xref: /openbmc/linux/drivers/net/ipa/gsi.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2022 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25 
26 /**
27  * DOC: The IPA Generic Software Interface
28  *
29  * The generic software interface (GSI) is an integral component of the IPA,
30  * providing a well-defined communication layer between the AP subsystem
31  * and the IPA core.  The modem uses the GSI layer as well.
32  *
33  *	--------	     ---------
34  *	|      |	     |	     |
35  *	|  AP  +<---.	.----+ Modem |
36  *	|      +--. |	| .->+	     |
37  *	|      |  | |	| |  |	     |
38  *	--------  | |	| |  ---------
39  *		  v |	v |
40  *		--+-+---+-+--
41  *		|    GSI    |
42  *		|-----------|
43  *		|	    |
44  *		|    IPA    |
45  *		|	    |
46  *		-------------
47  *
48  * In the above diagram, the AP and Modem represent "execution environments"
49  * (EEs), which are independent operating environments that use the IPA for
50  * data transfer.
51  *
52  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53  * of data to or from the IPA.  A channel is implemented as a ring buffer,
54  * with a DRAM-resident array of "transfer elements" (TREs) available to
55  * describe transfers to or from other EEs through the IPA.  A transfer
56  * element can also contain an immediate command, requesting the IPA perform
57  * actions other than data transfer.
58  *
59  * Each TRE refers to a block of data--also located in DRAM.  After writing
60  * one or more TREs to a channel, the writer (either the IPA or an EE) writes
61  * a doorbell register to inform the receiving side how many elements have
62  * been written.
63  *
64  * Each channel has a GSI "event ring" associated with it.  An event ring
65  * is implemented very much like a channel ring, but is always directed from
66  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
67  * events by adding an entry to the event ring associated with the channel.
68  * The GSI then writes its doorbell for the event ring, causing the target
69  * EE to be interrupted.  Each entry in an event ring contains a pointer
70  * to the channel TRE whose completion the event represents.
71  *
72  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
73  * the completion of the transfer operation generates an entry (and possibly
74  * an interrupt) in the channel's event ring.  Other flags allow transfer
75  * elements to be chained together, forming a single logical transaction.
76  * TRE flags are used to control whether and when interrupts are generated
77  * to signal completion of channel transfers.
78  *
79  * Elements in channel and event rings are completed (or consumed) strictly
80  * in order.  Completion of one entry implies the completion of all preceding
81  * entries.  A single completion interrupt can therefore communicate the
82  * completion of many transfers.
83  *
84  * Note that all GSI registers are little-endian, which is the assumed
85  * endianness of I/O space accesses.  The accessor functions perform byte
86  * swapping if needed (i.e., for a big endian CPU).
87  */
88 
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
91 
92 #define GSI_CMD_TIMEOUT			50	/* milliseconds */
93 
94 #define GSI_CHANNEL_STOP_RETRIES	10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES	10
96 #define GSI_CHANNEL_MODEM_FLOW_RETRIES	5	/* disable flow control only */
97 
98 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
99 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
100 
101 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
102 
103 /* An entry in an event ring */
104 struct gsi_event {
105 	__le64 xfer_ptr;
106 	__le16 len;
107 	u8 reserved1;
108 	u8 code;
109 	__le16 reserved2;
110 	u8 type;
111 	u8 chid;
112 };
113 
114 /** gsi_channel_scratch_gpi - GPI protocol scratch register
115  * @max_outstanding_tre:
116  *	Defines the maximum number of TREs allowed in a single transaction
117  *	on a channel (in bytes).  This determines the amount of prefetch
118  *	performed by the hardware.  We configure this to equal the size of
119  *	the TLV FIFO for the channel.
120  * @outstanding_threshold:
121  *	Defines the threshold (in bytes) determining when the sequencer
122  *	should update the channel doorbell.  We configure this to equal
123  *	the size of two TREs.
124  */
125 struct gsi_channel_scratch_gpi {
126 	u64 reserved1;
127 	u16 reserved2;
128 	u16 max_outstanding_tre;
129 	u16 reserved3;
130 	u16 outstanding_threshold;
131 };
132 
133 /** gsi_channel_scratch - channel scratch configuration area
134  *
135  * The exact interpretation of this register is protocol-specific.
136  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
137  */
138 union gsi_channel_scratch {
139 	struct gsi_channel_scratch_gpi gpi;
140 	struct {
141 		u32 word1;
142 		u32 word2;
143 		u32 word3;
144 		u32 word4;
145 	} data;
146 };
147 
148 /* Check things that can be validated at build time. */
149 static void gsi_validate_build(void)
150 {
151 	/* This is used as a divisor */
152 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
153 
154 	/* Code assumes the size of channel and event ring element are
155 	 * the same (and fixed).  Make sure the size of an event ring
156 	 * element is what's expected.
157 	 */
158 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
159 
160 	/* Hardware requires a 2^n ring size.  We ensure the number of
161 	 * elements in an event ring is a power of 2 elsewhere; this
162 	 * ensure the elements themselves meet the requirement.
163 	 */
164 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
165 
166 	/* The channel element size must fit in this field */
167 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
168 
169 	/* The event ring element size must fit in this field */
170 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
171 }
172 
173 /* Return the channel id associated with a given channel */
174 static u32 gsi_channel_id(struct gsi_channel *channel)
175 {
176 	return channel - &channel->gsi->channel[0];
177 }
178 
179 /* An initialized channel has a non-null GSI pointer */
180 static bool gsi_channel_initialized(struct gsi_channel *channel)
181 {
182 	return !!channel->gsi;
183 }
184 
185 /* Update the GSI IRQ type register with the cached value */
186 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
187 {
188 	gsi->type_enabled_bitmap = val;
189 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
190 }
191 
192 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
193 {
194 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
195 }
196 
197 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
198 {
199 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
200 }
201 
202 /* Event ring commands are performed one at a time.  Their completion
203  * is signaled by the event ring control GSI interrupt type, which is
204  * only enabled when we issue an event ring command.  Only the event
205  * ring being operated on has this interrupt enabled.
206  */
207 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
208 {
209 	u32 val = BIT(evt_ring_id);
210 
211 	/* There's a small chance that a previous command completed
212 	 * after the interrupt was disabled, so make sure we have no
213 	 * pending interrupts before we enable them.
214 	 */
215 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
216 
217 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
218 	gsi_irq_type_enable(gsi, GSI_EV_CTRL);
219 }
220 
221 /* Disable event ring control interrupts */
222 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
223 {
224 	gsi_irq_type_disable(gsi, GSI_EV_CTRL);
225 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
226 }
227 
228 /* Channel commands are performed one at a time.  Their completion is
229  * signaled by the channel control GSI interrupt type, which is only
230  * enabled when we issue a channel command.  Only the channel being
231  * operated on has this interrupt enabled.
232  */
233 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
234 {
235 	u32 val = BIT(channel_id);
236 
237 	/* There's a small chance that a previous command completed
238 	 * after the interrupt was disabled, so make sure we have no
239 	 * pending interrupts before we enable them.
240 	 */
241 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
242 
243 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
244 	gsi_irq_type_enable(gsi, GSI_CH_CTRL);
245 }
246 
247 /* Disable channel control interrupts */
248 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
249 {
250 	gsi_irq_type_disable(gsi, GSI_CH_CTRL);
251 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
252 }
253 
254 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
255 {
256 	bool enable_ieob = !gsi->ieob_enabled_bitmap;
257 	u32 val;
258 
259 	gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
260 	val = gsi->ieob_enabled_bitmap;
261 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
262 
263 	/* Enable the interrupt type if this is the first channel enabled */
264 	if (enable_ieob)
265 		gsi_irq_type_enable(gsi, GSI_IEOB);
266 }
267 
268 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
269 {
270 	u32 val;
271 
272 	gsi->ieob_enabled_bitmap &= ~event_mask;
273 
274 	/* Disable the interrupt type if this was the last enabled channel */
275 	if (!gsi->ieob_enabled_bitmap)
276 		gsi_irq_type_disable(gsi, GSI_IEOB);
277 
278 	val = gsi->ieob_enabled_bitmap;
279 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
280 }
281 
282 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
283 {
284 	gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
285 }
286 
287 /* Enable all GSI_interrupt types */
288 static void gsi_irq_enable(struct gsi *gsi)
289 {
290 	u32 val;
291 
292 	/* Global interrupts include hardware error reports.  Enable
293 	 * that so we can at least report the error should it occur.
294 	 */
295 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
296 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
297 
298 	/* General GSI interrupts are reported to all EEs; if they occur
299 	 * they are unrecoverable (without reset).  A breakpoint interrupt
300 	 * also exists, but we don't support that.  We want to be notified
301 	 * of errors so we can report them, even if they can't be handled.
302 	 */
303 	val = BIT(BUS_ERROR);
304 	val |= BIT(CMD_FIFO_OVRFLOW);
305 	val |= BIT(MCS_STACK_OVRFLOW);
306 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
307 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
308 }
309 
310 /* Disable all GSI interrupt types */
311 static void gsi_irq_disable(struct gsi *gsi)
312 {
313 	gsi_irq_type_update(gsi, 0);
314 
315 	/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
316 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
317 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
318 }
319 
320 /* Return the virtual address associated with a ring index */
321 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
322 {
323 	/* Note: index *must* be used modulo the ring count here */
324 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
325 }
326 
327 /* Return the 32-bit DMA address associated with a ring index */
328 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
329 {
330 	return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
331 }
332 
333 /* Return the ring index of a 32-bit ring offset */
334 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
335 {
336 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
337 }
338 
339 /* Issue a GSI command by writing a value to a register, then wait for
340  * completion to be signaled.  Returns true if the command completes
341  * or false if it times out.
342  */
343 static bool gsi_command(struct gsi *gsi, u32 reg, u32 val)
344 {
345 	unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
346 	struct completion *completion = &gsi->completion;
347 
348 	reinit_completion(completion);
349 
350 	iowrite32(val, gsi->virt + reg);
351 
352 	return !!wait_for_completion_timeout(completion, timeout);
353 }
354 
355 /* Return the hardware's notion of the current state of an event ring */
356 static enum gsi_evt_ring_state
357 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
358 {
359 	u32 val;
360 
361 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
362 
363 	return u32_get_bits(val, EV_CHSTATE_FMASK);
364 }
365 
366 /* Issue an event ring command and wait for it to complete */
367 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
368 				 enum gsi_evt_cmd_opcode opcode)
369 {
370 	struct device *dev = gsi->dev;
371 	bool timeout;
372 	u32 val;
373 
374 	/* Enable the completion interrupt for the command */
375 	gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
376 
377 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
378 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
379 
380 	timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val);
381 
382 	gsi_irq_ev_ctrl_disable(gsi);
383 
384 	if (!timeout)
385 		return;
386 
387 	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
388 		opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
389 }
390 
391 /* Allocate an event ring in NOT_ALLOCATED state */
392 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
393 {
394 	enum gsi_evt_ring_state state;
395 
396 	/* Get initial event ring state */
397 	state = gsi_evt_ring_state(gsi, evt_ring_id);
398 	if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
399 		dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
400 			evt_ring_id, state);
401 		return -EINVAL;
402 	}
403 
404 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
405 
406 	/* If successful the event ring state will have changed */
407 	state = gsi_evt_ring_state(gsi, evt_ring_id);
408 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
409 		return 0;
410 
411 	dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
412 		evt_ring_id, state);
413 
414 	return -EIO;
415 }
416 
417 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
418 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
419 {
420 	enum gsi_evt_ring_state state;
421 
422 	state = gsi_evt_ring_state(gsi, evt_ring_id);
423 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
424 	    state != GSI_EVT_RING_STATE_ERROR) {
425 		dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
426 			evt_ring_id, state);
427 		return;
428 	}
429 
430 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
431 
432 	/* If successful the event ring state will have changed */
433 	state = gsi_evt_ring_state(gsi, evt_ring_id);
434 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
435 		return;
436 
437 	dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
438 		evt_ring_id, state);
439 }
440 
441 /* Issue a hardware de-allocation request for an allocated event ring */
442 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
443 {
444 	enum gsi_evt_ring_state state;
445 
446 	state = gsi_evt_ring_state(gsi, evt_ring_id);
447 	if (state != GSI_EVT_RING_STATE_ALLOCATED) {
448 		dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
449 			evt_ring_id, state);
450 		return;
451 	}
452 
453 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
454 
455 	/* If successful the event ring state will have changed */
456 	state = gsi_evt_ring_state(gsi, evt_ring_id);
457 	if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
458 		return;
459 
460 	dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
461 		evt_ring_id, state);
462 }
463 
464 /* Fetch the current state of a channel from hardware */
465 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
466 {
467 	u32 channel_id = gsi_channel_id(channel);
468 	void __iomem *virt = channel->gsi->virt;
469 	u32 val;
470 
471 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
472 
473 	return u32_get_bits(val, CHSTATE_FMASK);
474 }
475 
476 /* Issue a channel command and wait for it to complete */
477 static void
478 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
479 {
480 	u32 channel_id = gsi_channel_id(channel);
481 	struct gsi *gsi = channel->gsi;
482 	struct device *dev = gsi->dev;
483 	bool timeout;
484 	u32 val;
485 
486 	/* Enable the completion interrupt for the command */
487 	gsi_irq_ch_ctrl_enable(gsi, channel_id);
488 
489 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
490 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
491 	timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val);
492 
493 	gsi_irq_ch_ctrl_disable(gsi);
494 
495 	if (!timeout)
496 		return;
497 
498 	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
499 		opcode, channel_id, gsi_channel_state(channel));
500 }
501 
502 /* Allocate GSI channel in NOT_ALLOCATED state */
503 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
504 {
505 	struct gsi_channel *channel = &gsi->channel[channel_id];
506 	struct device *dev = gsi->dev;
507 	enum gsi_channel_state state;
508 
509 	/* Get initial channel state */
510 	state = gsi_channel_state(channel);
511 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
512 		dev_err(dev, "channel %u bad state %u before alloc\n",
513 			channel_id, state);
514 		return -EINVAL;
515 	}
516 
517 	gsi_channel_command(channel, GSI_CH_ALLOCATE);
518 
519 	/* If successful the channel state will have changed */
520 	state = gsi_channel_state(channel);
521 	if (state == GSI_CHANNEL_STATE_ALLOCATED)
522 		return 0;
523 
524 	dev_err(dev, "channel %u bad state %u after alloc\n",
525 		channel_id, state);
526 
527 	return -EIO;
528 }
529 
530 /* Start an ALLOCATED channel */
531 static int gsi_channel_start_command(struct gsi_channel *channel)
532 {
533 	struct device *dev = channel->gsi->dev;
534 	enum gsi_channel_state state;
535 
536 	state = gsi_channel_state(channel);
537 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
538 	    state != GSI_CHANNEL_STATE_STOPPED) {
539 		dev_err(dev, "channel %u bad state %u before start\n",
540 			gsi_channel_id(channel), state);
541 		return -EINVAL;
542 	}
543 
544 	gsi_channel_command(channel, GSI_CH_START);
545 
546 	/* If successful the channel state will have changed */
547 	state = gsi_channel_state(channel);
548 	if (state == GSI_CHANNEL_STATE_STARTED)
549 		return 0;
550 
551 	dev_err(dev, "channel %u bad state %u after start\n",
552 		gsi_channel_id(channel), state);
553 
554 	return -EIO;
555 }
556 
557 /* Stop a GSI channel in STARTED state */
558 static int gsi_channel_stop_command(struct gsi_channel *channel)
559 {
560 	struct device *dev = channel->gsi->dev;
561 	enum gsi_channel_state state;
562 
563 	state = gsi_channel_state(channel);
564 
565 	/* Channel could have entered STOPPED state since last call
566 	 * if it timed out.  If so, we're done.
567 	 */
568 	if (state == GSI_CHANNEL_STATE_STOPPED)
569 		return 0;
570 
571 	if (state != GSI_CHANNEL_STATE_STARTED &&
572 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
573 		dev_err(dev, "channel %u bad state %u before stop\n",
574 			gsi_channel_id(channel), state);
575 		return -EINVAL;
576 	}
577 
578 	gsi_channel_command(channel, GSI_CH_STOP);
579 
580 	/* If successful the channel state will have changed */
581 	state = gsi_channel_state(channel);
582 	if (state == GSI_CHANNEL_STATE_STOPPED)
583 		return 0;
584 
585 	/* We may have to try again if stop is in progress */
586 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
587 		return -EAGAIN;
588 
589 	dev_err(dev, "channel %u bad state %u after stop\n",
590 		gsi_channel_id(channel), state);
591 
592 	return -EIO;
593 }
594 
595 /* Reset a GSI channel in ALLOCATED or ERROR state. */
596 static void gsi_channel_reset_command(struct gsi_channel *channel)
597 {
598 	struct device *dev = channel->gsi->dev;
599 	enum gsi_channel_state state;
600 
601 	/* A short delay is required before a RESET command */
602 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
603 
604 	state = gsi_channel_state(channel);
605 	if (state != GSI_CHANNEL_STATE_STOPPED &&
606 	    state != GSI_CHANNEL_STATE_ERROR) {
607 		/* No need to reset a channel already in ALLOCATED state */
608 		if (state != GSI_CHANNEL_STATE_ALLOCATED)
609 			dev_err(dev, "channel %u bad state %u before reset\n",
610 				gsi_channel_id(channel), state);
611 		return;
612 	}
613 
614 	gsi_channel_command(channel, GSI_CH_RESET);
615 
616 	/* If successful the channel state will have changed */
617 	state = gsi_channel_state(channel);
618 	if (state != GSI_CHANNEL_STATE_ALLOCATED)
619 		dev_err(dev, "channel %u bad state %u after reset\n",
620 			gsi_channel_id(channel), state);
621 }
622 
623 /* Deallocate an ALLOCATED GSI channel */
624 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
625 {
626 	struct gsi_channel *channel = &gsi->channel[channel_id];
627 	struct device *dev = gsi->dev;
628 	enum gsi_channel_state state;
629 
630 	state = gsi_channel_state(channel);
631 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
632 		dev_err(dev, "channel %u bad state %u before dealloc\n",
633 			channel_id, state);
634 		return;
635 	}
636 
637 	gsi_channel_command(channel, GSI_CH_DE_ALLOC);
638 
639 	/* If successful the channel state will have changed */
640 	state = gsi_channel_state(channel);
641 
642 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
643 		dev_err(dev, "channel %u bad state %u after dealloc\n",
644 			channel_id, state);
645 }
646 
647 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
648  * The index argument (modulo the ring count) is the first unfilled entry, so
649  * we supply one less than that with the doorbell.  Update the event ring
650  * index field with the value provided.
651  */
652 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
653 {
654 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
655 	u32 val;
656 
657 	ring->index = index;	/* Next unused entry */
658 
659 	/* Note: index *must* be used modulo the ring count here */
660 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
661 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
662 }
663 
664 /* Program an event ring for use */
665 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
666 {
667 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
668 	struct gsi_ring *ring = &evt_ring->ring;
669 	size_t size;
670 	u32 val;
671 
672 	/* We program all event rings as GPI type/protocol */
673 	val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
674 	val |= EV_INTYPE_FMASK;
675 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
676 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
677 
678 	size = ring->count * GSI_RING_ELEMENT_SIZE;
679 	val = ev_r_length_encoded(gsi->version, size);
680 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
681 
682 	/* The context 2 and 3 registers store the low-order and
683 	 * high-order 32 bits of the address of the event ring,
684 	 * respectively.
685 	 */
686 	val = lower_32_bits(ring->addr);
687 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
688 	val = upper_32_bits(ring->addr);
689 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
690 
691 	/* Enable interrupt moderation by setting the moderation delay */
692 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
693 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
694 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
695 
696 	/* No MSI write data, and MSI address high and low address is 0 */
697 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
698 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
699 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
700 
701 	/* We don't need to get event read pointer updates */
702 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
703 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
704 
705 	/* Finally, tell the hardware our "last processed" event (arbitrary) */
706 	gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index);
707 }
708 
709 /* Find the transaction whose completion indicates a channel is quiesced */
710 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
711 {
712 	struct gsi_trans_info *trans_info = &channel->trans_info;
713 	u32 pending_id = trans_info->pending_id;
714 	struct gsi_trans *trans;
715 	u16 trans_id;
716 
717 	if (channel->toward_ipa && pending_id != trans_info->free_id) {
718 		/* There is a small chance a TX transaction got allocated
719 		 * just before we disabled transmits, so check for that.
720 		 * The last allocated, committed, or pending transaction
721 		 * precedes the first free transaction.
722 		 */
723 		trans_id = trans_info->free_id - 1;
724 	} else if (trans_info->polled_id != pending_id) {
725 		/* Otherwise (TX or RX) we want to wait for anything that
726 		 * has completed, or has been polled but not released yet.
727 		 *
728 		 * The last completed or polled transaction precedes the
729 		 * first pending transaction.
730 		 */
731 		trans_id = pending_id - 1;
732 	} else {
733 		return NULL;
734 	}
735 
736 	/* Caller will wait for this, so take a reference */
737 	trans = &trans_info->trans[trans_id % channel->tre_count];
738 	refcount_inc(&trans->refcount);
739 
740 	return trans;
741 }
742 
743 /* Wait for transaction activity on a channel to complete */
744 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
745 {
746 	struct gsi_trans *trans;
747 
748 	/* Get the last transaction, and wait for it to complete */
749 	trans = gsi_channel_trans_last(channel);
750 	if (trans) {
751 		wait_for_completion(&trans->completion);
752 		gsi_trans_free(trans);
753 	}
754 }
755 
756 /* Program a channel for use; there is no gsi_channel_deprogram() */
757 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
758 {
759 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
760 	u32 channel_id = gsi_channel_id(channel);
761 	union gsi_channel_scratch scr = { };
762 	struct gsi_channel_scratch_gpi *gpi;
763 	struct gsi *gsi = channel->gsi;
764 	u32 wrr_weight = 0;
765 	u32 val;
766 
767 	/* We program all channels as GPI type/protocol */
768 	val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI);
769 	if (channel->toward_ipa)
770 		val |= CHTYPE_DIR_FMASK;
771 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
772 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
773 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
774 
775 	val = r_length_encoded(gsi->version, size);
776 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
777 
778 	/* The context 2 and 3 registers store the low-order and
779 	 * high-order 32 bits of the address of the channel ring,
780 	 * respectively.
781 	 */
782 	val = lower_32_bits(channel->tre_ring.addr);
783 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
784 	val = upper_32_bits(channel->tre_ring.addr);
785 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
786 
787 	/* Command channel gets low weighted round-robin priority */
788 	if (channel->command)
789 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
790 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
791 
792 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
793 
794 	/* No need to use the doorbell engine starting at IPA v4.0 */
795 	if (gsi->version < IPA_VERSION_4_0 && doorbell)
796 		val |= USE_DB_ENG_FMASK;
797 
798 	/* v4.0 introduces an escape buffer for prefetch.  We use it
799 	 * on all but the AP command channel.
800 	 */
801 	if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
802 		/* If not otherwise set, prefetch buffers are used */
803 		if (gsi->version < IPA_VERSION_4_5)
804 			val |= USE_ESCAPE_BUF_ONLY_FMASK;
805 		else
806 			val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
807 					       PREFETCH_MODE_FMASK);
808 	}
809 	/* All channels set DB_IN_BYTES */
810 	if (gsi->version >= IPA_VERSION_4_9)
811 		val |= DB_IN_BYTES;
812 
813 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
814 
815 	/* Now update the scratch registers for GPI protocol */
816 	gpi = &scr.gpi;
817 	gpi->max_outstanding_tre = channel->trans_tre_max *
818 					GSI_RING_ELEMENT_SIZE;
819 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
820 
821 	val = scr.data.word1;
822 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
823 
824 	val = scr.data.word2;
825 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
826 
827 	val = scr.data.word3;
828 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
829 
830 	/* We must preserve the upper 16 bits of the last scratch register.
831 	 * The next sequence assumes those bits remain unchanged between the
832 	 * read and the write.
833 	 */
834 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
835 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
836 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
837 
838 	/* All done! */
839 }
840 
841 static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
842 {
843 	struct gsi *gsi = channel->gsi;
844 	int ret;
845 
846 	/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
847 	if (resume && gsi->version < IPA_VERSION_4_0)
848 		return 0;
849 
850 	mutex_lock(&gsi->mutex);
851 
852 	ret = gsi_channel_start_command(channel);
853 
854 	mutex_unlock(&gsi->mutex);
855 
856 	return ret;
857 }
858 
859 /* Start an allocated GSI channel */
860 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
861 {
862 	struct gsi_channel *channel = &gsi->channel[channel_id];
863 	int ret;
864 
865 	/* Enable NAPI and the completion interrupt */
866 	napi_enable(&channel->napi);
867 	gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
868 
869 	ret = __gsi_channel_start(channel, false);
870 	if (ret) {
871 		gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
872 		napi_disable(&channel->napi);
873 	}
874 
875 	return ret;
876 }
877 
878 static int gsi_channel_stop_retry(struct gsi_channel *channel)
879 {
880 	u32 retries = GSI_CHANNEL_STOP_RETRIES;
881 	int ret;
882 
883 	do {
884 		ret = gsi_channel_stop_command(channel);
885 		if (ret != -EAGAIN)
886 			break;
887 		usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
888 	} while (retries--);
889 
890 	return ret;
891 }
892 
893 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
894 {
895 	struct gsi *gsi = channel->gsi;
896 	int ret;
897 
898 	/* Wait for any underway transactions to complete before stopping. */
899 	gsi_channel_trans_quiesce(channel);
900 
901 	/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
902 	if (suspend && gsi->version < IPA_VERSION_4_0)
903 		return 0;
904 
905 	mutex_lock(&gsi->mutex);
906 
907 	ret = gsi_channel_stop_retry(channel);
908 
909 	mutex_unlock(&gsi->mutex);
910 
911 	return ret;
912 }
913 
914 /* Stop a started channel */
915 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
916 {
917 	struct gsi_channel *channel = &gsi->channel[channel_id];
918 	int ret;
919 
920 	ret = __gsi_channel_stop(channel, false);
921 	if (ret)
922 		return ret;
923 
924 	/* Disable the completion interrupt and NAPI if successful */
925 	gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
926 	napi_disable(&channel->napi);
927 
928 	return 0;
929 }
930 
931 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
932 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
933 {
934 	struct gsi_channel *channel = &gsi->channel[channel_id];
935 
936 	mutex_lock(&gsi->mutex);
937 
938 	gsi_channel_reset_command(channel);
939 	/* Due to a hardware quirk we may need to reset RX channels twice. */
940 	if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
941 		gsi_channel_reset_command(channel);
942 
943 	/* Hardware assumes this is 0 following reset */
944 	channel->tre_ring.index = 0;
945 	gsi_channel_program(channel, doorbell);
946 	gsi_channel_trans_cancel_pending(channel);
947 
948 	mutex_unlock(&gsi->mutex);
949 }
950 
951 /* Stop a started channel for suspend */
952 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
953 {
954 	struct gsi_channel *channel = &gsi->channel[channel_id];
955 	int ret;
956 
957 	ret = __gsi_channel_stop(channel, true);
958 	if (ret)
959 		return ret;
960 
961 	/* Ensure NAPI polling has finished. */
962 	napi_synchronize(&channel->napi);
963 
964 	return 0;
965 }
966 
967 /* Resume a suspended channel (starting if stopped) */
968 int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
969 {
970 	struct gsi_channel *channel = &gsi->channel[channel_id];
971 
972 	return __gsi_channel_start(channel, true);
973 }
974 
975 /* Prevent all GSI interrupts while suspended */
976 void gsi_suspend(struct gsi *gsi)
977 {
978 	disable_irq(gsi->irq);
979 }
980 
981 /* Allow all GSI interrupts again when resuming */
982 void gsi_resume(struct gsi *gsi)
983 {
984 	enable_irq(gsi->irq);
985 }
986 
987 void gsi_trans_tx_committed(struct gsi_trans *trans)
988 {
989 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
990 
991 	channel->trans_count++;
992 	channel->byte_count += trans->len;
993 
994 	trans->trans_count = channel->trans_count;
995 	trans->byte_count = channel->byte_count;
996 }
997 
998 void gsi_trans_tx_queued(struct gsi_trans *trans)
999 {
1000 	u32 channel_id = trans->channel_id;
1001 	struct gsi *gsi = trans->gsi;
1002 	struct gsi_channel *channel;
1003 	u32 trans_count;
1004 	u32 byte_count;
1005 
1006 	channel = &gsi->channel[channel_id];
1007 
1008 	byte_count = channel->byte_count - channel->queued_byte_count;
1009 	trans_count = channel->trans_count - channel->queued_trans_count;
1010 	channel->queued_byte_count = channel->byte_count;
1011 	channel->queued_trans_count = channel->trans_count;
1012 
1013 	ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count);
1014 }
1015 
1016 /**
1017  * gsi_trans_tx_completed() - Report completed TX transactions
1018  * @trans:	TX channel transaction that has completed
1019  *
1020  * Report that a transaction on a TX channel has completed.  At the time a
1021  * transaction is committed, we record *in the transaction* its channel's
1022  * committed transaction and byte counts.  Transactions are completed in
1023  * order, and the difference between the channel's byte/transaction count
1024  * when the transaction was committed and when it completes tells us
1025  * exactly how much data has been transferred while the transaction was
1026  * pending.
1027  *
1028  * We report this information to the network stack, which uses it to manage
1029  * the rate at which data is sent to hardware.
1030  */
1031 static void gsi_trans_tx_completed(struct gsi_trans *trans)
1032 {
1033 	u32 channel_id = trans->channel_id;
1034 	struct gsi *gsi = trans->gsi;
1035 	struct gsi_channel *channel;
1036 	u32 trans_count;
1037 	u32 byte_count;
1038 
1039 	channel = &gsi->channel[channel_id];
1040 	trans_count = trans->trans_count - channel->compl_trans_count;
1041 	byte_count = trans->byte_count - channel->compl_byte_count;
1042 
1043 	channel->compl_trans_count += trans_count;
1044 	channel->compl_byte_count += byte_count;
1045 
1046 	ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count);
1047 }
1048 
1049 /* Channel control interrupt handler */
1050 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1051 {
1052 	u32 channel_mask;
1053 
1054 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1055 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1056 
1057 	while (channel_mask) {
1058 		u32 channel_id = __ffs(channel_mask);
1059 
1060 		channel_mask ^= BIT(channel_id);
1061 
1062 		complete(&gsi->completion);
1063 	}
1064 }
1065 
1066 /* Event ring control interrupt handler */
1067 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1068 {
1069 	u32 event_mask;
1070 
1071 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1072 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1073 
1074 	while (event_mask) {
1075 		u32 evt_ring_id = __ffs(event_mask);
1076 
1077 		event_mask ^= BIT(evt_ring_id);
1078 
1079 		complete(&gsi->completion);
1080 	}
1081 }
1082 
1083 /* Global channel error interrupt handler */
1084 static void
1085 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1086 {
1087 	if (code == GSI_OUT_OF_RESOURCES) {
1088 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1089 		complete(&gsi->completion);
1090 		return;
1091 	}
1092 
1093 	/* Report, but otherwise ignore all other error codes */
1094 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1095 		channel_id, err_ee, code);
1096 }
1097 
1098 /* Global event error interrupt handler */
1099 static void
1100 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1101 {
1102 	if (code == GSI_OUT_OF_RESOURCES) {
1103 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1104 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1105 
1106 		complete(&gsi->completion);
1107 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1108 			channel_id);
1109 		return;
1110 	}
1111 
1112 	/* Report, but otherwise ignore all other error codes */
1113 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1114 		evt_ring_id, err_ee, code);
1115 }
1116 
1117 /* Global error interrupt handler */
1118 static void gsi_isr_glob_err(struct gsi *gsi)
1119 {
1120 	enum gsi_err_type type;
1121 	enum gsi_err_code code;
1122 	u32 which;
1123 	u32 val;
1124 	u32 ee;
1125 
1126 	/* Get the logged error, then reinitialize the log */
1127 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1128 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1129 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1130 
1131 	ee = u32_get_bits(val, ERR_EE_FMASK);
1132 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1133 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1134 	code = u32_get_bits(val, ERR_CODE_FMASK);
1135 
1136 	if (type == GSI_ERR_TYPE_CHAN)
1137 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1138 	else if (type == GSI_ERR_TYPE_EVT)
1139 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1140 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1141 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1142 }
1143 
1144 /* Generic EE interrupt handler */
1145 static void gsi_isr_gp_int1(struct gsi *gsi)
1146 {
1147 	u32 result;
1148 	u32 val;
1149 
1150 	/* This interrupt is used to handle completions of GENERIC GSI
1151 	 * commands.  We use these to allocate and halt channels on the
1152 	 * modem's behalf due to a hardware quirk on IPA v4.2.  The modem
1153 	 * "owns" channels even when the AP allocates them, and have no
1154 	 * way of knowing whether a modem channel's state has been changed.
1155 	 *
1156 	 * We also use GENERIC commands to enable/disable channel flow
1157 	 * control for IPA v4.2+.
1158 	 *
1159 	 * It is recommended that we halt the modem channels we allocated
1160 	 * when shutting down, but it's possible the channel isn't running
1161 	 * at the time we issue the HALT command.  We'll get an error in
1162 	 * that case, but it's harmless (the channel is already halted).
1163 	 * Similarly, we could get an error back when updating flow control
1164 	 * on a channel because it's not in the proper state.
1165 	 *
1166 	 * In either case, we silently ignore a INCORRECT_CHANNEL_STATE
1167 	 * error if we receive it.
1168 	 */
1169 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1170 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1171 
1172 	switch (result) {
1173 	case GENERIC_EE_SUCCESS:
1174 	case GENERIC_EE_INCORRECT_CHANNEL_STATE:
1175 		gsi->result = 0;
1176 		break;
1177 
1178 	case GENERIC_EE_RETRY:
1179 		gsi->result = -EAGAIN;
1180 		break;
1181 
1182 	default:
1183 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1184 		gsi->result = -EIO;
1185 		break;
1186 	}
1187 
1188 	complete(&gsi->completion);
1189 }
1190 
1191 /* Inter-EE interrupt handler */
1192 static void gsi_isr_glob_ee(struct gsi *gsi)
1193 {
1194 	u32 val;
1195 
1196 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1197 
1198 	if (val & BIT(ERROR_INT))
1199 		gsi_isr_glob_err(gsi);
1200 
1201 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1202 
1203 	val &= ~BIT(ERROR_INT);
1204 
1205 	if (val & BIT(GP_INT1)) {
1206 		val ^= BIT(GP_INT1);
1207 		gsi_isr_gp_int1(gsi);
1208 	}
1209 
1210 	if (val)
1211 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1212 }
1213 
1214 /* I/O completion interrupt event */
1215 static void gsi_isr_ieob(struct gsi *gsi)
1216 {
1217 	u32 event_mask;
1218 
1219 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1220 	gsi_irq_ieob_disable(gsi, event_mask);
1221 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1222 
1223 	while (event_mask) {
1224 		u32 evt_ring_id = __ffs(event_mask);
1225 
1226 		event_mask ^= BIT(evt_ring_id);
1227 
1228 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1229 	}
1230 }
1231 
1232 /* General event interrupts represent serious problems, so report them */
1233 static void gsi_isr_general(struct gsi *gsi)
1234 {
1235 	struct device *dev = gsi->dev;
1236 	u32 val;
1237 
1238 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1239 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1240 
1241 	dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1242 }
1243 
1244 /**
1245  * gsi_isr() - Top level GSI interrupt service routine
1246  * @irq:	Interrupt number (ignored)
1247  * @dev_id:	GSI pointer supplied to request_irq()
1248  *
1249  * This is the main handler function registered for the GSI IRQ. Each type
1250  * of interrupt has a separate handler function that is called from here.
1251  */
1252 static irqreturn_t gsi_isr(int irq, void *dev_id)
1253 {
1254 	struct gsi *gsi = dev_id;
1255 	u32 intr_mask;
1256 	u32 cnt = 0;
1257 
1258 	/* enum gsi_irq_type_id defines GSI interrupt types */
1259 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1260 		/* intr_mask contains bitmask of pending GSI interrupts */
1261 		do {
1262 			u32 gsi_intr = BIT(__ffs(intr_mask));
1263 
1264 			intr_mask ^= gsi_intr;
1265 
1266 			switch (gsi_intr) {
1267 			case BIT(GSI_CH_CTRL):
1268 				gsi_isr_chan_ctrl(gsi);
1269 				break;
1270 			case BIT(GSI_EV_CTRL):
1271 				gsi_isr_evt_ctrl(gsi);
1272 				break;
1273 			case BIT(GSI_GLOB_EE):
1274 				gsi_isr_glob_ee(gsi);
1275 				break;
1276 			case BIT(GSI_IEOB):
1277 				gsi_isr_ieob(gsi);
1278 				break;
1279 			case BIT(GSI_GENERAL):
1280 				gsi_isr_general(gsi);
1281 				break;
1282 			default:
1283 				dev_err(gsi->dev,
1284 					"unrecognized interrupt type 0x%08x\n",
1285 					gsi_intr);
1286 				break;
1287 			}
1288 		} while (intr_mask);
1289 
1290 		if (++cnt > GSI_ISR_MAX_ITER) {
1291 			dev_err(gsi->dev, "interrupt flood\n");
1292 			break;
1293 		}
1294 	}
1295 
1296 	return IRQ_HANDLED;
1297 }
1298 
1299 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
1300 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1301 {
1302 	int ret;
1303 
1304 	ret = platform_get_irq_byname(pdev, "gsi");
1305 	if (ret <= 0)
1306 		return ret ? : -EINVAL;
1307 
1308 	gsi->irq = ret;
1309 
1310 	return 0;
1311 }
1312 
1313 /* Return the transaction associated with a transfer completion event */
1314 static struct gsi_trans *
1315 gsi_event_trans(struct gsi *gsi, struct gsi_event *event)
1316 {
1317 	u32 channel_id = event->chid;
1318 	struct gsi_channel *channel;
1319 	struct gsi_trans *trans;
1320 	u32 tre_offset;
1321 	u32 tre_index;
1322 
1323 	channel = &gsi->channel[channel_id];
1324 	if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id))
1325 		return NULL;
1326 
1327 	/* Event xfer_ptr records the TRE it's associated with */
1328 	tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1329 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1330 
1331 	trans = gsi_channel_trans_mapped(channel, tre_index);
1332 
1333 	if (WARN(!trans, "channel %u event with no transaction\n", channel_id))
1334 		return NULL;
1335 
1336 	return trans;
1337 }
1338 
1339 /**
1340  * gsi_evt_ring_update() - Update transaction state from hardware
1341  * @gsi:		GSI pointer
1342  * @evt_ring_id:	Event ring ID
1343  * @index:		Event index in ring reported by hardware
1344  *
1345  * Events for RX channels contain the actual number of bytes received into
1346  * the buffer.  Every event has a transaction associated with it, and here
1347  * we update transactions to record their actual received lengths.
1348  *
1349  * When an event for a TX channel arrives we use information in the
1350  * transaction to report the number of requests and bytes that have
1351  * been transferred.
1352  *
1353  * This function is called whenever we learn that the GSI hardware has filled
1354  * new events since the last time we checked.  The ring's index field tells
1355  * the first entry in need of processing.  The index provided is the
1356  * first *unfilled* event in the ring (following the last filled one).
1357  *
1358  * Events are sequential within the event ring, and transactions are
1359  * sequential within the transaction array.
1360  *
1361  * Note that @index always refers to an element *within* the event ring.
1362  */
1363 static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index)
1364 {
1365 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1366 	struct gsi_ring *ring = &evt_ring->ring;
1367 	struct gsi_event *event_done;
1368 	struct gsi_event *event;
1369 	u32 event_avail;
1370 	u32 old_index;
1371 
1372 	/* Starting with the oldest un-processed event, determine which
1373 	 * transaction (and which channel) is associated with the event.
1374 	 * For RX channels, update each completed transaction with the
1375 	 * number of bytes that were actually received.  For TX channels
1376 	 * associated with a network device, report to the network stack
1377 	 * the number of transfers and bytes this completion represents.
1378 	 */
1379 	old_index = ring->index;
1380 	event = gsi_ring_virt(ring, old_index);
1381 
1382 	/* Compute the number of events to process before we wrap,
1383 	 * and determine when we'll be done processing events.
1384 	 */
1385 	event_avail = ring->count - old_index % ring->count;
1386 	event_done = gsi_ring_virt(ring, index);
1387 	do {
1388 		struct gsi_trans *trans;
1389 
1390 		trans = gsi_event_trans(gsi, event);
1391 		if (!trans)
1392 			return;
1393 
1394 		if (trans->direction == DMA_FROM_DEVICE)
1395 			trans->len = __le16_to_cpu(event->len);
1396 		else
1397 			gsi_trans_tx_completed(trans);
1398 
1399 		gsi_trans_move_complete(trans);
1400 
1401 		/* Move on to the next event and transaction */
1402 		if (--event_avail)
1403 			event++;
1404 		else
1405 			event = gsi_ring_virt(ring, 0);
1406 	} while (event != event_done);
1407 
1408 	/* Tell the hardware we've handled these events */
1409 	gsi_evt_ring_doorbell(gsi, evt_ring_id, index);
1410 }
1411 
1412 /* Initialize a ring, including allocating DMA memory for its entries */
1413 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1414 {
1415 	u32 size = count * GSI_RING_ELEMENT_SIZE;
1416 	struct device *dev = gsi->dev;
1417 	dma_addr_t addr;
1418 
1419 	/* Hardware requires a 2^n ring size, with alignment equal to size.
1420 	 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1421 	 * be a power-of-2 number of pages, which satisfies the requirement.
1422 	 */
1423 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1424 	if (!ring->virt)
1425 		return -ENOMEM;
1426 
1427 	ring->addr = addr;
1428 	ring->count = count;
1429 	ring->index = 0;
1430 
1431 	return 0;
1432 }
1433 
1434 /* Free a previously-allocated ring */
1435 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1436 {
1437 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1438 
1439 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1440 }
1441 
1442 /* Allocate an available event ring id */
1443 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1444 {
1445 	u32 evt_ring_id;
1446 
1447 	if (gsi->event_bitmap == ~0U) {
1448 		dev_err(gsi->dev, "event rings exhausted\n");
1449 		return -ENOSPC;
1450 	}
1451 
1452 	evt_ring_id = ffz(gsi->event_bitmap);
1453 	gsi->event_bitmap |= BIT(evt_ring_id);
1454 
1455 	return (int)evt_ring_id;
1456 }
1457 
1458 /* Free a previously-allocated event ring id */
1459 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1460 {
1461 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1462 }
1463 
1464 /* Ring a channel doorbell, reporting the first un-filled entry */
1465 void gsi_channel_doorbell(struct gsi_channel *channel)
1466 {
1467 	struct gsi_ring *tre_ring = &channel->tre_ring;
1468 	u32 channel_id = gsi_channel_id(channel);
1469 	struct gsi *gsi = channel->gsi;
1470 	u32 val;
1471 
1472 	/* Note: index *must* be used modulo the ring count here */
1473 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1474 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1475 }
1476 
1477 /* Consult hardware, move newly completed transactions to completed state */
1478 void gsi_channel_update(struct gsi_channel *channel)
1479 {
1480 	u32 evt_ring_id = channel->evt_ring_id;
1481 	struct gsi *gsi = channel->gsi;
1482 	struct gsi_evt_ring *evt_ring;
1483 	struct gsi_trans *trans;
1484 	struct gsi_ring *ring;
1485 	u32 offset;
1486 	u32 index;
1487 
1488 	evt_ring = &gsi->evt_ring[evt_ring_id];
1489 	ring = &evt_ring->ring;
1490 
1491 	/* See if there's anything new to process; if not, we're done.  Note
1492 	 * that index always refers to an entry *within* the event ring.
1493 	 */
1494 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1495 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1496 	if (index == ring->index % ring->count)
1497 		return;
1498 
1499 	/* Get the transaction for the latest completed event. */
1500 	trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1));
1501 	if (!trans)
1502 		return;
1503 
1504 	/* For RX channels, update each completed transaction with the number
1505 	 * of bytes that were actually received.  For TX channels, report
1506 	 * the number of transactions and bytes this completion represents
1507 	 * up the network stack.
1508 	 */
1509 	gsi_evt_ring_update(gsi, evt_ring_id, index);
1510 }
1511 
1512 /**
1513  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1514  * @channel:	Channel to be polled
1515  *
1516  * Return:	Transaction pointer, or null if none are available
1517  *
1518  * This function returns the first of a channel's completed transactions.
1519  * If no transactions are in completed state, the hardware is consulted to
1520  * determine whether any new transactions have completed.  If so, they're
1521  * moved to completed state and the first such transaction is returned.
1522  * If there are no more completed transactions, a null pointer is returned.
1523  */
1524 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1525 {
1526 	struct gsi_trans *trans;
1527 
1528 	/* Get the first completed transaction */
1529 	trans = gsi_channel_trans_complete(channel);
1530 	if (trans)
1531 		gsi_trans_move_polled(trans);
1532 
1533 	return trans;
1534 }
1535 
1536 /**
1537  * gsi_channel_poll() - NAPI poll function for a channel
1538  * @napi:	NAPI structure for the channel
1539  * @budget:	Budget supplied by NAPI core
1540  *
1541  * Return:	Number of items polled (<= budget)
1542  *
1543  * Single transactions completed by hardware are polled until either
1544  * the budget is exhausted, or there are no more.  Each transaction
1545  * polled is passed to gsi_trans_complete(), to perform remaining
1546  * completion processing and retire/free the transaction.
1547  */
1548 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1549 {
1550 	struct gsi_channel *channel;
1551 	int count;
1552 
1553 	channel = container_of(napi, struct gsi_channel, napi);
1554 	for (count = 0; count < budget; count++) {
1555 		struct gsi_trans *trans;
1556 
1557 		trans = gsi_channel_poll_one(channel);
1558 		if (!trans)
1559 			break;
1560 		gsi_trans_complete(trans);
1561 	}
1562 
1563 	if (count < budget && napi_complete(napi))
1564 		gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1565 
1566 	return count;
1567 }
1568 
1569 /* The event bitmap represents which event ids are available for allocation.
1570  * Set bits are not available, clear bits can be used.  This function
1571  * initializes the map so all events supported by the hardware are available,
1572  * then precludes any reserved events from being allocated.
1573  */
1574 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1575 {
1576 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1577 
1578 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1579 
1580 	return event_bitmap;
1581 }
1582 
1583 /* Setup function for a single channel */
1584 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1585 {
1586 	struct gsi_channel *channel = &gsi->channel[channel_id];
1587 	u32 evt_ring_id = channel->evt_ring_id;
1588 	int ret;
1589 
1590 	if (!gsi_channel_initialized(channel))
1591 		return 0;
1592 
1593 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1594 	if (ret)
1595 		return ret;
1596 
1597 	gsi_evt_ring_program(gsi, evt_ring_id);
1598 
1599 	ret = gsi_channel_alloc_command(gsi, channel_id);
1600 	if (ret)
1601 		goto err_evt_ring_de_alloc;
1602 
1603 	gsi_channel_program(channel, true);
1604 
1605 	if (channel->toward_ipa)
1606 		netif_napi_add_tx(&gsi->dummy_dev, &channel->napi,
1607 				  gsi_channel_poll);
1608 	else
1609 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1610 			       gsi_channel_poll);
1611 
1612 	return 0;
1613 
1614 err_evt_ring_de_alloc:
1615 	/* We've done nothing with the event ring yet so don't reset */
1616 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1617 
1618 	return ret;
1619 }
1620 
1621 /* Inverse of gsi_channel_setup_one() */
1622 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1623 {
1624 	struct gsi_channel *channel = &gsi->channel[channel_id];
1625 	u32 evt_ring_id = channel->evt_ring_id;
1626 
1627 	if (!gsi_channel_initialized(channel))
1628 		return;
1629 
1630 	netif_napi_del(&channel->napi);
1631 
1632 	gsi_channel_de_alloc_command(gsi, channel_id);
1633 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1634 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1635 }
1636 
1637 /* We use generic commands only to operate on modem channels.  We don't have
1638  * the ability to determine channel state for a modem channel, so we simply
1639  * issue the command and wait for it to complete.
1640  */
1641 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1642 			       enum gsi_generic_cmd_opcode opcode,
1643 			       u8 params)
1644 {
1645 	bool timeout;
1646 	u32 val;
1647 
1648 	/* The error global interrupt type is always enabled (until we tear
1649 	 * down), so we will keep it enabled.
1650 	 *
1651 	 * A generic EE command completes with a GSI global interrupt of
1652 	 * type GP_INT1.  We only perform one generic command at a time
1653 	 * (to allocate, halt, or enable/disable flow control on a modem
1654 	 * channel), and only from this function.  So we enable the GP_INT1
1655 	 * IRQ type here, and disable it again after the command completes.
1656 	 */
1657 	val = BIT(ERROR_INT) | BIT(GP_INT1);
1658 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1659 
1660 	/* First zero the result code field */
1661 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1662 	val &= ~GENERIC_EE_RESULT_FMASK;
1663 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1664 
1665 	/* Now issue the command */
1666 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1667 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1668 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1669 	val |= u32_encode_bits(params, GENERIC_PARAMS_FMASK);
1670 
1671 	timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val);
1672 
1673 	/* Disable the GP_INT1 IRQ type again */
1674 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1675 
1676 	if (!timeout)
1677 		return gsi->result;
1678 
1679 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1680 		opcode, channel_id);
1681 
1682 	return -ETIMEDOUT;
1683 }
1684 
1685 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1686 {
1687 	return gsi_generic_command(gsi, channel_id,
1688 				   GSI_GENERIC_ALLOCATE_CHANNEL, 0);
1689 }
1690 
1691 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1692 {
1693 	u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1694 	int ret;
1695 
1696 	do
1697 		ret = gsi_generic_command(gsi, channel_id,
1698 					  GSI_GENERIC_HALT_CHANNEL, 0);
1699 	while (ret == -EAGAIN && retries--);
1700 
1701 	if (ret)
1702 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1703 			ret, channel_id);
1704 }
1705 
1706 /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */
1707 void
1708 gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable)
1709 {
1710 	u32 retries = 0;
1711 	u32 command;
1712 	int ret;
1713 
1714 	command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL
1715 			 : GSI_GENERIC_DISABLE_FLOW_CONTROL;
1716 	/* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable
1717 	 * is underway.  In this case we need to retry the command.
1718 	 */
1719 	if (!enable && gsi->version >= IPA_VERSION_4_11)
1720 		retries = GSI_CHANNEL_MODEM_FLOW_RETRIES;
1721 
1722 	do
1723 		ret = gsi_generic_command(gsi, channel_id, command, 0);
1724 	while (ret == -EAGAIN && retries--);
1725 
1726 	if (ret)
1727 		dev_err(gsi->dev,
1728 			"error %d %sabling mode channel %u flow control\n",
1729 			ret, enable ? "en" : "dis", channel_id);
1730 }
1731 
1732 /* Setup function for channels */
1733 static int gsi_channel_setup(struct gsi *gsi)
1734 {
1735 	u32 channel_id = 0;
1736 	u32 mask;
1737 	int ret;
1738 
1739 	gsi_irq_enable(gsi);
1740 
1741 	mutex_lock(&gsi->mutex);
1742 
1743 	do {
1744 		ret = gsi_channel_setup_one(gsi, channel_id);
1745 		if (ret)
1746 			goto err_unwind;
1747 	} while (++channel_id < gsi->channel_count);
1748 
1749 	/* Make sure no channels were defined that hardware does not support */
1750 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1751 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1752 
1753 		if (!gsi_channel_initialized(channel))
1754 			continue;
1755 
1756 		ret = -EINVAL;
1757 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1758 			channel_id - 1);
1759 		channel_id = gsi->channel_count;
1760 		goto err_unwind;
1761 	}
1762 
1763 	/* Allocate modem channels if necessary */
1764 	mask = gsi->modem_channel_bitmap;
1765 	while (mask) {
1766 		u32 modem_channel_id = __ffs(mask);
1767 
1768 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1769 		if (ret)
1770 			goto err_unwind_modem;
1771 
1772 		/* Clear bit from mask only after success (for unwind) */
1773 		mask ^= BIT(modem_channel_id);
1774 	}
1775 
1776 	mutex_unlock(&gsi->mutex);
1777 
1778 	return 0;
1779 
1780 err_unwind_modem:
1781 	/* Compute which modem channels need to be deallocated */
1782 	mask ^= gsi->modem_channel_bitmap;
1783 	while (mask) {
1784 		channel_id = __fls(mask);
1785 
1786 		mask ^= BIT(channel_id);
1787 
1788 		gsi_modem_channel_halt(gsi, channel_id);
1789 	}
1790 
1791 err_unwind:
1792 	while (channel_id--)
1793 		gsi_channel_teardown_one(gsi, channel_id);
1794 
1795 	mutex_unlock(&gsi->mutex);
1796 
1797 	gsi_irq_disable(gsi);
1798 
1799 	return ret;
1800 }
1801 
1802 /* Inverse of gsi_channel_setup() */
1803 static void gsi_channel_teardown(struct gsi *gsi)
1804 {
1805 	u32 mask = gsi->modem_channel_bitmap;
1806 	u32 channel_id;
1807 
1808 	mutex_lock(&gsi->mutex);
1809 
1810 	while (mask) {
1811 		channel_id = __fls(mask);
1812 
1813 		mask ^= BIT(channel_id);
1814 
1815 		gsi_modem_channel_halt(gsi, channel_id);
1816 	}
1817 
1818 	channel_id = gsi->channel_count - 1;
1819 	do
1820 		gsi_channel_teardown_one(gsi, channel_id);
1821 	while (channel_id--);
1822 
1823 	mutex_unlock(&gsi->mutex);
1824 
1825 	gsi_irq_disable(gsi);
1826 }
1827 
1828 /* Turn off all GSI interrupts initially */
1829 static int gsi_irq_setup(struct gsi *gsi)
1830 {
1831 	int ret;
1832 
1833 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1834 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1835 
1836 	/* Disable all interrupt types */
1837 	gsi_irq_type_update(gsi, 0);
1838 
1839 	/* Clear all type-specific interrupt masks */
1840 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
1841 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
1842 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1843 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
1844 
1845 	/* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
1846 	if (gsi->version > IPA_VERSION_3_1) {
1847 		u32 offset;
1848 
1849 		/* These registers are in the non-adjusted address range */
1850 		offset = GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET;
1851 		iowrite32(0, gsi->virt_raw + offset);
1852 		offset = GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET;
1853 		iowrite32(0, gsi->virt_raw + offset);
1854 	}
1855 
1856 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
1857 
1858 	ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
1859 	if (ret)
1860 		dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
1861 
1862 	return ret;
1863 }
1864 
1865 static void gsi_irq_teardown(struct gsi *gsi)
1866 {
1867 	free_irq(gsi->irq, gsi);
1868 }
1869 
1870 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */
1871 static int gsi_ring_setup(struct gsi *gsi)
1872 {
1873 	struct device *dev = gsi->dev;
1874 	u32 count;
1875 	u32 val;
1876 
1877 	if (gsi->version < IPA_VERSION_3_5_1) {
1878 		/* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
1879 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1880 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1881 
1882 		return 0;
1883 	}
1884 
1885 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1886 
1887 	count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1888 	if (!count) {
1889 		dev_err(dev, "GSI reports zero channels supported\n");
1890 		return -EINVAL;
1891 	}
1892 	if (count > GSI_CHANNEL_COUNT_MAX) {
1893 		dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
1894 			 GSI_CHANNEL_COUNT_MAX, count);
1895 		count = GSI_CHANNEL_COUNT_MAX;
1896 	}
1897 	gsi->channel_count = count;
1898 
1899 	count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1900 	if (!count) {
1901 		dev_err(dev, "GSI reports zero event rings supported\n");
1902 		return -EINVAL;
1903 	}
1904 	if (count > GSI_EVT_RING_COUNT_MAX) {
1905 		dev_warn(dev,
1906 			 "limiting to %u event rings; hardware supports %u\n",
1907 			 GSI_EVT_RING_COUNT_MAX, count);
1908 		count = GSI_EVT_RING_COUNT_MAX;
1909 	}
1910 	gsi->evt_ring_count = count;
1911 
1912 	return 0;
1913 }
1914 
1915 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1916 int gsi_setup(struct gsi *gsi)
1917 {
1918 	u32 val;
1919 	int ret;
1920 
1921 	/* Here is where we first touch the GSI hardware */
1922 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1923 	if (!(val & ENABLED_FMASK)) {
1924 		dev_err(gsi->dev, "GSI has not been enabled\n");
1925 		return -EIO;
1926 	}
1927 
1928 	ret = gsi_irq_setup(gsi);
1929 	if (ret)
1930 		return ret;
1931 
1932 	ret = gsi_ring_setup(gsi);	/* No matching teardown required */
1933 	if (ret)
1934 		goto err_irq_teardown;
1935 
1936 	/* Initialize the error log */
1937 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1938 
1939 	ret = gsi_channel_setup(gsi);
1940 	if (ret)
1941 		goto err_irq_teardown;
1942 
1943 	return 0;
1944 
1945 err_irq_teardown:
1946 	gsi_irq_teardown(gsi);
1947 
1948 	return ret;
1949 }
1950 
1951 /* Inverse of gsi_setup() */
1952 void gsi_teardown(struct gsi *gsi)
1953 {
1954 	gsi_channel_teardown(gsi);
1955 	gsi_irq_teardown(gsi);
1956 }
1957 
1958 /* Initialize a channel's event ring */
1959 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1960 {
1961 	struct gsi *gsi = channel->gsi;
1962 	struct gsi_evt_ring *evt_ring;
1963 	int ret;
1964 
1965 	ret = gsi_evt_ring_id_alloc(gsi);
1966 	if (ret < 0)
1967 		return ret;
1968 	channel->evt_ring_id = ret;
1969 
1970 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1971 	evt_ring->channel = channel;
1972 
1973 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1974 	if (!ret)
1975 		return 0;	/* Success! */
1976 
1977 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1978 		ret, gsi_channel_id(channel));
1979 
1980 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1981 
1982 	return ret;
1983 }
1984 
1985 /* Inverse of gsi_channel_evt_ring_init() */
1986 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1987 {
1988 	u32 evt_ring_id = channel->evt_ring_id;
1989 	struct gsi *gsi = channel->gsi;
1990 	struct gsi_evt_ring *evt_ring;
1991 
1992 	evt_ring = &gsi->evt_ring[evt_ring_id];
1993 	gsi_ring_free(gsi, &evt_ring->ring);
1994 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1995 }
1996 
1997 static bool gsi_channel_data_valid(struct gsi *gsi, bool command,
1998 				   const struct ipa_gsi_endpoint_data *data)
1999 {
2000 	const struct gsi_channel_data *channel_data;
2001 	u32 channel_id = data->channel_id;
2002 	struct device *dev = gsi->dev;
2003 
2004 	/* Make sure channel ids are in the range driver supports */
2005 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
2006 		dev_err(dev, "bad channel id %u; must be less than %u\n",
2007 			channel_id, GSI_CHANNEL_COUNT_MAX);
2008 		return false;
2009 	}
2010 
2011 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
2012 		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
2013 		return false;
2014 	}
2015 
2016 	if (command && !data->toward_ipa) {
2017 		dev_err(dev, "command channel %u is not TX\n", channel_id);
2018 		return false;
2019 	}
2020 
2021 	channel_data = &data->channel;
2022 
2023 	if (!channel_data->tlv_count ||
2024 	    channel_data->tlv_count > GSI_TLV_MAX) {
2025 		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
2026 			channel_id, channel_data->tlv_count, GSI_TLV_MAX);
2027 		return false;
2028 	}
2029 
2030 	if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) {
2031 		dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n",
2032 			channel_id, IPA_COMMAND_TRANS_TRE_MAX,
2033 			channel_data->tlv_count);
2034 		return false;
2035 	}
2036 
2037 	/* We have to allow at least one maximally-sized transaction to
2038 	 * be outstanding (which would use tlv_count TREs).  Given how
2039 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
2040 	 * twice the TLV FIFO size to satisfy this requirement.
2041 	 */
2042 	if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) {
2043 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
2044 			channel_id, channel_data->tlv_count,
2045 			channel_data->tre_count);
2046 		return false;
2047 	}
2048 
2049 	if (!is_power_of_2(channel_data->tre_count)) {
2050 		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2051 			channel_id, channel_data->tre_count);
2052 		return false;
2053 	}
2054 
2055 	if (!is_power_of_2(channel_data->event_count)) {
2056 		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2057 			channel_id, channel_data->event_count);
2058 		return false;
2059 	}
2060 
2061 	return true;
2062 }
2063 
2064 /* Init function for a single channel */
2065 static int gsi_channel_init_one(struct gsi *gsi,
2066 				const struct ipa_gsi_endpoint_data *data,
2067 				bool command)
2068 {
2069 	struct gsi_channel *channel;
2070 	u32 tre_count;
2071 	int ret;
2072 
2073 	if (!gsi_channel_data_valid(gsi, command, data))
2074 		return -EINVAL;
2075 
2076 	/* Worst case we need an event for every outstanding TRE */
2077 	if (data->channel.tre_count > data->channel.event_count) {
2078 		tre_count = data->channel.event_count;
2079 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2080 			 data->channel_id, tre_count);
2081 	} else {
2082 		tre_count = data->channel.tre_count;
2083 	}
2084 
2085 	channel = &gsi->channel[data->channel_id];
2086 	memset(channel, 0, sizeof(*channel));
2087 
2088 	channel->gsi = gsi;
2089 	channel->toward_ipa = data->toward_ipa;
2090 	channel->command = command;
2091 	channel->trans_tre_max = data->channel.tlv_count;
2092 	channel->tre_count = tre_count;
2093 	channel->event_count = data->channel.event_count;
2094 
2095 	ret = gsi_channel_evt_ring_init(channel);
2096 	if (ret)
2097 		goto err_clear_gsi;
2098 
2099 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2100 	if (ret) {
2101 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2102 			ret, data->channel_id);
2103 		goto err_channel_evt_ring_exit;
2104 	}
2105 
2106 	ret = gsi_channel_trans_init(gsi, data->channel_id);
2107 	if (ret)
2108 		goto err_ring_free;
2109 
2110 	if (command) {
2111 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2112 
2113 		ret = ipa_cmd_pool_init(channel, tre_max);
2114 	}
2115 	if (!ret)
2116 		return 0;	/* Success! */
2117 
2118 	gsi_channel_trans_exit(channel);
2119 err_ring_free:
2120 	gsi_ring_free(gsi, &channel->tre_ring);
2121 err_channel_evt_ring_exit:
2122 	gsi_channel_evt_ring_exit(channel);
2123 err_clear_gsi:
2124 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
2125 
2126 	return ret;
2127 }
2128 
2129 /* Inverse of gsi_channel_init_one() */
2130 static void gsi_channel_exit_one(struct gsi_channel *channel)
2131 {
2132 	if (!gsi_channel_initialized(channel))
2133 		return;
2134 
2135 	if (channel->command)
2136 		ipa_cmd_pool_exit(channel);
2137 	gsi_channel_trans_exit(channel);
2138 	gsi_ring_free(channel->gsi, &channel->tre_ring);
2139 	gsi_channel_evt_ring_exit(channel);
2140 }
2141 
2142 /* Init function for channels */
2143 static int gsi_channel_init(struct gsi *gsi, u32 count,
2144 			    const struct ipa_gsi_endpoint_data *data)
2145 {
2146 	bool modem_alloc;
2147 	int ret = 0;
2148 	u32 i;
2149 
2150 	/* IPA v4.2 requires the AP to allocate channels for the modem */
2151 	modem_alloc = gsi->version == IPA_VERSION_4_2;
2152 
2153 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
2154 	gsi->ieob_enabled_bitmap = 0;
2155 
2156 	/* The endpoint data array is indexed by endpoint name */
2157 	for (i = 0; i < count; i++) {
2158 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2159 
2160 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2161 			continue;	/* Skip over empty slots */
2162 
2163 		/* Mark modem channels to be allocated (hardware workaround) */
2164 		if (data[i].ee_id == GSI_EE_MODEM) {
2165 			if (modem_alloc)
2166 				gsi->modem_channel_bitmap |=
2167 						BIT(data[i].channel_id);
2168 			continue;
2169 		}
2170 
2171 		ret = gsi_channel_init_one(gsi, &data[i], command);
2172 		if (ret)
2173 			goto err_unwind;
2174 	}
2175 
2176 	return ret;
2177 
2178 err_unwind:
2179 	while (i--) {
2180 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2181 			continue;
2182 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2183 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2184 			continue;
2185 		}
2186 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2187 	}
2188 
2189 	return ret;
2190 }
2191 
2192 /* Inverse of gsi_channel_init() */
2193 static void gsi_channel_exit(struct gsi *gsi)
2194 {
2195 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2196 
2197 	do
2198 		gsi_channel_exit_one(&gsi->channel[channel_id]);
2199 	while (channel_id--);
2200 	gsi->modem_channel_bitmap = 0;
2201 }
2202 
2203 /* Init function for GSI.  GSI hardware does not need to be "ready" */
2204 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2205 	     enum ipa_version version, u32 count,
2206 	     const struct ipa_gsi_endpoint_data *data)
2207 {
2208 	struct device *dev = &pdev->dev;
2209 	struct resource *res;
2210 	resource_size_t size;
2211 	u32 adjust;
2212 	int ret;
2213 
2214 	gsi_validate_build();
2215 
2216 	gsi->dev = dev;
2217 	gsi->version = version;
2218 
2219 	/* GSI uses NAPI on all channels.  Create a dummy network device
2220 	 * for the channel NAPI contexts to be associated with.
2221 	 */
2222 	init_dummy_netdev(&gsi->dummy_dev);
2223 
2224 	/* Get GSI memory range and map it */
2225 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2226 	if (!res) {
2227 		dev_err(dev, "DT error getting \"gsi\" memory property\n");
2228 		return -ENODEV;
2229 	}
2230 
2231 	size = resource_size(res);
2232 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
2233 		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2234 		return -EINVAL;
2235 	}
2236 
2237 	/* Make sure we can make our pointer adjustment if necessary */
2238 	adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2239 	if (res->start < adjust) {
2240 		dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2241 			adjust);
2242 		return -EINVAL;
2243 	}
2244 
2245 	gsi->virt_raw = ioremap(res->start, size);
2246 	if (!gsi->virt_raw) {
2247 		dev_err(dev, "unable to remap \"gsi\" memory\n");
2248 		return -ENOMEM;
2249 	}
2250 	/* Most registers are accessed using an adjusted register range */
2251 	gsi->virt = gsi->virt_raw - adjust;
2252 
2253 	init_completion(&gsi->completion);
2254 
2255 	ret = gsi_irq_init(gsi, pdev);	/* No matching exit required */
2256 	if (ret)
2257 		goto err_iounmap;
2258 
2259 	ret = gsi_channel_init(gsi, count, data);
2260 	if (ret)
2261 		goto err_iounmap;
2262 
2263 	mutex_init(&gsi->mutex);
2264 
2265 	return 0;
2266 
2267 err_iounmap:
2268 	iounmap(gsi->virt_raw);
2269 
2270 	return ret;
2271 }
2272 
2273 /* Inverse of gsi_init() */
2274 void gsi_exit(struct gsi *gsi)
2275 {
2276 	mutex_destroy(&gsi->mutex);
2277 	gsi_channel_exit(gsi);
2278 	iounmap(gsi->virt_raw);
2279 }
2280 
2281 /* The maximum number of outstanding TREs on a channel.  This limits
2282  * a channel's maximum number of transactions outstanding (worst case
2283  * is one TRE per transaction).
2284  *
2285  * The absolute limit is the number of TREs in the channel's TRE ring,
2286  * and in theory we should be able use all of them.  But in practice,
2287  * doing that led to the hardware reporting exhaustion of event ring
2288  * slots for writing completion information.  So the hardware limit
2289  * would be (tre_count - 1).
2290  *
2291  * We reduce it a bit further though.  Transaction resource pools are
2292  * sized to be a little larger than this maximum, to allow resource
2293  * allocations to always be contiguous.  The number of entries in a
2294  * TRE ring buffer is a power of 2, and the extra resources in a pool
2295  * tends to nearly double the memory allocated for it.  Reducing the
2296  * maximum number of outstanding TREs allows the number of entries in
2297  * a pool to avoid crossing that power-of-2 boundary, and this can
2298  * substantially reduce pool memory requirements.  The number we
2299  * reduce it by matches the number added in gsi_trans_pool_init().
2300  */
2301 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2302 {
2303 	struct gsi_channel *channel = &gsi->channel[channel_id];
2304 
2305 	/* Hardware limit is channel->tre_count - 1 */
2306 	return channel->tre_count - (channel->trans_tre_max - 1);
2307 }
2308