xref: /openbmc/linux/drivers/net/ipa/gsi.c (revision 19d0070a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2020 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17 
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 
25 /**
26  * DOC: The IPA Generic Software Interface
27  *
28  * The generic software interface (GSI) is an integral component of the IPA,
29  * providing a well-defined communication layer between the AP subsystem
30  * and the IPA core.  The modem uses the GSI layer as well.
31  *
32  *	--------	     ---------
33  *	|      |	     |	     |
34  *	|  AP  +<---.	.----+ Modem |
35  *	|      +--. |	| .->+	     |
36  *	|      |  | |	| |  |	     |
37  *	--------  | |	| |  ---------
38  *		  v |	v |
39  *		--+-+---+-+--
40  *		|    GSI    |
41  *		|-----------|
42  *		|	    |
43  *		|    IPA    |
44  *		|	    |
45  *		-------------
46  *
47  * In the above diagram, the AP and Modem represent "execution environments"
48  * (EEs), which are independent operating environments that use the IPA for
49  * data transfer.
50  *
51  * Each EE uses a set of unidirectional GSI "channels," which allow transfer
52  * of data to or from the IPA.  A channel is implemented as a ring buffer,
53  * with a DRAM-resident array of "transfer elements" (TREs) available to
54  * describe transfers to or from other EEs through the IPA.  A transfer
55  * element can also contain an immediate command, requesting the IPA perform
56  * actions other than data transfer.
57  *
58  * Each TRE refers to a block of data--also located DRAM.  After writing one
59  * or more TREs to a channel, the writer (either the IPA or an EE) writes a
60  * doorbell register to inform the receiving side how many elements have
61  * been written.
62  *
63  * Each channel has a GSI "event ring" associated with it.  An event ring
64  * is implemented very much like a channel ring, but is always directed from
65  * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
66  * events by adding an entry to the event ring associated with the channel.
67  * The GSI then writes its doorbell for the event ring, causing the target
68  * EE to be interrupted.  Each entry in an event ring contains a pointer
69  * to the channel TRE whose completion the event represents.
70  *
71  * Each TRE in a channel ring has a set of flags.  One flag indicates whether
72  * the completion of the transfer operation generates an entry (and possibly
73  * an interrupt) in the channel's event ring.  Other flags allow transfer
74  * elements to be chained together, forming a single logical transaction.
75  * TRE flags are used to control whether and when interrupts are generated
76  * to signal completion of channel transfers.
77  *
78  * Elements in channel and event rings are completed (or consumed) strictly
79  * in order.  Completion of one entry implies the completion of all preceding
80  * entries.  A single completion interrupt can therefore communicate the
81  * completion of many transfers.
82  *
83  * Note that all GSI registers are little-endian, which is the assumed
84  * endianness of I/O space accesses.  The accessor functions perform byte
85  * swapping if needed (i.e., for a big endian CPU).
86  */
87 
88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
89 #define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
90 
91 #define GSI_CMD_TIMEOUT			5	/* seconds */
92 
93 #define GSI_CHANNEL_STOP_RX_RETRIES	10
94 
95 #define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
96 #define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
97 
98 #define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
99 
100 /* An entry in an event ring */
101 struct gsi_event {
102 	__le64 xfer_ptr;
103 	__le16 len;
104 	u8 reserved1;
105 	u8 code;
106 	__le16 reserved2;
107 	u8 type;
108 	u8 chid;
109 };
110 
111 /* Hardware values from the error log register error code field */
112 enum gsi_err_code {
113 	GSI_INVALID_TRE_ERR			= 0x1,
114 	GSI_OUT_OF_BUFFERS_ERR			= 0x2,
115 	GSI_OUT_OF_RESOURCES_ERR		= 0x3,
116 	GSI_UNSUPPORTED_INTER_EE_OP_ERR		= 0x4,
117 	GSI_EVT_RING_EMPTY_ERR			= 0x5,
118 	GSI_NON_ALLOCATED_EVT_ACCESS_ERR	= 0x6,
119 	GSI_HWO_1_ERR				= 0x8,
120 };
121 
122 /* Hardware values from the error log register error type field */
123 enum gsi_err_type {
124 	GSI_ERR_TYPE_GLOB	= 0x1,
125 	GSI_ERR_TYPE_CHAN	= 0x2,
126 	GSI_ERR_TYPE_EVT	= 0x3,
127 };
128 
129 /* Hardware values used when programming an event ring */
130 enum gsi_evt_chtype {
131 	GSI_EVT_CHTYPE_MHI_EV	= 0x0,
132 	GSI_EVT_CHTYPE_XHCI_EV	= 0x1,
133 	GSI_EVT_CHTYPE_GPI_EV	= 0x2,
134 	GSI_EVT_CHTYPE_XDCI_EV	= 0x3,
135 };
136 
137 /* Hardware values used when programming a channel */
138 enum gsi_channel_protocol {
139 	GSI_CHANNEL_PROTOCOL_MHI	= 0x0,
140 	GSI_CHANNEL_PROTOCOL_XHCI	= 0x1,
141 	GSI_CHANNEL_PROTOCOL_GPI	= 0x2,
142 	GSI_CHANNEL_PROTOCOL_XDCI	= 0x3,
143 };
144 
145 /* Hardware values representing an event ring immediate command opcode */
146 enum gsi_evt_cmd_opcode {
147 	GSI_EVT_ALLOCATE	= 0x0,
148 	GSI_EVT_RESET		= 0x9,
149 	GSI_EVT_DE_ALLOC	= 0xa,
150 };
151 
152 /* Hardware values representing a generic immediate command opcode */
153 enum gsi_generic_cmd_opcode {
154 	GSI_GENERIC_HALT_CHANNEL	= 0x1,
155 	GSI_GENERIC_ALLOCATE_CHANNEL	= 0x2,
156 };
157 
158 /* Hardware values representing a channel immediate command opcode */
159 enum gsi_ch_cmd_opcode {
160 	GSI_CH_ALLOCATE	= 0x0,
161 	GSI_CH_START	= 0x1,
162 	GSI_CH_STOP	= 0x2,
163 	GSI_CH_RESET	= 0x9,
164 	GSI_CH_DE_ALLOC	= 0xa,
165 };
166 
167 /** gsi_channel_scratch_gpi - GPI protocol scratch register
168  * @max_outstanding_tre:
169  *	Defines the maximum number of TREs allowed in a single transaction
170  *	on a channel (in bytes).  This determines the amount of prefetch
171  *	performed by the hardware.  We configure this to equal the size of
172  *	the TLV FIFO for the channel.
173  * @outstanding_threshold:
174  *	Defines the threshold (in bytes) determining when the sequencer
175  *	should update the channel doorbell.  We configure this to equal
176  *	the size of two TREs.
177  */
178 struct gsi_channel_scratch_gpi {
179 	u64 reserved1;
180 	u16 reserved2;
181 	u16 max_outstanding_tre;
182 	u16 reserved3;
183 	u16 outstanding_threshold;
184 };
185 
186 /** gsi_channel_scratch - channel scratch configuration area
187  *
188  * The exact interpretation of this register is protocol-specific.
189  * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
190  */
191 union gsi_channel_scratch {
192 	struct gsi_channel_scratch_gpi gpi;
193 	struct {
194 		u32 word1;
195 		u32 word2;
196 		u32 word3;
197 		u32 word4;
198 	} data;
199 };
200 
201 /* Check things that can be validated at build time. */
202 static void gsi_validate_build(void)
203 {
204 	/* This is used as a divisor */
205 	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
206 
207 	/* Code assumes the size of channel and event ring element are
208 	 * the same (and fixed).  Make sure the size of an event ring
209 	 * element is what's expected.
210 	 */
211 	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
212 
213 	/* Hardware requires a 2^n ring size.  We ensure the number of
214 	 * elements in an event ring is a power of 2 elsewhere; this
215 	 * ensure the elements themselves meet the requirement.
216 	 */
217 	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
218 
219 	/* The channel element size must fit in this field */
220 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
221 
222 	/* The event ring element size must fit in this field */
223 	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
224 }
225 
226 /* Return the channel id associated with a given channel */
227 static u32 gsi_channel_id(struct gsi_channel *channel)
228 {
229 	return channel - &channel->gsi->channel[0];
230 }
231 
232 static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
233 {
234 	u32 val;
235 
236 	gsi->event_enable_bitmap |= BIT(evt_ring_id);
237 	val = gsi->event_enable_bitmap;
238 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
239 }
240 
241 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
242 {
243 	u32 val;
244 
245 	gsi->event_enable_bitmap &= ~BIT(evt_ring_id);
246 	val = gsi->event_enable_bitmap;
247 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
248 }
249 
250 /* Enable all GSI_interrupt types */
251 static void gsi_irq_enable(struct gsi *gsi)
252 {
253 	u32 val;
254 
255 	/* We don't use inter-EE channel or event interrupts */
256 	val = GSI_CNTXT_TYPE_IRQ_MSK_ALL;
257 	val &= ~MSK_INTER_EE_CH_CTRL_FMASK;
258 	val &= ~MSK_INTER_EE_EV_CTRL_FMASK;
259 	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
260 
261 	val = GENMASK(gsi->channel_count - 1, 0);
262 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
263 
264 	val = GENMASK(gsi->evt_ring_count - 1, 0);
265 	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
266 
267 	/* Each IEOB interrupt is enabled (later) as needed by channels */
268 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
269 
270 	val = GSI_CNTXT_GLOB_IRQ_ALL;
271 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
272 
273 	/* Never enable GSI_BREAK_POINT */
274 	val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK;
275 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
276 }
277 
278 /* Disable all GSI_interrupt types */
279 static void gsi_irq_disable(struct gsi *gsi)
280 {
281 	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
282 	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
283 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
284 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
285 	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
286 	iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
287 }
288 
289 /* Return the virtual address associated with a ring index */
290 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
291 {
292 	/* Note: index *must* be used modulo the ring count here */
293 	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
294 }
295 
296 /* Return the 32-bit DMA address associated with a ring index */
297 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
298 {
299 	return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
300 }
301 
302 /* Return the ring index of a 32-bit ring offset */
303 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
304 {
305 	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
306 }
307 
308 /* Issue a GSI command by writing a value to a register, then wait for
309  * completion to be signaled.  Returns true if the command completes
310  * or false if it times out.
311  */
312 static bool
313 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
314 {
315 	reinit_completion(completion);
316 
317 	iowrite32(val, gsi->virt + reg);
318 
319 	return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
320 }
321 
322 /* Return the hardware's notion of the current state of an event ring */
323 static enum gsi_evt_ring_state
324 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
325 {
326 	u32 val;
327 
328 	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
329 
330 	return u32_get_bits(val, EV_CHSTATE_FMASK);
331 }
332 
333 /* Issue an event ring command and wait for it to complete */
334 static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
335 			    enum gsi_evt_cmd_opcode opcode)
336 {
337 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
338 	struct completion *completion = &evt_ring->completion;
339 	u32 val;
340 
341 	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
342 	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
343 
344 	if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion))
345 		return 0;	/* Success! */
346 
347 	dev_err(gsi->dev, "GSI command %u to event ring %u timed out "
348 		"(state is %u)\n", opcode, evt_ring_id, evt_ring->state);
349 
350 	return -ETIMEDOUT;
351 }
352 
353 /* Allocate an event ring in NOT_ALLOCATED state */
354 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
355 {
356 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
357 	int ret;
358 
359 	/* Get initial event ring state */
360 	evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
361 
362 	if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
363 		return -EINVAL;
364 
365 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
366 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
367 		dev_err(gsi->dev, "bad event ring state (%u) after alloc\n",
368 			evt_ring->state);
369 		ret = -EIO;
370 	}
371 
372 	return ret;
373 }
374 
375 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
376 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
377 {
378 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
379 	enum gsi_evt_ring_state state = evt_ring->state;
380 	int ret;
381 
382 	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
383 	    state != GSI_EVT_RING_STATE_ERROR) {
384 		dev_err(gsi->dev, "bad event ring state (%u) before reset\n",
385 			evt_ring->state);
386 		return;
387 	}
388 
389 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
390 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED)
391 		dev_err(gsi->dev, "bad event ring state (%u) after reset\n",
392 			evt_ring->state);
393 }
394 
395 /* Issue a hardware de-allocation request for an allocated event ring */
396 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
397 {
398 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
399 	int ret;
400 
401 	if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
402 		dev_err(gsi->dev, "bad event ring state (%u) before dealloc\n",
403 			evt_ring->state);
404 		return;
405 	}
406 
407 	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
408 	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
409 		dev_err(gsi->dev, "bad event ring state (%u) after dealloc\n",
410 			evt_ring->state);
411 }
412 
413 /* Fetch the current state of a channel from hardware */
414 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
415 {
416 	u32 channel_id = gsi_channel_id(channel);
417 	void *virt = channel->gsi->virt;
418 	u32 val;
419 
420 	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
421 
422 	return u32_get_bits(val, CHSTATE_FMASK);
423 }
424 
425 /* Issue a channel command and wait for it to complete */
426 static int
427 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
428 {
429 	struct completion *completion = &channel->completion;
430 	u32 channel_id = gsi_channel_id(channel);
431 	struct gsi *gsi = channel->gsi;
432 	u32 val;
433 
434 	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
435 	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
436 
437 	if (gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion))
438 		return 0;	/* Success! */
439 
440 	dev_err(gsi->dev,
441 		"GSI command %u to channel %u timed out (state is %u)\n",
442 		opcode, channel_id, gsi_channel_state(channel));
443 
444 	return -ETIMEDOUT;
445 }
446 
447 /* Allocate GSI channel in NOT_ALLOCATED state */
448 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
449 {
450 	struct gsi_channel *channel = &gsi->channel[channel_id];
451 	enum gsi_channel_state state;
452 	int ret;
453 
454 	/* Get initial channel state */
455 	state = gsi_channel_state(channel);
456 	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
457 		return -EINVAL;
458 
459 	ret = gsi_channel_command(channel, GSI_CH_ALLOCATE);
460 
461 	/* Channel state will normally have been updated */
462 	state = gsi_channel_state(channel);
463 	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) {
464 		dev_err(gsi->dev, "bad channel state (%u) after alloc\n",
465 			state);
466 		ret = -EIO;
467 	}
468 
469 	return ret;
470 }
471 
472 /* Start an ALLOCATED channel */
473 static int gsi_channel_start_command(struct gsi_channel *channel)
474 {
475 	enum gsi_channel_state state;
476 	int ret;
477 
478 	state = gsi_channel_state(channel);
479 	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
480 	    state != GSI_CHANNEL_STATE_STOPPED)
481 		return -EINVAL;
482 
483 	ret = gsi_channel_command(channel, GSI_CH_START);
484 
485 	/* Channel state will normally have been updated */
486 	state = gsi_channel_state(channel);
487 	if (!ret && state != GSI_CHANNEL_STATE_STARTED) {
488 		dev_err(channel->gsi->dev,
489 			"bad channel state (%u) after start\n", state);
490 		ret = -EIO;
491 	}
492 
493 	return ret;
494 }
495 
496 /* Stop a GSI channel in STARTED state */
497 static int gsi_channel_stop_command(struct gsi_channel *channel)
498 {
499 	enum gsi_channel_state state;
500 	int ret;
501 
502 	state = gsi_channel_state(channel);
503 
504 	/* Channel could have entered STOPPED state since last call
505 	 * if it timed out.  If so, we're done.
506 	 */
507 	if (state == GSI_CHANNEL_STATE_STOPPED)
508 		return 0;
509 
510 	if (state != GSI_CHANNEL_STATE_STARTED &&
511 	    state != GSI_CHANNEL_STATE_STOP_IN_PROC)
512 		return -EINVAL;
513 
514 	ret = gsi_channel_command(channel, GSI_CH_STOP);
515 
516 	/* Channel state will normally have been updated */
517 	state = gsi_channel_state(channel);
518 	if (ret || state == GSI_CHANNEL_STATE_STOPPED)
519 		return ret;
520 
521 	/* We may have to try again if stop is in progress */
522 	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
523 		return -EAGAIN;
524 
525 	dev_err(channel->gsi->dev,
526 		"bad channel state (%u) after stop\n", state);
527 
528 	return -EIO;
529 }
530 
531 /* Reset a GSI channel in ALLOCATED or ERROR state. */
532 static void gsi_channel_reset_command(struct gsi_channel *channel)
533 {
534 	enum gsi_channel_state state;
535 	int ret;
536 
537 	msleep(1);	/* A short delay is required before a RESET command */
538 
539 	state = gsi_channel_state(channel);
540 	if (state != GSI_CHANNEL_STATE_STOPPED &&
541 	    state != GSI_CHANNEL_STATE_ERROR) {
542 		dev_err(channel->gsi->dev,
543 			"bad channel state (%u) before reset\n", state);
544 		return;
545 	}
546 
547 	ret = gsi_channel_command(channel, GSI_CH_RESET);
548 
549 	/* Channel state will normally have been updated */
550 	state = gsi_channel_state(channel);
551 	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED)
552 		dev_err(channel->gsi->dev,
553 			"bad channel state (%u) after reset\n", state);
554 }
555 
556 /* Deallocate an ALLOCATED GSI channel */
557 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
558 {
559 	struct gsi_channel *channel = &gsi->channel[channel_id];
560 	enum gsi_channel_state state;
561 	int ret;
562 
563 	state = gsi_channel_state(channel);
564 	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
565 		dev_err(gsi->dev,
566 			"bad channel state (%u) before dealloc\n", state);
567 		return;
568 	}
569 
570 	ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC);
571 
572 	/* Channel state will normally have been updated */
573 	state = gsi_channel_state(channel);
574 	if (!ret && state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
575 		dev_err(gsi->dev,
576 			"bad channel state (%u) after dealloc\n", state);
577 }
578 
579 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
580  * The index argument (modulo the ring count) is the first unfilled entry, so
581  * we supply one less than that with the doorbell.  Update the event ring
582  * index field with the value provided.
583  */
584 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
585 {
586 	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
587 	u32 val;
588 
589 	ring->index = index;	/* Next unused entry */
590 
591 	/* Note: index *must* be used modulo the ring count here */
592 	val = gsi_ring_addr(ring, (index - 1) % ring->count);
593 	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
594 }
595 
596 /* Program an event ring for use */
597 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
598 {
599 	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
600 	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
601 	u32 val;
602 
603 	val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
604 	val |= EV_INTYPE_FMASK;
605 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
606 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
607 
608 	val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
609 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
610 
611 	/* The context 2 and 3 registers store the low-order and
612 	 * high-order 32 bits of the address of the event ring,
613 	 * respectively.
614 	 */
615 	val = evt_ring->ring.addr & GENMASK(31, 0);
616 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
617 
618 	val = evt_ring->ring.addr >> 32;
619 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
620 
621 	/* Enable interrupt moderation by setting the moderation delay */
622 	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
623 	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
624 	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
625 
626 	/* No MSI write data, and MSI address high and low address is 0 */
627 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
628 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
629 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
630 
631 	/* We don't need to get event read pointer updates */
632 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
633 	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
634 
635 	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
636 	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
637 }
638 
639 /* Return the last (most recent) transaction completed on a channel. */
640 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
641 {
642 	struct gsi_trans_info *trans_info = &channel->trans_info;
643 	struct gsi_trans *trans;
644 
645 	spin_lock_bh(&trans_info->spinlock);
646 
647 	if (!list_empty(&trans_info->complete))
648 		trans = list_last_entry(&trans_info->complete,
649 					struct gsi_trans, links);
650 	else if (!list_empty(&trans_info->polled))
651 		trans = list_last_entry(&trans_info->polled,
652 					struct gsi_trans, links);
653 	else
654 		trans = NULL;
655 
656 	/* Caller will wait for this, so take a reference */
657 	if (trans)
658 		refcount_inc(&trans->refcount);
659 
660 	spin_unlock_bh(&trans_info->spinlock);
661 
662 	return trans;
663 }
664 
665 /* Wait for transaction activity on a channel to complete */
666 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
667 {
668 	struct gsi_trans *trans;
669 
670 	/* Get the last transaction, and wait for it to complete */
671 	trans = gsi_channel_trans_last(channel);
672 	if (trans) {
673 		wait_for_completion(&trans->completion);
674 		gsi_trans_free(trans);
675 	}
676 }
677 
678 /* Stop channel activity.  Transactions may not be allocated until thawed. */
679 static void gsi_channel_freeze(struct gsi_channel *channel)
680 {
681 	gsi_channel_trans_quiesce(channel);
682 
683 	napi_disable(&channel->napi);
684 
685 	gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
686 }
687 
688 /* Allow transactions to be used on the channel again. */
689 static void gsi_channel_thaw(struct gsi_channel *channel)
690 {
691 	gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
692 
693 	napi_enable(&channel->napi);
694 }
695 
696 /* Program a channel for use */
697 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
698 {
699 	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
700 	u32 channel_id = gsi_channel_id(channel);
701 	union gsi_channel_scratch scr = { };
702 	struct gsi_channel_scratch_gpi *gpi;
703 	struct gsi *gsi = channel->gsi;
704 	u32 wrr_weight = 0;
705 	u32 val;
706 
707 	/* Arbitrarily pick TRE 0 as the first channel element to use */
708 	channel->tre_ring.index = 0;
709 
710 	/* We program all channels to use GPI protocol */
711 	val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
712 	if (channel->toward_ipa)
713 		val |= CHTYPE_DIR_FMASK;
714 	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
715 	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
716 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
717 
718 	val = u32_encode_bits(size, R_LENGTH_FMASK);
719 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
720 
721 	/* The context 2 and 3 registers store the low-order and
722 	 * high-order 32 bits of the address of the channel ring,
723 	 * respectively.
724 	 */
725 	val = channel->tre_ring.addr & GENMASK(31, 0);
726 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
727 
728 	val = channel->tre_ring.addr >> 32;
729 	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
730 
731 	/* Command channel gets low weighted round-robin priority */
732 	if (channel->command)
733 		wrr_weight = field_max(WRR_WEIGHT_FMASK);
734 	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
735 
736 	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
737 
738 	/* Enable the doorbell engine if requested */
739 	if (doorbell)
740 		val |= USE_DB_ENG_FMASK;
741 
742 	if (!channel->use_prefetch)
743 		val |= USE_ESCAPE_BUF_ONLY_FMASK;
744 
745 	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
746 
747 	/* Now update the scratch registers for GPI protocol */
748 	gpi = &scr.gpi;
749 	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
750 					GSI_RING_ELEMENT_SIZE;
751 	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
752 
753 	val = scr.data.word1;
754 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
755 
756 	val = scr.data.word2;
757 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
758 
759 	val = scr.data.word3;
760 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
761 
762 	/* We must preserve the upper 16 bits of the last scratch register.
763 	 * The next sequence assumes those bits remain unchanged between the
764 	 * read and the write.
765 	 */
766 	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
767 	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
768 	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
769 
770 	/* All done! */
771 }
772 
773 static void gsi_channel_deprogram(struct gsi_channel *channel)
774 {
775 	/* Nothing to do */
776 }
777 
778 /* Start an allocated GSI channel */
779 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
780 {
781 	struct gsi_channel *channel = &gsi->channel[channel_id];
782 	int ret;
783 
784 	mutex_lock(&gsi->mutex);
785 
786 	ret = gsi_channel_start_command(channel);
787 
788 	mutex_unlock(&gsi->mutex);
789 
790 	gsi_channel_thaw(channel);
791 
792 	return ret;
793 }
794 
795 /* Stop a started channel */
796 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
797 {
798 	struct gsi_channel *channel = &gsi->channel[channel_id];
799 	u32 retries;
800 	int ret;
801 
802 	gsi_channel_freeze(channel);
803 
804 	/* RX channels might require a little time to enter STOPPED state */
805 	retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;
806 
807 	mutex_lock(&gsi->mutex);
808 
809 	do {
810 		ret = gsi_channel_stop_command(channel);
811 		if (ret != -EAGAIN)
812 			break;
813 		msleep(1);
814 	} while (retries--);
815 
816 	mutex_unlock(&gsi->mutex);
817 
818 	/* Thaw the channel if we need to retry (or on error) */
819 	if (ret)
820 		gsi_channel_thaw(channel);
821 
822 	return ret;
823 }
824 
825 /* Reset and reconfigure a channel (possibly leaving doorbell disabled) */
826 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool legacy)
827 {
828 	struct gsi_channel *channel = &gsi->channel[channel_id];
829 
830 	mutex_lock(&gsi->mutex);
831 
832 	gsi_channel_reset_command(channel);
833 	/* Due to a hardware quirk we may need to reset RX channels twice. */
834 	if (legacy && !channel->toward_ipa)
835 		gsi_channel_reset_command(channel);
836 
837 	gsi_channel_program(channel, legacy);
838 	gsi_channel_trans_cancel_pending(channel);
839 
840 	mutex_unlock(&gsi->mutex);
841 }
842 
843 /* Stop a STARTED channel for suspend (using stop if requested) */
844 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
845 {
846 	struct gsi_channel *channel = &gsi->channel[channel_id];
847 
848 	if (stop)
849 		return gsi_channel_stop(gsi, channel_id);
850 
851 	gsi_channel_freeze(channel);
852 
853 	return 0;
854 }
855 
856 /* Resume a suspended channel (starting will be requested if STOPPED) */
857 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
858 {
859 	struct gsi_channel *channel = &gsi->channel[channel_id];
860 
861 	if (start)
862 		return gsi_channel_start(gsi, channel_id);
863 
864 	gsi_channel_thaw(channel);
865 
866 	return 0;
867 }
868 
869 /**
870  * gsi_channel_tx_queued() - Report queued TX transfers for a channel
871  * @channel:	Channel for which to report
872  *
873  * Report to the network stack the number of bytes and transactions that
874  * have been queued to hardware since last call.  This and the next function
875  * supply information used by the network stack for throttling.
876  *
877  * For each channel we track the number of transactions used and bytes of
878  * data those transactions represent.  We also track what those values are
879  * each time this function is called.  Subtracting the two tells us
880  * the number of bytes and transactions that have been added between
881  * successive calls.
882  *
883  * Calling this each time we ring the channel doorbell allows us to
884  * provide accurate information to the network stack about how much
885  * work we've given the hardware at any point in time.
886  */
887 void gsi_channel_tx_queued(struct gsi_channel *channel)
888 {
889 	u32 trans_count;
890 	u32 byte_count;
891 
892 	byte_count = channel->byte_count - channel->queued_byte_count;
893 	trans_count = channel->trans_count - channel->queued_trans_count;
894 	channel->queued_byte_count = channel->byte_count;
895 	channel->queued_trans_count = channel->trans_count;
896 
897 	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
898 				  trans_count, byte_count);
899 }
900 
901 /**
902  * gsi_channel_tx_update() - Report completed TX transfers
903  * @channel:	Channel that has completed transmitting packets
904  * @trans:	Last transation known to be complete
905  *
906  * Compute the number of transactions and bytes that have been transferred
907  * over a TX channel since the given transaction was committed.  Report this
908  * information to the network stack.
909  *
910  * At the time a transaction is committed, we record its channel's
911  * committed transaction and byte counts *in the transaction*.
912  * Completions are signaled by the hardware with an interrupt, and
913  * we can determine the latest completed transaction at that time.
914  *
915  * The difference between the byte/transaction count recorded in
916  * the transaction and the count last time we recorded a completion
917  * tells us exactly how much data has been transferred between
918  * completions.
919  *
920  * Calling this each time we learn of a newly-completed transaction
921  * allows us to provide accurate information to the network stack
922  * about how much work has been completed by the hardware at a given
923  * point in time.
924  */
925 static void
926 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
927 {
928 	u64 byte_count = trans->byte_count + trans->len;
929 	u64 trans_count = trans->trans_count + 1;
930 
931 	byte_count -= channel->compl_byte_count;
932 	channel->compl_byte_count += byte_count;
933 	trans_count -= channel->compl_trans_count;
934 	channel->compl_trans_count += trans_count;
935 
936 	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
937 				     trans_count, byte_count);
938 }
939 
940 /* Channel control interrupt handler */
941 static void gsi_isr_chan_ctrl(struct gsi *gsi)
942 {
943 	u32 channel_mask;
944 
945 	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
946 	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
947 
948 	while (channel_mask) {
949 		u32 channel_id = __ffs(channel_mask);
950 		struct gsi_channel *channel;
951 
952 		channel_mask ^= BIT(channel_id);
953 
954 		channel = &gsi->channel[channel_id];
955 
956 		complete(&channel->completion);
957 	}
958 }
959 
960 /* Event ring control interrupt handler */
961 static void gsi_isr_evt_ctrl(struct gsi *gsi)
962 {
963 	u32 event_mask;
964 
965 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
966 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
967 
968 	while (event_mask) {
969 		u32 evt_ring_id = __ffs(event_mask);
970 		struct gsi_evt_ring *evt_ring;
971 
972 		event_mask ^= BIT(evt_ring_id);
973 
974 		evt_ring = &gsi->evt_ring[evt_ring_id];
975 		evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
976 
977 		complete(&evt_ring->completion);
978 	}
979 }
980 
981 /* Global channel error interrupt handler */
982 static void
983 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
984 {
985 	if (code == GSI_OUT_OF_RESOURCES_ERR) {
986 		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
987 		complete(&gsi->channel[channel_id].completion);
988 		return;
989 	}
990 
991 	/* Report, but otherwise ignore all other error codes */
992 	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
993 		channel_id, err_ee, code);
994 }
995 
996 /* Global event error interrupt handler */
997 static void
998 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
999 {
1000 	if (code == GSI_OUT_OF_RESOURCES_ERR) {
1001 		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1002 		u32 channel_id = gsi_channel_id(evt_ring->channel);
1003 
1004 		complete(&evt_ring->completion);
1005 		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1006 			channel_id);
1007 		return;
1008 	}
1009 
1010 	/* Report, but otherwise ignore all other error codes */
1011 	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1012 		evt_ring_id, err_ee, code);
1013 }
1014 
1015 /* Global error interrupt handler */
1016 static void gsi_isr_glob_err(struct gsi *gsi)
1017 {
1018 	enum gsi_err_type type;
1019 	enum gsi_err_code code;
1020 	u32 which;
1021 	u32 val;
1022 	u32 ee;
1023 
1024 	/* Get the logged error, then reinitialize the log */
1025 	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1026 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1027 	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1028 
1029 	ee = u32_get_bits(val, ERR_EE_FMASK);
1030 	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1031 	type = u32_get_bits(val, ERR_TYPE_FMASK);
1032 	code = u32_get_bits(val, ERR_CODE_FMASK);
1033 
1034 	if (type == GSI_ERR_TYPE_CHAN)
1035 		gsi_isr_glob_chan_err(gsi, ee, which, code);
1036 	else if (type == GSI_ERR_TYPE_EVT)
1037 		gsi_isr_glob_evt_err(gsi, ee, which, code);
1038 	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1039 		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1040 }
1041 
1042 /* Generic EE interrupt handler */
1043 static void gsi_isr_gp_int1(struct gsi *gsi)
1044 {
1045 	u32 result;
1046 	u32 val;
1047 
1048 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1049 	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1050 	if (result != GENERIC_EE_SUCCESS_FVAL)
1051 		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1052 
1053 	complete(&gsi->completion);
1054 }
1055 
1056 /* Inter-EE interrupt handler */
1057 static void gsi_isr_glob_ee(struct gsi *gsi)
1058 {
1059 	u32 val;
1060 
1061 	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1062 
1063 	if (val & ERROR_INT_FMASK)
1064 		gsi_isr_glob_err(gsi);
1065 
1066 	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1067 
1068 	val &= ~ERROR_INT_FMASK;
1069 
1070 	if (val & EN_GP_INT1_FMASK) {
1071 		val ^= EN_GP_INT1_FMASK;
1072 		gsi_isr_gp_int1(gsi);
1073 	}
1074 
1075 	if (val)
1076 		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1077 }
1078 
1079 /* I/O completion interrupt event */
1080 static void gsi_isr_ieob(struct gsi *gsi)
1081 {
1082 	u32 event_mask;
1083 
1084 	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1085 	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1086 
1087 	while (event_mask) {
1088 		u32 evt_ring_id = __ffs(event_mask);
1089 
1090 		event_mask ^= BIT(evt_ring_id);
1091 
1092 		gsi_irq_ieob_disable(gsi, evt_ring_id);
1093 		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1094 	}
1095 }
1096 
1097 /* General event interrupts represent serious problems, so report them */
1098 static void gsi_isr_general(struct gsi *gsi)
1099 {
1100 	struct device *dev = gsi->dev;
1101 	u32 val;
1102 
1103 	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1104 	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1105 
1106 	if (val)
1107 		dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1108 }
1109 
1110 /**
1111  * gsi_isr() - Top level GSI interrupt service routine
1112  * @irq:	Interrupt number (ignored)
1113  * @dev_id:	GSI pointer supplied to request_irq()
1114  *
1115  * This is the main handler function registered for the GSI IRQ. Each type
1116  * of interrupt has a separate handler function that is called from here.
1117  */
1118 static irqreturn_t gsi_isr(int irq, void *dev_id)
1119 {
1120 	struct gsi *gsi = dev_id;
1121 	u32 intr_mask;
1122 	u32 cnt = 0;
1123 
1124 	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1125 		/* intr_mask contains bitmask of pending GSI interrupts */
1126 		do {
1127 			u32 gsi_intr = BIT(__ffs(intr_mask));
1128 
1129 			intr_mask ^= gsi_intr;
1130 
1131 			switch (gsi_intr) {
1132 			case CH_CTRL_FMASK:
1133 				gsi_isr_chan_ctrl(gsi);
1134 				break;
1135 			case EV_CTRL_FMASK:
1136 				gsi_isr_evt_ctrl(gsi);
1137 				break;
1138 			case GLOB_EE_FMASK:
1139 				gsi_isr_glob_ee(gsi);
1140 				break;
1141 			case IEOB_FMASK:
1142 				gsi_isr_ieob(gsi);
1143 				break;
1144 			case GENERAL_FMASK:
1145 				gsi_isr_general(gsi);
1146 				break;
1147 			default:
1148 				dev_err(gsi->dev,
1149 					"%s: unrecognized type 0x%08x\n",
1150 					__func__, gsi_intr);
1151 				break;
1152 			}
1153 		} while (intr_mask);
1154 
1155 		if (++cnt > GSI_ISR_MAX_ITER) {
1156 			dev_err(gsi->dev, "interrupt flood\n");
1157 			break;
1158 		}
1159 	}
1160 
1161 	return IRQ_HANDLED;
1162 }
1163 
1164 /* Return the transaction associated with a transfer completion event */
1165 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1166 					 struct gsi_event *event)
1167 {
1168 	u32 tre_offset;
1169 	u32 tre_index;
1170 
1171 	/* Event xfer_ptr records the TRE it's associated with */
1172 	tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
1173 	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1174 
1175 	return gsi_channel_trans_mapped(channel, tre_index);
1176 }
1177 
1178 /**
1179  * gsi_evt_ring_rx_update() - Record lengths of received data
1180  * @evt_ring:	Event ring associated with channel that received packets
1181  * @index:	Event index in ring reported by hardware
1182  *
1183  * Events for RX channels contain the actual number of bytes received into
1184  * the buffer.  Every event has a transaction associated with it, and here
1185  * we update transactions to record their actual received lengths.
1186  *
1187  * This function is called whenever we learn that the GSI hardware has filled
1188  * new events since the last time we checked.  The ring's index field tells
1189  * the first entry in need of processing.  The index provided is the
1190  * first *unfilled* event in the ring (following the last filled one).
1191  *
1192  * Events are sequential within the event ring, and transactions are
1193  * sequential within the transaction pool.
1194  *
1195  * Note that @index always refers to an element *within* the event ring.
1196  */
1197 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1198 {
1199 	struct gsi_channel *channel = evt_ring->channel;
1200 	struct gsi_ring *ring = &evt_ring->ring;
1201 	struct gsi_trans_info *trans_info;
1202 	struct gsi_event *event_done;
1203 	struct gsi_event *event;
1204 	struct gsi_trans *trans;
1205 	u32 byte_count = 0;
1206 	u32 old_index;
1207 	u32 event_avail;
1208 
1209 	trans_info = &channel->trans_info;
1210 
1211 	/* We'll start with the oldest un-processed event.  RX channels
1212 	 * replenish receive buffers in single-TRE transactions, so we
1213 	 * can just map that event to its transaction.  Transactions
1214 	 * associated with completion events are consecutive.
1215 	 */
1216 	old_index = ring->index;
1217 	event = gsi_ring_virt(ring, old_index);
1218 	trans = gsi_event_trans(channel, event);
1219 
1220 	/* Compute the number of events to process before we wrap,
1221 	 * and determine when we'll be done processing events.
1222 	 */
1223 	event_avail = ring->count - old_index % ring->count;
1224 	event_done = gsi_ring_virt(ring, index);
1225 	do {
1226 		trans->len = __le16_to_cpu(event->len);
1227 		byte_count += trans->len;
1228 
1229 		/* Move on to the next event and transaction */
1230 		if (--event_avail)
1231 			event++;
1232 		else
1233 			event = gsi_ring_virt(ring, 0);
1234 		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1235 	} while (event != event_done);
1236 
1237 	/* We record RX bytes when they are received */
1238 	channel->byte_count += byte_count;
1239 	channel->trans_count++;
1240 }
1241 
1242 /* Initialize a ring, including allocating DMA memory for its entries */
1243 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1244 {
1245 	size_t size = count * GSI_RING_ELEMENT_SIZE;
1246 	struct device *dev = gsi->dev;
1247 	dma_addr_t addr;
1248 
1249 	/* Hardware requires a 2^n ring size, with alignment equal to size */
1250 	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1251 	if (ring->virt && addr % size) {
1252 		dma_free_coherent(dev, size, ring->virt, ring->addr);
1253 		dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
1254 				size);
1255 		return -EINVAL;	/* Not a good error value, but distinct */
1256 	} else if (!ring->virt) {
1257 		return -ENOMEM;
1258 	}
1259 	ring->addr = addr;
1260 	ring->count = count;
1261 
1262 	return 0;
1263 }
1264 
1265 /* Free a previously-allocated ring */
1266 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1267 {
1268 	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1269 
1270 	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1271 }
1272 
1273 /* Allocate an available event ring id */
1274 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1275 {
1276 	u32 evt_ring_id;
1277 
1278 	if (gsi->event_bitmap == ~0U) {
1279 		dev_err(gsi->dev, "event rings exhausted\n");
1280 		return -ENOSPC;
1281 	}
1282 
1283 	evt_ring_id = ffz(gsi->event_bitmap);
1284 	gsi->event_bitmap |= BIT(evt_ring_id);
1285 
1286 	return (int)evt_ring_id;
1287 }
1288 
1289 /* Free a previously-allocated event ring id */
1290 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1291 {
1292 	gsi->event_bitmap &= ~BIT(evt_ring_id);
1293 }
1294 
1295 /* Ring a channel doorbell, reporting the first un-filled entry */
1296 void gsi_channel_doorbell(struct gsi_channel *channel)
1297 {
1298 	struct gsi_ring *tre_ring = &channel->tre_ring;
1299 	u32 channel_id = gsi_channel_id(channel);
1300 	struct gsi *gsi = channel->gsi;
1301 	u32 val;
1302 
1303 	/* Note: index *must* be used modulo the ring count here */
1304 	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1305 	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1306 }
1307 
1308 /* Consult hardware, move any newly completed transactions to completed list */
1309 static void gsi_channel_update(struct gsi_channel *channel)
1310 {
1311 	u32 evt_ring_id = channel->evt_ring_id;
1312 	struct gsi *gsi = channel->gsi;
1313 	struct gsi_evt_ring *evt_ring;
1314 	struct gsi_trans *trans;
1315 	struct gsi_ring *ring;
1316 	u32 offset;
1317 	u32 index;
1318 
1319 	evt_ring = &gsi->evt_ring[evt_ring_id];
1320 	ring = &evt_ring->ring;
1321 
1322 	/* See if there's anything new to process; if not, we're done.  Note
1323 	 * that index always refers to an entry *within* the event ring.
1324 	 */
1325 	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1326 	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1327 	if (index == ring->index % ring->count)
1328 		return;
1329 
1330 	/* Get the transaction for the latest completed event.  Take a
1331 	 * reference to keep it from completing before we give the events
1332 	 * for this and previous transactions back to the hardware.
1333 	 */
1334 	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1335 	refcount_inc(&trans->refcount);
1336 
1337 	/* For RX channels, update each completed transaction with the number
1338 	 * of bytes that were actually received.  For TX channels, report
1339 	 * the number of transactions and bytes this completion represents
1340 	 * up the network stack.
1341 	 */
1342 	if (channel->toward_ipa)
1343 		gsi_channel_tx_update(channel, trans);
1344 	else
1345 		gsi_evt_ring_rx_update(evt_ring, index);
1346 
1347 	gsi_trans_move_complete(trans);
1348 
1349 	/* Tell the hardware we've handled these events */
1350 	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1351 
1352 	gsi_trans_free(trans);
1353 }
1354 
1355 /**
1356  * gsi_channel_poll_one() - Return a single completed transaction on a channel
1357  * @channel:	Channel to be polled
1358  *
1359  * @Return:	Transaction pointer, or null if none are available
1360  *
1361  * This function returns the first entry on a channel's completed transaction
1362  * list.  If that list is empty, the hardware is consulted to determine
1363  * whether any new transactions have completed.  If so, they're moved to the
1364  * completed list and the new first entry is returned.  If there are no more
1365  * completed transactions, a null pointer is returned.
1366  */
1367 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1368 {
1369 	struct gsi_trans *trans;
1370 
1371 	/* Get the first transaction from the completed list */
1372 	trans = gsi_channel_trans_complete(channel);
1373 	if (!trans) {
1374 		/* List is empty; see if there's more to do */
1375 		gsi_channel_update(channel);
1376 		trans = gsi_channel_trans_complete(channel);
1377 	}
1378 
1379 	if (trans)
1380 		gsi_trans_move_polled(trans);
1381 
1382 	return trans;
1383 }
1384 
1385 /**
1386  * gsi_channel_poll() - NAPI poll function for a channel
1387  * @napi:	NAPI structure for the channel
1388  * @budget:	Budget supplied by NAPI core
1389 
1390  * @Return:	 Number of items polled (<= budget)
1391  *
1392  * Single transactions completed by hardware are polled until either
1393  * the budget is exhausted, or there are no more.  Each transaction
1394  * polled is passed to gsi_trans_complete(), to perform remaining
1395  * completion processing and retire/free the transaction.
1396  */
1397 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1398 {
1399 	struct gsi_channel *channel;
1400 	int count = 0;
1401 
1402 	channel = container_of(napi, struct gsi_channel, napi);
1403 	while (count < budget) {
1404 		struct gsi_trans *trans;
1405 
1406 		count++;
1407 		trans = gsi_channel_poll_one(channel);
1408 		if (!trans)
1409 			break;
1410 		gsi_trans_complete(trans);
1411 	}
1412 
1413 	if (count < budget) {
1414 		napi_complete(&channel->napi);
1415 		gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
1416 	}
1417 
1418 	return count;
1419 }
1420 
1421 /* The event bitmap represents which event ids are available for allocation.
1422  * Set bits are not available, clear bits can be used.  This function
1423  * initializes the map so all events supported by the hardware are available,
1424  * then precludes any reserved events from being allocated.
1425  */
1426 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1427 {
1428 	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1429 
1430 	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1431 
1432 	return event_bitmap;
1433 }
1434 
1435 /* Setup function for event rings */
1436 static void gsi_evt_ring_setup(struct gsi *gsi)
1437 {
1438 	/* Nothing to do */
1439 }
1440 
1441 /* Inverse of gsi_evt_ring_setup() */
1442 static void gsi_evt_ring_teardown(struct gsi *gsi)
1443 {
1444 	/* Nothing to do */
1445 }
1446 
1447 /* Setup function for a single channel */
1448 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id,
1449 				 bool legacy)
1450 {
1451 	struct gsi_channel *channel = &gsi->channel[channel_id];
1452 	u32 evt_ring_id = channel->evt_ring_id;
1453 	int ret;
1454 
1455 	if (!channel->gsi)
1456 		return 0;	/* Ignore uninitialized channels */
1457 
1458 	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1459 	if (ret)
1460 		return ret;
1461 
1462 	gsi_evt_ring_program(gsi, evt_ring_id);
1463 
1464 	ret = gsi_channel_alloc_command(gsi, channel_id);
1465 	if (ret)
1466 		goto err_evt_ring_de_alloc;
1467 
1468 	gsi_channel_program(channel, legacy);
1469 
1470 	if (channel->toward_ipa)
1471 		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1472 				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1473 	else
1474 		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1475 			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1476 
1477 	return 0;
1478 
1479 err_evt_ring_de_alloc:
1480 	/* We've done nothing with the event ring yet so don't reset */
1481 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1482 
1483 	return ret;
1484 }
1485 
1486 /* Inverse of gsi_channel_setup_one() */
1487 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1488 {
1489 	struct gsi_channel *channel = &gsi->channel[channel_id];
1490 	u32 evt_ring_id = channel->evt_ring_id;
1491 
1492 	if (!channel->gsi)
1493 		return;		/* Ignore uninitialized channels */
1494 
1495 	netif_napi_del(&channel->napi);
1496 
1497 	gsi_channel_deprogram(channel);
1498 	gsi_channel_de_alloc_command(gsi, channel_id);
1499 	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1500 	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1501 }
1502 
1503 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1504 			       enum gsi_generic_cmd_opcode opcode)
1505 {
1506 	struct completion *completion = &gsi->completion;
1507 	u32 val;
1508 
1509 	/* First zero the result code field */
1510 	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1511 	val &= ~GENERIC_EE_RESULT_FMASK;
1512 	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1513 
1514 	/* Now issue the command */
1515 	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1516 	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1517 	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1518 
1519 	if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion))
1520 		return 0;	/* Success! */
1521 
1522 	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1523 		opcode, channel_id);
1524 
1525 	return -ETIMEDOUT;
1526 }
1527 
1528 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1529 {
1530 	return gsi_generic_command(gsi, channel_id,
1531 				   GSI_GENERIC_ALLOCATE_CHANNEL);
1532 }
1533 
1534 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1535 {
1536 	int ret;
1537 
1538 	ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL);
1539 	if (ret)
1540 		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1541 			ret, channel_id);
1542 }
1543 
1544 /* Setup function for channels */
1545 static int gsi_channel_setup(struct gsi *gsi, bool legacy)
1546 {
1547 	u32 channel_id = 0;
1548 	u32 mask;
1549 	int ret;
1550 
1551 	gsi_evt_ring_setup(gsi);
1552 	gsi_irq_enable(gsi);
1553 
1554 	mutex_lock(&gsi->mutex);
1555 
1556 	do {
1557 		ret = gsi_channel_setup_one(gsi, channel_id, legacy);
1558 		if (ret)
1559 			goto err_unwind;
1560 	} while (++channel_id < gsi->channel_count);
1561 
1562 	/* Make sure no channels were defined that hardware does not support */
1563 	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1564 		struct gsi_channel *channel = &gsi->channel[channel_id++];
1565 
1566 		if (!channel->gsi)
1567 			continue;	/* Ignore uninitialized channels */
1568 
1569 		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1570 			channel_id - 1);
1571 		channel_id = gsi->channel_count;
1572 		goto err_unwind;
1573 	}
1574 
1575 	/* Allocate modem channels if necessary */
1576 	mask = gsi->modem_channel_bitmap;
1577 	while (mask) {
1578 		u32 modem_channel_id = __ffs(mask);
1579 
1580 		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1581 		if (ret)
1582 			goto err_unwind_modem;
1583 
1584 		/* Clear bit from mask only after success (for unwind) */
1585 		mask ^= BIT(modem_channel_id);
1586 	}
1587 
1588 	mutex_unlock(&gsi->mutex);
1589 
1590 	return 0;
1591 
1592 err_unwind_modem:
1593 	/* Compute which modem channels need to be deallocated */
1594 	mask ^= gsi->modem_channel_bitmap;
1595 	while (mask) {
1596 		u32 channel_id = __fls(mask);
1597 
1598 		mask ^= BIT(channel_id);
1599 
1600 		gsi_modem_channel_halt(gsi, channel_id);
1601 	}
1602 
1603 err_unwind:
1604 	while (channel_id--)
1605 		gsi_channel_teardown_one(gsi, channel_id);
1606 
1607 	mutex_unlock(&gsi->mutex);
1608 
1609 	gsi_irq_disable(gsi);
1610 	gsi_evt_ring_teardown(gsi);
1611 
1612 	return ret;
1613 }
1614 
1615 /* Inverse of gsi_channel_setup() */
1616 static void gsi_channel_teardown(struct gsi *gsi)
1617 {
1618 	u32 mask = gsi->modem_channel_bitmap;
1619 	u32 channel_id;
1620 
1621 	mutex_lock(&gsi->mutex);
1622 
1623 	while (mask) {
1624 		u32 channel_id = __fls(mask);
1625 
1626 		mask ^= BIT(channel_id);
1627 
1628 		gsi_modem_channel_halt(gsi, channel_id);
1629 	}
1630 
1631 	channel_id = gsi->channel_count - 1;
1632 	do
1633 		gsi_channel_teardown_one(gsi, channel_id);
1634 	while (channel_id--);
1635 
1636 	mutex_unlock(&gsi->mutex);
1637 
1638 	gsi_irq_disable(gsi);
1639 	gsi_evt_ring_teardown(gsi);
1640 }
1641 
1642 /* Setup function for GSI.  GSI firmware must be loaded and initialized */
1643 int gsi_setup(struct gsi *gsi, bool legacy)
1644 {
1645 	u32 val;
1646 
1647 	/* Here is where we first touch the GSI hardware */
1648 	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1649 	if (!(val & ENABLED_FMASK)) {
1650 		dev_err(gsi->dev, "GSI has not been enabled\n");
1651 		return -EIO;
1652 	}
1653 
1654 	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1655 
1656 	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1657 	if (!gsi->channel_count) {
1658 		dev_err(gsi->dev, "GSI reports zero channels supported\n");
1659 		return -EINVAL;
1660 	}
1661 	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1662 		dev_warn(gsi->dev,
1663 			"limiting to %u channels (hardware supports %u)\n",
1664 			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1665 		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1666 	}
1667 
1668 	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1669 	if (!gsi->evt_ring_count) {
1670 		dev_err(gsi->dev, "GSI reports zero event rings supported\n");
1671 		return -EINVAL;
1672 	}
1673 	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1674 		dev_warn(gsi->dev,
1675 			"limiting to %u event rings (hardware supports %u)\n",
1676 			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1677 		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1678 	}
1679 
1680 	/* Initialize the error log */
1681 	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1682 
1683 	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1684 	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1685 
1686 	return gsi_channel_setup(gsi, legacy);
1687 }
1688 
1689 /* Inverse of gsi_setup() */
1690 void gsi_teardown(struct gsi *gsi)
1691 {
1692 	gsi_channel_teardown(gsi);
1693 }
1694 
1695 /* Initialize a channel's event ring */
1696 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1697 {
1698 	struct gsi *gsi = channel->gsi;
1699 	struct gsi_evt_ring *evt_ring;
1700 	int ret;
1701 
1702 	ret = gsi_evt_ring_id_alloc(gsi);
1703 	if (ret < 0)
1704 		return ret;
1705 	channel->evt_ring_id = ret;
1706 
1707 	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1708 	evt_ring->channel = channel;
1709 
1710 	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1711 	if (!ret)
1712 		return 0;	/* Success! */
1713 
1714 	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1715 		ret, gsi_channel_id(channel));
1716 
1717 	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1718 
1719 	return ret;
1720 }
1721 
1722 /* Inverse of gsi_channel_evt_ring_init() */
1723 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1724 {
1725 	u32 evt_ring_id = channel->evt_ring_id;
1726 	struct gsi *gsi = channel->gsi;
1727 	struct gsi_evt_ring *evt_ring;
1728 
1729 	evt_ring = &gsi->evt_ring[evt_ring_id];
1730 	gsi_ring_free(gsi, &evt_ring->ring);
1731 	gsi_evt_ring_id_free(gsi, evt_ring_id);
1732 }
1733 
1734 /* Init function for event rings */
1735 static void gsi_evt_ring_init(struct gsi *gsi)
1736 {
1737 	u32 evt_ring_id = 0;
1738 
1739 	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1740 	gsi->event_enable_bitmap = 0;
1741 	do
1742 		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1743 	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1744 }
1745 
1746 /* Inverse of gsi_evt_ring_init() */
1747 static void gsi_evt_ring_exit(struct gsi *gsi)
1748 {
1749 	/* Nothing to do */
1750 }
1751 
1752 static bool gsi_channel_data_valid(struct gsi *gsi,
1753 				   const struct ipa_gsi_endpoint_data *data)
1754 {
1755 #ifdef IPA_VALIDATION
1756 	u32 channel_id = data->channel_id;
1757 	struct device *dev = gsi->dev;
1758 
1759 	/* Make sure channel ids are in the range driver supports */
1760 	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1761 		dev_err(dev, "bad channel id %u (must be less than %u)\n",
1762 			channel_id, GSI_CHANNEL_COUNT_MAX);
1763 		return false;
1764 	}
1765 
1766 	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1767 		dev_err(dev, "bad EE id %u (AP or modem)\n", data->ee_id);
1768 		return false;
1769 	}
1770 
1771 	if (!data->channel.tlv_count ||
1772 	    data->channel.tlv_count > GSI_TLV_MAX) {
1773 		dev_err(dev, "channel %u bad tlv_count %u (must be 1..%u)\n",
1774 			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1775 		return false;
1776 	}
1777 
1778 	/* We have to allow at least one maximally-sized transaction to
1779 	 * be outstanding (which would use tlv_count TREs).  Given how
1780 	 * gsi_channel_tre_max() is computed, tre_count has to be almost
1781 	 * twice the TLV FIFO size to satisfy this requirement.
1782 	 */
1783 	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1784 		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1785 			channel_id, data->channel.tlv_count,
1786 			data->channel.tre_count);
1787 		return false;
1788 	}
1789 
1790 	if (!is_power_of_2(data->channel.tre_count)) {
1791 		dev_err(dev, "channel %u bad tre_count %u (not power of 2)\n",
1792 			channel_id, data->channel.tre_count);
1793 		return false;
1794 	}
1795 
1796 	if (!is_power_of_2(data->channel.event_count)) {
1797 		dev_err(dev, "channel %u bad event_count %u (not power of 2)\n",
1798 			channel_id, data->channel.event_count);
1799 		return false;
1800 	}
1801 #endif /* IPA_VALIDATION */
1802 
1803 	return true;
1804 }
1805 
1806 /* Init function for a single channel */
1807 static int gsi_channel_init_one(struct gsi *gsi,
1808 				const struct ipa_gsi_endpoint_data *data,
1809 				bool command, bool prefetch)
1810 {
1811 	struct gsi_channel *channel;
1812 	u32 tre_count;
1813 	int ret;
1814 
1815 	if (!gsi_channel_data_valid(gsi, data))
1816 		return -EINVAL;
1817 
1818 	/* Worst case we need an event for every outstanding TRE */
1819 	if (data->channel.tre_count > data->channel.event_count) {
1820 		tre_count = data->channel.event_count;
1821 		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
1822 			 data->channel_id, tre_count);
1823 	} else {
1824 		tre_count = data->channel.tre_count;
1825 	}
1826 
1827 	channel = &gsi->channel[data->channel_id];
1828 	memset(channel, 0, sizeof(*channel));
1829 
1830 	channel->gsi = gsi;
1831 	channel->toward_ipa = data->toward_ipa;
1832 	channel->command = command;
1833 	channel->use_prefetch = command && prefetch;
1834 	channel->tlv_count = data->channel.tlv_count;
1835 	channel->tre_count = tre_count;
1836 	channel->event_count = data->channel.event_count;
1837 	init_completion(&channel->completion);
1838 
1839 	ret = gsi_channel_evt_ring_init(channel);
1840 	if (ret)
1841 		goto err_clear_gsi;
1842 
1843 	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
1844 	if (ret) {
1845 		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
1846 			ret, data->channel_id);
1847 		goto err_channel_evt_ring_exit;
1848 	}
1849 
1850 	ret = gsi_channel_trans_init(gsi, data->channel_id);
1851 	if (ret)
1852 		goto err_ring_free;
1853 
1854 	if (command) {
1855 		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
1856 
1857 		ret = ipa_cmd_pool_init(channel, tre_max);
1858 	}
1859 	if (!ret)
1860 		return 0;	/* Success! */
1861 
1862 	gsi_channel_trans_exit(channel);
1863 err_ring_free:
1864 	gsi_ring_free(gsi, &channel->tre_ring);
1865 err_channel_evt_ring_exit:
1866 	gsi_channel_evt_ring_exit(channel);
1867 err_clear_gsi:
1868 	channel->gsi = NULL;	/* Mark it not (fully) initialized */
1869 
1870 	return ret;
1871 }
1872 
1873 /* Inverse of gsi_channel_init_one() */
1874 static void gsi_channel_exit_one(struct gsi_channel *channel)
1875 {
1876 	if (!channel->gsi)
1877 		return;		/* Ignore uninitialized channels */
1878 
1879 	if (channel->command)
1880 		ipa_cmd_pool_exit(channel);
1881 	gsi_channel_trans_exit(channel);
1882 	gsi_ring_free(channel->gsi, &channel->tre_ring);
1883 	gsi_channel_evt_ring_exit(channel);
1884 }
1885 
1886 /* Init function for channels */
1887 static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count,
1888 			    const struct ipa_gsi_endpoint_data *data,
1889 			    bool modem_alloc)
1890 {
1891 	int ret = 0;
1892 	u32 i;
1893 
1894 	gsi_evt_ring_init(gsi);
1895 
1896 	/* The endpoint data array is indexed by endpoint name */
1897 	for (i = 0; i < count; i++) {
1898 		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
1899 
1900 		if (ipa_gsi_endpoint_data_empty(&data[i]))
1901 			continue;	/* Skip over empty slots */
1902 
1903 		/* Mark modem channels to be allocated (hardware workaround) */
1904 		if (data[i].ee_id == GSI_EE_MODEM) {
1905 			if (modem_alloc)
1906 				gsi->modem_channel_bitmap |=
1907 						BIT(data[i].channel_id);
1908 			continue;
1909 		}
1910 
1911 		ret = gsi_channel_init_one(gsi, &data[i], command, prefetch);
1912 		if (ret)
1913 			goto err_unwind;
1914 	}
1915 
1916 	return ret;
1917 
1918 err_unwind:
1919 	while (i--) {
1920 		if (ipa_gsi_endpoint_data_empty(&data[i]))
1921 			continue;
1922 		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
1923 			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
1924 			continue;
1925 		}
1926 		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
1927 	}
1928 	gsi_evt_ring_exit(gsi);
1929 
1930 	return ret;
1931 }
1932 
1933 /* Inverse of gsi_channel_init() */
1934 static void gsi_channel_exit(struct gsi *gsi)
1935 {
1936 	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
1937 
1938 	do
1939 		gsi_channel_exit_one(&gsi->channel[channel_id]);
1940 	while (channel_id--);
1941 	gsi->modem_channel_bitmap = 0;
1942 
1943 	gsi_evt_ring_exit(gsi);
1944 }
1945 
1946 /* Init function for GSI.  GSI hardware does not need to be "ready" */
1947 int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch,
1948 	     u32 count, const struct ipa_gsi_endpoint_data *data,
1949 	     bool modem_alloc)
1950 {
1951 	struct resource *res;
1952 	resource_size_t size;
1953 	unsigned int irq;
1954 	int ret;
1955 
1956 	gsi_validate_build();
1957 
1958 	gsi->dev = &pdev->dev;
1959 
1960 	/* The GSI layer performs NAPI on all endpoints.  NAPI requires a
1961 	 * network device structure, but the GSI layer does not have one,
1962 	 * so we must create a dummy network device for this purpose.
1963 	 */
1964 	init_dummy_netdev(&gsi->dummy_dev);
1965 
1966 	/* Get the GSI IRQ and request for it to wake the system */
1967 	ret = platform_get_irq_byname(pdev, "gsi");
1968 	if (ret <= 0) {
1969 		dev_err(gsi->dev,
1970 			"DT error %d getting \"gsi\" IRQ property\n", ret);
1971 		return ret ? : -EINVAL;
1972 	}
1973 	irq = ret;
1974 
1975 	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1976 	if (ret) {
1977 		dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
1978 		return ret;
1979 	}
1980 	gsi->irq = irq;
1981 
1982 	ret = enable_irq_wake(gsi->irq);
1983 	if (ret)
1984 		dev_warn(gsi->dev, "error %d enabling gsi wake irq\n", ret);
1985 	gsi->irq_wake_enabled = !ret;
1986 
1987 	/* Get GSI memory range and map it */
1988 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
1989 	if (!res) {
1990 		dev_err(gsi->dev,
1991 			"DT error getting \"gsi\" memory property\n");
1992 		ret = -ENODEV;
1993 		goto err_disable_irq_wake;
1994 	}
1995 
1996 	size = resource_size(res);
1997 	if (res->start > U32_MAX || size > U32_MAX - res->start) {
1998 		dev_err(gsi->dev, "DT memory resource \"gsi\" out of range\n");
1999 		ret = -EINVAL;
2000 		goto err_disable_irq_wake;
2001 	}
2002 
2003 	gsi->virt = ioremap(res->start, size);
2004 	if (!gsi->virt) {
2005 		dev_err(gsi->dev, "unable to remap \"gsi\" memory\n");
2006 		ret = -ENOMEM;
2007 		goto err_disable_irq_wake;
2008 	}
2009 
2010 	ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc);
2011 	if (ret)
2012 		goto err_iounmap;
2013 
2014 	mutex_init(&gsi->mutex);
2015 	init_completion(&gsi->completion);
2016 
2017 	return 0;
2018 
2019 err_iounmap:
2020 	iounmap(gsi->virt);
2021 err_disable_irq_wake:
2022 	if (gsi->irq_wake_enabled)
2023 		(void)disable_irq_wake(gsi->irq);
2024 	free_irq(gsi->irq, gsi);
2025 
2026 	return ret;
2027 }
2028 
2029 /* Inverse of gsi_init() */
2030 void gsi_exit(struct gsi *gsi)
2031 {
2032 	mutex_destroy(&gsi->mutex);
2033 	gsi_channel_exit(gsi);
2034 	if (gsi->irq_wake_enabled)
2035 		(void)disable_irq_wake(gsi->irq);
2036 	free_irq(gsi->irq, gsi);
2037 	iounmap(gsi->virt);
2038 }
2039 
2040 /* The maximum number of outstanding TREs on a channel.  This limits
2041  * a channel's maximum number of transactions outstanding (worst case
2042  * is one TRE per transaction).
2043  *
2044  * The absolute limit is the number of TREs in the channel's TRE ring,
2045  * and in theory we should be able use all of them.  But in practice,
2046  * doing that led to the hardware reporting exhaustion of event ring
2047  * slots for writing completion information.  So the hardware limit
2048  * would be (tre_count - 1).
2049  *
2050  * We reduce it a bit further though.  Transaction resource pools are
2051  * sized to be a little larger than this maximum, to allow resource
2052  * allocations to always be contiguous.  The number of entries in a
2053  * TRE ring buffer is a power of 2, and the extra resources in a pool
2054  * tends to nearly double the memory allocated for it.  Reducing the
2055  * maximum number of outstanding TREs allows the number of entries in
2056  * a pool to avoid crossing that power-of-2 boundary, and this can
2057  * substantially reduce pool memory requirements.  The number we
2058  * reduce it by matches the number added in gsi_trans_pool_init().
2059  */
2060 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2061 {
2062 	struct gsi_channel *channel = &gsi->channel[channel_id];
2063 
2064 	/* Hardware limit is channel->tre_count - 1 */
2065 	return channel->tre_count - (channel->tlv_count - 1);
2066 }
2067 
2068 /* Returns the maximum number of TREs in a single transaction for a channel */
2069 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2070 {
2071 	struct gsi_channel *channel = &gsi->channel[channel_id];
2072 
2073 	return channel->tlv_count;
2074 }
2075