xref: /openbmc/linux/drivers/net/ipa/gsi.c (revision 8b0adbe3e38dbe5aae9edf6f5159ffdca7cfbdf1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25 
26 /**
27  * DOC: The IPA Generic Software Interface
28  *
29  * The generic software interface (GSI) is an integral component of the IPA,
30  * providing a well-defined communication layer between the AP subsystem
31  * and the IPA core.  The modem uses the GSI layer as well.
32  *
33  *	--------	     ---------
34  *	|      |	     |	     |
35  *	|  AP  +<---.	.----+ Modem |
36  *	|      +--. |	| .->+	     |
37  *	|      |  | |	| |  |	     |
38  *	--------  | |	| |  ---------
39  *		  v |	v |
40  *		--+-+---+-+--
41  *		|    GSI    |
42  *		|-----------|
43  *		|	    |
44  *		|    IPA    |
45  *		|	    |
46  *		-------------
47  *
48  * In the above diagram, the AP and Modem represent "execution environments"
49  * (EEs), which are independent operating environments that use the IPA for
50  * data transfer.
51  *
52  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53  * of data to or from the IPA.  A channel is implemented as a ring buffer,
54  * with a DRAM-resident array of "transfer elements" (TREs) available to
55  * describe transfers to or from other EEs through the IPA.  A transfer
56  * element can also contain an immediate command, requesting the IPA perform
57  * actions other than data transfer.
58  *
59  * Each TRE refers to a block of data--also located DRAM.  After writing one
60  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
61  * doorbell register to inform the receiving side how many elements have
62  * been written.
63  *
64  * Each channel has a GSI "event ring" associated with it.  An event ring
65  * is implemented very much like a channel ring, but is always directed from
66  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
67  * events by adding an entry to the event ring associated with the channel.
68  * The GSI then writes its doorbell for the event ring, causing the target
69  * EE to be interrupted.  Each entry in an event ring contains a pointer
70  * to the channel TRE whose completion the event represents.
71  *
72  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
73  * the completion of the transfer operation generates an entry (and possibly
74  * an interrupt) in the channel's event ring.  Other flags allow transfer
75  * elements to be chained together, forming a single logical transaction.
76  * TRE flags are used to control whether and when interrupts are generated
77  * to signal completion of channel transfers.
78  *
79  * Elements in channel and event rings are completed (or consumed) strictly
80  * in order.  Completion of one entry implies the completion of all preceding
81  * entries.  A single completion interrupt can therefore communicate the
82  * completion of many transfers.
83  *
84  * Note that all GSI registers are little-endian, which is the assumed
85  * endianness of I/O space accesses.  The accessor functions perform byte
86  * swapping if needed (i.e., for a big endian CPU).
87  */
88 
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
91 
92 #define GSI_CMD_TIMEOUT			50	/* milliseconds */
93 
94 #define GSI_CHANNEL_STOP_RETRIES	10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES	10
96 
97 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
99 
100 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
101 
102 /* An entry in an event ring */
103 struct gsi_event {
104 	__le64 xfer_ptr;
105 	__le16 len;
106 	u8 reserved1;
107 	u8 code;
108 	__le16 reserved2;
109 	u8 type;
110 	u8 chid;
111 };
112 
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114  * @max_outstanding_tre:
115  *	Defines the maximum number of TREs allowed in a single transaction
116  *	on a channel (in bytes).  This determines the amount of prefetch
117  *	performed by the hardware.  We configure this to equal the size of
118  *	the TLV FIFO for the channel.
119  * @outstanding_threshold:
120  *	Defines the threshold (in bytes) determining when the sequencer
121  *	should update the channel doorbell.  We configure this to equal
122  *	the size of two TREs.
123  */
124 struct gsi_channel_scratch_gpi {
125 	u64 reserved1;
126 	u16 reserved2;
127 	u16 max_outstanding_tre;
128 	u16 reserved3;
129 	u16 outstanding_threshold;
130 };
131 
132 /** gsi_channel_scratch - channel scratch configuration area
133  *
134  * The exact interpretation of this register is protocol-specific.
135  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
136  */
137 union gsi_channel_scratch {
138 	struct gsi_channel_scratch_gpi gpi;
139 	struct {
140 		u32 word1;
141 		u32 word2;
142 		u32 word3;
143 		u32 word4;
144 	} data;
145 };
146 
147 /* Check things that can be validated at build time. */
148 static void gsi_validate_build(void)
149 {
150 	/* This is used as a divisor */
151 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
152 
153 	/* Code assumes the size of channel and event ring element are
154 	 * the same (and fixed).  Make sure the size of an event ring
155 	 * element is what's expected.
156 	 */
157 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
158 
159 	/* Hardware requires a 2^n ring size.  We ensure the number of
160 	 * elements in an event ring is a power of 2 elsewhere; this
161 	 * ensure the elements themselves meet the requirement.
162 	 */
163 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
164 
165 	/* The channel element size must fit in this field */
166 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
167 
168 	/* The event ring element size must fit in this field */
169 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
170 }
171 
172 /* Return the channel id associated with a given channel */
173 static u32 gsi_channel_id(struct gsi_channel *channel)
174 {
175 	return channel - &channel->gsi->channel[0];
176 }
177 
178 /* An initialized channel has a non-null GSI pointer */
179 static bool gsi_channel_initialized(struct gsi_channel *channel)
180 {
181 	return !!channel->gsi;
182 }
183 
184 /* Update the GSI IRQ type register with the cached value */
185 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
186 {
187 	gsi->type_enabled_bitmap = val;
188 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
189 }
190 
191 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
192 {
193 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
194 }
195 
196 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
197 {
198 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
199 }
200 
201 /* Turn off all GSI interrupts initially */
202 static void gsi_irq_setup(struct gsi *gsi)
203 {
204 	/* Disable all interrupt types */
205 	gsi_irq_type_update(gsi, 0);
206 
207 	/* Clear all type-specific interrupt masks */
208 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
209 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
210 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
211 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
212 
213 	/* The inter-EE registers are in the non-adjusted address range */
214 	iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_CH_IRQ_OFFSET);
215 	iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET);
216 
217 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
218 }
219 
220 /* Turn off all GSI interrupts when we're all done */
221 static void gsi_irq_teardown(struct gsi *gsi)
222 {
223 	/* Nothing to do */
224 }
225 
226 /* Event ring commands are performed one at a time.  Their completion
227  * is signaled by the event ring control GSI interrupt type, which is
228  * only enabled when we issue an event ring command.  Only the event
229  * ring being operated on has this interrupt enabled.
230  */
231 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
232 {
233 	u32 val = BIT(evt_ring_id);
234 
235 	/* There's a small chance that a previous command completed
236 	 * after the interrupt was disabled, so make sure we have no
237 	 * pending interrupts before we enable them.
238 	 */
239 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
240 
241 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
242 	gsi_irq_type_enable(gsi, GSI_EV_CTRL);
243 }
244 
245 /* Disable event ring control interrupts */
246 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
247 {
248 	gsi_irq_type_disable(gsi, GSI_EV_CTRL);
249 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
250 }
251 
252 /* Channel commands are performed one at a time.  Their completion is
253  * signaled by the channel control GSI interrupt type, which is only
254  * enabled when we issue a channel command.  Only the channel being
255  * operated on has this interrupt enabled.
256  */
257 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
258 {
259 	u32 val = BIT(channel_id);
260 
261 	/* There's a small chance that a previous command completed
262 	 * after the interrupt was disabled, so make sure we have no
263 	 * pending interrupts before we enable them.
264 	 */
265 	iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
266 
267 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
268 	gsi_irq_type_enable(gsi, GSI_CH_CTRL);
269 }
270 
271 /* Disable channel control interrupts */
272 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
273 {
274 	gsi_irq_type_disable(gsi, GSI_CH_CTRL);
275 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
276 }
277 
278 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
279 {
280 	bool enable_ieob = !gsi->ieob_enabled_bitmap;
281 	u32 val;
282 
283 	gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
284 	val = gsi->ieob_enabled_bitmap;
285 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
286 
287 	/* Enable the interrupt type if this is the first channel enabled */
288 	if (enable_ieob)
289 		gsi_irq_type_enable(gsi, GSI_IEOB);
290 }
291 
292 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
293 {
294 	u32 val;
295 
296 	gsi->ieob_enabled_bitmap &= ~event_mask;
297 
298 	/* Disable the interrupt type if this was the last enabled channel */
299 	if (!gsi->ieob_enabled_bitmap)
300 		gsi_irq_type_disable(gsi, GSI_IEOB);
301 
302 	val = gsi->ieob_enabled_bitmap;
303 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
304 }
305 
306 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
307 {
308 	gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
309 }
310 
311 /* Enable all GSI_interrupt types */
312 static void gsi_irq_enable(struct gsi *gsi)
313 {
314 	u32 val;
315 
316 	/* Global interrupts include hardware error reports.  Enable
317 	 * that so we can at least report the error should it occur.
318 	 */
319 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
320 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
321 
322 	/* General GSI interrupts are reported to all EEs; if they occur
323 	 * they are unrecoverable (without reset).  A breakpoint interrupt
324 	 * also exists, but we don't support that.  We want to be notified
325 	 * of errors so we can report them, even if they can't be handled.
326 	 */
327 	val = BIT(BUS_ERROR);
328 	val |= BIT(CMD_FIFO_OVRFLOW);
329 	val |= BIT(MCS_STACK_OVRFLOW);
330 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
331 	gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
332 }
333 
334 /* Disable all GSI interrupt types */
335 static void gsi_irq_disable(struct gsi *gsi)
336 {
337 	gsi_irq_type_update(gsi, 0);
338 
339 	/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
340 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
341 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
342 }
343 
344 /* Return the virtual address associated with a ring index */
345 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
346 {
347 	/* Note: index *must* be used modulo the ring count here */
348 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
349 }
350 
351 /* Return the 32-bit DMA address associated with a ring index */
352 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
353 {
354 	return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
355 }
356 
357 /* Return the ring index of a 32-bit ring offset */
358 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
359 {
360 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
361 }
362 
363 /* Issue a GSI command by writing a value to a register, then wait for
364  * completion to be signaled.  Returns true if the command completes
365  * or false if it times out.
366  */
367 static bool
368 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
369 {
370 	unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
371 
372 	reinit_completion(completion);
373 
374 	iowrite32(val, gsi->virt + reg);
375 
376 	return !!wait_for_completion_timeout(completion, timeout);
377 }
378 
379 /* Return the hardware's notion of the current state of an event ring */
380 static enum gsi_evt_ring_state
381 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
382 {
383 	u32 val;
384 
385 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
386 
387 	return u32_get_bits(val, EV_CHSTATE_FMASK);
388 }
389 
390 /* Issue an event ring command and wait for it to complete */
391 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
392 				 enum gsi_evt_cmd_opcode opcode)
393 {
394 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
395 	struct completion *completion = &evt_ring->completion;
396 	struct device *dev = gsi->dev;
397 	bool timeout;
398 	u32 val;
399 
400 	/* Enable the completion interrupt for the command */
401 	gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
402 
403 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
404 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
405 
406 	timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
407 
408 	gsi_irq_ev_ctrl_disable(gsi);
409 
410 	if (!timeout)
411 		return;
412 
413 	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
414 		opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
415 }
416 
417 /* Allocate an event ring in NOT_ALLOCATED state */
418 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
419 {
420 	enum gsi_evt_ring_state state;
421 
422 	/* Get initial event ring state */
423 	state = gsi_evt_ring_state(gsi, evt_ring_id);
424 	if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
425 		dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
426 			evt_ring_id, state);
427 		return -EINVAL;
428 	}
429 
430 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
431 
432 	/* If successful the event ring state will have changed */
433 	state = gsi_evt_ring_state(gsi, evt_ring_id);
434 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
435 		return 0;
436 
437 	dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
438 		evt_ring_id, state);
439 
440 	return -EIO;
441 }
442 
443 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
444 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
445 {
446 	enum gsi_evt_ring_state state;
447 
448 	state = gsi_evt_ring_state(gsi, evt_ring_id);
449 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
450 	    state != GSI_EVT_RING_STATE_ERROR) {
451 		dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
452 			evt_ring_id, state);
453 		return;
454 	}
455 
456 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
457 
458 	/* If successful the event ring state will have changed */
459 	state = gsi_evt_ring_state(gsi, evt_ring_id);
460 	if (state == GSI_EVT_RING_STATE_ALLOCATED)
461 		return;
462 
463 	dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
464 		evt_ring_id, state);
465 }
466 
467 /* Issue a hardware de-allocation request for an allocated event ring */
468 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
469 {
470 	enum gsi_evt_ring_state state;
471 
472 	state = gsi_evt_ring_state(gsi, evt_ring_id);
473 	if (state != GSI_EVT_RING_STATE_ALLOCATED) {
474 		dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
475 			evt_ring_id, state);
476 		return;
477 	}
478 
479 	gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
480 
481 	/* If successful the event ring state will have changed */
482 	state = gsi_evt_ring_state(gsi, evt_ring_id);
483 	if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
484 		return;
485 
486 	dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
487 		evt_ring_id, state);
488 }
489 
490 /* Fetch the current state of a channel from hardware */
491 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
492 {
493 	u32 channel_id = gsi_channel_id(channel);
494 	void __iomem *virt = channel->gsi->virt;
495 	u32 val;
496 
497 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
498 
499 	return u32_get_bits(val, CHSTATE_FMASK);
500 }
501 
502 /* Issue a channel command and wait for it to complete */
503 static void
504 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
505 {
506 	struct completion *completion = &channel->completion;
507 	u32 channel_id = gsi_channel_id(channel);
508 	struct gsi *gsi = channel->gsi;
509 	struct device *dev = gsi->dev;
510 	bool timeout;
511 	u32 val;
512 
513 	/* Enable the completion interrupt for the command */
514 	gsi_irq_ch_ctrl_enable(gsi, channel_id);
515 
516 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
517 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
518 	timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
519 
520 	gsi_irq_ch_ctrl_disable(gsi);
521 
522 	if (!timeout)
523 		return;
524 
525 	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
526 		opcode, channel_id, gsi_channel_state(channel));
527 }
528 
529 /* Allocate GSI channel in NOT_ALLOCATED state */
530 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
531 {
532 	struct gsi_channel *channel = &gsi->channel[channel_id];
533 	struct device *dev = gsi->dev;
534 	enum gsi_channel_state state;
535 
536 	/* Get initial channel state */
537 	state = gsi_channel_state(channel);
538 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
539 		dev_err(dev, "channel %u bad state %u before alloc\n",
540 			channel_id, state);
541 		return -EINVAL;
542 	}
543 
544 	gsi_channel_command(channel, GSI_CH_ALLOCATE);
545 
546 	/* If successful the channel state will have changed */
547 	state = gsi_channel_state(channel);
548 	if (state == GSI_CHANNEL_STATE_ALLOCATED)
549 		return 0;
550 
551 	dev_err(dev, "channel %u bad state %u after alloc\n",
552 		channel_id, state);
553 
554 	return -EIO;
555 }
556 
557 /* Start an ALLOCATED channel */
558 static int gsi_channel_start_command(struct gsi_channel *channel)
559 {
560 	struct device *dev = channel->gsi->dev;
561 	enum gsi_channel_state state;
562 
563 	state = gsi_channel_state(channel);
564 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
565 	    state != GSI_CHANNEL_STATE_STOPPED) {
566 		dev_err(dev, "channel %u bad state %u before start\n",
567 			gsi_channel_id(channel), state);
568 		return -EINVAL;
569 	}
570 
571 	gsi_channel_command(channel, GSI_CH_START);
572 
573 	/* If successful the channel state will have changed */
574 	state = gsi_channel_state(channel);
575 	if (state == GSI_CHANNEL_STATE_STARTED)
576 		return 0;
577 
578 	dev_err(dev, "channel %u bad state %u after start\n",
579 		gsi_channel_id(channel), state);
580 
581 	return -EIO;
582 }
583 
584 /* Stop a GSI channel in STARTED state */
585 static int gsi_channel_stop_command(struct gsi_channel *channel)
586 {
587 	struct device *dev = channel->gsi->dev;
588 	enum gsi_channel_state state;
589 
590 	state = gsi_channel_state(channel);
591 
592 	/* Channel could have entered STOPPED state since last call
593 	 * if it timed out.  If so, we're done.
594 	 */
595 	if (state == GSI_CHANNEL_STATE_STOPPED)
596 		return 0;
597 
598 	if (state != GSI_CHANNEL_STATE_STARTED &&
599 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
600 		dev_err(dev, "channel %u bad state %u before stop\n",
601 			gsi_channel_id(channel), state);
602 		return -EINVAL;
603 	}
604 
605 	gsi_channel_command(channel, GSI_CH_STOP);
606 
607 	/* If successful the channel state will have changed */
608 	state = gsi_channel_state(channel);
609 	if (state == GSI_CHANNEL_STATE_STOPPED)
610 		return 0;
611 
612 	/* We may have to try again if stop is in progress */
613 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
614 		return -EAGAIN;
615 
616 	dev_err(dev, "channel %u bad state %u after stop\n",
617 		gsi_channel_id(channel), state);
618 
619 	return -EIO;
620 }
621 
622 /* Reset a GSI channel in ALLOCATED or ERROR state. */
623 static void gsi_channel_reset_command(struct gsi_channel *channel)
624 {
625 	struct device *dev = channel->gsi->dev;
626 	enum gsi_channel_state state;
627 
628 	/* A short delay is required before a RESET command */
629 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
630 
631 	state = gsi_channel_state(channel);
632 	if (state != GSI_CHANNEL_STATE_STOPPED &&
633 	    state != GSI_CHANNEL_STATE_ERROR) {
634 		/* No need to reset a channel already in ALLOCATED state */
635 		if (state != GSI_CHANNEL_STATE_ALLOCATED)
636 			dev_err(dev, "channel %u bad state %u before reset\n",
637 				gsi_channel_id(channel), state);
638 		return;
639 	}
640 
641 	gsi_channel_command(channel, GSI_CH_RESET);
642 
643 	/* If successful the channel state will have changed */
644 	state = gsi_channel_state(channel);
645 	if (state != GSI_CHANNEL_STATE_ALLOCATED)
646 		dev_err(dev, "channel %u bad state %u after reset\n",
647 			gsi_channel_id(channel), state);
648 }
649 
650 /* Deallocate an ALLOCATED GSI channel */
651 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
652 {
653 	struct gsi_channel *channel = &gsi->channel[channel_id];
654 	struct device *dev = gsi->dev;
655 	enum gsi_channel_state state;
656 
657 	state = gsi_channel_state(channel);
658 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
659 		dev_err(dev, "channel %u bad state %u before dealloc\n",
660 			channel_id, state);
661 		return;
662 	}
663 
664 	gsi_channel_command(channel, GSI_CH_DE_ALLOC);
665 
666 	/* If successful the channel state will have changed */
667 	state = gsi_channel_state(channel);
668 
669 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
670 		dev_err(dev, "channel %u bad state %u after dealloc\n",
671 			channel_id, state);
672 }
673 
674 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
675  * The index argument (modulo the ring count) is the first unfilled entry, so
676  * we supply one less than that with the doorbell.  Update the event ring
677  * index field with the value provided.
678  */
679 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
680 {
681 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
682 	u32 val;
683 
684 	ring->index = index;	/* Next unused entry */
685 
686 	/* Note: index *must* be used modulo the ring count here */
687 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
688 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
689 }
690 
691 /* Program an event ring for use */
692 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
693 {
694 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
695 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
696 	u32 val;
697 
698 	/* We program all event rings as GPI type/protocol */
699 	val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
700 	val |= EV_INTYPE_FMASK;
701 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
702 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
703 
704 	val = ev_r_length_encoded(gsi->version, size);
705 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
706 
707 	/* The context 2 and 3 registers store the low-order and
708 	 * high-order 32 bits of the address of the event ring,
709 	 * respectively.
710 	 */
711 	val = lower_32_bits(evt_ring->ring.addr);
712 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
713 	val = upper_32_bits(evt_ring->ring.addr);
714 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
715 
716 	/* Enable interrupt moderation by setting the moderation delay */
717 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
718 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
719 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
720 
721 	/* No MSI write data, and MSI address high and low address is 0 */
722 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
723 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
724 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
725 
726 	/* We don't need to get event read pointer updates */
727 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
728 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
729 
730 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
731 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
732 }
733 
734 /* Find the transaction whose completion indicates a channel is quiesced */
735 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
736 {
737 	struct gsi_trans_info *trans_info = &channel->trans_info;
738 	const struct list_head *list;
739 	struct gsi_trans *trans;
740 
741 	spin_lock_bh(&trans_info->spinlock);
742 
743 	/* There is a small chance a TX transaction got allocated just
744 	 * before we disabled transmits, so check for that.
745 	 */
746 	if (channel->toward_ipa) {
747 		list = &trans_info->alloc;
748 		if (!list_empty(list))
749 			goto done;
750 		list = &trans_info->pending;
751 		if (!list_empty(list))
752 			goto done;
753 	}
754 
755 	/* Otherwise (TX or RX) we want to wait for anything that
756 	 * has completed, or has been polled but not released yet.
757 	 */
758 	list = &trans_info->complete;
759 	if (!list_empty(list))
760 		goto done;
761 	list = &trans_info->polled;
762 	if (list_empty(list))
763 		list = NULL;
764 done:
765 	trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL;
766 
767 	/* Caller will wait for this, so take a reference */
768 	if (trans)
769 		refcount_inc(&trans->refcount);
770 
771 	spin_unlock_bh(&trans_info->spinlock);
772 
773 	return trans;
774 }
775 
776 /* Wait for transaction activity on a channel to complete */
777 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
778 {
779 	struct gsi_trans *trans;
780 
781 	/* Get the last transaction, and wait for it to complete */
782 	trans = gsi_channel_trans_last(channel);
783 	if (trans) {
784 		wait_for_completion(&trans->completion);
785 		gsi_trans_free(trans);
786 	}
787 }
788 
789 /* Program a channel for use */
790 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
791 {
792 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
793 	u32 channel_id = gsi_channel_id(channel);
794 	union gsi_channel_scratch scr = { };
795 	struct gsi_channel_scratch_gpi *gpi;
796 	struct gsi *gsi = channel->gsi;
797 	u32 wrr_weight = 0;
798 	u32 val;
799 
800 	/* Arbitrarily pick TRE 0 as the first channel element to use */
801 	channel->tre_ring.index = 0;
802 
803 	/* We program all channels as GPI type/protocol */
804 	val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI);
805 	if (channel->toward_ipa)
806 		val |= CHTYPE_DIR_FMASK;
807 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
808 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
809 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
810 
811 	val = r_length_encoded(gsi->version, size);
812 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
813 
814 	/* The context 2 and 3 registers store the low-order and
815 	 * high-order 32 bits of the address of the channel ring,
816 	 * respectively.
817 	 */
818 	val = lower_32_bits(channel->tre_ring.addr);
819 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
820 	val = upper_32_bits(channel->tre_ring.addr);
821 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
822 
823 	/* Command channel gets low weighted round-robin priority */
824 	if (channel->command)
825 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
826 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
827 
828 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
829 
830 	/* No need to use the doorbell engine starting at IPA v4.0 */
831 	if (gsi->version < IPA_VERSION_4_0 && doorbell)
832 		val |= USE_DB_ENG_FMASK;
833 
834 	/* v4.0 introduces an escape buffer for prefetch.  We use it
835 	 * on all but the AP command channel.
836 	 */
837 	if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
838 		/* If not otherwise set, prefetch buffers are used */
839 		if (gsi->version < IPA_VERSION_4_5)
840 			val |= USE_ESCAPE_BUF_ONLY_FMASK;
841 		else
842 			val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
843 					       PREFETCH_MODE_FMASK);
844 	}
845 	/* All channels set DB_IN_BYTES */
846 	if (gsi->version >= IPA_VERSION_4_9)
847 		val |= DB_IN_BYTES;
848 
849 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
850 
851 	/* Now update the scratch registers for GPI protocol */
852 	gpi = &scr.gpi;
853 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
854 					GSI_RING_ELEMENT_SIZE;
855 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
856 
857 	val = scr.data.word1;
858 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
859 
860 	val = scr.data.word2;
861 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
862 
863 	val = scr.data.word3;
864 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
865 
866 	/* We must preserve the upper 16 bits of the last scratch register.
867 	 * The next sequence assumes those bits remain unchanged between the
868 	 * read and the write.
869 	 */
870 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
871 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
872 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
873 
874 	/* All done! */
875 }
876 
877 static void gsi_channel_deprogram(struct gsi_channel *channel)
878 {
879 	/* Nothing to do */
880 }
881 
882 static int __gsi_channel_start(struct gsi_channel *channel, bool start)
883 {
884 	struct gsi *gsi = channel->gsi;
885 	int ret;
886 
887 	if (!start)
888 		return 0;
889 
890 	mutex_lock(&gsi->mutex);
891 
892 	ret = gsi_channel_start_command(channel);
893 
894 	mutex_unlock(&gsi->mutex);
895 
896 	return ret;
897 }
898 
899 /* Start an allocated GSI channel */
900 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
901 {
902 	struct gsi_channel *channel = &gsi->channel[channel_id];
903 	int ret;
904 
905 	/* Enable NAPI and the completion interrupt */
906 	napi_enable(&channel->napi);
907 	gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
908 
909 	ret = __gsi_channel_start(channel, true);
910 	if (ret) {
911 		gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
912 		napi_disable(&channel->napi);
913 	}
914 
915 	return ret;
916 }
917 
918 static int gsi_channel_stop_retry(struct gsi_channel *channel)
919 {
920 	u32 retries = GSI_CHANNEL_STOP_RETRIES;
921 	int ret;
922 
923 	do {
924 		ret = gsi_channel_stop_command(channel);
925 		if (ret != -EAGAIN)
926 			break;
927 		usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
928 	} while (retries--);
929 
930 	return ret;
931 }
932 
933 static int __gsi_channel_stop(struct gsi_channel *channel, bool stop)
934 {
935 	struct gsi *gsi = channel->gsi;
936 	int ret;
937 
938 	/* Wait for any underway transactions to complete before stopping. */
939 	gsi_channel_trans_quiesce(channel);
940 
941 	if (!stop)
942 		return 0;
943 
944 	mutex_lock(&gsi->mutex);
945 
946 	ret = gsi_channel_stop_retry(channel);
947 
948 	mutex_unlock(&gsi->mutex);
949 
950 	return ret;
951 }
952 
953 /* Stop a started channel */
954 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
955 {
956 	struct gsi_channel *channel = &gsi->channel[channel_id];
957 	int ret;
958 
959 	ret = __gsi_channel_stop(channel, true);
960 	if (ret)
961 		return ret;
962 
963 	/* Disable the completion interrupt and NAPI if successful */
964 	gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
965 	napi_disable(&channel->napi);
966 
967 	return 0;
968 }
969 
970 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
971 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
972 {
973 	struct gsi_channel *channel = &gsi->channel[channel_id];
974 
975 	mutex_lock(&gsi->mutex);
976 
977 	gsi_channel_reset_command(channel);
978 	/* Due to a hardware quirk we may need to reset RX channels twice. */
979 	if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
980 		gsi_channel_reset_command(channel);
981 
982 	gsi_channel_program(channel, doorbell);
983 	gsi_channel_trans_cancel_pending(channel);
984 
985 	mutex_unlock(&gsi->mutex);
986 }
987 
988 /* Stop a STARTED channel for suspend (using stop if requested) */
989 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
990 {
991 	struct gsi_channel *channel = &gsi->channel[channel_id];
992 	int ret;
993 
994 	ret = __gsi_channel_stop(channel, stop);
995 	if (ret)
996 		return ret;
997 
998 	/* Ensure NAPI polling has finished. */
999 	napi_synchronize(&channel->napi);
1000 
1001 	return 0;
1002 }
1003 
1004 /* Resume a suspended channel (starting will be requested if STOPPED) */
1005 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
1006 {
1007 	struct gsi_channel *channel = &gsi->channel[channel_id];
1008 
1009 	return __gsi_channel_start(channel, start);
1010 }
1011 
1012 /**
1013  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
1014  * @channel:	Channel for which to report
1015  *
1016  * Report to the network stack the number of bytes and transactions that
1017  * have been queued to hardware since last call.  This and the next function
1018  * supply information used by the network stack for throttling.
1019  *
1020  * For each channel we track the number of transactions used and bytes of
1021  * data those transactions represent.  We also track what those values are
1022  * each time this function is called.  Subtracting the two tells us
1023  * the number of bytes and transactions that have been added between
1024  * successive calls.
1025  *
1026  * Calling this each time we ring the channel doorbell allows us to
1027  * provide accurate information to the network stack about how much
1028  * work we've given the hardware at any point in time.
1029  */
1030 void gsi_channel_tx_queued(struct gsi_channel *channel)
1031 {
1032 	u32 trans_count;
1033 	u32 byte_count;
1034 
1035 	byte_count = channel->byte_count - channel->queued_byte_count;
1036 	trans_count = channel->trans_count - channel->queued_trans_count;
1037 	channel->queued_byte_count = channel->byte_count;
1038 	channel->queued_trans_count = channel->trans_count;
1039 
1040 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
1041 				  trans_count, byte_count);
1042 }
1043 
1044 /**
1045  * gsi_channel_tx_update() - Report completed TX transfers
1046  * @channel:	Channel that has completed transmitting packets
1047  * @trans:	Last transation known to be complete
1048  *
1049  * Compute the number of transactions and bytes that have been transferred
1050  * over a TX channel since the given transaction was committed.  Report this
1051  * information to the network stack.
1052  *
1053  * At the time a transaction is committed, we record its channel's
1054  * committed transaction and byte counts *in the transaction*.
1055  * Completions are signaled by the hardware with an interrupt, and
1056  * we can determine the latest completed transaction at that time.
1057  *
1058  * The difference between the byte/transaction count recorded in
1059  * the transaction and the count last time we recorded a completion
1060  * tells us exactly how much data has been transferred between
1061  * completions.
1062  *
1063  * Calling this each time we learn of a newly-completed transaction
1064  * allows us to provide accurate information to the network stack
1065  * about how much work has been completed by the hardware at a given
1066  * point in time.
1067  */
1068 static void
1069 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
1070 {
1071 	u64 byte_count = trans->byte_count + trans->len;
1072 	u64 trans_count = trans->trans_count + 1;
1073 
1074 	byte_count -= channel->compl_byte_count;
1075 	channel->compl_byte_count += byte_count;
1076 	trans_count -= channel->compl_trans_count;
1077 	channel->compl_trans_count += trans_count;
1078 
1079 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
1080 				     trans_count, byte_count);
1081 }
1082 
1083 /* Channel control interrupt handler */
1084 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1085 {
1086 	u32 channel_mask;
1087 
1088 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1089 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1090 
1091 	while (channel_mask) {
1092 		u32 channel_id = __ffs(channel_mask);
1093 		struct gsi_channel *channel;
1094 
1095 		channel_mask ^= BIT(channel_id);
1096 
1097 		channel = &gsi->channel[channel_id];
1098 
1099 		complete(&channel->completion);
1100 	}
1101 }
1102 
1103 /* Event ring control interrupt handler */
1104 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1105 {
1106 	u32 event_mask;
1107 
1108 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1109 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1110 
1111 	while (event_mask) {
1112 		u32 evt_ring_id = __ffs(event_mask);
1113 		struct gsi_evt_ring *evt_ring;
1114 
1115 		event_mask ^= BIT(evt_ring_id);
1116 
1117 		evt_ring = &gsi->evt_ring[evt_ring_id];
1118 
1119 		complete(&evt_ring->completion);
1120 	}
1121 }
1122 
1123 /* Global channel error interrupt handler */
1124 static void
1125 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1126 {
1127 	if (code == GSI_OUT_OF_RESOURCES) {
1128 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1129 		complete(&gsi->channel[channel_id].completion);
1130 		return;
1131 	}
1132 
1133 	/* Report, but otherwise ignore all other error codes */
1134 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1135 		channel_id, err_ee, code);
1136 }
1137 
1138 /* Global event error interrupt handler */
1139 static void
1140 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1141 {
1142 	if (code == GSI_OUT_OF_RESOURCES) {
1143 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1144 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1145 
1146 		complete(&evt_ring->completion);
1147 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1148 			channel_id);
1149 		return;
1150 	}
1151 
1152 	/* Report, but otherwise ignore all other error codes */
1153 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1154 		evt_ring_id, err_ee, code);
1155 }
1156 
1157 /* Global error interrupt handler */
1158 static void gsi_isr_glob_err(struct gsi *gsi)
1159 {
1160 	enum gsi_err_type type;
1161 	enum gsi_err_code code;
1162 	u32 which;
1163 	u32 val;
1164 	u32 ee;
1165 
1166 	/* Get the logged error, then reinitialize the log */
1167 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1168 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1169 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1170 
1171 	ee = u32_get_bits(val, ERR_EE_FMASK);
1172 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1173 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1174 	code = u32_get_bits(val, ERR_CODE_FMASK);
1175 
1176 	if (type == GSI_ERR_TYPE_CHAN)
1177 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1178 	else if (type == GSI_ERR_TYPE_EVT)
1179 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1180 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1181 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1182 }
1183 
1184 /* Generic EE interrupt handler */
1185 static void gsi_isr_gp_int1(struct gsi *gsi)
1186 {
1187 	u32 result;
1188 	u32 val;
1189 
1190 	/* This interrupt is used to handle completions of the two GENERIC
1191 	 * GSI commands.  We use these to allocate and halt channels on
1192 	 * the modem's behalf due to a hardware quirk on IPA v4.2.  Once
1193 	 * allocated, the modem "owns" these channels, and as a result we
1194 	 * have no way of knowing the channel's state at any given time.
1195 	 *
1196 	 * It is recommended that we halt the modem channels we allocated
1197 	 * when shutting down, but it's possible the channel isn't running
1198 	 * at the time we issue the HALT command.  We'll get an error in
1199 	 * that case, but it's harmless (the channel is already halted).
1200 	 *
1201 	 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error
1202 	 * if we receive it.
1203 	 */
1204 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1205 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1206 
1207 	switch (result) {
1208 	case GENERIC_EE_SUCCESS:
1209 	case GENERIC_EE_CHANNEL_NOT_RUNNING:
1210 		gsi->result = 0;
1211 		break;
1212 
1213 	case GENERIC_EE_RETRY:
1214 		gsi->result = -EAGAIN;
1215 		break;
1216 
1217 	default:
1218 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1219 		gsi->result = -EIO;
1220 		break;
1221 	}
1222 
1223 	complete(&gsi->completion);
1224 }
1225 
1226 /* Inter-EE interrupt handler */
1227 static void gsi_isr_glob_ee(struct gsi *gsi)
1228 {
1229 	u32 val;
1230 
1231 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1232 
1233 	if (val & BIT(ERROR_INT))
1234 		gsi_isr_glob_err(gsi);
1235 
1236 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1237 
1238 	val &= ~BIT(ERROR_INT);
1239 
1240 	if (val & BIT(GP_INT1)) {
1241 		val ^= BIT(GP_INT1);
1242 		gsi_isr_gp_int1(gsi);
1243 	}
1244 
1245 	if (val)
1246 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1247 }
1248 
1249 /* I/O completion interrupt event */
1250 static void gsi_isr_ieob(struct gsi *gsi)
1251 {
1252 	u32 event_mask;
1253 
1254 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1255 	gsi_irq_ieob_disable(gsi, event_mask);
1256 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1257 
1258 	while (event_mask) {
1259 		u32 evt_ring_id = __ffs(event_mask);
1260 
1261 		event_mask ^= BIT(evt_ring_id);
1262 
1263 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1264 	}
1265 }
1266 
1267 /* General event interrupts represent serious problems, so report them */
1268 static void gsi_isr_general(struct gsi *gsi)
1269 {
1270 	struct device *dev = gsi->dev;
1271 	u32 val;
1272 
1273 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1274 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1275 
1276 	dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1277 }
1278 
1279 /**
1280  * gsi_isr() - Top level GSI interrupt service routine
1281  * @irq:	Interrupt number (ignored)
1282  * @dev_id:	GSI pointer supplied to request_irq()
1283  *
1284  * This is the main handler function registered for the GSI IRQ. Each type
1285  * of interrupt has a separate handler function that is called from here.
1286  */
1287 static irqreturn_t gsi_isr(int irq, void *dev_id)
1288 {
1289 	struct gsi *gsi = dev_id;
1290 	u32 intr_mask;
1291 	u32 cnt = 0;
1292 
1293 	/* enum gsi_irq_type_id defines GSI interrupt types */
1294 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1295 		/* intr_mask contains bitmask of pending GSI interrupts */
1296 		do {
1297 			u32 gsi_intr = BIT(__ffs(intr_mask));
1298 
1299 			intr_mask ^= gsi_intr;
1300 
1301 			switch (gsi_intr) {
1302 			case BIT(GSI_CH_CTRL):
1303 				gsi_isr_chan_ctrl(gsi);
1304 				break;
1305 			case BIT(GSI_EV_CTRL):
1306 				gsi_isr_evt_ctrl(gsi);
1307 				break;
1308 			case BIT(GSI_GLOB_EE):
1309 				gsi_isr_glob_ee(gsi);
1310 				break;
1311 			case BIT(GSI_IEOB):
1312 				gsi_isr_ieob(gsi);
1313 				break;
1314 			case BIT(GSI_GENERAL):
1315 				gsi_isr_general(gsi);
1316 				break;
1317 			default:
1318 				dev_err(gsi->dev,
1319 					"unrecognized interrupt type 0x%08x\n",
1320 					gsi_intr);
1321 				break;
1322 			}
1323 		} while (intr_mask);
1324 
1325 		if (++cnt > GSI_ISR_MAX_ITER) {
1326 			dev_err(gsi->dev, "interrupt flood\n");
1327 			break;
1328 		}
1329 	}
1330 
1331 	return IRQ_HANDLED;
1332 }
1333 
1334 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1335 {
1336 	struct device *dev = &pdev->dev;
1337 	unsigned int irq;
1338 	int ret;
1339 
1340 	ret = platform_get_irq_byname(pdev, "gsi");
1341 	if (ret <= 0)
1342 		return ret ? : -EINVAL;
1343 
1344 	irq = ret;
1345 
1346 	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1347 	if (ret) {
1348 		dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1349 		return ret;
1350 	}
1351 	gsi->irq = irq;
1352 
1353 	return 0;
1354 }
1355 
1356 static void gsi_irq_exit(struct gsi *gsi)
1357 {
1358 	free_irq(gsi->irq, gsi);
1359 }
1360 
1361 /* Return the transaction associated with a transfer completion event */
1362 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1363 					 struct gsi_event *event)
1364 {
1365 	u32 tre_offset;
1366 	u32 tre_index;
1367 
1368 	/* Event xfer_ptr records the TRE it's associated with */
1369 	tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1370 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1371 
1372 	return gsi_channel_trans_mapped(channel, tre_index);
1373 }
1374 
1375 /**
1376  * gsi_evt_ring_rx_update() - Record lengths of received data
1377  * @evt_ring:	Event ring associated with channel that received packets
1378  * @index:	Event index in ring reported by hardware
1379  *
1380  * Events for RX channels contain the actual number of bytes received into
1381  * the buffer.  Every event has a transaction associated with it, and here
1382  * we update transactions to record their actual received lengths.
1383  *
1384  * This function is called whenever we learn that the GSI hardware has filled
1385  * new events since the last time we checked.  The ring's index field tells
1386  * the first entry in need of processing.  The index provided is the
1387  * first *unfilled* event in the ring (following the last filled one).
1388  *
1389  * Events are sequential within the event ring, and transactions are
1390  * sequential within the transaction pool.
1391  *
1392  * Note that @index always refers to an element *within* the event ring.
1393  */
1394 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1395 {
1396 	struct gsi_channel *channel = evt_ring->channel;
1397 	struct gsi_ring *ring = &evt_ring->ring;
1398 	struct gsi_trans_info *trans_info;
1399 	struct gsi_event *event_done;
1400 	struct gsi_event *event;
1401 	struct gsi_trans *trans;
1402 	u32 byte_count = 0;
1403 	u32 old_index;
1404 	u32 event_avail;
1405 
1406 	trans_info = &channel->trans_info;
1407 
1408 	/* We'll start with the oldest un-processed event.  RX channels
1409 	 * replenish receive buffers in single-TRE transactions, so we
1410 	 * can just map that event to its transaction.  Transactions
1411 	 * associated with completion events are consecutive.
1412 	 */
1413 	old_index = ring->index;
1414 	event = gsi_ring_virt(ring, old_index);
1415 	trans = gsi_event_trans(channel, event);
1416 
1417 	/* Compute the number of events to process before we wrap,
1418 	 * and determine when we'll be done processing events.
1419 	 */
1420 	event_avail = ring->count - old_index % ring->count;
1421 	event_done = gsi_ring_virt(ring, index);
1422 	do {
1423 		trans->len = __le16_to_cpu(event->len);
1424 		byte_count += trans->len;
1425 
1426 		/* Move on to the next event and transaction */
1427 		if (--event_avail)
1428 			event++;
1429 		else
1430 			event = gsi_ring_virt(ring, 0);
1431 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1432 	} while (event != event_done);
1433 
1434 	/* We record RX bytes when they are received */
1435 	channel->byte_count += byte_count;
1436 	channel->trans_count++;
1437 }
1438 
1439 /* Initialize a ring, including allocating DMA memory for its entries */
1440 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1441 {
1442 	u32 size = count * GSI_RING_ELEMENT_SIZE;
1443 	struct device *dev = gsi->dev;
1444 	dma_addr_t addr;
1445 
1446 	/* Hardware requires a 2^n ring size, with alignment equal to size.
1447 	 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1448 	 * be a power-of-2 number of pages, which satisfies the requirement.
1449 	 */
1450 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1451 	if (!ring->virt)
1452 		return -ENOMEM;
1453 
1454 	ring->addr = addr;
1455 	ring->count = count;
1456 
1457 	return 0;
1458 }
1459 
1460 /* Free a previously-allocated ring */
1461 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1462 {
1463 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1464 
1465 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1466 }
1467 
1468 /* Allocate an available event ring id */
1469 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1470 {
1471 	u32 evt_ring_id;
1472 
1473 	if (gsi->event_bitmap == ~0U) {
1474 		dev_err(gsi->dev, "event rings exhausted\n");
1475 		return -ENOSPC;
1476 	}
1477 
1478 	evt_ring_id = ffz(gsi->event_bitmap);
1479 	gsi->event_bitmap |= BIT(evt_ring_id);
1480 
1481 	return (int)evt_ring_id;
1482 }
1483 
1484 /* Free a previously-allocated event ring id */
1485 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1486 {
1487 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1488 }
1489 
1490 /* Ring a channel doorbell, reporting the first un-filled entry */
1491 void gsi_channel_doorbell(struct gsi_channel *channel)
1492 {
1493 	struct gsi_ring *tre_ring = &channel->tre_ring;
1494 	u32 channel_id = gsi_channel_id(channel);
1495 	struct gsi *gsi = channel->gsi;
1496 	u32 val;
1497 
1498 	/* Note: index *must* be used modulo the ring count here */
1499 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1500 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1501 }
1502 
1503 /* Consult hardware, move any newly completed transactions to completed list */
1504 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel)
1505 {
1506 	u32 evt_ring_id = channel->evt_ring_id;
1507 	struct gsi *gsi = channel->gsi;
1508 	struct gsi_evt_ring *evt_ring;
1509 	struct gsi_trans *trans;
1510 	struct gsi_ring *ring;
1511 	u32 offset;
1512 	u32 index;
1513 
1514 	evt_ring = &gsi->evt_ring[evt_ring_id];
1515 	ring = &evt_ring->ring;
1516 
1517 	/* See if there's anything new to process; if not, we're done.  Note
1518 	 * that index always refers to an entry *within* the event ring.
1519 	 */
1520 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1521 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1522 	if (index == ring->index % ring->count)
1523 		return NULL;
1524 
1525 	/* Get the transaction for the latest completed event.  Take a
1526 	 * reference to keep it from completing before we give the events
1527 	 * for this and previous transactions back to the hardware.
1528 	 */
1529 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1530 	refcount_inc(&trans->refcount);
1531 
1532 	/* For RX channels, update each completed transaction with the number
1533 	 * of bytes that were actually received.  For TX channels, report
1534 	 * the number of transactions and bytes this completion represents
1535 	 * up the network stack.
1536 	 */
1537 	if (channel->toward_ipa)
1538 		gsi_channel_tx_update(channel, trans);
1539 	else
1540 		gsi_evt_ring_rx_update(evt_ring, index);
1541 
1542 	gsi_trans_move_complete(trans);
1543 
1544 	/* Tell the hardware we've handled these events */
1545 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1546 
1547 	gsi_trans_free(trans);
1548 
1549 	return gsi_channel_trans_complete(channel);
1550 }
1551 
1552 /**
1553  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1554  * @channel:	Channel to be polled
1555  *
1556  * Return:	Transaction pointer, or null if none are available
1557  *
1558  * This function returns the first entry on a channel's completed transaction
1559  * list.  If that list is empty, the hardware is consulted to determine
1560  * whether any new transactions have completed.  If so, they're moved to the
1561  * completed list and the new first entry is returned.  If there are no more
1562  * completed transactions, a null pointer is returned.
1563  */
1564 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1565 {
1566 	struct gsi_trans *trans;
1567 
1568 	/* Get the first transaction from the completed list */
1569 	trans = gsi_channel_trans_complete(channel);
1570 	if (!trans)	/* List is empty; see if there's more to do */
1571 		trans = gsi_channel_update(channel);
1572 
1573 	if (trans)
1574 		gsi_trans_move_polled(trans);
1575 
1576 	return trans;
1577 }
1578 
1579 /**
1580  * gsi_channel_poll() - NAPI poll function for a channel
1581  * @napi:	NAPI structure for the channel
1582  * @budget:	Budget supplied by NAPI core
1583  *
1584  * Return:	Number of items polled (<= budget)
1585  *
1586  * Single transactions completed by hardware are polled until either
1587  * the budget is exhausted, or there are no more.  Each transaction
1588  * polled is passed to gsi_trans_complete(), to perform remaining
1589  * completion processing and retire/free the transaction.
1590  */
1591 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1592 {
1593 	struct gsi_channel *channel;
1594 	int count;
1595 
1596 	channel = container_of(napi, struct gsi_channel, napi);
1597 	for (count = 0; count < budget; count++) {
1598 		struct gsi_trans *trans;
1599 
1600 		trans = gsi_channel_poll_one(channel);
1601 		if (!trans)
1602 			break;
1603 		gsi_trans_complete(trans);
1604 	}
1605 
1606 	if (count < budget && napi_complete(napi))
1607 		gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1608 
1609 	return count;
1610 }
1611 
1612 /* The event bitmap represents which event ids are available for allocation.
1613  * Set bits are not available, clear bits can be used.  This function
1614  * initializes the map so all events supported by the hardware are available,
1615  * then precludes any reserved events from being allocated.
1616  */
1617 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1618 {
1619 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1620 
1621 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1622 
1623 	return event_bitmap;
1624 }
1625 
1626 /* Setup function for event rings */
1627 static void gsi_evt_ring_setup(struct gsi *gsi)
1628 {
1629 	/* Nothing to do */
1630 }
1631 
1632 /* Inverse of gsi_evt_ring_setup() */
1633 static void gsi_evt_ring_teardown(struct gsi *gsi)
1634 {
1635 	/* Nothing to do */
1636 }
1637 
1638 /* Setup function for a single channel */
1639 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1640 {
1641 	struct gsi_channel *channel = &gsi->channel[channel_id];
1642 	u32 evt_ring_id = channel->evt_ring_id;
1643 	int ret;
1644 
1645 	if (!gsi_channel_initialized(channel))
1646 		return 0;
1647 
1648 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1649 	if (ret)
1650 		return ret;
1651 
1652 	gsi_evt_ring_program(gsi, evt_ring_id);
1653 
1654 	ret = gsi_channel_alloc_command(gsi, channel_id);
1655 	if (ret)
1656 		goto err_evt_ring_de_alloc;
1657 
1658 	gsi_channel_program(channel, true);
1659 
1660 	if (channel->toward_ipa)
1661 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1662 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1663 	else
1664 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1665 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1666 
1667 	return 0;
1668 
1669 err_evt_ring_de_alloc:
1670 	/* We've done nothing with the event ring yet so don't reset */
1671 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1672 
1673 	return ret;
1674 }
1675 
1676 /* Inverse of gsi_channel_setup_one() */
1677 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1678 {
1679 	struct gsi_channel *channel = &gsi->channel[channel_id];
1680 	u32 evt_ring_id = channel->evt_ring_id;
1681 
1682 	if (!gsi_channel_initialized(channel))
1683 		return;
1684 
1685 	netif_napi_del(&channel->napi);
1686 
1687 	gsi_channel_deprogram(channel);
1688 	gsi_channel_de_alloc_command(gsi, channel_id);
1689 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1690 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1691 }
1692 
1693 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1694 			       enum gsi_generic_cmd_opcode opcode)
1695 {
1696 	struct completion *completion = &gsi->completion;
1697 	bool timeout;
1698 	u32 val;
1699 
1700 	/* The error global interrupt type is always enabled (until we
1701 	 * teardown), so we won't change that.  A generic EE command
1702 	 * completes with a GSI global interrupt of type GP_INT1.  We
1703 	 * only perform one generic command at a time (to allocate or
1704 	 * halt a modem channel) and only from this function.  So we
1705 	 * enable the GP_INT1 IRQ type here while we're expecting it.
1706 	 */
1707 	val = BIT(ERROR_INT) | BIT(GP_INT1);
1708 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1709 
1710 	/* First zero the result code field */
1711 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1712 	val &= ~GENERIC_EE_RESULT_FMASK;
1713 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1714 
1715 	/* Now issue the command */
1716 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1717 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1718 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1719 
1720 	timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
1721 
1722 	/* Disable the GP_INT1 IRQ type again */
1723 	iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1724 
1725 	if (!timeout)
1726 		return gsi->result;
1727 
1728 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1729 		opcode, channel_id);
1730 
1731 	return -ETIMEDOUT;
1732 }
1733 
1734 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1735 {
1736 	return gsi_generic_command(gsi, channel_id,
1737 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1738 }
1739 
1740 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1741 {
1742 	u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1743 	int ret;
1744 
1745 	do
1746 		ret = gsi_generic_command(gsi, channel_id,
1747 					  GSI_GENERIC_HALT_CHANNEL);
1748 	while (ret == -EAGAIN && retries--);
1749 
1750 	if (ret)
1751 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1752 			ret, channel_id);
1753 }
1754 
1755 /* Setup function for channels */
1756 static int gsi_channel_setup(struct gsi *gsi)
1757 {
1758 	u32 channel_id = 0;
1759 	u32 mask;
1760 	int ret;
1761 
1762 	gsi_evt_ring_setup(gsi);
1763 	gsi_irq_enable(gsi);
1764 
1765 	mutex_lock(&gsi->mutex);
1766 
1767 	do {
1768 		ret = gsi_channel_setup_one(gsi, channel_id);
1769 		if (ret)
1770 			goto err_unwind;
1771 	} while (++channel_id < gsi->channel_count);
1772 
1773 	/* Make sure no channels were defined that hardware does not support */
1774 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1775 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1776 
1777 		if (!gsi_channel_initialized(channel))
1778 			continue;
1779 
1780 		ret = -EINVAL;
1781 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1782 			channel_id - 1);
1783 		channel_id = gsi->channel_count;
1784 		goto err_unwind;
1785 	}
1786 
1787 	/* Allocate modem channels if necessary */
1788 	mask = gsi->modem_channel_bitmap;
1789 	while (mask) {
1790 		u32 modem_channel_id = __ffs(mask);
1791 
1792 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1793 		if (ret)
1794 			goto err_unwind_modem;
1795 
1796 		/* Clear bit from mask only after success (for unwind) */
1797 		mask ^= BIT(modem_channel_id);
1798 	}
1799 
1800 	mutex_unlock(&gsi->mutex);
1801 
1802 	return 0;
1803 
1804 err_unwind_modem:
1805 	/* Compute which modem channels need to be deallocated */
1806 	mask ^= gsi->modem_channel_bitmap;
1807 	while (mask) {
1808 		channel_id = __fls(mask);
1809 
1810 		mask ^= BIT(channel_id);
1811 
1812 		gsi_modem_channel_halt(gsi, channel_id);
1813 	}
1814 
1815 err_unwind:
1816 	while (channel_id--)
1817 		gsi_channel_teardown_one(gsi, channel_id);
1818 
1819 	mutex_unlock(&gsi->mutex);
1820 
1821 	gsi_irq_disable(gsi);
1822 	gsi_evt_ring_teardown(gsi);
1823 
1824 	return ret;
1825 }
1826 
1827 /* Inverse of gsi_channel_setup() */
1828 static void gsi_channel_teardown(struct gsi *gsi)
1829 {
1830 	u32 mask = gsi->modem_channel_bitmap;
1831 	u32 channel_id;
1832 
1833 	mutex_lock(&gsi->mutex);
1834 
1835 	while (mask) {
1836 		channel_id = __fls(mask);
1837 
1838 		mask ^= BIT(channel_id);
1839 
1840 		gsi_modem_channel_halt(gsi, channel_id);
1841 	}
1842 
1843 	channel_id = gsi->channel_count - 1;
1844 	do
1845 		gsi_channel_teardown_one(gsi, channel_id);
1846 	while (channel_id--);
1847 
1848 	mutex_unlock(&gsi->mutex);
1849 
1850 	gsi_irq_disable(gsi);
1851 	gsi_evt_ring_teardown(gsi);
1852 }
1853 
1854 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1855 int gsi_setup(struct gsi *gsi)
1856 {
1857 	struct device *dev = gsi->dev;
1858 	u32 val;
1859 	int ret;
1860 
1861 	/* Here is where we first touch the GSI hardware */
1862 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1863 	if (!(val & ENABLED_FMASK)) {
1864 		dev_err(dev, "GSI has not been enabled\n");
1865 		return -EIO;
1866 	}
1867 
1868 	gsi_irq_setup(gsi);
1869 
1870 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1871 
1872 	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1873 	if (!gsi->channel_count) {
1874 		dev_err(dev, "GSI reports zero channels supported\n");
1875 		return -EINVAL;
1876 	}
1877 	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1878 		dev_warn(dev,
1879 			 "limiting to %u channels; hardware supports %u\n",
1880 			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1881 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1882 	}
1883 
1884 	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1885 	if (!gsi->evt_ring_count) {
1886 		dev_err(dev, "GSI reports zero event rings supported\n");
1887 		return -EINVAL;
1888 	}
1889 	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1890 		dev_warn(dev,
1891 			 "limiting to %u event rings; hardware supports %u\n",
1892 			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1893 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1894 	}
1895 
1896 	/* Initialize the error log */
1897 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1898 
1899 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1900 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1901 
1902 	ret = gsi_channel_setup(gsi);
1903 	if (ret)
1904 		gsi_irq_teardown(gsi);
1905 
1906 	return ret;
1907 }
1908 
1909 /* Inverse of gsi_setup() */
1910 void gsi_teardown(struct gsi *gsi)
1911 {
1912 	gsi_channel_teardown(gsi);
1913 	gsi_irq_teardown(gsi);
1914 }
1915 
1916 /* Initialize a channel's event ring */
1917 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1918 {
1919 	struct gsi *gsi = channel->gsi;
1920 	struct gsi_evt_ring *evt_ring;
1921 	int ret;
1922 
1923 	ret = gsi_evt_ring_id_alloc(gsi);
1924 	if (ret < 0)
1925 		return ret;
1926 	channel->evt_ring_id = ret;
1927 
1928 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1929 	evt_ring->channel = channel;
1930 
1931 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1932 	if (!ret)
1933 		return 0;	/* Success! */
1934 
1935 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1936 		ret, gsi_channel_id(channel));
1937 
1938 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1939 
1940 	return ret;
1941 }
1942 
1943 /* Inverse of gsi_channel_evt_ring_init() */
1944 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1945 {
1946 	u32 evt_ring_id = channel->evt_ring_id;
1947 	struct gsi *gsi = channel->gsi;
1948 	struct gsi_evt_ring *evt_ring;
1949 
1950 	evt_ring = &gsi->evt_ring[evt_ring_id];
1951 	gsi_ring_free(gsi, &evt_ring->ring);
1952 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1953 }
1954 
1955 /* Init function for event rings */
1956 static void gsi_evt_ring_init(struct gsi *gsi)
1957 {
1958 	u32 evt_ring_id = 0;
1959 
1960 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1961 	gsi->ieob_enabled_bitmap = 0;
1962 	do
1963 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1964 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1965 }
1966 
1967 /* Inverse of gsi_evt_ring_init() */
1968 static void gsi_evt_ring_exit(struct gsi *gsi)
1969 {
1970 	/* Nothing to do */
1971 }
1972 
1973 static bool gsi_channel_data_valid(struct gsi *gsi,
1974 				   const struct ipa_gsi_endpoint_data *data)
1975 {
1976 #ifdef IPA_VALIDATION
1977 	u32 channel_id = data->channel_id;
1978 	struct device *dev = gsi->dev;
1979 
1980 	/* Make sure channel ids are in the range driver supports */
1981 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1982 		dev_err(dev, "bad channel id %u; must be less than %u\n",
1983 			channel_id, GSI_CHANNEL_COUNT_MAX);
1984 		return false;
1985 	}
1986 
1987 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1988 		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
1989 		return false;
1990 	}
1991 
1992 	if (!data->channel.tlv_count ||
1993 	    data->channel.tlv_count > GSI_TLV_MAX) {
1994 		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
1995 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1996 		return false;
1997 	}
1998 
1999 	/* We have to allow at least one maximally-sized transaction to
2000 	 * be outstanding (which would use tlv_count TREs).  Given how
2001 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
2002 	 * twice the TLV FIFO size to satisfy this requirement.
2003 	 */
2004 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
2005 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
2006 			channel_id, data->channel.tlv_count,
2007 			data->channel.tre_count);
2008 		return false;
2009 	}
2010 
2011 	if (!is_power_of_2(data->channel.tre_count)) {
2012 		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2013 			channel_id, data->channel.tre_count);
2014 		return false;
2015 	}
2016 
2017 	if (!is_power_of_2(data->channel.event_count)) {
2018 		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2019 			channel_id, data->channel.event_count);
2020 		return false;
2021 	}
2022 #endif /* IPA_VALIDATION */
2023 
2024 	return true;
2025 }
2026 
2027 /* Init function for a single channel */
2028 static int gsi_channel_init_one(struct gsi *gsi,
2029 				const struct ipa_gsi_endpoint_data *data,
2030 				bool command)
2031 {
2032 	struct gsi_channel *channel;
2033 	u32 tre_count;
2034 	int ret;
2035 
2036 	if (!gsi_channel_data_valid(gsi, data))
2037 		return -EINVAL;
2038 
2039 	/* Worst case we need an event for every outstanding TRE */
2040 	if (data->channel.tre_count > data->channel.event_count) {
2041 		tre_count = data->channel.event_count;
2042 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2043 			 data->channel_id, tre_count);
2044 	} else {
2045 		tre_count = data->channel.tre_count;
2046 	}
2047 
2048 	channel = &gsi->channel[data->channel_id];
2049 	memset(channel, 0, sizeof(*channel));
2050 
2051 	channel->gsi = gsi;
2052 	channel->toward_ipa = data->toward_ipa;
2053 	channel->command = command;
2054 	channel->tlv_count = data->channel.tlv_count;
2055 	channel->tre_count = tre_count;
2056 	channel->event_count = data->channel.event_count;
2057 	init_completion(&channel->completion);
2058 
2059 	ret = gsi_channel_evt_ring_init(channel);
2060 	if (ret)
2061 		goto err_clear_gsi;
2062 
2063 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2064 	if (ret) {
2065 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2066 			ret, data->channel_id);
2067 		goto err_channel_evt_ring_exit;
2068 	}
2069 
2070 	ret = gsi_channel_trans_init(gsi, data->channel_id);
2071 	if (ret)
2072 		goto err_ring_free;
2073 
2074 	if (command) {
2075 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2076 
2077 		ret = ipa_cmd_pool_init(channel, tre_max);
2078 	}
2079 	if (!ret)
2080 		return 0;	/* Success! */
2081 
2082 	gsi_channel_trans_exit(channel);
2083 err_ring_free:
2084 	gsi_ring_free(gsi, &channel->tre_ring);
2085 err_channel_evt_ring_exit:
2086 	gsi_channel_evt_ring_exit(channel);
2087 err_clear_gsi:
2088 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
2089 
2090 	return ret;
2091 }
2092 
2093 /* Inverse of gsi_channel_init_one() */
2094 static void gsi_channel_exit_one(struct gsi_channel *channel)
2095 {
2096 	if (!gsi_channel_initialized(channel))
2097 		return;
2098 
2099 	if (channel->command)
2100 		ipa_cmd_pool_exit(channel);
2101 	gsi_channel_trans_exit(channel);
2102 	gsi_ring_free(channel->gsi, &channel->tre_ring);
2103 	gsi_channel_evt_ring_exit(channel);
2104 }
2105 
2106 /* Init function for channels */
2107 static int gsi_channel_init(struct gsi *gsi, u32 count,
2108 			    const struct ipa_gsi_endpoint_data *data)
2109 {
2110 	bool modem_alloc;
2111 	int ret = 0;
2112 	u32 i;
2113 
2114 	/* IPA v4.2 requires the AP to allocate channels for the modem */
2115 	modem_alloc = gsi->version == IPA_VERSION_4_2;
2116 
2117 	gsi_evt_ring_init(gsi);
2118 
2119 	/* The endpoint data array is indexed by endpoint name */
2120 	for (i = 0; i < count; i++) {
2121 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2122 
2123 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2124 			continue;	/* Skip over empty slots */
2125 
2126 		/* Mark modem channels to be allocated (hardware workaround) */
2127 		if (data[i].ee_id == GSI_EE_MODEM) {
2128 			if (modem_alloc)
2129 				gsi->modem_channel_bitmap |=
2130 						BIT(data[i].channel_id);
2131 			continue;
2132 		}
2133 
2134 		ret = gsi_channel_init_one(gsi, &data[i], command);
2135 		if (ret)
2136 			goto err_unwind;
2137 	}
2138 
2139 	return ret;
2140 
2141 err_unwind:
2142 	while (i--) {
2143 		if (ipa_gsi_endpoint_data_empty(&data[i]))
2144 			continue;
2145 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2146 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2147 			continue;
2148 		}
2149 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2150 	}
2151 	gsi_evt_ring_exit(gsi);
2152 
2153 	return ret;
2154 }
2155 
2156 /* Inverse of gsi_channel_init() */
2157 static void gsi_channel_exit(struct gsi *gsi)
2158 {
2159 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2160 
2161 	do
2162 		gsi_channel_exit_one(&gsi->channel[channel_id]);
2163 	while (channel_id--);
2164 	gsi->modem_channel_bitmap = 0;
2165 
2166 	gsi_evt_ring_exit(gsi);
2167 }
2168 
2169 /* Init function for GSI.  GSI hardware does not need to be "ready" */
2170 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2171 	     enum ipa_version version, u32 count,
2172 	     const struct ipa_gsi_endpoint_data *data)
2173 {
2174 	struct device *dev = &pdev->dev;
2175 	struct resource *res;
2176 	resource_size_t size;
2177 	u32 adjust;
2178 	int ret;
2179 
2180 	gsi_validate_build();
2181 
2182 	gsi->dev = dev;
2183 	gsi->version = version;
2184 
2185 	/* GSI uses NAPI on all channels.  Create a dummy network device
2186 	 * for the channel NAPI contexts to be associated with.
2187 	 */
2188 	init_dummy_netdev(&gsi->dummy_dev);
2189 
2190 	/* Get GSI memory range and map it */
2191 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2192 	if (!res) {
2193 		dev_err(dev, "DT error getting \"gsi\" memory property\n");
2194 		return -ENODEV;
2195 	}
2196 
2197 	size = resource_size(res);
2198 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
2199 		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2200 		return -EINVAL;
2201 	}
2202 
2203 	/* Make sure we can make our pointer adjustment if necessary */
2204 	adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2205 	if (res->start < adjust) {
2206 		dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2207 			adjust);
2208 		return -EINVAL;
2209 	}
2210 
2211 	gsi->virt_raw = ioremap(res->start, size);
2212 	if (!gsi->virt_raw) {
2213 		dev_err(dev, "unable to remap \"gsi\" memory\n");
2214 		return -ENOMEM;
2215 	}
2216 	/* Most registers are accessed using an adjusted register range */
2217 	gsi->virt = gsi->virt_raw - adjust;
2218 
2219 	init_completion(&gsi->completion);
2220 
2221 	ret = gsi_irq_init(gsi, pdev);
2222 	if (ret)
2223 		goto err_iounmap;
2224 
2225 	ret = gsi_channel_init(gsi, count, data);
2226 	if (ret)
2227 		goto err_irq_exit;
2228 
2229 	mutex_init(&gsi->mutex);
2230 
2231 	return 0;
2232 
2233 err_irq_exit:
2234 	gsi_irq_exit(gsi);
2235 err_iounmap:
2236 	iounmap(gsi->virt_raw);
2237 
2238 	return ret;
2239 }
2240 
2241 /* Inverse of gsi_init() */
2242 void gsi_exit(struct gsi *gsi)
2243 {
2244 	mutex_destroy(&gsi->mutex);
2245 	gsi_channel_exit(gsi);
2246 	gsi_irq_exit(gsi);
2247 	iounmap(gsi->virt_raw);
2248 }
2249 
2250 /* The maximum number of outstanding TREs on a channel.  This limits
2251  * a channel's maximum number of transactions outstanding (worst case
2252  * is one TRE per transaction).
2253  *
2254  * The absolute limit is the number of TREs in the channel's TRE ring,
2255  * and in theory we should be able use all of them.  But in practice,
2256  * doing that led to the hardware reporting exhaustion of event ring
2257  * slots for writing completion information.  So the hardware limit
2258  * would be (tre_count - 1).
2259  *
2260  * We reduce it a bit further though.  Transaction resource pools are
2261  * sized to be a little larger than this maximum, to allow resource
2262  * allocations to always be contiguous.  The number of entries in a
2263  * TRE ring buffer is a power of 2, and the extra resources in a pool
2264  * tends to nearly double the memory allocated for it.  Reducing the
2265  * maximum number of outstanding TREs allows the number of entries in
2266  * a pool to avoid crossing that power-of-2 boundary, and this can
2267  * substantially reduce pool memory requirements.  The number we
2268  * reduce it by matches the number added in gsi_trans_pool_init().
2269  */
2270 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2271 {
2272 	struct gsi_channel *channel = &gsi->channel[channel_id];
2273 
2274 	/* Hardware limit is channel->tre_count - 1 */
2275 	return channel->tre_count - (channel->tlv_count - 1);
2276 }
2277 
2278 /* Returns the maximum number of TREs in a single transaction for a channel */
2279 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2280 {
2281 	struct gsi_channel *channel = &gsi->channel[channel_id];
2282 
2283 	return channel->tlv_count;
2284 }
2285