struct gsi *gsi)
969 {
970 	u32 event_mask;
971 
972 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
973 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
974 
975 	while (event_mask) {
976 		u32 evt_ring_id = __ffs(event_mask);
977 		struct gsi_evt_ring *evt_ring;
978 
979 		event_mask ^= BIT(evt_ring_id);
980 
981 		evt_ring = &gsi->evt_ring[evt_ring_id];
982 		evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
983 
984 		complete(&evt_ring->completion);
985 	}
986 }
987 
988 /* Global channel error interrupt handler */
989 static void
990 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
991 {
992 	if (code == GSI_OUT_OF_RESOURCES_ERR) {
993 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
994 		complete(&gsi->channel[channel_id].completion);
995 		return;
996 	}
997 
998 	/* Report, but otherwise ignore all other error codes */
999 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1000 		channel_id, err_ee, code);
1001 }
1002 
1003 /* Global event error interrupt handler */
1004 static void
1005 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1006 {
1007 	if (code == GSI_OUT_OF_RESOURCES_ERR) {
1008 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1009 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1010 
1011 		complete(&evt_ring->completion);
1012 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1013 			channel_id);
1014 		return;
1015 	}
1016 
1017 	/* Report, but otherwise ignore all other error codes */
1018 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1019 		evt_ring_id, err_ee, code);
1020 }
1021 
1022 /* Global error interrupt handler */
1023 static void gsi_isr_glob_err(struct gsi *gsi)
1024 {
1025 	enum gsi_err_type type;
1026 	enum gsi_err_code code;
1027 	u32 which;
1028 	u32 val;
1029 	u32 ee;
1030 
1031 	/* Get the logged error, then reinitialize the log */
1032 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1033 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1034 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1035 
1036 	ee = u32_get_bits(val, ERR_EE_FMASK);
1037 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1038 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1039 	code = u32_get_bits(val, ERR_CODE_FMASK);
1040 
1041 	if (type == GSI_ERR_TYPE_CHAN)
1042 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1043 	else if (type == GSI_ERR_TYPE_EVT)
1044 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1045 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1046 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1047 }
1048 
1049 /* Generic EE interrupt handler */
1050 static void gsi_isr_gp_int1(struct gsi *gsi)
1051 {
1052 	u32 result;
1053 	u32 val;
1054 
1055 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1056 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1057 	if (result != GENERIC_EE_SUCCESS_FVAL)
1058 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1059 
1060 	complete(&gsi->completion);
1061 }
1062 
1063 /* Inter-EE interrupt handler */
1064 static void gsi_isr_glob_ee(struct gsi *gsi)
1065 {
1066 	u32 val;
1067 
1068 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1069 
1070 	if (val & ERROR_INT_FMASK)
1071 		gsi_isr_glob_err(gsi);
1072 
1073 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1074 
1075 	val &= ~ERROR_INT_FMASK;
1076 
1077 	if (val & GP_INT1_FMASK) {
1078 		val ^= GP_INT1_FMASK;
1079 		gsi_isr_gp_int1(gsi);
1080 	}
1081 
1082 	if (val)
1083 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1084 }
1085 
1086 /* I/O completion interrupt event */
1087 static void gsi_isr_ieob(struct gsi *gsi)
1088 {
1089 	u32 event_mask;
1090 
1091 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1092 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1093 
1094 	while (event_mask) {
1095 		u32 evt_ring_id = __ffs(event_mask);
1096 
1097 		event_mask ^= BIT(evt_ring_id);
1098 
1099 		gsi_irq_ieob_disable(gsi, evt_ring_id);
1100 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1101 	}
1102 }
1103 
1104 /* General event interrupts represent serious problems, so report them */
1105 static void gsi_isr_general(struct gsi *gsi)
1106 {
1107 	struct device *dev = gsi->dev;
1108 	u32 val;
1109 
1110 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1111 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1112 
1113 	if (val)
1114 		dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1115 }
1116 
1117 /**
1118  * gsi_isr() - Top level GSI interrupt service routine
1119  * @irq:	Interrupt number (ignored)
1120  * @dev_id:	GSI pointer supplied to request_irq()
1121  *
1122  * This is the main handler function registered for the GSI IRQ. Each type
1123  * of interrupt has a separate handler function that is called from here.
1124  */
1125 static irqreturn_t gsi_isr(int irq, void *dev_id)
1126 {
1127 	struct gsi *gsi = dev_id;
1128 	u32 intr_mask;
1129 	u32 cnt = 0;
1130 
1131 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1132 		/* intr_mask contains bitmask of pending GSI interrupts */
1133 		do {
1134 			u32 gsi_intr = BIT(__ffs(intr_mask));
1135 
1136 			intr_mask ^= gsi_intr;
1137 
1138 			switch (gsi_intr) {
1139 			case CH_CTRL_FMASK:
1140 				gsi_isr_chan_ctrl(gsi);
1141 				break;
1142 			case EV_CTRL_FMASK:
1143 				gsi_isr_evt_ctrl(gsi);
1144 				break;
1145 			case GLOB_EE_FMASK:
1146 				gsi_isr_glob_ee(gsi);
1147 				break;
1148 			case IEOB_FMASK:
1149 				gsi_isr_ieob(gsi);
1150 				break;
1151 			case GENERAL_FMASK:
1152 				gsi_isr_general(gsi);
1153 				break;
1154 			default:
1155 				dev_err(gsi->dev,
1156 					"unrecognized interrupt type 0x%08x\n",
1157 					gsi_intr);
1158 				break;
1159 			}
1160 		} while (intr_mask);
1161 
1162 		if (++cnt > GSI_ISR_MAX_ITER) {
1163 			dev_err(gsi->dev, "interrupt flood\n");
1164 			break;
1165 		}
1166 	}
1167 
1168 	return IRQ_HANDLED;
1169 }
1170 
1171 /* Return the transaction associated with a transfer completion event */
1172 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1173 					 struct gsi_event *event)
1174 {
1175 	u32 tre_offset;
1176 	u32 tre_index;
1177 
1178 	/* Event xfer_ptr records the TRE it's associated with */
1179 	tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
1180 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1181 
1182 	return gsi_channel_trans_mapped(channel, tre_index);
1183 }
1184 
1185 /**
1186  * gsi_evt_ring_rx_update() - Record lengths of received data
1187  * @evt_ring:	Event ring associated with channel that received packets
1188  * @index:	Event index in ring reported by hardware
1189  *
1190  * Events for RX channels contain the actual number of bytes received into
1191  * the buffer.  Every event has a transaction associated with it, and here
1192  * we update transactions to record their actual received lengths.
1193  *
1194  * This function is called whenever we learn that the GSI hardware has filled
1195  * new events since the last time we checked.  The ring's index field tells
1196  * the first entry in need of processing.  The index provided is the
1197  * first *unfilled* event in the ring (following the last filled one).
1198  *
1199  * Events are sequential within the event ring, and transactions are
1200  * sequential within the transaction pool.
1201  *
1202  * Note that @index always refers to an element *within* the event ring.
1203  */
1204 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1205 {
1206 	struct gsi_channel *channel = evt_ring->channel;
1207 	struct gsi_ring *ring = &evt_ring->ring;
1208 	struct gsi_trans_info *trans_info;
1209 	struct gsi_event *event_done;
1210 	struct gsi_event *event;
1211 	struct gsi_trans *trans;
1212 	u32 byte_count = 0;
1213 	u32 old_index;
1214 	u32 event_avail;
1215 
1216 	trans_info = &channel->trans_info;
1217 
1218 	/* We'll start with the oldest un-processed event.  RX channels
1219 	 * replenish receive buffers in single-TRE transactions, so we
1220 	 * can just map that event to its transaction.  Transactions
1221 	 * associated with completion events are consecutive.
1222 	 */
1223 	old_index = ring->index;
1224 	event = gsi_ring_virt(ring, old_index);
1225 	trans = gsi_event_trans(channel, event);
1226 
1227 	/* Compute the number of events to process before we wrap,
1228 	 * and determine when we'll be done processing events.
1229 	 */
1230 	event_avail = ring->count - old_index % ring->count;
1231 	event_done = gsi_ring_virt(ring, index);
1232 	do {
1233 		trans->len = __le16_to_cpu(event->len);
1234 		byte_count += trans->len;
1235 
1236 		/* Move on to the next event and transaction */
1237 		if (--event_avail)
1238 			event++;
1239 		else
1240 			event = gsi_ring_virt(ring, 0);
1241 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1242 	} while (event != event_done);
1243 
1244 	/* We record RX bytes when they are received */
1245 	channel->byte_count += byte_count;
1246 	channel->trans_count++;
1247 }
1248 
1249 /* Initialize a ring, including allocating DMA memory for its entries */
1250 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1251 {
1252 	size_t size = count * GSI_RING_ELEMENT_SIZE;
1253 	struct device *dev = gsi->dev;
1254 	dma_addr_t addr;
1255 
1256 	/* Hardware requires a 2^n ring size, with alignment equal to size */
1257 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1258 	if (ring->virt && addr % size) {
1259 		dma_free_coherent(dev, size, ring->virt, ring->addr);
1260 		dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
1261 			size);
1262 		return -EINVAL;	/* Not a good error value, but distinct */
1263 	} else if (!ring->virt) {
1264 		return -ENOMEM;
1265 	}
1266 	ring->addr = addr;
1267 	ring->count = count;
1268 
1269 	return 0;
1270 }
1271 
1272 /* Free a previously-allocated ring */
1273 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1274 {
1275 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1276 
1277 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1278 }
1279 
1280 /* Allocate an available event ring id */
1281 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1282 {
1283 	u32 evt_ring_id;
1284 
1285 	if (gsi->event_bitmap == ~0U) {
1286 		dev_err(gsi->dev, "event rings exhausted\n");
1287 		return -ENOSPC;
1288 	}
1289 
1290 	evt_ring_id = ffz(gsi->event_bitmap);
1291 	gsi->event_bitmap |= BIT(evt_ring_id);
1292 
1293 	return (int)evt_ring_id;
1294 }
1295 
1296 /* Free a previously-allocated event ring id */
1297 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1298 {
1299 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1300 }
1301 
1302 /* Ring a channel doorbell, reporting the first un-filled entry */
1303 void gsi_channel_doorbell(struct gsi_channel *channel)
1304 {
1305 	struct gsi_ring *tre_ring = &channel->tre_ring;
1306 	u32 channel_id = gsi_channel_id(channel);
1307 	struct gsi *gsi = channel->gsi;
1308 	u32 val;
1309 
1310 	/* Note: index *must* be used modulo the ring count here */
1311 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1312 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1313 }
1314 
1315 /* Consult hardware, move any newly completed transactions to completed list */
1316 static void gsi_channel_update(struct gsi_channel *channel)
1317 {
1318 	u32 evt_ring_id = channel->evt_ring_id;
1319 	struct gsi *gsi = channel->gsi;
1320 	struct gsi_evt_ring *evt_ring;
1321 	struct gsi_trans *trans;
1322 	struct gsi_ring *ring;
1323 	u32 offset;
1324 	u32 index;
1325 
1326 	evt_ring = &gsi->evt_ring[evt_ring_id];
1327 	ring = &evt_ring->ring;
1328 
1329 	/* See if there's anything new to process; if not, we're done.  Note
1330 	 * that index always refers to an entry *within* the event ring.
1331 	 */
1332 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1333 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1334 	if (index == ring->index % ring->count)
1335 		return;
1336 
1337 	/* Get the transaction for the latest completed event.  Take a
1338 	 * reference to keep it from completing before we give the events
1339 	 * for this and previous transactions back to the hardware.
1340 	 */
1341 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1342 	refcount_inc(&trans->refcount);
1343 
1344 	/* For RX channels, update each completed transaction with the number
1345 	 * of bytes that were actually received.  For TX channels, report
1346 	 * the number of transactions and bytes this completion represents
1347 	 * up the network stack.
1348 	 */
1349 	if (channel->toward_ipa)
1350 		gsi_channel_tx_update(channel, trans);
1351 	else
1352 		gsi_evt_ring_rx_update(evt_ring, index);
1353 
1354 	gsi_trans_move_complete(trans);
1355 
1356 	/* Tell the hardware we've handled these events */
1357 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1358 
1359 	gsi_trans_free(trans);
1360 }
1361 
1362 /**
1363  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1364  * @channel:	Channel to be polled
1365  *
1366  * Return:	Transaction pointer, or null if none are available
1367  *
1368  * This function returns the first entry on a channel's completed transaction
1369  * list.  If that list is empty, the hardware is consulted to determine
1370  * whether any new transactions have completed.  If so, they're moved to the
1371  * completed list and the new first entry is returned.  If there are no more
1372  * completed transactions, a null pointer is returned.
1373  */
1374 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1375 {
1376 	struct gsi_trans *trans;
1377 
1378 	/* Get the first transaction from the completed list */
1379 	trans = gsi_channel_trans_complete(channel);
1380 	if (!trans) {
1381 		/* List is empty; see if there's more to do */
1382 		gsi_channel_update(channel);
1383 		trans = gsi_channel_trans_complete(channel);
1384 	}
1385 
1386 	if (trans)
1387 		gsi_trans_move_polled(trans);
1388 
1389 	return trans;
1390 }
1391 
1392 /**
1393  * gsi_channel_poll() - NAPI poll function for a channel
1394  * @napi:	NAPI structure for the channel
1395  * @budget:	Budget supplied by NAPI core
1396  *
1397  * Return:	Number of items polled (<= budget)
1398  *
1399  * Single transactions completed by hardware are polled until either
1400  * the budget is exhausted, or there are no more.  Each transaction
1401  * polled is passed to gsi_trans_complete(), to perform remaining
1402  * completion processing and retire/free the transaction.
1403  */
1404 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1405 {
1406 	struct gsi_channel *channel;
1407 	int count = 0;
1408 
1409 	channel = container_of(napi, struct gsi_channel, napi);
1410 	while (count < budget) {
1411 		struct gsi_trans *trans;
1412 
1413 		count++;
1414 		trans = gsi_channel_poll_one(channel);
1415 		if (!trans)
1416 			break;
1417 		gsi_trans_complete(trans);
1418 	}
1419 
1420 	if (count < budget) {
1421 		napi_complete(&channel->napi);
1422 		gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
1423 	}
1424 
1425 	return count;
1426 }
1427 
1428 /* The event bitmap represents which event ids are available for allocation.
1429  * Set bits are not available, clear bits can be used.  This function
1430  * initializes the map so all events supported by the hardware are available,
1431  * then precludes any reserved events from being allocated.
1432  */
1433 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1434 {
1435 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1436 
1437 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1438 
1439 	return event_bitmap;
1440 }
1441 
1442 /* Setup function for event rings */
1443 static void gsi_evt_ring_setup(struct gsi *gsi)
1444 {
1445 	/* Nothing to do */
1446 }
1447 
1448 /* Inverse of gsi_evt_ring_setup() */
1449 static void gsi_evt_ring_teardown(struct gsi *gsi)
1450 {
1451 	/* Nothing to do */
1452 }
1453 
1454 /* Setup function for a single channel */
1455 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id,
1456 				 bool legacy)
1457 {
1458 	struct gsi_channel *channel = &gsi->channel[channel_id];
1459 	u32 evt_ring_id = channel->evt_ring_id;
1460 	int ret;
1461 
1462 	if (!channel->gsi)
1463 		return 0;	/* Ignore uninitialized channels */
1464 
1465 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1466 	if (ret)
1467 		return ret;
1468 
1469 	gsi_evt_ring_program(gsi, evt_ring_id);
1470 
1471 	ret = gsi_channel_alloc_command(gsi, channel_id);
1472 	if (ret)
1473 		goto err_evt_ring_de_alloc;
1474 
1475 	gsi_channel_program(channel, legacy);
1476 
1477 	if (channel->toward_ipa)
1478 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1479 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1480 	else
1481 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1482 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1483 
1484 	return 0;
1485 
1486 err_evt_ring_de_alloc:
1487 	/* We've done nothing with the event ring yet so don't reset */
1488 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1489 
1490 	return ret;
1491 }
1492 
1493 /* Inverse of gsi_channel_setup_one() */
1494 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1495 {
1496 	struct gsi_channel *channel = &gsi->channel[channel_id];
1497 	u32 evt_ring_id = channel->evt_ring_id;
1498 
1499 	if (!channel->gsi)
1500 		return;		/* Ignore uninitialized channels */
1501 
1502 	netif_napi_del(&channel->napi);
1503 
1504 	gsi_channel_deprogram(channel);
1505 	gsi_channel_de_alloc_command(gsi, channel_id);
1506 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1507 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1508 }
1509 
1510 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1511 			       enum gsi_generic_cmd_opcode opcode)
1512 {
1513 	struct completion *completion = &gsi->completion;
1514 	u32 val;
1515 
1516 	/* First zero the result code field */
1517 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1518 	val &= ~GENERIC_EE_RESULT_FMASK;
1519 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1520 
1521 	/* Now issue the command */
1522 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1523 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1524 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1525 
1526 	if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion))
1527 		return 0;	/* Success! */
1528 
1529 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1530 		opcode, channel_id);
1531 
1532 	return -ETIMEDOUT;
1533 }
1534 
1535 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1536 {
1537 	return gsi_generic_command(gsi, channel_id,
1538 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1539 }
1540 
1541 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1542 {
1543 	int ret;
1544 
1545 	ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL);
1546 	if (ret)
1547 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1548 			ret, channel_id);
1549 }
1550 
1551 /* Setup function for channels */
1552 static int gsi_channel_setup(struct gsi *gsi, bool legacy)
1553 {
1554 	u32 channel_id = 0;
1555 	u32 mask;
1556 	int ret;
1557 
1558 	gsi_evt_ring_setup(gsi);
1559 	gsi_irq_enable(gsi);
1560 
1561 	mutex_lock(&gsi->mutex);
1562 
1563 	do {
1564 		ret = gsi_channel_setup_one(gsi, channel_id, legacy);
1565 		if (ret)
1566 			goto err_unwind;
1567 	} while (++channel_id < gsi->channel_count);
1568 
1569 	/* Make sure no channels were defined that hardware does not support */
1570 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1571 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1572 
1573 		if (!channel->gsi)
1574 			continue;	/* Ignore uninitialized channels */
1575 
1576 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1577 			channel_id - 1);
1578 		channel_id = gsi->channel_count;
1579 		goto err_unwind;
1580 	}
1581 
1582 	/* Allocate modem channels if necessary */
1583 	mask = gsi->modem_channel_bitmap;
1584 	while (mask) {
1585 		u32 modem_channel_id = __ffs(mask);
1586 
1587 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1588 		if (ret)
1589 			goto err_unwind_modem;
1590 
1591 		/* Clear bit from mask only after success (for unwind) */
1592 		mask ^= BIT(modem_channel_id);
1593 	}
1594 
1595 	mutex_unlock(&gsi->mutex);
1596 
1597 	return 0;
1598 
1599 err_unwind_modem:
1600 	/* Compute which modem channels need to be deallocated */
1601 	mask ^= gsi->modem_channel_bitmap;
1602 	while (mask) {
1603 		channel_id = __fls(mask);
1604 
1605 		mask ^= BIT(channel_id);
1606 
1607 		gsi_modem_channel_halt(gsi, channel_id);
1608 	}
1609 
1610 err_unwind:
1611 	while (channel_id--)
1612 		gsi_channel_teardown_one(gsi, channel_id);
1613 
1614 	mutex_unlock(&gsi->mutex);
1615 
1616 	gsi_irq_disable(gsi);
1617 	gsi_evt_ring_teardown(gsi);
1618 
1619 	return ret;
1620 }
1621 
1622 /* Inverse of gsi_channel_setup() */
1623 static void gsi_channel_teardown(struct gsi *gsi)
1624 {
1625 	u32 mask = gsi->modem_channel_bitmap;
1626 	u32 channel_id;
1627 
1628 	mutex_lock(&gsi->mutex);
1629 
1630 	while (mask) {
1631 		channel_id = __fls(mask);
1632 
1633 		mask ^= BIT(channel_id);
1634 
1635 		gsi_modem_channel_halt(gsi, channel_id);
1636 	}
1637 
1638 	channel_id = gsi->channel_count - 1;
1639 	do
1640 		gsi_channel_teardown_one(gsi, channel_id);
1641 	while (channel_id--);
1642 
1643 	mutex_unlock(&gsi->mutex);
1644 
1645 	gsi_irq_disable(gsi);
1646 	gsi_evt_ring_teardown(gsi);
1647 }
1648 
1649 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1650 int gsi_setup(struct gsi *gsi, bool legacy)
1651 {
1652 	struct device *dev = gsi->dev;
1653 	u32 val;
1654 
1655 	/* Here is where we first touch the GSI hardware */
1656 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1657 	if (!(val & ENABLED_FMASK)) {
1658 		dev_err(dev, "GSI has not been enabled\n");
1659 		return -EIO;
1660 	}
1661 
1662 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1663 
1664 	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1665 	if (!gsi->channel_count) {
1666 		dev_err(dev, "GSI reports zero channels supported\n");
1667 		return -EINVAL;
1668 	}
1669 	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1670 		dev_warn(dev,
1671 			 "limiting to %u channels; hardware supports %u\n",
1672 			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1673 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1674 	}
1675 
1676 	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1677 	if (!gsi->evt_ring_count) {
1678 		dev_err(dev, "GSI reports zero event rings supported\n");
1679 		return -EINVAL;
1680 	}
1681 	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1682 		dev_warn(dev,
1683 			 "limiting to %u event rings; hardware supports %u\n",
1684 			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1685 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1686 	}
1687 
1688 	/* Initialize the error log */
1689 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1690 
1691 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1692 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1693 
1694 	return gsi_channel_setup(gsi, legacy);
1695 }
1696 
1697 /* Inverse of gsi_setup() */
1698 void gsi_teardown(struct gsi *gsi)
1699 {
1700 	gsi_channel_teardown(gsi);
1701 }
1702 
1703 /* Initialize a channel's event ring */
1704 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1705 {
1706 	struct gsi *gsi = channel->gsi;
1707 	struct gsi_evt_ring *evt_ring;
1708 	int ret;
1709 
1710 	ret = gsi_evt_ring_id_alloc(gsi);
1711 	if (ret < 0)
1712 		return ret;
1713 	channel->evt_ring_id = ret;
1714 
1715 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1716 	evt_ring->channel = channel;
1717 
1718 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1719 	if (!ret)
1720 		return 0;	/* Success! */
1721 
1722 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1723 		ret, gsi_channel_id(channel));
1724 
1725 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1726 
1727 	return ret;
1728 }
1729 
1730 /* Inverse of gsi_channel_evt_ring_init() */
1731 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1732 {
1733 	u32 evt_ring_id = channel->evt_ring_id;
1734 	struct gsi *gsi = channel->gsi;
1735 	struct gsi_evt_ring *evt_ring;
1736 
1737 	evt_ring = &gsi->evt_ring[evt_ring_id];
1738 	gsi_ring_free(gsi, &evt_ring->ring);
1739 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1740 }
1741 
1742 /* Init function for event rings */
1743 static void gsi_evt_ring_init(struct gsi *gsi)
1744 {
1745 	u32 evt_ring_id = 0;
1746 
1747 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1748 	gsi->event_enable_bitmap = 0;
1749 	do
1750 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1751 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1752 }
1753 
1754 /* Inverse of gsi_evt_ring_init() */
1755 static void gsi_evt_ring_exit(struct gsi *gsi)
1756 {
1757 	/* Nothing to do */
1758 }
1759 
1760 static bool gsi_channel_data_valid(struct gsi *gsi,
1761 				   const struct ipa_gsi_endpoint_data *data)
1762 {
1763 #ifdef IPA_VALIDATION
1764 	u32 channel_id = data->channel_id;
1765 	struct device *dev = gsi->dev;
1766 
1767 	/* Make sure channel ids are in the range driver supports */
1768 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1769 		dev_err(dev, "bad channel id %u; must be less than %u\n",
1770 			channel_id, GSI_CHANNEL_COUNT_MAX);
1771 		return false;
1772 	}
1773 
1774 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1775 		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
1776 		return false;
1777 	}
1778 
1779 	if (!data->channel.tlv_count ||
1780 	    data->channel.tlv_count > GSI_TLV_MAX) {
1781 		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
1782 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1783 		return false;
1784 	}
1785 
1786 	/* We have to allow at least one maximally-sized transaction to
1787 	 * be outstanding (which would use tlv_count TREs).  Given how
1788 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
1789 	 * twice the TLV FIFO size to satisfy this requirement.
1790 	 */
1791 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1792 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1793 			channel_id, data->channel.tlv_count,
1794 			data->channel.tre_count);
1795 		return false;
1796 	}
1797 
1798 	if (!is_power_of_2(data->channel.tre_count)) {
1799 		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
1800 			channel_id, data->channel.tre_count);
1801 		return false;
1802 	}
1803 
1804 	if (!is_power_of_2(data->channel.event_count)) {
1805 		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
1806 			channel_id, data->channel.event_count);
1807 		return false;
1808 	}
1809 #endif /* IPA_VALIDATION */
1810 
1811 	return true;
1812 }
1813 
1814 /* Init function for a single channel */
1815 static int gsi_channel_init_one(struct gsi *gsi,
1816 				const struct ipa_gsi_endpoint_data *data,
1817 				bool command, bool prefetch)
1818 {
1819 	struct gsi_channel *channel;
1820 	u32 tre_count;
1821 	int ret;
1822 
1823 	if (!gsi_channel_data_valid(gsi, data))
1824 		return -EINVAL;
1825 
1826 	/* Worst case we need an event for every outstanding TRE */
1827 	if (data->channel.tre_count > data->channel.event_count) {
1828 		tre_count = data->channel.event_count;
1829 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
1830 			 data->channel_id, tre_count);
1831 	} else {
1832 		tre_count = data->channel.tre_count;
1833 	}
1834 
1835 	channel = &gsi->channel[data->channel_id];
1836 	memset(channel, 0, sizeof(*channel));
1837 
1838 	channel->gsi = gsi;
1839 	channel->toward_ipa = data->toward_ipa;
1840 	channel->command = command;
1841 	channel->use_prefetch = command && prefetch;
1842 	channel->tlv_count = data->channel.tlv_count;
1843 	channel->tre_count = tre_count;
1844 	channel->event_count = data->channel.event_count;
1845 	init_completion(&channel->completion);
1846 
1847 	ret = gsi_channel_evt_ring_init(channel);
1848 	if (ret)
1849 		goto err_clear_gsi;
1850 
1851 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
1852 	if (ret) {
1853 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
1854 			ret, data->channel_id);
1855 		goto err_channel_evt_ring_exit;
1856 	}
1857 
1858 	ret = gsi_channel_trans_init(gsi, data->channel_id);
1859 	if (ret)
1860 		goto err_ring_free;
1861 
1862 	if (command) {
1863 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
1864 
1865 		ret = ipa_cmd_pool_init(channel, tre_max);
1866 	}
1867 	if (!ret)
1868 		return 0;	/* Success! */
1869 
1870 	gsi_channel_trans_exit(channel);
1871 err_ring_free:
1872 	gsi_ring_free(gsi, &channel->tre_ring);
1873 err_channel_evt_ring_exit:
1874 	gsi_channel_evt_ring_exit(channel);
1875 err_clear_gsi:
1876 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
1877 
1878 	return ret;
1879 }
1880 
1881 /* Inverse of gsi_channel_init_one() */
1882 static void gsi_channel_exit_one(struct gsi_channel *channel)
1883 {
1884 	if (!channel->gsi)
1885 		return;		/* Ignore uninitialized channels */
1886 
1887 	if (channel->command)
1888 		ipa_cmd_pool_exit(channel);
1889 	gsi_channel_trans_exit(channel);
1890 	gsi_ring_free(channel->gsi, &channel->tre_ring);
1891 	gsi_channel_evt_ring_exit(channel);
1892 }
1893 
1894 /* Init function for channels */
1895 static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count,
1896 			    const struct ipa_gsi_endpoint_data *data,
1897 			    bool modem_alloc)
1898 {
1899 	int ret = 0;
1900 	u32 i;
1901 
1902 	gsi_evt_ring_init(gsi);
1903 
1904 	/* The endpoint data array is indexed by endpoint name */
1905 	for (i = 0; i < count; i++) {
1906 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
1907 
1908 		if (ipa_gsi_endpoint_data_empty(&data[i]))
1909 			continue;	/* Skip over empty slots */
1910 
1911 		/* Mark modem channels to be allocated (hardware workaround) */
1912 		if (data[i].ee_id == GSI_EE_MODEM) {
1913 			if (modem_alloc)
1914 				gsi->modem_channel_bitmap |=
1915 						BIT(data[i].channel_id);
1916 			continue;
1917 		}
1918 
1919 		ret = gsi_channel_init_one(gsi, &data[i], command, prefetch);
1920 		if (ret)
1921 			goto err_unwind;
1922 	}
1923 
1924 	return ret;
1925 
1926 err_unwind:
1927 	while (i--) {
1928 		if (ipa_gsi_endpoint_data_empty(&data[i]))
1929 			continue;
1930 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
1931 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
1932 			continue;
1933 		}
1934 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
1935 	}
1936 	gsi_evt_ring_exit(gsi);
1937 
1938 	return ret;
1939 }
1940 
1941 /* Inverse of gsi_channel_init() */
1942 static void gsi_channel_exit(struct gsi *gsi)
1943 {
1944 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
1945 
1946 	do
1947 		gsi_channel_exit_one(&gsi->channel[channel_id]);
1948 	while (channel_id--);
1949 	gsi->modem_channel_bitmap = 0;
1950 
1951 	gsi_evt_ring_exit(gsi);
1952 }
1953 
1954 /* Init function for GSI.  GSI hardware does not need to be "ready" */
1955 int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch,
1956 	     u32 count, const struct ipa_gsi_endpoint_data *data,
1957 	     bool modem_alloc)
1958 {
1959 	struct device *dev = &pdev->dev;
1960 	struct resource *res;
1961 	resource_size_t size;
1962 	unsigned int irq;
1963 	int ret;
1964 
1965 	gsi_validate_build();
1966 
1967 	gsi->dev = dev;
1968 
1969 	/* The GSI layer performs NAPI on all endpoints.  NAPI requires a
1970 	 * network device structure, but the GSI layer does not have one,
1971 	 * so we must create a dummy network device for this purpose.
1972 	 */
1973 	init_dummy_netdev(&gsi->dummy_dev);
1974 
1975 	ret = platform_get_irq_byname(pdev, "gsi");
1976 	if (ret <= 0) {
1977 		dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret);
1978 		return ret ? : -EINVAL;
1979 	}
1980 	irq = ret;
1981 
1982 	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1983 	if (ret) {
1984 		dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1985 		return ret;
1986 	}
1987 	gsi->irq = irq;
1988 
1989 	/* Get GSI memory range and map it */
1990 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
1991 	if (!res) {
1992 		dev_err(dev, "DT error getting \"gsi\" memory property\n");
1993 		ret = -ENODEV;
1994 		goto err_free_irq;
1995 	}
1996 
1997 	size = resource_size(res);
1998 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
1999 		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2000 		ret = -EINVAL;
2001 		goto err_free_irq;
2002 	}
2003 
2004 	gsi->virt = ioremap(res->start, size);
2005 	if (!gsi->virt) {
2006 		dev_err(dev, "unable to remap \"gsi\" memory\n");
2007 		ret = -ENOMEM;
2008 		goto err_free_irq;
2009 	}
2010 
2011 	ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc);
2012 	if (ret)
2013 		goto err_iounmap;
2014 
2015 	mutex_init(&gsi->mutex);
2016 	init_completion(&gsi->completion);
2017 
2018 	return 0;
2019 
2020 err_iounmap:
2021 	iounmap(gsi->virt);
2022 err_free_irq:
2023 	free_irq(gsi->irq, gsi);
2024 
2025 	return ret;
2026 }
2027 
2028 /* Inverse of gsi_init() */
2029 void gsi_exit(struct gsi *gsi)
2030 {
2031 	mutex_destroy(&gsi->mutex);
2032 	gsi_channel_exit(gsi);
2033 	free_irq(gsi->irq, gsi);
2034 	iounmap(gsi->virt);
2035 }
2036 
2037 /* The maximum number of outstanding TREs on a channel.  This limits
2038  * a channel's maximum number of transactions outstanding (worst case
2039  * is one TRE per transaction).
2040  *
2041  * The absolute limit is the number of TREs in the channel's TRE ring,
2042  * and in theory we should be able use all of them.  But in practice,
2043  * doing that led to the hardware reporting exhaustion of event ring
2044  * slots for writing completion information.  So the hardware limit
2045  * would be (tre_count - 1).
2046  *
2047  * We reduce it a bit further though.  Transaction resource pools are
2048  * sized to be a little larger than this maximum, to allow resource
2049  * allocations to always be contiguous.  The number of entries in a
2050  * TRE ring buffer is a power of 2, and the extra resources in a pool
2051  * tends to nearly double the memory allocated for it.  Reducing the
2052  * maximum number of outstanding TREs allows the number of entries in
2053  * a pool to avoid crossing that power-of-2 boundary, and this can
2054  * substantially reduce pool memory requirements.  The number we
2055  * reduce it by matches the number added in gsi_trans_pool_init().
2056  */
2057 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2058 {
2059 	struct gsi_channel *channel = &gsi->channel[channel_id];
2060 
2061 	/* Hardware limit is channel->tre_count - 1 */
2062 	return channel->tre_count - (channel->tlv_count - 1);
2063 }
2064 
2065 /* Returns the maximum number of TREs in a single transaction for a channel */
2066 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2067 {
2068 	struct gsi_channel *channel = &gsi->channel[channel_id];
2069 
2070 	return channel->tlv_count;
2071 }
2072