1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2021 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/mutex.h> 11 #include <linux/completion.h> 12 #include <linux/io.h> 13 #include <linux/bug.h> 14 #include <linux/interrupt.h> 15 #include <linux/platform_device.h> 16 #include <linux/netdevice.h> 17 18 #include "gsi.h" 19 #include "gsi_reg.h" 20 #include "gsi_private.h" 21 #include "gsi_trans.h" 22 #include "ipa_gsi.h" 23 #include "ipa_data.h" 24 #include "ipa_version.h" 25 26 /** 27 * DOC: The IPA Generic Software Interface 28 * 29 * The generic software interface (GSI) is an integral component of the IPA, 30 * providing a well-defined communication layer between the AP subsystem 31 * and the IPA core. The modem uses the GSI layer as well. 32 * 33 * -------- --------- 34 * | | | | 35 * | AP +<---. .----+ Modem | 36 * | +--. | | .->+ | 37 * | | | | | | | | 38 * -------- | | | | --------- 39 * v | v | 40 * --+-+---+-+-- 41 * | GSI | 42 * |-----------| 43 * | | 44 * | IPA | 45 * | | 46 * ------------- 47 * 48 * In the above diagram, the AP and Modem represent "execution environments" 49 * (EEs), which are independent operating environments that use the IPA for 50 * data transfer. 51 * 52 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 53 * of data to or from the IPA. A channel is implemented as a ring buffer, 54 * with a DRAM-resident array of "transfer elements" (TREs) available to 55 * describe transfers to or from other EEs through the IPA. A transfer 56 * element can also contain an immediate command, requesting the IPA perform 57 * actions other than data transfer. 58 * 59 * Each TRE refers to a block of data--also located DRAM. After writing one 60 * or more TREs to a channel, the writer (either the IPA or an EE) writes a 61 * doorbell register to inform the receiving side how many elements have 62 * been written. 63 * 64 * Each channel has a GSI "event ring" associated with it. An event ring 65 * is implemented very much like a channel ring, but is always directed from 66 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 67 * events by adding an entry to the event ring associated with the channel. 68 * The GSI then writes its doorbell for the event ring, causing the target 69 * EE to be interrupted. Each entry in an event ring contains a pointer 70 * to the channel TRE whose completion the event represents. 71 * 72 * Each TRE in a channel ring has a set of flags. One flag indicates whether 73 * the completion of the transfer operation generates an entry (and possibly 74 * an interrupt) in the channel's event ring. Other flags allow transfer 75 * elements to be chained together, forming a single logical transaction. 76 * TRE flags are used to control whether and when interrupts are generated 77 * to signal completion of channel transfers. 78 * 79 * Elements in channel and event rings are completed (or consumed) strictly 80 * in order. Completion of one entry implies the completion of all preceding 81 * entries. A single completion interrupt can therefore communicate the 82 * completion of many transfers. 83 * 84 * Note that all GSI registers are little-endian, which is the assumed 85 * endianness of I/O space accesses. The accessor functions perform byte 86 * swapping if needed (i.e., for a big endian CPU). 87 */ 88 89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 90 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 91 92 #define GSI_CMD_TIMEOUT 50 /* milliseconds */ 93 94 #define GSI_CHANNEL_STOP_RETRIES 10 95 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10 96 97 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 98 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 99 100 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 101 102 /* An entry in an event ring */ 103 struct gsi_event { 104 __le64 xfer_ptr; 105 __le16 len; 106 u8 reserved1; 107 u8 code; 108 __le16 reserved2; 109 u8 type; 110 u8 chid; 111 }; 112 113 /** gsi_channel_scratch_gpi - GPI protocol scratch register 114 * @max_outstanding_tre: 115 * Defines the maximum number of TREs allowed in a single transaction 116 * on a channel (in bytes). This determines the amount of prefetch 117 * performed by the hardware. We configure this to equal the size of 118 * the TLV FIFO for the channel. 119 * @outstanding_threshold: 120 * Defines the threshold (in bytes) determining when the sequencer 121 * should update the channel doorbell. We configure this to equal 122 * the size of two TREs. 123 */ 124 struct gsi_channel_scratch_gpi { 125 u64 reserved1; 126 u16 reserved2; 127 u16 max_outstanding_tre; 128 u16 reserved3; 129 u16 outstanding_threshold; 130 }; 131 132 /** gsi_channel_scratch - channel scratch configuration area 133 * 134 * The exact interpretation of this register is protocol-specific. 135 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 136 */ 137 union gsi_channel_scratch { 138 struct gsi_channel_scratch_gpi gpi; 139 struct { 140 u32 word1; 141 u32 word2; 142 u32 word3; 143 u32 word4; 144 } data; 145 }; 146 147 /* Check things that can be validated at build time. */ 148 static void gsi_validate_build(void) 149 { 150 /* This is used as a divisor */ 151 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 152 153 /* Code assumes the size of channel and event ring element are 154 * the same (and fixed). Make sure the size of an event ring 155 * element is what's expected. 156 */ 157 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 158 159 /* Hardware requires a 2^n ring size. We ensure the number of 160 * elements in an event ring is a power of 2 elsewhere; this 161 * ensure the elements themselves meet the requirement. 162 */ 163 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 164 165 /* The channel element size must fit in this field */ 166 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); 167 168 /* The event ring element size must fit in this field */ 169 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); 170 } 171 172 /* Return the channel id associated with a given channel */ 173 static u32 gsi_channel_id(struct gsi_channel *channel) 174 { 175 return channel - &channel->gsi->channel[0]; 176 } 177 178 /* An initialized channel has a non-null GSI pointer */ 179 static bool gsi_channel_initialized(struct gsi_channel *channel) 180 { 181 return !!channel->gsi; 182 } 183 184 /* Update the GSI IRQ type register with the cached value */ 185 static void gsi_irq_type_update(struct gsi *gsi, u32 val) 186 { 187 gsi->type_enabled_bitmap = val; 188 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 189 } 190 191 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) 192 { 193 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id)); 194 } 195 196 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) 197 { 198 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id)); 199 } 200 201 /* Turn off all GSI interrupts initially */ 202 static void gsi_irq_setup(struct gsi *gsi) 203 { 204 /* Disable all interrupt types */ 205 gsi_irq_type_update(gsi, 0); 206 207 /* Clear all type-specific interrupt masks */ 208 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 209 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 210 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 211 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 212 213 /* The inter-EE registers are in the non-adjusted address range */ 214 iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_CH_IRQ_OFFSET); 215 iowrite32(0, gsi->virt_raw + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET); 216 217 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 218 } 219 220 /* Turn off all GSI interrupts when we're all done */ 221 static void gsi_irq_teardown(struct gsi *gsi) 222 { 223 /* Nothing to do */ 224 } 225 226 /* Event ring commands are performed one at a time. Their completion 227 * is signaled by the event ring control GSI interrupt type, which is 228 * only enabled when we issue an event ring command. Only the event 229 * ring being operated on has this interrupt enabled. 230 */ 231 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) 232 { 233 u32 val = BIT(evt_ring_id); 234 235 /* There's a small chance that a previous command completed 236 * after the interrupt was disabled, so make sure we have no 237 * pending interrupts before we enable them. 238 */ 239 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 240 241 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 242 gsi_irq_type_enable(gsi, GSI_EV_CTRL); 243 } 244 245 /* Disable event ring control interrupts */ 246 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) 247 { 248 gsi_irq_type_disable(gsi, GSI_EV_CTRL); 249 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 250 } 251 252 /* Channel commands are performed one at a time. Their completion is 253 * signaled by the channel control GSI interrupt type, which is only 254 * enabled when we issue a channel command. Only the channel being 255 * operated on has this interrupt enabled. 256 */ 257 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) 258 { 259 u32 val = BIT(channel_id); 260 261 /* There's a small chance that a previous command completed 262 * after the interrupt was disabled, so make sure we have no 263 * pending interrupts before we enable them. 264 */ 265 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 266 267 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 268 gsi_irq_type_enable(gsi, GSI_CH_CTRL); 269 } 270 271 /* Disable channel control interrupts */ 272 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) 273 { 274 gsi_irq_type_disable(gsi, GSI_CH_CTRL); 275 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 276 } 277 278 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) 279 { 280 bool enable_ieob = !gsi->ieob_enabled_bitmap; 281 u32 val; 282 283 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); 284 val = gsi->ieob_enabled_bitmap; 285 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 286 287 /* Enable the interrupt type if this is the first channel enabled */ 288 if (enable_ieob) 289 gsi_irq_type_enable(gsi, GSI_IEOB); 290 } 291 292 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) 293 { 294 u32 val; 295 296 gsi->ieob_enabled_bitmap &= ~event_mask; 297 298 /* Disable the interrupt type if this was the last enabled channel */ 299 if (!gsi->ieob_enabled_bitmap) 300 gsi_irq_type_disable(gsi, GSI_IEOB); 301 302 val = gsi->ieob_enabled_bitmap; 303 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 304 } 305 306 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) 307 { 308 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); 309 } 310 311 /* Enable all GSI_interrupt types */ 312 static void gsi_irq_enable(struct gsi *gsi) 313 { 314 u32 val; 315 316 /* Global interrupts include hardware error reports. Enable 317 * that so we can at least report the error should it occur. 318 */ 319 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 320 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE)); 321 322 /* General GSI interrupts are reported to all EEs; if they occur 323 * they are unrecoverable (without reset). A breakpoint interrupt 324 * also exists, but we don't support that. We want to be notified 325 * of errors so we can report them, even if they can't be handled. 326 */ 327 val = BIT(BUS_ERROR); 328 val |= BIT(CMD_FIFO_OVRFLOW); 329 val |= BIT(MCS_STACK_OVRFLOW); 330 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 331 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL)); 332 } 333 334 /* Disable all GSI interrupt types */ 335 static void gsi_irq_disable(struct gsi *gsi) 336 { 337 gsi_irq_type_update(gsi, 0); 338 339 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ 340 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 341 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 342 } 343 344 /* Return the virtual address associated with a ring index */ 345 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 346 { 347 /* Note: index *must* be used modulo the ring count here */ 348 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 349 } 350 351 /* Return the 32-bit DMA address associated with a ring index */ 352 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 353 { 354 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE; 355 } 356 357 /* Return the ring index of a 32-bit ring offset */ 358 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 359 { 360 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 361 } 362 363 /* Issue a GSI command by writing a value to a register, then wait for 364 * completion to be signaled. Returns true if the command completes 365 * or false if it times out. 366 */ 367 static bool 368 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) 369 { 370 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); 371 372 reinit_completion(completion); 373 374 iowrite32(val, gsi->virt + reg); 375 376 return !!wait_for_completion_timeout(completion, timeout); 377 } 378 379 /* Return the hardware's notion of the current state of an event ring */ 380 static enum gsi_evt_ring_state 381 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 382 { 383 u32 val; 384 385 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 386 387 return u32_get_bits(val, EV_CHSTATE_FMASK); 388 } 389 390 /* Issue an event ring command and wait for it to complete */ 391 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 392 enum gsi_evt_cmd_opcode opcode) 393 { 394 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 395 struct completion *completion = &evt_ring->completion; 396 struct device *dev = gsi->dev; 397 bool timeout; 398 u32 val; 399 400 /* Enable the completion interrupt for the command */ 401 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); 402 403 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); 404 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); 405 406 timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion); 407 408 gsi_irq_ev_ctrl_disable(gsi); 409 410 if (!timeout) 411 return; 412 413 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", 414 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); 415 } 416 417 /* Allocate an event ring in NOT_ALLOCATED state */ 418 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 419 { 420 enum gsi_evt_ring_state state; 421 422 /* Get initial event ring state */ 423 state = gsi_evt_ring_state(gsi, evt_ring_id); 424 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { 425 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", 426 evt_ring_id, state); 427 return -EINVAL; 428 } 429 430 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 431 432 /* If successful the event ring state will have changed */ 433 state = gsi_evt_ring_state(gsi, evt_ring_id); 434 if (state == GSI_EVT_RING_STATE_ALLOCATED) 435 return 0; 436 437 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", 438 evt_ring_id, state); 439 440 return -EIO; 441 } 442 443 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 444 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 445 { 446 enum gsi_evt_ring_state state; 447 448 state = gsi_evt_ring_state(gsi, evt_ring_id); 449 if (state != GSI_EVT_RING_STATE_ALLOCATED && 450 state != GSI_EVT_RING_STATE_ERROR) { 451 dev_err(gsi->dev, "event ring %u bad state %u before reset\n", 452 evt_ring_id, state); 453 return; 454 } 455 456 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 457 458 /* If successful the event ring state will have changed */ 459 state = gsi_evt_ring_state(gsi, evt_ring_id); 460 if (state == GSI_EVT_RING_STATE_ALLOCATED) 461 return; 462 463 dev_err(gsi->dev, "event ring %u bad state %u after reset\n", 464 evt_ring_id, state); 465 } 466 467 /* Issue a hardware de-allocation request for an allocated event ring */ 468 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 469 { 470 enum gsi_evt_ring_state state; 471 472 state = gsi_evt_ring_state(gsi, evt_ring_id); 473 if (state != GSI_EVT_RING_STATE_ALLOCATED) { 474 dev_err(gsi->dev, "event ring %u state %u before dealloc\n", 475 evt_ring_id, state); 476 return; 477 } 478 479 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 480 481 /* If successful the event ring state will have changed */ 482 state = gsi_evt_ring_state(gsi, evt_ring_id); 483 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) 484 return; 485 486 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", 487 evt_ring_id, state); 488 } 489 490 /* Fetch the current state of a channel from hardware */ 491 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) 492 { 493 u32 channel_id = gsi_channel_id(channel); 494 void __iomem *virt = channel->gsi->virt; 495 u32 val; 496 497 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 498 499 return u32_get_bits(val, CHSTATE_FMASK); 500 } 501 502 /* Issue a channel command and wait for it to complete */ 503 static void 504 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 505 { 506 struct completion *completion = &channel->completion; 507 u32 channel_id = gsi_channel_id(channel); 508 struct gsi *gsi = channel->gsi; 509 struct device *dev = gsi->dev; 510 bool timeout; 511 u32 val; 512 513 /* Enable the completion interrupt for the command */ 514 gsi_irq_ch_ctrl_enable(gsi, channel_id); 515 516 val = u32_encode_bits(channel_id, CH_CHID_FMASK); 517 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); 518 timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion); 519 520 gsi_irq_ch_ctrl_disable(gsi); 521 522 if (!timeout) 523 return; 524 525 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", 526 opcode, channel_id, gsi_channel_state(channel)); 527 } 528 529 /* Allocate GSI channel in NOT_ALLOCATED state */ 530 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 531 { 532 struct gsi_channel *channel = &gsi->channel[channel_id]; 533 struct device *dev = gsi->dev; 534 enum gsi_channel_state state; 535 536 /* Get initial channel state */ 537 state = gsi_channel_state(channel); 538 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { 539 dev_err(dev, "channel %u bad state %u before alloc\n", 540 channel_id, state); 541 return -EINVAL; 542 } 543 544 gsi_channel_command(channel, GSI_CH_ALLOCATE); 545 546 /* If successful the channel state will have changed */ 547 state = gsi_channel_state(channel); 548 if (state == GSI_CHANNEL_STATE_ALLOCATED) 549 return 0; 550 551 dev_err(dev, "channel %u bad state %u after alloc\n", 552 channel_id, state); 553 554 return -EIO; 555 } 556 557 /* Start an ALLOCATED channel */ 558 static int gsi_channel_start_command(struct gsi_channel *channel) 559 { 560 struct device *dev = channel->gsi->dev; 561 enum gsi_channel_state state; 562 563 state = gsi_channel_state(channel); 564 if (state != GSI_CHANNEL_STATE_ALLOCATED && 565 state != GSI_CHANNEL_STATE_STOPPED) { 566 dev_err(dev, "channel %u bad state %u before start\n", 567 gsi_channel_id(channel), state); 568 return -EINVAL; 569 } 570 571 gsi_channel_command(channel, GSI_CH_START); 572 573 /* If successful the channel state will have changed */ 574 state = gsi_channel_state(channel); 575 if (state == GSI_CHANNEL_STATE_STARTED) 576 return 0; 577 578 dev_err(dev, "channel %u bad state %u after start\n", 579 gsi_channel_id(channel), state); 580 581 return -EIO; 582 } 583 584 /* Stop a GSI channel in STARTED state */ 585 static int gsi_channel_stop_command(struct gsi_channel *channel) 586 { 587 struct device *dev = channel->gsi->dev; 588 enum gsi_channel_state state; 589 590 state = gsi_channel_state(channel); 591 592 /* Channel could have entered STOPPED state since last call 593 * if it timed out. If so, we're done. 594 */ 595 if (state == GSI_CHANNEL_STATE_STOPPED) 596 return 0; 597 598 if (state != GSI_CHANNEL_STATE_STARTED && 599 state != GSI_CHANNEL_STATE_STOP_IN_PROC) { 600 dev_err(dev, "channel %u bad state %u before stop\n", 601 gsi_channel_id(channel), state); 602 return -EINVAL; 603 } 604 605 gsi_channel_command(channel, GSI_CH_STOP); 606 607 /* If successful the channel state will have changed */ 608 state = gsi_channel_state(channel); 609 if (state == GSI_CHANNEL_STATE_STOPPED) 610 return 0; 611 612 /* We may have to try again if stop is in progress */ 613 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) 614 return -EAGAIN; 615 616 dev_err(dev, "channel %u bad state %u after stop\n", 617 gsi_channel_id(channel), state); 618 619 return -EIO; 620 } 621 622 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 623 static void gsi_channel_reset_command(struct gsi_channel *channel) 624 { 625 struct device *dev = channel->gsi->dev; 626 enum gsi_channel_state state; 627 628 /* A short delay is required before a RESET command */ 629 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 630 631 state = gsi_channel_state(channel); 632 if (state != GSI_CHANNEL_STATE_STOPPED && 633 state != GSI_CHANNEL_STATE_ERROR) { 634 /* No need to reset a channel already in ALLOCATED state */ 635 if (state != GSI_CHANNEL_STATE_ALLOCATED) 636 dev_err(dev, "channel %u bad state %u before reset\n", 637 gsi_channel_id(channel), state); 638 return; 639 } 640 641 gsi_channel_command(channel, GSI_CH_RESET); 642 643 /* If successful the channel state will have changed */ 644 state = gsi_channel_state(channel); 645 if (state != GSI_CHANNEL_STATE_ALLOCATED) 646 dev_err(dev, "channel %u bad state %u after reset\n", 647 gsi_channel_id(channel), state); 648 } 649 650 /* Deallocate an ALLOCATED GSI channel */ 651 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 652 { 653 struct gsi_channel *channel = &gsi->channel[channel_id]; 654 struct device *dev = gsi->dev; 655 enum gsi_channel_state state; 656 657 state = gsi_channel_state(channel); 658 if (state != GSI_CHANNEL_STATE_ALLOCATED) { 659 dev_err(dev, "channel %u bad state %u before dealloc\n", 660 channel_id, state); 661 return; 662 } 663 664 gsi_channel_command(channel, GSI_CH_DE_ALLOC); 665 666 /* If successful the channel state will have changed */ 667 state = gsi_channel_state(channel); 668 669 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 670 dev_err(dev, "channel %u bad state %u after dealloc\n", 671 channel_id, state); 672 } 673 674 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 675 * The index argument (modulo the ring count) is the first unfilled entry, so 676 * we supply one less than that with the doorbell. Update the event ring 677 * index field with the value provided. 678 */ 679 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 680 { 681 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 682 u32 val; 683 684 ring->index = index; /* Next unused entry */ 685 686 /* Note: index *must* be used modulo the ring count here */ 687 val = gsi_ring_addr(ring, (index - 1) % ring->count); 688 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); 689 } 690 691 /* Program an event ring for use */ 692 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 693 { 694 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 695 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; 696 u32 val; 697 698 /* We program all event rings as GPI type/protocol */ 699 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK); 700 val |= EV_INTYPE_FMASK; 701 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); 702 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 703 704 val = ev_r_length_encoded(gsi->version, size); 705 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); 706 707 /* The context 2 and 3 registers store the low-order and 708 * high-order 32 bits of the address of the event ring, 709 * respectively. 710 */ 711 val = lower_32_bits(evt_ring->ring.addr); 712 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); 713 val = upper_32_bits(evt_ring->ring.addr); 714 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); 715 716 /* Enable interrupt moderation by setting the moderation delay */ 717 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); 718 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ 719 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); 720 721 /* No MSI write data, and MSI address high and low address is 0 */ 722 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); 723 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); 724 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); 725 726 /* We don't need to get event read pointer updates */ 727 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); 728 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); 729 730 /* Finally, tell the hardware we've completed event 0 (arbitrary) */ 731 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); 732 } 733 734 /* Find the transaction whose completion indicates a channel is quiesced */ 735 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 736 { 737 struct gsi_trans_info *trans_info = &channel->trans_info; 738 const struct list_head *list; 739 struct gsi_trans *trans; 740 741 spin_lock_bh(&trans_info->spinlock); 742 743 /* There is a small chance a TX transaction got allocated just 744 * before we disabled transmits, so check for that. 745 */ 746 if (channel->toward_ipa) { 747 list = &trans_info->alloc; 748 if (!list_empty(list)) 749 goto done; 750 list = &trans_info->pending; 751 if (!list_empty(list)) 752 goto done; 753 } 754 755 /* Otherwise (TX or RX) we want to wait for anything that 756 * has completed, or has been polled but not released yet. 757 */ 758 list = &trans_info->complete; 759 if (!list_empty(list)) 760 goto done; 761 list = &trans_info->polled; 762 if (list_empty(list)) 763 list = NULL; 764 done: 765 trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL; 766 767 /* Caller will wait for this, so take a reference */ 768 if (trans) 769 refcount_inc(&trans->refcount); 770 771 spin_unlock_bh(&trans_info->spinlock); 772 773 return trans; 774 } 775 776 /* Wait for transaction activity on a channel to complete */ 777 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 778 { 779 struct gsi_trans *trans; 780 781 /* Get the last transaction, and wait for it to complete */ 782 trans = gsi_channel_trans_last(channel); 783 if (trans) { 784 wait_for_completion(&trans->completion); 785 gsi_trans_free(trans); 786 } 787 } 788 789 /* Program a channel for use */ 790 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 791 { 792 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 793 u32 channel_id = gsi_channel_id(channel); 794 union gsi_channel_scratch scr = { }; 795 struct gsi_channel_scratch_gpi *gpi; 796 struct gsi *gsi = channel->gsi; 797 u32 wrr_weight = 0; 798 u32 val; 799 800 /* Arbitrarily pick TRE 0 as the first channel element to use */ 801 channel->tre_ring.index = 0; 802 803 /* We program all channels as GPI type/protocol */ 804 val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI); 805 if (channel->toward_ipa) 806 val |= CHTYPE_DIR_FMASK; 807 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); 808 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); 809 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 810 811 val = r_length_encoded(gsi->version, size); 812 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); 813 814 /* The context 2 and 3 registers store the low-order and 815 * high-order 32 bits of the address of the channel ring, 816 * respectively. 817 */ 818 val = lower_32_bits(channel->tre_ring.addr); 819 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); 820 val = upper_32_bits(channel->tre_ring.addr); 821 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); 822 823 /* Command channel gets low weighted round-robin priority */ 824 if (channel->command) 825 wrr_weight = field_max(WRR_WEIGHT_FMASK); 826 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); 827 828 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 829 830 /* No need to use the doorbell engine starting at IPA v4.0 */ 831 if (gsi->version < IPA_VERSION_4_0 && doorbell) 832 val |= USE_DB_ENG_FMASK; 833 834 /* v4.0 introduces an escape buffer for prefetch. We use it 835 * on all but the AP command channel. 836 */ 837 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) { 838 /* If not otherwise set, prefetch buffers are used */ 839 if (gsi->version < IPA_VERSION_4_5) 840 val |= USE_ESCAPE_BUF_ONLY_FMASK; 841 else 842 val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY, 843 PREFETCH_MODE_FMASK); 844 } 845 /* All channels set DB_IN_BYTES */ 846 if (gsi->version >= IPA_VERSION_4_9) 847 val |= DB_IN_BYTES; 848 849 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); 850 851 /* Now update the scratch registers for GPI protocol */ 852 gpi = &scr.gpi; 853 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * 854 GSI_RING_ELEMENT_SIZE; 855 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 856 857 val = scr.data.word1; 858 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); 859 860 val = scr.data.word2; 861 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); 862 863 val = scr.data.word3; 864 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); 865 866 /* We must preserve the upper 16 bits of the last scratch register. 867 * The next sequence assumes those bits remain unchanged between the 868 * read and the write. 869 */ 870 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 871 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 872 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 873 874 /* All done! */ 875 } 876 877 static void gsi_channel_deprogram(struct gsi_channel *channel) 878 { 879 /* Nothing to do */ 880 } 881 882 static int __gsi_channel_start(struct gsi_channel *channel, bool start) 883 { 884 struct gsi *gsi = channel->gsi; 885 int ret; 886 887 if (!start) 888 return 0; 889 890 mutex_lock(&gsi->mutex); 891 892 ret = gsi_channel_start_command(channel); 893 894 mutex_unlock(&gsi->mutex); 895 896 return ret; 897 } 898 899 /* Start an allocated GSI channel */ 900 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 901 { 902 struct gsi_channel *channel = &gsi->channel[channel_id]; 903 int ret; 904 905 /* Enable NAPI and the completion interrupt */ 906 napi_enable(&channel->napi); 907 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); 908 909 ret = __gsi_channel_start(channel, true); 910 if (ret) { 911 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 912 napi_disable(&channel->napi); 913 } 914 915 return ret; 916 } 917 918 static int gsi_channel_stop_retry(struct gsi_channel *channel) 919 { 920 u32 retries = GSI_CHANNEL_STOP_RETRIES; 921 int ret; 922 923 do { 924 ret = gsi_channel_stop_command(channel); 925 if (ret != -EAGAIN) 926 break; 927 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); 928 } while (retries--); 929 930 return ret; 931 } 932 933 static int __gsi_channel_stop(struct gsi_channel *channel, bool stop) 934 { 935 struct gsi *gsi = channel->gsi; 936 int ret; 937 938 /* Wait for any underway transactions to complete before stopping. */ 939 gsi_channel_trans_quiesce(channel); 940 941 if (!stop) 942 return 0; 943 944 mutex_lock(&gsi->mutex); 945 946 ret = gsi_channel_stop_retry(channel); 947 948 mutex_unlock(&gsi->mutex); 949 950 return ret; 951 } 952 953 /* Stop a started channel */ 954 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 955 { 956 struct gsi_channel *channel = &gsi->channel[channel_id]; 957 int ret; 958 959 ret = __gsi_channel_stop(channel, true); 960 if (ret) 961 return ret; 962 963 /* Disable the completion interrupt and NAPI if successful */ 964 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); 965 napi_disable(&channel->napi); 966 967 return 0; 968 } 969 970 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ 971 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) 972 { 973 struct gsi_channel *channel = &gsi->channel[channel_id]; 974 975 mutex_lock(&gsi->mutex); 976 977 gsi_channel_reset_command(channel); 978 /* Due to a hardware quirk we may need to reset RX channels twice. */ 979 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa) 980 gsi_channel_reset_command(channel); 981 982 gsi_channel_program(channel, doorbell); 983 gsi_channel_trans_cancel_pending(channel); 984 985 mutex_unlock(&gsi->mutex); 986 } 987 988 /* Stop a STARTED channel for suspend (using stop if requested) */ 989 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop) 990 { 991 struct gsi_channel *channel = &gsi->channel[channel_id]; 992 int ret; 993 994 ret = __gsi_channel_stop(channel, stop); 995 if (ret) 996 return ret; 997 998 /* Ensure NAPI polling has finished. */ 999 napi_synchronize(&channel->napi); 1000 1001 return 0; 1002 } 1003 1004 /* Resume a suspended channel (starting will be requested if STOPPED) */ 1005 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start) 1006 { 1007 struct gsi_channel *channel = &gsi->channel[channel_id]; 1008 1009 return __gsi_channel_start(channel, start); 1010 } 1011 1012 /** 1013 * gsi_channel_tx_queued() - Report queued TX transfers for a channel 1014 * @channel: Channel for which to report 1015 * 1016 * Report to the network stack the number of bytes and transactions that 1017 * have been queued to hardware since last call. This and the next function 1018 * supply information used by the network stack for throttling. 1019 * 1020 * For each channel we track the number of transactions used and bytes of 1021 * data those transactions represent. We also track what those values are 1022 * each time this function is called. Subtracting the two tells us 1023 * the number of bytes and transactions that have been added between 1024 * successive calls. 1025 * 1026 * Calling this each time we ring the channel doorbell allows us to 1027 * provide accurate information to the network stack about how much 1028 * work we've given the hardware at any point in time. 1029 */ 1030 void gsi_channel_tx_queued(struct gsi_channel *channel) 1031 { 1032 u32 trans_count; 1033 u32 byte_count; 1034 1035 byte_count = channel->byte_count - channel->queued_byte_count; 1036 trans_count = channel->trans_count - channel->queued_trans_count; 1037 channel->queued_byte_count = channel->byte_count; 1038 channel->queued_trans_count = channel->trans_count; 1039 1040 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), 1041 trans_count, byte_count); 1042 } 1043 1044 /** 1045 * gsi_channel_tx_update() - Report completed TX transfers 1046 * @channel: Channel that has completed transmitting packets 1047 * @trans: Last transation known to be complete 1048 * 1049 * Compute the number of transactions and bytes that have been transferred 1050 * over a TX channel since the given transaction was committed. Report this 1051 * information to the network stack. 1052 * 1053 * At the time a transaction is committed, we record its channel's 1054 * committed transaction and byte counts *in the transaction*. 1055 * Completions are signaled by the hardware with an interrupt, and 1056 * we can determine the latest completed transaction at that time. 1057 * 1058 * The difference between the byte/transaction count recorded in 1059 * the transaction and the count last time we recorded a completion 1060 * tells us exactly how much data has been transferred between 1061 * completions. 1062 * 1063 * Calling this each time we learn of a newly-completed transaction 1064 * allows us to provide accurate information to the network stack 1065 * about how much work has been completed by the hardware at a given 1066 * point in time. 1067 */ 1068 static void 1069 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) 1070 { 1071 u64 byte_count = trans->byte_count + trans->len; 1072 u64 trans_count = trans->trans_count + 1; 1073 1074 byte_count -= channel->compl_byte_count; 1075 channel->compl_byte_count += byte_count; 1076 trans_count -= channel->compl_trans_count; 1077 channel->compl_trans_count += trans_count; 1078 1079 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), 1080 trans_count, byte_count); 1081 } 1082 1083 /* Channel control interrupt handler */ 1084 static void gsi_isr_chan_ctrl(struct gsi *gsi) 1085 { 1086 u32 channel_mask; 1087 1088 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); 1089 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 1090 1091 while (channel_mask) { 1092 u32 channel_id = __ffs(channel_mask); 1093 struct gsi_channel *channel; 1094 1095 channel_mask ^= BIT(channel_id); 1096 1097 channel = &gsi->channel[channel_id]; 1098 1099 complete(&channel->completion); 1100 } 1101 } 1102 1103 /* Event ring control interrupt handler */ 1104 static void gsi_isr_evt_ctrl(struct gsi *gsi) 1105 { 1106 u32 event_mask; 1107 1108 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); 1109 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 1110 1111 while (event_mask) { 1112 u32 evt_ring_id = __ffs(event_mask); 1113 struct gsi_evt_ring *evt_ring; 1114 1115 event_mask ^= BIT(evt_ring_id); 1116 1117 evt_ring = &gsi->evt_ring[evt_ring_id]; 1118 1119 complete(&evt_ring->completion); 1120 } 1121 } 1122 1123 /* Global channel error interrupt handler */ 1124 static void 1125 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 1126 { 1127 if (code == GSI_OUT_OF_RESOURCES) { 1128 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 1129 complete(&gsi->channel[channel_id].completion); 1130 return; 1131 } 1132 1133 /* Report, but otherwise ignore all other error codes */ 1134 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 1135 channel_id, err_ee, code); 1136 } 1137 1138 /* Global event error interrupt handler */ 1139 static void 1140 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 1141 { 1142 if (code == GSI_OUT_OF_RESOURCES) { 1143 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1144 u32 channel_id = gsi_channel_id(evt_ring->channel); 1145 1146 complete(&evt_ring->completion); 1147 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 1148 channel_id); 1149 return; 1150 } 1151 1152 /* Report, but otherwise ignore all other error codes */ 1153 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1154 evt_ring_id, err_ee, code); 1155 } 1156 1157 /* Global error interrupt handler */ 1158 static void gsi_isr_glob_err(struct gsi *gsi) 1159 { 1160 enum gsi_err_type type; 1161 enum gsi_err_code code; 1162 u32 which; 1163 u32 val; 1164 u32 ee; 1165 1166 /* Get the logged error, then reinitialize the log */ 1167 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); 1168 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1169 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); 1170 1171 ee = u32_get_bits(val, ERR_EE_FMASK); 1172 type = u32_get_bits(val, ERR_TYPE_FMASK); 1173 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); 1174 code = u32_get_bits(val, ERR_CODE_FMASK); 1175 1176 if (type == GSI_ERR_TYPE_CHAN) 1177 gsi_isr_glob_chan_err(gsi, ee, which, code); 1178 else if (type == GSI_ERR_TYPE_EVT) 1179 gsi_isr_glob_evt_err(gsi, ee, which, code); 1180 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1181 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1182 } 1183 1184 /* Generic EE interrupt handler */ 1185 static void gsi_isr_gp_int1(struct gsi *gsi) 1186 { 1187 u32 result; 1188 u32 val; 1189 1190 /* This interrupt is used to handle completions of the two GENERIC 1191 * GSI commands. We use these to allocate and halt channels on 1192 * the modem's behalf due to a hardware quirk on IPA v4.2. Once 1193 * allocated, the modem "owns" these channels, and as a result we 1194 * have no way of knowing the channel's state at any given time. 1195 * 1196 * It is recommended that we halt the modem channels we allocated 1197 * when shutting down, but it's possible the channel isn't running 1198 * at the time we issue the HALT command. We'll get an error in 1199 * that case, but it's harmless (the channel is already halted). 1200 * 1201 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error 1202 * if we receive it. 1203 */ 1204 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1205 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); 1206 1207 switch (result) { 1208 case GENERIC_EE_SUCCESS: 1209 case GENERIC_EE_CHANNEL_NOT_RUNNING: 1210 gsi->result = 0; 1211 break; 1212 1213 case GENERIC_EE_RETRY: 1214 gsi->result = -EAGAIN; 1215 break; 1216 1217 default: 1218 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1219 gsi->result = -EIO; 1220 break; 1221 } 1222 1223 complete(&gsi->completion); 1224 } 1225 1226 /* Inter-EE interrupt handler */ 1227 static void gsi_isr_glob_ee(struct gsi *gsi) 1228 { 1229 u32 val; 1230 1231 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); 1232 1233 if (val & BIT(ERROR_INT)) 1234 gsi_isr_glob_err(gsi); 1235 1236 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); 1237 1238 val &= ~BIT(ERROR_INT); 1239 1240 if (val & BIT(GP_INT1)) { 1241 val ^= BIT(GP_INT1); 1242 gsi_isr_gp_int1(gsi); 1243 } 1244 1245 if (val) 1246 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1247 } 1248 1249 /* I/O completion interrupt event */ 1250 static void gsi_isr_ieob(struct gsi *gsi) 1251 { 1252 u32 event_mask; 1253 1254 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); 1255 gsi_irq_ieob_disable(gsi, event_mask); 1256 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); 1257 1258 while (event_mask) { 1259 u32 evt_ring_id = __ffs(event_mask); 1260 1261 event_mask ^= BIT(evt_ring_id); 1262 1263 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1264 } 1265 } 1266 1267 /* General event interrupts represent serious problems, so report them */ 1268 static void gsi_isr_general(struct gsi *gsi) 1269 { 1270 struct device *dev = gsi->dev; 1271 u32 val; 1272 1273 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); 1274 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); 1275 1276 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1277 } 1278 1279 /** 1280 * gsi_isr() - Top level GSI interrupt service routine 1281 * @irq: Interrupt number (ignored) 1282 * @dev_id: GSI pointer supplied to request_irq() 1283 * 1284 * This is the main handler function registered for the GSI IRQ. Each type 1285 * of interrupt has a separate handler function that is called from here. 1286 */ 1287 static irqreturn_t gsi_isr(int irq, void *dev_id) 1288 { 1289 struct gsi *gsi = dev_id; 1290 u32 intr_mask; 1291 u32 cnt = 0; 1292 1293 /* enum gsi_irq_type_id defines GSI interrupt types */ 1294 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { 1295 /* intr_mask contains bitmask of pending GSI interrupts */ 1296 do { 1297 u32 gsi_intr = BIT(__ffs(intr_mask)); 1298 1299 intr_mask ^= gsi_intr; 1300 1301 switch (gsi_intr) { 1302 case BIT(GSI_CH_CTRL): 1303 gsi_isr_chan_ctrl(gsi); 1304 break; 1305 case BIT(GSI_EV_CTRL): 1306 gsi_isr_evt_ctrl(gsi); 1307 break; 1308 case BIT(GSI_GLOB_EE): 1309 gsi_isr_glob_ee(gsi); 1310 break; 1311 case BIT(GSI_IEOB): 1312 gsi_isr_ieob(gsi); 1313 break; 1314 case BIT(GSI_GENERAL): 1315 gsi_isr_general(gsi); 1316 break; 1317 default: 1318 dev_err(gsi->dev, 1319 "unrecognized interrupt type 0x%08x\n", 1320 gsi_intr); 1321 break; 1322 } 1323 } while (intr_mask); 1324 1325 if (++cnt > GSI_ISR_MAX_ITER) { 1326 dev_err(gsi->dev, "interrupt flood\n"); 1327 break; 1328 } 1329 } 1330 1331 return IRQ_HANDLED; 1332 } 1333 1334 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) 1335 { 1336 struct device *dev = &pdev->dev; 1337 unsigned int irq; 1338 int ret; 1339 1340 ret = platform_get_irq_byname(pdev, "gsi"); 1341 if (ret <= 0) 1342 return ret ? : -EINVAL; 1343 1344 irq = ret; 1345 1346 ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); 1347 if (ret) { 1348 dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret); 1349 return ret; 1350 } 1351 gsi->irq = irq; 1352 1353 return 0; 1354 } 1355 1356 static void gsi_irq_exit(struct gsi *gsi) 1357 { 1358 free_irq(gsi->irq, gsi); 1359 } 1360 1361 /* Return the transaction associated with a transfer completion event */ 1362 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, 1363 struct gsi_event *event) 1364 { 1365 u32 tre_offset; 1366 u32 tre_index; 1367 1368 /* Event xfer_ptr records the TRE it's associated with */ 1369 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); 1370 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1371 1372 return gsi_channel_trans_mapped(channel, tre_index); 1373 } 1374 1375 /** 1376 * gsi_evt_ring_rx_update() - Record lengths of received data 1377 * @evt_ring: Event ring associated with channel that received packets 1378 * @index: Event index in ring reported by hardware 1379 * 1380 * Events for RX channels contain the actual number of bytes received into 1381 * the buffer. Every event has a transaction associated with it, and here 1382 * we update transactions to record their actual received lengths. 1383 * 1384 * This function is called whenever we learn that the GSI hardware has filled 1385 * new events since the last time we checked. The ring's index field tells 1386 * the first entry in need of processing. The index provided is the 1387 * first *unfilled* event in the ring (following the last filled one). 1388 * 1389 * Events are sequential within the event ring, and transactions are 1390 * sequential within the transaction pool. 1391 * 1392 * Note that @index always refers to an element *within* the event ring. 1393 */ 1394 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) 1395 { 1396 struct gsi_channel *channel = evt_ring->channel; 1397 struct gsi_ring *ring = &evt_ring->ring; 1398 struct gsi_trans_info *trans_info; 1399 struct gsi_event *event_done; 1400 struct gsi_event *event; 1401 struct gsi_trans *trans; 1402 u32 byte_count = 0; 1403 u32 old_index; 1404 u32 event_avail; 1405 1406 trans_info = &channel->trans_info; 1407 1408 /* We'll start with the oldest un-processed event. RX channels 1409 * replenish receive buffers in single-TRE transactions, so we 1410 * can just map that event to its transaction. Transactions 1411 * associated with completion events are consecutive. 1412 */ 1413 old_index = ring->index; 1414 event = gsi_ring_virt(ring, old_index); 1415 trans = gsi_event_trans(channel, event); 1416 1417 /* Compute the number of events to process before we wrap, 1418 * and determine when we'll be done processing events. 1419 */ 1420 event_avail = ring->count - old_index % ring->count; 1421 event_done = gsi_ring_virt(ring, index); 1422 do { 1423 trans->len = __le16_to_cpu(event->len); 1424 byte_count += trans->len; 1425 1426 /* Move on to the next event and transaction */ 1427 if (--event_avail) 1428 event++; 1429 else 1430 event = gsi_ring_virt(ring, 0); 1431 trans = gsi_trans_pool_next(&trans_info->pool, trans); 1432 } while (event != event_done); 1433 1434 /* We record RX bytes when they are received */ 1435 channel->byte_count += byte_count; 1436 channel->trans_count++; 1437 } 1438 1439 /* Initialize a ring, including allocating DMA memory for its entries */ 1440 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1441 { 1442 u32 size = count * GSI_RING_ELEMENT_SIZE; 1443 struct device *dev = gsi->dev; 1444 dma_addr_t addr; 1445 1446 /* Hardware requires a 2^n ring size, with alignment equal to size. 1447 * The DMA address returned by dma_alloc_coherent() is guaranteed to 1448 * be a power-of-2 number of pages, which satisfies the requirement. 1449 */ 1450 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1451 if (!ring->virt) 1452 return -ENOMEM; 1453 1454 ring->addr = addr; 1455 ring->count = count; 1456 1457 return 0; 1458 } 1459 1460 /* Free a previously-allocated ring */ 1461 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1462 { 1463 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1464 1465 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1466 } 1467 1468 /* Allocate an available event ring id */ 1469 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1470 { 1471 u32 evt_ring_id; 1472 1473 if (gsi->event_bitmap == ~0U) { 1474 dev_err(gsi->dev, "event rings exhausted\n"); 1475 return -ENOSPC; 1476 } 1477 1478 evt_ring_id = ffz(gsi->event_bitmap); 1479 gsi->event_bitmap |= BIT(evt_ring_id); 1480 1481 return (int)evt_ring_id; 1482 } 1483 1484 /* Free a previously-allocated event ring id */ 1485 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1486 { 1487 gsi->event_bitmap &= ~BIT(evt_ring_id); 1488 } 1489 1490 /* Ring a channel doorbell, reporting the first un-filled entry */ 1491 void gsi_channel_doorbell(struct gsi_channel *channel) 1492 { 1493 struct gsi_ring *tre_ring = &channel->tre_ring; 1494 u32 channel_id = gsi_channel_id(channel); 1495 struct gsi *gsi = channel->gsi; 1496 u32 val; 1497 1498 /* Note: index *must* be used modulo the ring count here */ 1499 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1500 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); 1501 } 1502 1503 /* Consult hardware, move any newly completed transactions to completed list */ 1504 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel) 1505 { 1506 u32 evt_ring_id = channel->evt_ring_id; 1507 struct gsi *gsi = channel->gsi; 1508 struct gsi_evt_ring *evt_ring; 1509 struct gsi_trans *trans; 1510 struct gsi_ring *ring; 1511 u32 offset; 1512 u32 index; 1513 1514 evt_ring = &gsi->evt_ring[evt_ring_id]; 1515 ring = &evt_ring->ring; 1516 1517 /* See if there's anything new to process; if not, we're done. Note 1518 * that index always refers to an entry *within* the event ring. 1519 */ 1520 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); 1521 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1522 if (index == ring->index % ring->count) 1523 return NULL; 1524 1525 /* Get the transaction for the latest completed event. Take a 1526 * reference to keep it from completing before we give the events 1527 * for this and previous transactions back to the hardware. 1528 */ 1529 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); 1530 refcount_inc(&trans->refcount); 1531 1532 /* For RX channels, update each completed transaction with the number 1533 * of bytes that were actually received. For TX channels, report 1534 * the number of transactions and bytes this completion represents 1535 * up the network stack. 1536 */ 1537 if (channel->toward_ipa) 1538 gsi_channel_tx_update(channel, trans); 1539 else 1540 gsi_evt_ring_rx_update(evt_ring, index); 1541 1542 gsi_trans_move_complete(trans); 1543 1544 /* Tell the hardware we've handled these events */ 1545 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); 1546 1547 gsi_trans_free(trans); 1548 1549 return gsi_channel_trans_complete(channel); 1550 } 1551 1552 /** 1553 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1554 * @channel: Channel to be polled 1555 * 1556 * Return: Transaction pointer, or null if none are available 1557 * 1558 * This function returns the first entry on a channel's completed transaction 1559 * list. If that list is empty, the hardware is consulted to determine 1560 * whether any new transactions have completed. If so, they're moved to the 1561 * completed list and the new first entry is returned. If there are no more 1562 * completed transactions, a null pointer is returned. 1563 */ 1564 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1565 { 1566 struct gsi_trans *trans; 1567 1568 /* Get the first transaction from the completed list */ 1569 trans = gsi_channel_trans_complete(channel); 1570 if (!trans) /* List is empty; see if there's more to do */ 1571 trans = gsi_channel_update(channel); 1572 1573 if (trans) 1574 gsi_trans_move_polled(trans); 1575 1576 return trans; 1577 } 1578 1579 /** 1580 * gsi_channel_poll() - NAPI poll function for a channel 1581 * @napi: NAPI structure for the channel 1582 * @budget: Budget supplied by NAPI core 1583 * 1584 * Return: Number of items polled (<= budget) 1585 * 1586 * Single transactions completed by hardware are polled until either 1587 * the budget is exhausted, or there are no more. Each transaction 1588 * polled is passed to gsi_trans_complete(), to perform remaining 1589 * completion processing and retire/free the transaction. 1590 */ 1591 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1592 { 1593 struct gsi_channel *channel; 1594 int count; 1595 1596 channel = container_of(napi, struct gsi_channel, napi); 1597 for (count = 0; count < budget; count++) { 1598 struct gsi_trans *trans; 1599 1600 trans = gsi_channel_poll_one(channel); 1601 if (!trans) 1602 break; 1603 gsi_trans_complete(trans); 1604 } 1605 1606 if (count < budget && napi_complete(napi)) 1607 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); 1608 1609 return count; 1610 } 1611 1612 /* The event bitmap represents which event ids are available for allocation. 1613 * Set bits are not available, clear bits can be used. This function 1614 * initializes the map so all events supported by the hardware are available, 1615 * then precludes any reserved events from being allocated. 1616 */ 1617 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1618 { 1619 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1620 1621 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1622 1623 return event_bitmap; 1624 } 1625 1626 /* Setup function for event rings */ 1627 static void gsi_evt_ring_setup(struct gsi *gsi) 1628 { 1629 /* Nothing to do */ 1630 } 1631 1632 /* Inverse of gsi_evt_ring_setup() */ 1633 static void gsi_evt_ring_teardown(struct gsi *gsi) 1634 { 1635 /* Nothing to do */ 1636 } 1637 1638 /* Setup function for a single channel */ 1639 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) 1640 { 1641 struct gsi_channel *channel = &gsi->channel[channel_id]; 1642 u32 evt_ring_id = channel->evt_ring_id; 1643 int ret; 1644 1645 if (!gsi_channel_initialized(channel)) 1646 return 0; 1647 1648 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1649 if (ret) 1650 return ret; 1651 1652 gsi_evt_ring_program(gsi, evt_ring_id); 1653 1654 ret = gsi_channel_alloc_command(gsi, channel_id); 1655 if (ret) 1656 goto err_evt_ring_de_alloc; 1657 1658 gsi_channel_program(channel, true); 1659 1660 if (channel->toward_ipa) 1661 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, 1662 gsi_channel_poll, NAPI_POLL_WEIGHT); 1663 else 1664 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1665 gsi_channel_poll, NAPI_POLL_WEIGHT); 1666 1667 return 0; 1668 1669 err_evt_ring_de_alloc: 1670 /* We've done nothing with the event ring yet so don't reset */ 1671 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1672 1673 return ret; 1674 } 1675 1676 /* Inverse of gsi_channel_setup_one() */ 1677 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1678 { 1679 struct gsi_channel *channel = &gsi->channel[channel_id]; 1680 u32 evt_ring_id = channel->evt_ring_id; 1681 1682 if (!gsi_channel_initialized(channel)) 1683 return; 1684 1685 netif_napi_del(&channel->napi); 1686 1687 gsi_channel_deprogram(channel); 1688 gsi_channel_de_alloc_command(gsi, channel_id); 1689 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1690 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1691 } 1692 1693 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1694 enum gsi_generic_cmd_opcode opcode) 1695 { 1696 struct completion *completion = &gsi->completion; 1697 bool timeout; 1698 u32 val; 1699 1700 /* The error global interrupt type is always enabled (until we 1701 * teardown), so we won't change that. A generic EE command 1702 * completes with a GSI global interrupt of type GP_INT1. We 1703 * only perform one generic command at a time (to allocate or 1704 * halt a modem channel) and only from this function. So we 1705 * enable the GP_INT1 IRQ type here while we're expecting it. 1706 */ 1707 val = BIT(ERROR_INT) | BIT(GP_INT1); 1708 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1709 1710 /* First zero the result code field */ 1711 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1712 val &= ~GENERIC_EE_RESULT_FMASK; 1713 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1714 1715 /* Now issue the command */ 1716 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); 1717 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); 1718 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); 1719 1720 timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion); 1721 1722 /* Disable the GP_INT1 IRQ type again */ 1723 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 1724 1725 if (!timeout) 1726 return gsi->result; 1727 1728 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1729 opcode, channel_id); 1730 1731 return -ETIMEDOUT; 1732 } 1733 1734 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1735 { 1736 return gsi_generic_command(gsi, channel_id, 1737 GSI_GENERIC_ALLOCATE_CHANNEL); 1738 } 1739 1740 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1741 { 1742 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; 1743 int ret; 1744 1745 do 1746 ret = gsi_generic_command(gsi, channel_id, 1747 GSI_GENERIC_HALT_CHANNEL); 1748 while (ret == -EAGAIN && retries--); 1749 1750 if (ret) 1751 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1752 ret, channel_id); 1753 } 1754 1755 /* Setup function for channels */ 1756 static int gsi_channel_setup(struct gsi *gsi) 1757 { 1758 u32 channel_id = 0; 1759 u32 mask; 1760 int ret; 1761 1762 gsi_evt_ring_setup(gsi); 1763 gsi_irq_enable(gsi); 1764 1765 mutex_lock(&gsi->mutex); 1766 1767 do { 1768 ret = gsi_channel_setup_one(gsi, channel_id); 1769 if (ret) 1770 goto err_unwind; 1771 } while (++channel_id < gsi->channel_count); 1772 1773 /* Make sure no channels were defined that hardware does not support */ 1774 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1775 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1776 1777 if (!gsi_channel_initialized(channel)) 1778 continue; 1779 1780 ret = -EINVAL; 1781 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1782 channel_id - 1); 1783 channel_id = gsi->channel_count; 1784 goto err_unwind; 1785 } 1786 1787 /* Allocate modem channels if necessary */ 1788 mask = gsi->modem_channel_bitmap; 1789 while (mask) { 1790 u32 modem_channel_id = __ffs(mask); 1791 1792 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1793 if (ret) 1794 goto err_unwind_modem; 1795 1796 /* Clear bit from mask only after success (for unwind) */ 1797 mask ^= BIT(modem_channel_id); 1798 } 1799 1800 mutex_unlock(&gsi->mutex); 1801 1802 return 0; 1803 1804 err_unwind_modem: 1805 /* Compute which modem channels need to be deallocated */ 1806 mask ^= gsi->modem_channel_bitmap; 1807 while (mask) { 1808 channel_id = __fls(mask); 1809 1810 mask ^= BIT(channel_id); 1811 1812 gsi_modem_channel_halt(gsi, channel_id); 1813 } 1814 1815 err_unwind: 1816 while (channel_id--) 1817 gsi_channel_teardown_one(gsi, channel_id); 1818 1819 mutex_unlock(&gsi->mutex); 1820 1821 gsi_irq_disable(gsi); 1822 gsi_evt_ring_teardown(gsi); 1823 1824 return ret; 1825 } 1826 1827 /* Inverse of gsi_channel_setup() */ 1828 static void gsi_channel_teardown(struct gsi *gsi) 1829 { 1830 u32 mask = gsi->modem_channel_bitmap; 1831 u32 channel_id; 1832 1833 mutex_lock(&gsi->mutex); 1834 1835 while (mask) { 1836 channel_id = __fls(mask); 1837 1838 mask ^= BIT(channel_id); 1839 1840 gsi_modem_channel_halt(gsi, channel_id); 1841 } 1842 1843 channel_id = gsi->channel_count - 1; 1844 do 1845 gsi_channel_teardown_one(gsi, channel_id); 1846 while (channel_id--); 1847 1848 mutex_unlock(&gsi->mutex); 1849 1850 gsi_irq_disable(gsi); 1851 gsi_evt_ring_teardown(gsi); 1852 } 1853 1854 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 1855 int gsi_setup(struct gsi *gsi) 1856 { 1857 struct device *dev = gsi->dev; 1858 u32 val; 1859 int ret; 1860 1861 /* Here is where we first touch the GSI hardware */ 1862 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); 1863 if (!(val & ENABLED_FMASK)) { 1864 dev_err(dev, "GSI has not been enabled\n"); 1865 return -EIO; 1866 } 1867 1868 gsi_irq_setup(gsi); 1869 1870 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); 1871 1872 gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); 1873 if (!gsi->channel_count) { 1874 dev_err(dev, "GSI reports zero channels supported\n"); 1875 return -EINVAL; 1876 } 1877 if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) { 1878 dev_warn(dev, 1879 "limiting to %u channels; hardware supports %u\n", 1880 GSI_CHANNEL_COUNT_MAX, gsi->channel_count); 1881 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 1882 } 1883 1884 gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); 1885 if (!gsi->evt_ring_count) { 1886 dev_err(dev, "GSI reports zero event rings supported\n"); 1887 return -EINVAL; 1888 } 1889 if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) { 1890 dev_warn(dev, 1891 "limiting to %u event rings; hardware supports %u\n", 1892 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count); 1893 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 1894 } 1895 1896 /* Initialize the error log */ 1897 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1898 1899 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1900 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); 1901 1902 ret = gsi_channel_setup(gsi); 1903 if (ret) 1904 gsi_irq_teardown(gsi); 1905 1906 return ret; 1907 } 1908 1909 /* Inverse of gsi_setup() */ 1910 void gsi_teardown(struct gsi *gsi) 1911 { 1912 gsi_channel_teardown(gsi); 1913 gsi_irq_teardown(gsi); 1914 } 1915 1916 /* Initialize a channel's event ring */ 1917 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 1918 { 1919 struct gsi *gsi = channel->gsi; 1920 struct gsi_evt_ring *evt_ring; 1921 int ret; 1922 1923 ret = gsi_evt_ring_id_alloc(gsi); 1924 if (ret < 0) 1925 return ret; 1926 channel->evt_ring_id = ret; 1927 1928 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 1929 evt_ring->channel = channel; 1930 1931 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 1932 if (!ret) 1933 return 0; /* Success! */ 1934 1935 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 1936 ret, gsi_channel_id(channel)); 1937 1938 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 1939 1940 return ret; 1941 } 1942 1943 /* Inverse of gsi_channel_evt_ring_init() */ 1944 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 1945 { 1946 u32 evt_ring_id = channel->evt_ring_id; 1947 struct gsi *gsi = channel->gsi; 1948 struct gsi_evt_ring *evt_ring; 1949 1950 evt_ring = &gsi->evt_ring[evt_ring_id]; 1951 gsi_ring_free(gsi, &evt_ring->ring); 1952 gsi_evt_ring_id_free(gsi, evt_ring_id); 1953 } 1954 1955 /* Init function for event rings */ 1956 static void gsi_evt_ring_init(struct gsi *gsi) 1957 { 1958 u32 evt_ring_id = 0; 1959 1960 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 1961 gsi->ieob_enabled_bitmap = 0; 1962 do 1963 init_completion(&gsi->evt_ring[evt_ring_id].completion); 1964 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX); 1965 } 1966 1967 /* Inverse of gsi_evt_ring_init() */ 1968 static void gsi_evt_ring_exit(struct gsi *gsi) 1969 { 1970 /* Nothing to do */ 1971 } 1972 1973 static bool gsi_channel_data_valid(struct gsi *gsi, 1974 const struct ipa_gsi_endpoint_data *data) 1975 { 1976 #ifdef IPA_VALIDATION 1977 u32 channel_id = data->channel_id; 1978 struct device *dev = gsi->dev; 1979 1980 /* Make sure channel ids are in the range driver supports */ 1981 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 1982 dev_err(dev, "bad channel id %u; must be less than %u\n", 1983 channel_id, GSI_CHANNEL_COUNT_MAX); 1984 return false; 1985 } 1986 1987 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 1988 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); 1989 return false; 1990 } 1991 1992 if (!data->channel.tlv_count || 1993 data->channel.tlv_count > GSI_TLV_MAX) { 1994 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", 1995 channel_id, data->channel.tlv_count, GSI_TLV_MAX); 1996 return false; 1997 } 1998 1999 /* We have to allow at least one maximally-sized transaction to 2000 * be outstanding (which would use tlv_count TREs). Given how 2001 * gsi_channel_tre_max() is computed, tre_count has to be almost 2002 * twice the TLV FIFO size to satisfy this requirement. 2003 */ 2004 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { 2005 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 2006 channel_id, data->channel.tlv_count, 2007 data->channel.tre_count); 2008 return false; 2009 } 2010 2011 if (!is_power_of_2(data->channel.tre_count)) { 2012 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", 2013 channel_id, data->channel.tre_count); 2014 return false; 2015 } 2016 2017 if (!is_power_of_2(data->channel.event_count)) { 2018 dev_err(dev, "channel %u bad event_count %u; not power of 2\n", 2019 channel_id, data->channel.event_count); 2020 return false; 2021 } 2022 #endif /* IPA_VALIDATION */ 2023 2024 return true; 2025 } 2026 2027 /* Init function for a single channel */ 2028 static int gsi_channel_init_one(struct gsi *gsi, 2029 const struct ipa_gsi_endpoint_data *data, 2030 bool command) 2031 { 2032 struct gsi_channel *channel; 2033 u32 tre_count; 2034 int ret; 2035 2036 if (!gsi_channel_data_valid(gsi, data)) 2037 return -EINVAL; 2038 2039 /* Worst case we need an event for every outstanding TRE */ 2040 if (data->channel.tre_count > data->channel.event_count) { 2041 tre_count = data->channel.event_count; 2042 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 2043 data->channel_id, tre_count); 2044 } else { 2045 tre_count = data->channel.tre_count; 2046 } 2047 2048 channel = &gsi->channel[data->channel_id]; 2049 memset(channel, 0, sizeof(*channel)); 2050 2051 channel->gsi = gsi; 2052 channel->toward_ipa = data->toward_ipa; 2053 channel->command = command; 2054 channel->tlv_count = data->channel.tlv_count; 2055 channel->tre_count = tre_count; 2056 channel->event_count = data->channel.event_count; 2057 init_completion(&channel->completion); 2058 2059 ret = gsi_channel_evt_ring_init(channel); 2060 if (ret) 2061 goto err_clear_gsi; 2062 2063 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 2064 if (ret) { 2065 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 2066 ret, data->channel_id); 2067 goto err_channel_evt_ring_exit; 2068 } 2069 2070 ret = gsi_channel_trans_init(gsi, data->channel_id); 2071 if (ret) 2072 goto err_ring_free; 2073 2074 if (command) { 2075 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 2076 2077 ret = ipa_cmd_pool_init(channel, tre_max); 2078 } 2079 if (!ret) 2080 return 0; /* Success! */ 2081 2082 gsi_channel_trans_exit(channel); 2083 err_ring_free: 2084 gsi_ring_free(gsi, &channel->tre_ring); 2085 err_channel_evt_ring_exit: 2086 gsi_channel_evt_ring_exit(channel); 2087 err_clear_gsi: 2088 channel->gsi = NULL; /* Mark it not (fully) initialized */ 2089 2090 return ret; 2091 } 2092 2093 /* Inverse of gsi_channel_init_one() */ 2094 static void gsi_channel_exit_one(struct gsi_channel *channel) 2095 { 2096 if (!gsi_channel_initialized(channel)) 2097 return; 2098 2099 if (channel->command) 2100 ipa_cmd_pool_exit(channel); 2101 gsi_channel_trans_exit(channel); 2102 gsi_ring_free(channel->gsi, &channel->tre_ring); 2103 gsi_channel_evt_ring_exit(channel); 2104 } 2105 2106 /* Init function for channels */ 2107 static int gsi_channel_init(struct gsi *gsi, u32 count, 2108 const struct ipa_gsi_endpoint_data *data) 2109 { 2110 bool modem_alloc; 2111 int ret = 0; 2112 u32 i; 2113 2114 /* IPA v4.2 requires the AP to allocate channels for the modem */ 2115 modem_alloc = gsi->version == IPA_VERSION_4_2; 2116 2117 gsi_evt_ring_init(gsi); 2118 2119 /* The endpoint data array is indexed by endpoint name */ 2120 for (i = 0; i < count; i++) { 2121 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 2122 2123 if (ipa_gsi_endpoint_data_empty(&data[i])) 2124 continue; /* Skip over empty slots */ 2125 2126 /* Mark modem channels to be allocated (hardware workaround) */ 2127 if (data[i].ee_id == GSI_EE_MODEM) { 2128 if (modem_alloc) 2129 gsi->modem_channel_bitmap |= 2130 BIT(data[i].channel_id); 2131 continue; 2132 } 2133 2134 ret = gsi_channel_init_one(gsi, &data[i], command); 2135 if (ret) 2136 goto err_unwind; 2137 } 2138 2139 return ret; 2140 2141 err_unwind: 2142 while (i--) { 2143 if (ipa_gsi_endpoint_data_empty(&data[i])) 2144 continue; 2145 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 2146 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 2147 continue; 2148 } 2149 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 2150 } 2151 gsi_evt_ring_exit(gsi); 2152 2153 return ret; 2154 } 2155 2156 /* Inverse of gsi_channel_init() */ 2157 static void gsi_channel_exit(struct gsi *gsi) 2158 { 2159 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 2160 2161 do 2162 gsi_channel_exit_one(&gsi->channel[channel_id]); 2163 while (channel_id--); 2164 gsi->modem_channel_bitmap = 0; 2165 2166 gsi_evt_ring_exit(gsi); 2167 } 2168 2169 /* Init function for GSI. GSI hardware does not need to be "ready" */ 2170 int gsi_init(struct gsi *gsi, struct platform_device *pdev, 2171 enum ipa_version version, u32 count, 2172 const struct ipa_gsi_endpoint_data *data) 2173 { 2174 struct device *dev = &pdev->dev; 2175 struct resource *res; 2176 resource_size_t size; 2177 u32 adjust; 2178 int ret; 2179 2180 gsi_validate_build(); 2181 2182 gsi->dev = dev; 2183 gsi->version = version; 2184 2185 /* GSI uses NAPI on all channels. Create a dummy network device 2186 * for the channel NAPI contexts to be associated with. 2187 */ 2188 init_dummy_netdev(&gsi->dummy_dev); 2189 2190 /* Get GSI memory range and map it */ 2191 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); 2192 if (!res) { 2193 dev_err(dev, "DT error getting \"gsi\" memory property\n"); 2194 return -ENODEV; 2195 } 2196 2197 size = resource_size(res); 2198 if (res->start > U32_MAX || size > U32_MAX - res->start) { 2199 dev_err(dev, "DT memory resource \"gsi\" out of range\n"); 2200 return -EINVAL; 2201 } 2202 2203 /* Make sure we can make our pointer adjustment if necessary */ 2204 adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; 2205 if (res->start < adjust) { 2206 dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n", 2207 adjust); 2208 return -EINVAL; 2209 } 2210 2211 gsi->virt_raw = ioremap(res->start, size); 2212 if (!gsi->virt_raw) { 2213 dev_err(dev, "unable to remap \"gsi\" memory\n"); 2214 return -ENOMEM; 2215 } 2216 /* Most registers are accessed using an adjusted register range */ 2217 gsi->virt = gsi->virt_raw - adjust; 2218 2219 init_completion(&gsi->completion); 2220 2221 ret = gsi_irq_init(gsi, pdev); 2222 if (ret) 2223 goto err_iounmap; 2224 2225 ret = gsi_channel_init(gsi, count, data); 2226 if (ret) 2227 goto err_irq_exit; 2228 2229 mutex_init(&gsi->mutex); 2230 2231 return 0; 2232 2233 err_irq_exit: 2234 gsi_irq_exit(gsi); 2235 err_iounmap: 2236 iounmap(gsi->virt_raw); 2237 2238 return ret; 2239 } 2240 2241 /* Inverse of gsi_init() */ 2242 void gsi_exit(struct gsi *gsi) 2243 { 2244 mutex_destroy(&gsi->mutex); 2245 gsi_channel_exit(gsi); 2246 gsi_irq_exit(gsi); 2247 iounmap(gsi->virt_raw); 2248 } 2249 2250 /* The maximum number of outstanding TREs on a channel. This limits 2251 * a channel's maximum number of transactions outstanding (worst case 2252 * is one TRE per transaction). 2253 * 2254 * The absolute limit is the number of TREs in the channel's TRE ring, 2255 * and in theory we should be able use all of them. But in practice, 2256 * doing that led to the hardware reporting exhaustion of event ring 2257 * slots for writing completion information. So the hardware limit 2258 * would be (tre_count - 1). 2259 * 2260 * We reduce it a bit further though. Transaction resource pools are 2261 * sized to be a little larger than this maximum, to allow resource 2262 * allocations to always be contiguous. The number of entries in a 2263 * TRE ring buffer is a power of 2, and the extra resources in a pool 2264 * tends to nearly double the memory allocated for it. Reducing the 2265 * maximum number of outstanding TREs allows the number of entries in 2266 * a pool to avoid crossing that power-of-2 boundary, and this can 2267 * substantially reduce pool memory requirements. The number we 2268 * reduce it by matches the number added in gsi_trans_pool_init(). 2269 */ 2270 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2271 { 2272 struct gsi_channel *channel = &gsi->channel[channel_id]; 2273 2274 /* Hardware limit is channel->tre_count - 1 */ 2275 return channel->tre_count - (channel->tlv_count - 1); 2276 } 2277 2278 /* Returns the maximum number of TREs in a single transaction for a channel */ 2279 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) 2280 { 2281 struct gsi_channel *channel = &gsi->channel[channel_id]; 2282 2283 return channel->tlv_count; 2284 } 2285