1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2018-2020 Linaro Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bits.h> 9 #include <linux/bitfield.h> 10 #include <linux/mutex.h> 11 #include <linux/completion.h> 12 #include <linux/io.h> 13 #include <linux/bug.h> 14 #include <linux/interrupt.h> 15 #include <linux/platform_device.h> 16 #include <linux/netdevice.h> 17 18 #include "gsi.h" 19 #include "gsi_reg.h" 20 #include "gsi_private.h" 21 #include "gsi_trans.h" 22 #include "ipa_gsi.h" 23 #include "ipa_data.h" 24 25 /** 26 * DOC: The IPA Generic Software Interface 27 * 28 * The generic software interface (GSI) is an integral component of the IPA, 29 * providing a well-defined communication layer between the AP subsystem 30 * and the IPA core. The modem uses the GSI layer as well. 31 * 32 * -------- --------- 33 * | | | | 34 * | AP +<---. .----+ Modem | 35 * | +--. | | .->+ | 36 * | | | | | | | | 37 * -------- | | | | --------- 38 * v | v | 39 * --+-+---+-+-- 40 * | GSI | 41 * |-----------| 42 * | | 43 * | IPA | 44 * | | 45 * ------------- 46 * 47 * In the above diagram, the AP and Modem represent "execution environments" 48 * (EEs), which are independent operating environments that use the IPA for 49 * data transfer. 50 * 51 * Each EE uses a set of unidirectional GSI "channels," which allow transfer 52 * of data to or from the IPA. A channel is implemented as a ring buffer, 53 * with a DRAM-resident array of "transfer elements" (TREs) available to 54 * describe transfers to or from other EEs through the IPA. A transfer 55 * element can also contain an immediate command, requesting the IPA perform 56 * actions other than data transfer. 57 * 58 * Each TRE refers to a block of data--also located DRAM. After writing one 59 * or more TREs to a channel, the writer (either the IPA or an EE) writes a 60 * doorbell register to inform the receiving side how many elements have 61 * been written. 62 * 63 * Each channel has a GSI "event ring" associated with it. An event ring 64 * is implemented very much like a channel ring, but is always directed from 65 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel 66 * events by adding an entry to the event ring associated with the channel. 67 * The GSI then writes its doorbell for the event ring, causing the target 68 * EE to be interrupted. Each entry in an event ring contains a pointer 69 * to the channel TRE whose completion the event represents. 70 * 71 * Each TRE in a channel ring has a set of flags. One flag indicates whether 72 * the completion of the transfer operation generates an entry (and possibly 73 * an interrupt) in the channel's event ring. Other flags allow transfer 74 * elements to be chained together, forming a single logical transaction. 75 * TRE flags are used to control whether and when interrupts are generated 76 * to signal completion of channel transfers. 77 * 78 * Elements in channel and event rings are completed (or consumed) strictly 79 * in order. Completion of one entry implies the completion of all preceding 80 * entries. A single completion interrupt can therefore communicate the 81 * completion of many transfers. 82 * 83 * Note that all GSI registers are little-endian, which is the assumed 84 * endianness of I/O space accesses. The accessor functions perform byte 85 * swapping if needed (i.e., for a big endian CPU). 86 */ 87 88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ 89 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ 90 91 #define GSI_CMD_TIMEOUT 5 /* seconds */ 92 93 #define GSI_CHANNEL_STOP_RX_RETRIES 10 94 95 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ 96 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ 97 98 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ 99 100 /* An entry in an event ring */ 101 struct gsi_event { 102 __le64 xfer_ptr; 103 __le16 len; 104 u8 reserved1; 105 u8 code; 106 __le16 reserved2; 107 u8 type; 108 u8 chid; 109 }; 110 111 /* Hardware values from the error log register error code field */ 112 enum gsi_err_code { 113 GSI_INVALID_TRE_ERR = 0x1, 114 GSI_OUT_OF_BUFFERS_ERR = 0x2, 115 GSI_OUT_OF_RESOURCES_ERR = 0x3, 116 GSI_UNSUPPORTED_INTER_EE_OP_ERR = 0x4, 117 GSI_EVT_RING_EMPTY_ERR = 0x5, 118 GSI_NON_ALLOCATED_EVT_ACCESS_ERR = 0x6, 119 GSI_HWO_1_ERR = 0x8, 120 }; 121 122 /* Hardware values from the error log register error type field */ 123 enum gsi_err_type { 124 GSI_ERR_TYPE_GLOB = 0x1, 125 GSI_ERR_TYPE_CHAN = 0x2, 126 GSI_ERR_TYPE_EVT = 0x3, 127 }; 128 129 /* Hardware values used when programming an event ring */ 130 enum gsi_evt_chtype { 131 GSI_EVT_CHTYPE_MHI_EV = 0x0, 132 GSI_EVT_CHTYPE_XHCI_EV = 0x1, 133 GSI_EVT_CHTYPE_GPI_EV = 0x2, 134 GSI_EVT_CHTYPE_XDCI_EV = 0x3, 135 }; 136 137 /* Hardware values used when programming a channel */ 138 enum gsi_channel_protocol { 139 GSI_CHANNEL_PROTOCOL_MHI = 0x0, 140 GSI_CHANNEL_PROTOCOL_XHCI = 0x1, 141 GSI_CHANNEL_PROTOCOL_GPI = 0x2, 142 GSI_CHANNEL_PROTOCOL_XDCI = 0x3, 143 }; 144 145 /* Hardware values representing an event ring immediate command opcode */ 146 enum gsi_evt_cmd_opcode { 147 GSI_EVT_ALLOCATE = 0x0, 148 GSI_EVT_RESET = 0x9, 149 GSI_EVT_DE_ALLOC = 0xa, 150 }; 151 152 /* Hardware values representing a generic immediate command opcode */ 153 enum gsi_generic_cmd_opcode { 154 GSI_GENERIC_HALT_CHANNEL = 0x1, 155 GSI_GENERIC_ALLOCATE_CHANNEL = 0x2, 156 }; 157 158 /* Hardware values representing a channel immediate command opcode */ 159 enum gsi_ch_cmd_opcode { 160 GSI_CH_ALLOCATE = 0x0, 161 GSI_CH_START = 0x1, 162 GSI_CH_STOP = 0x2, 163 GSI_CH_RESET = 0x9, 164 GSI_CH_DE_ALLOC = 0xa, 165 }; 166 167 /** gsi_channel_scratch_gpi - GPI protocol scratch register 168 * @max_outstanding_tre: 169 * Defines the maximum number of TREs allowed in a single transaction 170 * on a channel (in bytes). This determines the amount of prefetch 171 * performed by the hardware. We configure this to equal the size of 172 * the TLV FIFO for the channel. 173 * @outstanding_threshold: 174 * Defines the threshold (in bytes) determining when the sequencer 175 * should update the channel doorbell. We configure this to equal 176 * the size of two TREs. 177 */ 178 struct gsi_channel_scratch_gpi { 179 u64 reserved1; 180 u16 reserved2; 181 u16 max_outstanding_tre; 182 u16 reserved3; 183 u16 outstanding_threshold; 184 }; 185 186 /** gsi_channel_scratch - channel scratch configuration area 187 * 188 * The exact interpretation of this register is protocol-specific. 189 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. 190 */ 191 union gsi_channel_scratch { 192 struct gsi_channel_scratch_gpi gpi; 193 struct { 194 u32 word1; 195 u32 word2; 196 u32 word3; 197 u32 word4; 198 } data; 199 }; 200 201 /* Check things that can be validated at build time. */ 202 static void gsi_validate_build(void) 203 { 204 /* This is used as a divisor */ 205 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); 206 207 /* Code assumes the size of channel and event ring element are 208 * the same (and fixed). Make sure the size of an event ring 209 * element is what's expected. 210 */ 211 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); 212 213 /* Hardware requires a 2^n ring size. We ensure the number of 214 * elements in an event ring is a power of 2 elsewhere; this 215 * ensure the elements themselves meet the requirement. 216 */ 217 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); 218 219 /* The channel element size must fit in this field */ 220 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); 221 222 /* The event ring element size must fit in this field */ 223 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); 224 } 225 226 /* Return the channel id associated with a given channel */ 227 static u32 gsi_channel_id(struct gsi_channel *channel) 228 { 229 return channel - &channel->gsi->channel[0]; 230 } 231 232 static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id) 233 { 234 u32 val; 235 236 gsi->event_enable_bitmap |= BIT(evt_ring_id); 237 val = gsi->event_enable_bitmap; 238 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 239 } 240 241 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id) 242 { 243 u32 val; 244 245 gsi->event_enable_bitmap &= ~BIT(evt_ring_id); 246 val = gsi->event_enable_bitmap; 247 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 248 } 249 250 /* Enable all GSI_interrupt types */ 251 static void gsi_irq_enable(struct gsi *gsi) 252 { 253 u32 val; 254 255 /* We don't use inter-EE channel or event interrupts */ 256 val = GSI_CNTXT_TYPE_IRQ_MSK_ALL; 257 val &= ~INTER_EE_CH_CTRL_FMASK; 258 val &= ~INTER_EE_EV_CTRL_FMASK; 259 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 260 261 val = GENMASK(gsi->channel_count - 1, 0); 262 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 263 264 val = GENMASK(gsi->evt_ring_count - 1, 0); 265 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 266 267 /* Each IEOB interrupt is enabled (later) as needed by channels */ 268 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 269 270 val = GSI_CNTXT_GLOB_IRQ_ALL; 271 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 272 273 /* Never enable GSI_BREAK_POINT */ 274 val = GSI_CNTXT_GSI_IRQ_ALL & ~BREAK_POINT_FMASK; 275 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 276 } 277 278 /* Disable all GSI_interrupt types */ 279 static void gsi_irq_disable(struct gsi *gsi) 280 { 281 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); 282 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); 283 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); 284 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); 285 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); 286 iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); 287 } 288 289 /* Return the virtual address associated with a ring index */ 290 void *gsi_ring_virt(struct gsi_ring *ring, u32 index) 291 { 292 /* Note: index *must* be used modulo the ring count here */ 293 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; 294 } 295 296 /* Return the 32-bit DMA address associated with a ring index */ 297 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) 298 { 299 return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE; 300 } 301 302 /* Return the ring index of a 32-bit ring offset */ 303 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) 304 { 305 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; 306 } 307 308 /* Issue a GSI command by writing a value to a register, then wait for 309 * completion to be signaled. Returns true if the command completes 310 * or false if it times out. 311 */ 312 static bool 313 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) 314 { 315 reinit_completion(completion); 316 317 iowrite32(val, gsi->virt + reg); 318 319 return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ); 320 } 321 322 /* Return the hardware's notion of the current state of an event ring */ 323 static enum gsi_evt_ring_state 324 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) 325 { 326 u32 val; 327 328 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 329 330 return u32_get_bits(val, EV_CHSTATE_FMASK); 331 } 332 333 /* Issue an event ring command and wait for it to complete */ 334 static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id, 335 enum gsi_evt_cmd_opcode opcode) 336 { 337 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 338 struct completion *completion = &evt_ring->completion; 339 struct device *dev = gsi->dev; 340 u32 val; 341 342 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); 343 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); 344 345 if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion)) 346 return 0; /* Success! */ 347 348 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", 349 opcode, evt_ring_id, evt_ring->state); 350 351 return -ETIMEDOUT; 352 } 353 354 /* Allocate an event ring in NOT_ALLOCATED state */ 355 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) 356 { 357 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 358 int ret; 359 360 /* Get initial event ring state */ 361 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); 362 if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { 363 dev_err(gsi->dev, "bad event ring state %u before alloc\n", 364 evt_ring->state); 365 return -EINVAL; 366 } 367 368 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); 369 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { 370 dev_err(gsi->dev, "bad event ring state %u after alloc\n", 371 evt_ring->state); 372 ret = -EIO; 373 } 374 375 return ret; 376 } 377 378 /* Reset a GSI event ring in ALLOCATED or ERROR state. */ 379 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) 380 { 381 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 382 enum gsi_evt_ring_state state = evt_ring->state; 383 int ret; 384 385 if (state != GSI_EVT_RING_STATE_ALLOCATED && 386 state != GSI_EVT_RING_STATE_ERROR) { 387 dev_err(gsi->dev, "bad event ring state %u before reset\n", 388 evt_ring->state); 389 return; 390 } 391 392 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); 393 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) 394 dev_err(gsi->dev, "bad event ring state %u after reset\n", 395 evt_ring->state); 396 } 397 398 /* Issue a hardware de-allocation request for an allocated event ring */ 399 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) 400 { 401 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 402 int ret; 403 404 if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { 405 dev_err(gsi->dev, "bad event ring state %u before dealloc\n", 406 evt_ring->state); 407 return; 408 } 409 410 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); 411 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) 412 dev_err(gsi->dev, "bad event ring state %u after dealloc\n", 413 evt_ring->state); 414 } 415 416 /* Fetch the current state of a channel from hardware */ 417 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) 418 { 419 u32 channel_id = gsi_channel_id(channel); 420 void *virt = channel->gsi->virt; 421 u32 val; 422 423 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 424 425 return u32_get_bits(val, CHSTATE_FMASK); 426 } 427 428 /* Issue a channel command and wait for it to complete */ 429 static int 430 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) 431 { 432 struct completion *completion = &channel->completion; 433 u32 channel_id = gsi_channel_id(channel); 434 struct gsi *gsi = channel->gsi; 435 struct device *dev = gsi->dev; 436 u32 val; 437 438 val = u32_encode_bits(channel_id, CH_CHID_FMASK); 439 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); 440 441 if (gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion)) 442 return 0; /* Success! */ 443 444 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", 445 opcode, channel_id, gsi_channel_state(channel)); 446 447 return -ETIMEDOUT; 448 } 449 450 /* Allocate GSI channel in NOT_ALLOCATED state */ 451 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) 452 { 453 struct gsi_channel *channel = &gsi->channel[channel_id]; 454 struct device *dev = gsi->dev; 455 enum gsi_channel_state state; 456 int ret; 457 458 /* Get initial channel state */ 459 state = gsi_channel_state(channel); 460 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { 461 dev_err(dev, "bad channel state %u before alloc\n", state); 462 return -EINVAL; 463 } 464 465 ret = gsi_channel_command(channel, GSI_CH_ALLOCATE); 466 467 /* Channel state will normally have been updated */ 468 state = gsi_channel_state(channel); 469 if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) { 470 dev_err(dev, "bad channel state %u after alloc\n", state); 471 ret = -EIO; 472 } 473 474 return ret; 475 } 476 477 /* Start an ALLOCATED channel */ 478 static int gsi_channel_start_command(struct gsi_channel *channel) 479 { 480 struct device *dev = channel->gsi->dev; 481 enum gsi_channel_state state; 482 int ret; 483 484 state = gsi_channel_state(channel); 485 if (state != GSI_CHANNEL_STATE_ALLOCATED && 486 state != GSI_CHANNEL_STATE_STOPPED) { 487 dev_err(dev, "bad channel state %u before start\n", state); 488 return -EINVAL; 489 } 490 491 ret = gsi_channel_command(channel, GSI_CH_START); 492 493 /* Channel state will normally have been updated */ 494 state = gsi_channel_state(channel); 495 if (!ret && state != GSI_CHANNEL_STATE_STARTED) { 496 dev_err(dev, "bad channel state %u after start\n", state); 497 ret = -EIO; 498 } 499 500 return ret; 501 } 502 503 /* Stop a GSI channel in STARTED state */ 504 static int gsi_channel_stop_command(struct gsi_channel *channel) 505 { 506 struct device *dev = channel->gsi->dev; 507 enum gsi_channel_state state; 508 int ret; 509 510 state = gsi_channel_state(channel); 511 512 /* Channel could have entered STOPPED state since last call 513 * if it timed out. If so, we're done. 514 */ 515 if (state == GSI_CHANNEL_STATE_STOPPED) 516 return 0; 517 518 if (state != GSI_CHANNEL_STATE_STARTED && 519 state != GSI_CHANNEL_STATE_STOP_IN_PROC) { 520 dev_err(dev, "bad channel state %u before stop\n", state); 521 return -EINVAL; 522 } 523 524 ret = gsi_channel_command(channel, GSI_CH_STOP); 525 526 /* Channel state will normally have been updated */ 527 state = gsi_channel_state(channel); 528 if (ret || state == GSI_CHANNEL_STATE_STOPPED) 529 return ret; 530 531 /* We may have to try again if stop is in progress */ 532 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) 533 return -EAGAIN; 534 535 dev_err(dev, "bad channel state %u after stop\n", state); 536 537 return -EIO; 538 } 539 540 /* Reset a GSI channel in ALLOCATED or ERROR state. */ 541 static void gsi_channel_reset_command(struct gsi_channel *channel) 542 { 543 struct device *dev = channel->gsi->dev; 544 enum gsi_channel_state state; 545 int ret; 546 547 msleep(1); /* A short delay is required before a RESET command */ 548 549 state = gsi_channel_state(channel); 550 if (state != GSI_CHANNEL_STATE_STOPPED && 551 state != GSI_CHANNEL_STATE_ERROR) { 552 dev_err(dev, "bad channel state %u before reset\n", state); 553 return; 554 } 555 556 ret = gsi_channel_command(channel, GSI_CH_RESET); 557 558 /* Channel state will normally have been updated */ 559 state = gsi_channel_state(channel); 560 if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) 561 dev_err(dev, "bad channel state %u after reset\n", state); 562 } 563 564 /* Deallocate an ALLOCATED GSI channel */ 565 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) 566 { 567 struct gsi_channel *channel = &gsi->channel[channel_id]; 568 struct device *dev = gsi->dev; 569 enum gsi_channel_state state; 570 int ret; 571 572 state = gsi_channel_state(channel); 573 if (state != GSI_CHANNEL_STATE_ALLOCATED) { 574 dev_err(dev, "bad channel state %u before dealloc\n", state); 575 return; 576 } 577 578 ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC); 579 580 /* Channel state will normally have been updated */ 581 state = gsi_channel_state(channel); 582 if (!ret && state != GSI_CHANNEL_STATE_NOT_ALLOCATED) 583 dev_err(dev, "bad channel state %u after dealloc\n", state); 584 } 585 586 /* Ring an event ring doorbell, reporting the last entry processed by the AP. 587 * The index argument (modulo the ring count) is the first unfilled entry, so 588 * we supply one less than that with the doorbell. Update the event ring 589 * index field with the value provided. 590 */ 591 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) 592 { 593 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; 594 u32 val; 595 596 ring->index = index; /* Next unused entry */ 597 598 /* Note: index *must* be used modulo the ring count here */ 599 val = gsi_ring_addr(ring, (index - 1) % ring->count); 600 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); 601 } 602 603 /* Program an event ring for use */ 604 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) 605 { 606 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 607 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; 608 u32 val; 609 610 val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK); 611 val |= EV_INTYPE_FMASK; 612 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); 613 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); 614 615 val = u32_encode_bits(size, EV_R_LENGTH_FMASK); 616 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); 617 618 /* The context 2 and 3 registers store the low-order and 619 * high-order 32 bits of the address of the event ring, 620 * respectively. 621 */ 622 val = evt_ring->ring.addr & GENMASK(31, 0); 623 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); 624 625 val = evt_ring->ring.addr >> 32; 626 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); 627 628 /* Enable interrupt moderation by setting the moderation delay */ 629 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); 630 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ 631 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); 632 633 /* No MSI write data, and MSI address high and low address is 0 */ 634 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); 635 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); 636 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); 637 638 /* We don't need to get event read pointer updates */ 639 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); 640 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); 641 642 /* Finally, tell the hardware we've completed event 0 (arbitrary) */ 643 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); 644 } 645 646 /* Return the last (most recent) transaction completed on a channel. */ 647 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) 648 { 649 struct gsi_trans_info *trans_info = &channel->trans_info; 650 struct gsi_trans *trans; 651 652 spin_lock_bh(&trans_info->spinlock); 653 654 if (!list_empty(&trans_info->complete)) 655 trans = list_last_entry(&trans_info->complete, 656 struct gsi_trans, links); 657 else if (!list_empty(&trans_info->polled)) 658 trans = list_last_entry(&trans_info->polled, 659 struct gsi_trans, links); 660 else 661 trans = NULL; 662 663 /* Caller will wait for this, so take a reference */ 664 if (trans) 665 refcount_inc(&trans->refcount); 666 667 spin_unlock_bh(&trans_info->spinlock); 668 669 return trans; 670 } 671 672 /* Wait for transaction activity on a channel to complete */ 673 static void gsi_channel_trans_quiesce(struct gsi_channel *channel) 674 { 675 struct gsi_trans *trans; 676 677 /* Get the last transaction, and wait for it to complete */ 678 trans = gsi_channel_trans_last(channel); 679 if (trans) { 680 wait_for_completion(&trans->completion); 681 gsi_trans_free(trans); 682 } 683 } 684 685 /* Stop channel activity. Transactions may not be allocated until thawed. */ 686 static void gsi_channel_freeze(struct gsi_channel *channel) 687 { 688 gsi_channel_trans_quiesce(channel); 689 690 napi_disable(&channel->napi); 691 692 gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id); 693 } 694 695 /* Allow transactions to be used on the channel again. */ 696 static void gsi_channel_thaw(struct gsi_channel *channel) 697 { 698 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); 699 700 napi_enable(&channel->napi); 701 } 702 703 /* Program a channel for use */ 704 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) 705 { 706 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; 707 u32 channel_id = gsi_channel_id(channel); 708 union gsi_channel_scratch scr = { }; 709 struct gsi_channel_scratch_gpi *gpi; 710 struct gsi *gsi = channel->gsi; 711 u32 wrr_weight = 0; 712 u32 val; 713 714 /* Arbitrarily pick TRE 0 as the first channel element to use */ 715 channel->tre_ring.index = 0; 716 717 /* We program all channels to use GPI protocol */ 718 val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK); 719 if (channel->toward_ipa) 720 val |= CHTYPE_DIR_FMASK; 721 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); 722 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); 723 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); 724 725 val = u32_encode_bits(size, R_LENGTH_FMASK); 726 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); 727 728 /* The context 2 and 3 registers store the low-order and 729 * high-order 32 bits of the address of the channel ring, 730 * respectively. 731 */ 732 val = channel->tre_ring.addr & GENMASK(31, 0); 733 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); 734 735 val = channel->tre_ring.addr >> 32; 736 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); 737 738 /* Command channel gets low weighted round-robin priority */ 739 if (channel->command) 740 wrr_weight = field_max(WRR_WEIGHT_FMASK); 741 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); 742 743 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ 744 745 /* Enable the doorbell engine if requested */ 746 if (doorbell) 747 val |= USE_DB_ENG_FMASK; 748 749 if (!channel->use_prefetch) 750 val |= USE_ESCAPE_BUF_ONLY_FMASK; 751 752 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); 753 754 /* Now update the scratch registers for GPI protocol */ 755 gpi = &scr.gpi; 756 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * 757 GSI_RING_ELEMENT_SIZE; 758 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; 759 760 val = scr.data.word1; 761 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); 762 763 val = scr.data.word2; 764 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); 765 766 val = scr.data.word3; 767 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); 768 769 /* We must preserve the upper 16 bits of the last scratch register. 770 * The next sequence assumes those bits remain unchanged between the 771 * read and the write. 772 */ 773 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 774 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); 775 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); 776 777 /* All done! */ 778 } 779 780 static void gsi_channel_deprogram(struct gsi_channel *channel) 781 { 782 /* Nothing to do */ 783 } 784 785 /* Start an allocated GSI channel */ 786 int gsi_channel_start(struct gsi *gsi, u32 channel_id) 787 { 788 struct gsi_channel *channel = &gsi->channel[channel_id]; 789 int ret; 790 791 mutex_lock(&gsi->mutex); 792 793 ret = gsi_channel_start_command(channel); 794 795 mutex_unlock(&gsi->mutex); 796 797 gsi_channel_thaw(channel); 798 799 return ret; 800 } 801 802 /* Stop a started channel */ 803 int gsi_channel_stop(struct gsi *gsi, u32 channel_id) 804 { 805 struct gsi_channel *channel = &gsi->channel[channel_id]; 806 u32 retries; 807 int ret; 808 809 gsi_channel_freeze(channel); 810 811 /* RX channels might require a little time to enter STOPPED state */ 812 retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES; 813 814 mutex_lock(&gsi->mutex); 815 816 do { 817 ret = gsi_channel_stop_command(channel); 818 if (ret != -EAGAIN) 819 break; 820 msleep(1); 821 } while (retries--); 822 823 mutex_unlock(&gsi->mutex); 824 825 /* Thaw the channel if we need to retry (or on error) */ 826 if (ret) 827 gsi_channel_thaw(channel); 828 829 return ret; 830 } 831 832 /* Reset and reconfigure a channel (possibly leaving doorbell disabled) */ 833 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool legacy) 834 { 835 struct gsi_channel *channel = &gsi->channel[channel_id]; 836 837 mutex_lock(&gsi->mutex); 838 839 gsi_channel_reset_command(channel); 840 /* Due to a hardware quirk we may need to reset RX channels twice. */ 841 if (legacy && !channel->toward_ipa) 842 gsi_channel_reset_command(channel); 843 844 gsi_channel_program(channel, legacy); 845 gsi_channel_trans_cancel_pending(channel); 846 847 mutex_unlock(&gsi->mutex); 848 } 849 850 /* Stop a STARTED channel for suspend (using stop if requested) */ 851 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop) 852 { 853 struct gsi_channel *channel = &gsi->channel[channel_id]; 854 855 if (stop) 856 return gsi_channel_stop(gsi, channel_id); 857 858 gsi_channel_freeze(channel); 859 860 return 0; 861 } 862 863 /* Resume a suspended channel (starting will be requested if STOPPED) */ 864 int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start) 865 { 866 struct gsi_channel *channel = &gsi->channel[channel_id]; 867 868 if (start) 869 return gsi_channel_start(gsi, channel_id); 870 871 gsi_channel_thaw(channel); 872 873 return 0; 874 } 875 876 /** 877 * gsi_channel_tx_queued() - Report queued TX transfers for a channel 878 * @channel: Channel for which to report 879 * 880 * Report to the network stack the number of bytes and transactions that 881 * have been queued to hardware since last call. This and the next function 882 * supply information used by the network stack for throttling. 883 * 884 * For each channel we track the number of transactions used and bytes of 885 * data those transactions represent. We also track what those values are 886 * each time this function is called. Subtracting the two tells us 887 * the number of bytes and transactions that have been added between 888 * successive calls. 889 * 890 * Calling this each time we ring the channel doorbell allows us to 891 * provide accurate information to the network stack about how much 892 * work we've given the hardware at any point in time. 893 */ 894 void gsi_channel_tx_queued(struct gsi_channel *channel) 895 { 896 u32 trans_count; 897 u32 byte_count; 898 899 byte_count = channel->byte_count - channel->queued_byte_count; 900 trans_count = channel->trans_count - channel->queued_trans_count; 901 channel->queued_byte_count = channel->byte_count; 902 channel->queued_trans_count = channel->trans_count; 903 904 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), 905 trans_count, byte_count); 906 } 907 908 /** 909 * gsi_channel_tx_update() - Report completed TX transfers 910 * @channel: Channel that has completed transmitting packets 911 * @trans: Last transation known to be complete 912 * 913 * Compute the number of transactions and bytes that have been transferred 914 * over a TX channel since the given transaction was committed. Report this 915 * information to the network stack. 916 * 917 * At the time a transaction is committed, we record its channel's 918 * committed transaction and byte counts *in the transaction*. 919 * Completions are signaled by the hardware with an interrupt, and 920 * we can determine the latest completed transaction at that time. 921 * 922 * The difference between the byte/transaction count recorded in 923 * the transaction and the count last time we recorded a completion 924 * tells us exactly how much data has been transferred between 925 * completions. 926 * 927 * Calling this each time we learn of a newly-completed transaction 928 * allows us to provide accurate information to the network stack 929 * about how much work has been completed by the hardware at a given 930 * point in time. 931 */ 932 static void 933 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) 934 { 935 u64 byte_count = trans->byte_count + trans->len; 936 u64 trans_count = trans->trans_count + 1; 937 938 byte_count -= channel->compl_byte_count; 939 channel->compl_byte_count += byte_count; 940 trans_count -= channel->compl_trans_count; 941 channel->compl_trans_count += trans_count; 942 943 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), 944 trans_count, byte_count); 945 } 946 947 /* Channel control interrupt handler */ 948 static void gsi_isr_chan_ctrl(struct gsi *gsi) 949 { 950 u32 channel_mask; 951 952 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); 953 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); 954 955 while (channel_mask) { 956 u32 channel_id = __ffs(channel_mask); 957 struct gsi_channel *channel; 958 959 channel_mask ^= BIT(channel_id); 960 961 channel = &gsi->channel[channel_id]; 962 963 complete(&channel->completion); 964 } 965 } 966 967 /* Event ring control interrupt handler */ 968 static void gsi_isr_evt_ctrl(struct gsi *gsi) 969 { 970 u32 event_mask; 971 972 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); 973 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); 974 975 while (event_mask) { 976 u32 evt_ring_id = __ffs(event_mask); 977 struct gsi_evt_ring *evt_ring; 978 979 event_mask ^= BIT(evt_ring_id); 980 981 evt_ring = &gsi->evt_ring[evt_ring_id]; 982 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); 983 984 complete(&evt_ring->completion); 985 } 986 } 987 988 /* Global channel error interrupt handler */ 989 static void 990 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) 991 { 992 if (code == GSI_OUT_OF_RESOURCES_ERR) { 993 dev_err(gsi->dev, "channel %u out of resources\n", channel_id); 994 complete(&gsi->channel[channel_id].completion); 995 return; 996 } 997 998 /* Report, but otherwise ignore all other error codes */ 999 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", 1000 channel_id, err_ee, code); 1001 } 1002 1003 /* Global event error interrupt handler */ 1004 static void 1005 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) 1006 { 1007 if (code == GSI_OUT_OF_RESOURCES_ERR) { 1008 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; 1009 u32 channel_id = gsi_channel_id(evt_ring->channel); 1010 1011 complete(&evt_ring->completion); 1012 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", 1013 channel_id); 1014 return; 1015 } 1016 1017 /* Report, but otherwise ignore all other error codes */ 1018 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", 1019 evt_ring_id, err_ee, code); 1020 } 1021 1022 /* Global error interrupt handler */ 1023 static void gsi_isr_glob_err(struct gsi *gsi) 1024 { 1025 enum gsi_err_type type; 1026 enum gsi_err_code code; 1027 u32 which; 1028 u32 val; 1029 u32 ee; 1030 1031 /* Get the logged error, then reinitialize the log */ 1032 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); 1033 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1034 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); 1035 1036 ee = u32_get_bits(val, ERR_EE_FMASK); 1037 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); 1038 type = u32_get_bits(val, ERR_TYPE_FMASK); 1039 code = u32_get_bits(val, ERR_CODE_FMASK); 1040 1041 if (type == GSI_ERR_TYPE_CHAN) 1042 gsi_isr_glob_chan_err(gsi, ee, which, code); 1043 else if (type == GSI_ERR_TYPE_EVT) 1044 gsi_isr_glob_evt_err(gsi, ee, which, code); 1045 else /* type GSI_ERR_TYPE_GLOB should be fatal */ 1046 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); 1047 } 1048 1049 /* Generic EE interrupt handler */ 1050 static void gsi_isr_gp_int1(struct gsi *gsi) 1051 { 1052 u32 result; 1053 u32 val; 1054 1055 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1056 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); 1057 if (result != GENERIC_EE_SUCCESS_FVAL) 1058 dev_err(gsi->dev, "global INT1 generic result %u\n", result); 1059 1060 complete(&gsi->completion); 1061 } 1062 1063 /* Inter-EE interrupt handler */ 1064 static void gsi_isr_glob_ee(struct gsi *gsi) 1065 { 1066 u32 val; 1067 1068 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); 1069 1070 if (val & ERROR_INT_FMASK) 1071 gsi_isr_glob_err(gsi); 1072 1073 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); 1074 1075 val &= ~ERROR_INT_FMASK; 1076 1077 if (val & GP_INT1_FMASK) { 1078 val ^= GP_INT1_FMASK; 1079 gsi_isr_gp_int1(gsi); 1080 } 1081 1082 if (val) 1083 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); 1084 } 1085 1086 /* I/O completion interrupt event */ 1087 static void gsi_isr_ieob(struct gsi *gsi) 1088 { 1089 u32 event_mask; 1090 1091 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); 1092 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); 1093 1094 while (event_mask) { 1095 u32 evt_ring_id = __ffs(event_mask); 1096 1097 event_mask ^= BIT(evt_ring_id); 1098 1099 gsi_irq_ieob_disable(gsi, evt_ring_id); 1100 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); 1101 } 1102 } 1103 1104 /* General event interrupts represent serious problems, so report them */ 1105 static void gsi_isr_general(struct gsi *gsi) 1106 { 1107 struct device *dev = gsi->dev; 1108 u32 val; 1109 1110 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); 1111 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); 1112 1113 if (val) 1114 dev_err(dev, "unexpected general interrupt 0x%08x\n", val); 1115 } 1116 1117 /** 1118 * gsi_isr() - Top level GSI interrupt service routine 1119 * @irq: Interrupt number (ignored) 1120 * @dev_id: GSI pointer supplied to request_irq() 1121 * 1122 * This is the main handler function registered for the GSI IRQ. Each type 1123 * of interrupt has a separate handler function that is called from here. 1124 */ 1125 static irqreturn_t gsi_isr(int irq, void *dev_id) 1126 { 1127 struct gsi *gsi = dev_id; 1128 u32 intr_mask; 1129 u32 cnt = 0; 1130 1131 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { 1132 /* intr_mask contains bitmask of pending GSI interrupts */ 1133 do { 1134 u32 gsi_intr = BIT(__ffs(intr_mask)); 1135 1136 intr_mask ^= gsi_intr; 1137 1138 switch (gsi_intr) { 1139 case CH_CTRL_FMASK: 1140 gsi_isr_chan_ctrl(gsi); 1141 break; 1142 case EV_CTRL_FMASK: 1143 gsi_isr_evt_ctrl(gsi); 1144 break; 1145 case GLOB_EE_FMASK: 1146 gsi_isr_glob_ee(gsi); 1147 break; 1148 case IEOB_FMASK: 1149 gsi_isr_ieob(gsi); 1150 break; 1151 case GENERAL_FMASK: 1152 gsi_isr_general(gsi); 1153 break; 1154 default: 1155 dev_err(gsi->dev, 1156 "unrecognized interrupt type 0x%08x\n", 1157 gsi_intr); 1158 break; 1159 } 1160 } while (intr_mask); 1161 1162 if (++cnt > GSI_ISR_MAX_ITER) { 1163 dev_err(gsi->dev, "interrupt flood\n"); 1164 break; 1165 } 1166 } 1167 1168 return IRQ_HANDLED; 1169 } 1170 1171 /* Return the transaction associated with a transfer completion event */ 1172 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, 1173 struct gsi_event *event) 1174 { 1175 u32 tre_offset; 1176 u32 tre_index; 1177 1178 /* Event xfer_ptr records the TRE it's associated with */ 1179 tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0); 1180 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); 1181 1182 return gsi_channel_trans_mapped(channel, tre_index); 1183 } 1184 1185 /** 1186 * gsi_evt_ring_rx_update() - Record lengths of received data 1187 * @evt_ring: Event ring associated with channel that received packets 1188 * @index: Event index in ring reported by hardware 1189 * 1190 * Events for RX channels contain the actual number of bytes received into 1191 * the buffer. Every event has a transaction associated with it, and here 1192 * we update transactions to record their actual received lengths. 1193 * 1194 * This function is called whenever we learn that the GSI hardware has filled 1195 * new events since the last time we checked. The ring's index field tells 1196 * the first entry in need of processing. The index provided is the 1197 * first *unfilled* event in the ring (following the last filled one). 1198 * 1199 * Events are sequential within the event ring, and transactions are 1200 * sequential within the transaction pool. 1201 * 1202 * Note that @index always refers to an element *within* the event ring. 1203 */ 1204 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) 1205 { 1206 struct gsi_channel *channel = evt_ring->channel; 1207 struct gsi_ring *ring = &evt_ring->ring; 1208 struct gsi_trans_info *trans_info; 1209 struct gsi_event *event_done; 1210 struct gsi_event *event; 1211 struct gsi_trans *trans; 1212 u32 byte_count = 0; 1213 u32 old_index; 1214 u32 event_avail; 1215 1216 trans_info = &channel->trans_info; 1217 1218 /* We'll start with the oldest un-processed event. RX channels 1219 * replenish receive buffers in single-TRE transactions, so we 1220 * can just map that event to its transaction. Transactions 1221 * associated with completion events are consecutive. 1222 */ 1223 old_index = ring->index; 1224 event = gsi_ring_virt(ring, old_index); 1225 trans = gsi_event_trans(channel, event); 1226 1227 /* Compute the number of events to process before we wrap, 1228 * and determine when we'll be done processing events. 1229 */ 1230 event_avail = ring->count - old_index % ring->count; 1231 event_done = gsi_ring_virt(ring, index); 1232 do { 1233 trans->len = __le16_to_cpu(event->len); 1234 byte_count += trans->len; 1235 1236 /* Move on to the next event and transaction */ 1237 if (--event_avail) 1238 event++; 1239 else 1240 event = gsi_ring_virt(ring, 0); 1241 trans = gsi_trans_pool_next(&trans_info->pool, trans); 1242 } while (event != event_done); 1243 1244 /* We record RX bytes when they are received */ 1245 channel->byte_count += byte_count; 1246 channel->trans_count++; 1247 } 1248 1249 /* Initialize a ring, including allocating DMA memory for its entries */ 1250 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) 1251 { 1252 size_t size = count * GSI_RING_ELEMENT_SIZE; 1253 struct device *dev = gsi->dev; 1254 dma_addr_t addr; 1255 1256 /* Hardware requires a 2^n ring size, with alignment equal to size */ 1257 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); 1258 if (ring->virt && addr % size) { 1259 dma_free_coherent(dev, size, ring->virt, ring->addr); 1260 dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n", 1261 size); 1262 return -EINVAL; /* Not a good error value, but distinct */ 1263 } else if (!ring->virt) { 1264 return -ENOMEM; 1265 } 1266 ring->addr = addr; 1267 ring->count = count; 1268 1269 return 0; 1270 } 1271 1272 /* Free a previously-allocated ring */ 1273 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) 1274 { 1275 size_t size = ring->count * GSI_RING_ELEMENT_SIZE; 1276 1277 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); 1278 } 1279 1280 /* Allocate an available event ring id */ 1281 static int gsi_evt_ring_id_alloc(struct gsi *gsi) 1282 { 1283 u32 evt_ring_id; 1284 1285 if (gsi->event_bitmap == ~0U) { 1286 dev_err(gsi->dev, "event rings exhausted\n"); 1287 return -ENOSPC; 1288 } 1289 1290 evt_ring_id = ffz(gsi->event_bitmap); 1291 gsi->event_bitmap |= BIT(evt_ring_id); 1292 1293 return (int)evt_ring_id; 1294 } 1295 1296 /* Free a previously-allocated event ring id */ 1297 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) 1298 { 1299 gsi->event_bitmap &= ~BIT(evt_ring_id); 1300 } 1301 1302 /* Ring a channel doorbell, reporting the first un-filled entry */ 1303 void gsi_channel_doorbell(struct gsi_channel *channel) 1304 { 1305 struct gsi_ring *tre_ring = &channel->tre_ring; 1306 u32 channel_id = gsi_channel_id(channel); 1307 struct gsi *gsi = channel->gsi; 1308 u32 val; 1309 1310 /* Note: index *must* be used modulo the ring count here */ 1311 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); 1312 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); 1313 } 1314 1315 /* Consult hardware, move any newly completed transactions to completed list */ 1316 static void gsi_channel_update(struct gsi_channel *channel) 1317 { 1318 u32 evt_ring_id = channel->evt_ring_id; 1319 struct gsi *gsi = channel->gsi; 1320 struct gsi_evt_ring *evt_ring; 1321 struct gsi_trans *trans; 1322 struct gsi_ring *ring; 1323 u32 offset; 1324 u32 index; 1325 1326 evt_ring = &gsi->evt_ring[evt_ring_id]; 1327 ring = &evt_ring->ring; 1328 1329 /* See if there's anything new to process; if not, we're done. Note 1330 * that index always refers to an entry *within* the event ring. 1331 */ 1332 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); 1333 index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); 1334 if (index == ring->index % ring->count) 1335 return; 1336 1337 /* Get the transaction for the latest completed event. Take a 1338 * reference to keep it from completing before we give the events 1339 * for this and previous transactions back to the hardware. 1340 */ 1341 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); 1342 refcount_inc(&trans->refcount); 1343 1344 /* For RX channels, update each completed transaction with the number 1345 * of bytes that were actually received. For TX channels, report 1346 * the number of transactions and bytes this completion represents 1347 * up the network stack. 1348 */ 1349 if (channel->toward_ipa) 1350 gsi_channel_tx_update(channel, trans); 1351 else 1352 gsi_evt_ring_rx_update(evt_ring, index); 1353 1354 gsi_trans_move_complete(trans); 1355 1356 /* Tell the hardware we've handled these events */ 1357 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); 1358 1359 gsi_trans_free(trans); 1360 } 1361 1362 /** 1363 * gsi_channel_poll_one() - Return a single completed transaction on a channel 1364 * @channel: Channel to be polled 1365 * 1366 * Return: Transaction pointer, or null if none are available 1367 * 1368 * This function returns the first entry on a channel's completed transaction 1369 * list. If that list is empty, the hardware is consulted to determine 1370 * whether any new transactions have completed. If so, they're moved to the 1371 * completed list and the new first entry is returned. If there are no more 1372 * completed transactions, a null pointer is returned. 1373 */ 1374 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) 1375 { 1376 struct gsi_trans *trans; 1377 1378 /* Get the first transaction from the completed list */ 1379 trans = gsi_channel_trans_complete(channel); 1380 if (!trans) { 1381 /* List is empty; see if there's more to do */ 1382 gsi_channel_update(channel); 1383 trans = gsi_channel_trans_complete(channel); 1384 } 1385 1386 if (trans) 1387 gsi_trans_move_polled(trans); 1388 1389 return trans; 1390 } 1391 1392 /** 1393 * gsi_channel_poll() - NAPI poll function for a channel 1394 * @napi: NAPI structure for the channel 1395 * @budget: Budget supplied by NAPI core 1396 * 1397 * Return: Number of items polled (<= budget) 1398 * 1399 * Single transactions completed by hardware are polled until either 1400 * the budget is exhausted, or there are no more. Each transaction 1401 * polled is passed to gsi_trans_complete(), to perform remaining 1402 * completion processing and retire/free the transaction. 1403 */ 1404 static int gsi_channel_poll(struct napi_struct *napi, int budget) 1405 { 1406 struct gsi_channel *channel; 1407 int count = 0; 1408 1409 channel = container_of(napi, struct gsi_channel, napi); 1410 while (count < budget) { 1411 struct gsi_trans *trans; 1412 1413 count++; 1414 trans = gsi_channel_poll_one(channel); 1415 if (!trans) 1416 break; 1417 gsi_trans_complete(trans); 1418 } 1419 1420 if (count < budget) { 1421 napi_complete(&channel->napi); 1422 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); 1423 } 1424 1425 return count; 1426 } 1427 1428 /* The event bitmap represents which event ids are available for allocation. 1429 * Set bits are not available, clear bits can be used. This function 1430 * initializes the map so all events supported by the hardware are available, 1431 * then precludes any reserved events from being allocated. 1432 */ 1433 static u32 gsi_event_bitmap_init(u32 evt_ring_max) 1434 { 1435 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); 1436 1437 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); 1438 1439 return event_bitmap; 1440 } 1441 1442 /* Setup function for event rings */ 1443 static void gsi_evt_ring_setup(struct gsi *gsi) 1444 { 1445 /* Nothing to do */ 1446 } 1447 1448 /* Inverse of gsi_evt_ring_setup() */ 1449 static void gsi_evt_ring_teardown(struct gsi *gsi) 1450 { 1451 /* Nothing to do */ 1452 } 1453 1454 /* Setup function for a single channel */ 1455 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id, 1456 bool legacy) 1457 { 1458 struct gsi_channel *channel = &gsi->channel[channel_id]; 1459 u32 evt_ring_id = channel->evt_ring_id; 1460 int ret; 1461 1462 if (!channel->gsi) 1463 return 0; /* Ignore uninitialized channels */ 1464 1465 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); 1466 if (ret) 1467 return ret; 1468 1469 gsi_evt_ring_program(gsi, evt_ring_id); 1470 1471 ret = gsi_channel_alloc_command(gsi, channel_id); 1472 if (ret) 1473 goto err_evt_ring_de_alloc; 1474 1475 gsi_channel_program(channel, legacy); 1476 1477 if (channel->toward_ipa) 1478 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, 1479 gsi_channel_poll, NAPI_POLL_WEIGHT); 1480 else 1481 netif_napi_add(&gsi->dummy_dev, &channel->napi, 1482 gsi_channel_poll, NAPI_POLL_WEIGHT); 1483 1484 return 0; 1485 1486 err_evt_ring_de_alloc: 1487 /* We've done nothing with the event ring yet so don't reset */ 1488 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1489 1490 return ret; 1491 } 1492 1493 /* Inverse of gsi_channel_setup_one() */ 1494 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) 1495 { 1496 struct gsi_channel *channel = &gsi->channel[channel_id]; 1497 u32 evt_ring_id = channel->evt_ring_id; 1498 1499 if (!channel->gsi) 1500 return; /* Ignore uninitialized channels */ 1501 1502 netif_napi_del(&channel->napi); 1503 1504 gsi_channel_deprogram(channel); 1505 gsi_channel_de_alloc_command(gsi, channel_id); 1506 gsi_evt_ring_reset_command(gsi, evt_ring_id); 1507 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); 1508 } 1509 1510 static int gsi_generic_command(struct gsi *gsi, u32 channel_id, 1511 enum gsi_generic_cmd_opcode opcode) 1512 { 1513 struct completion *completion = &gsi->completion; 1514 u32 val; 1515 1516 /* First zero the result code field */ 1517 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1518 val &= ~GENERIC_EE_RESULT_FMASK; 1519 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); 1520 1521 /* Now issue the command */ 1522 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); 1523 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); 1524 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); 1525 1526 if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion)) 1527 return 0; /* Success! */ 1528 1529 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", 1530 opcode, channel_id); 1531 1532 return -ETIMEDOUT; 1533 } 1534 1535 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) 1536 { 1537 return gsi_generic_command(gsi, channel_id, 1538 GSI_GENERIC_ALLOCATE_CHANNEL); 1539 } 1540 1541 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) 1542 { 1543 int ret; 1544 1545 ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL); 1546 if (ret) 1547 dev_err(gsi->dev, "error %d halting modem channel %u\n", 1548 ret, channel_id); 1549 } 1550 1551 /* Setup function for channels */ 1552 static int gsi_channel_setup(struct gsi *gsi, bool legacy) 1553 { 1554 u32 channel_id = 0; 1555 u32 mask; 1556 int ret; 1557 1558 gsi_evt_ring_setup(gsi); 1559 gsi_irq_enable(gsi); 1560 1561 mutex_lock(&gsi->mutex); 1562 1563 do { 1564 ret = gsi_channel_setup_one(gsi, channel_id, legacy); 1565 if (ret) 1566 goto err_unwind; 1567 } while (++channel_id < gsi->channel_count); 1568 1569 /* Make sure no channels were defined that hardware does not support */ 1570 while (channel_id < GSI_CHANNEL_COUNT_MAX) { 1571 struct gsi_channel *channel = &gsi->channel[channel_id++]; 1572 1573 if (!channel->gsi) 1574 continue; /* Ignore uninitialized channels */ 1575 1576 dev_err(gsi->dev, "channel %u not supported by hardware\n", 1577 channel_id - 1); 1578 channel_id = gsi->channel_count; 1579 goto err_unwind; 1580 } 1581 1582 /* Allocate modem channels if necessary */ 1583 mask = gsi->modem_channel_bitmap; 1584 while (mask) { 1585 u32 modem_channel_id = __ffs(mask); 1586 1587 ret = gsi_modem_channel_alloc(gsi, modem_channel_id); 1588 if (ret) 1589 goto err_unwind_modem; 1590 1591 /* Clear bit from mask only after success (for unwind) */ 1592 mask ^= BIT(modem_channel_id); 1593 } 1594 1595 mutex_unlock(&gsi->mutex); 1596 1597 return 0; 1598 1599 err_unwind_modem: 1600 /* Compute which modem channels need to be deallocated */ 1601 mask ^= gsi->modem_channel_bitmap; 1602 while (mask) { 1603 channel_id = __fls(mask); 1604 1605 mask ^= BIT(channel_id); 1606 1607 gsi_modem_channel_halt(gsi, channel_id); 1608 } 1609 1610 err_unwind: 1611 while (channel_id--) 1612 gsi_channel_teardown_one(gsi, channel_id); 1613 1614 mutex_unlock(&gsi->mutex); 1615 1616 gsi_irq_disable(gsi); 1617 gsi_evt_ring_teardown(gsi); 1618 1619 return ret; 1620 } 1621 1622 /* Inverse of gsi_channel_setup() */ 1623 static void gsi_channel_teardown(struct gsi *gsi) 1624 { 1625 u32 mask = gsi->modem_channel_bitmap; 1626 u32 channel_id; 1627 1628 mutex_lock(&gsi->mutex); 1629 1630 while (mask) { 1631 channel_id = __fls(mask); 1632 1633 mask ^= BIT(channel_id); 1634 1635 gsi_modem_channel_halt(gsi, channel_id); 1636 } 1637 1638 channel_id = gsi->channel_count - 1; 1639 do 1640 gsi_channel_teardown_one(gsi, channel_id); 1641 while (channel_id--); 1642 1643 mutex_unlock(&gsi->mutex); 1644 1645 gsi_irq_disable(gsi); 1646 gsi_evt_ring_teardown(gsi); 1647 } 1648 1649 /* Setup function for GSI. GSI firmware must be loaded and initialized */ 1650 int gsi_setup(struct gsi *gsi, bool legacy) 1651 { 1652 struct device *dev = gsi->dev; 1653 u32 val; 1654 1655 /* Here is where we first touch the GSI hardware */ 1656 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); 1657 if (!(val & ENABLED_FMASK)) { 1658 dev_err(dev, "GSI has not been enabled\n"); 1659 return -EIO; 1660 } 1661 1662 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); 1663 1664 gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); 1665 if (!gsi->channel_count) { 1666 dev_err(dev, "GSI reports zero channels supported\n"); 1667 return -EINVAL; 1668 } 1669 if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) { 1670 dev_warn(dev, 1671 "limiting to %u channels; hardware supports %u\n", 1672 GSI_CHANNEL_COUNT_MAX, gsi->channel_count); 1673 gsi->channel_count = GSI_CHANNEL_COUNT_MAX; 1674 } 1675 1676 gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); 1677 if (!gsi->evt_ring_count) { 1678 dev_err(dev, "GSI reports zero event rings supported\n"); 1679 return -EINVAL; 1680 } 1681 if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) { 1682 dev_warn(dev, 1683 "limiting to %u event rings; hardware supports %u\n", 1684 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count); 1685 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; 1686 } 1687 1688 /* Initialize the error log */ 1689 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); 1690 1691 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ 1692 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); 1693 1694 return gsi_channel_setup(gsi, legacy); 1695 } 1696 1697 /* Inverse of gsi_setup() */ 1698 void gsi_teardown(struct gsi *gsi) 1699 { 1700 gsi_channel_teardown(gsi); 1701 } 1702 1703 /* Initialize a channel's event ring */ 1704 static int gsi_channel_evt_ring_init(struct gsi_channel *channel) 1705 { 1706 struct gsi *gsi = channel->gsi; 1707 struct gsi_evt_ring *evt_ring; 1708 int ret; 1709 1710 ret = gsi_evt_ring_id_alloc(gsi); 1711 if (ret < 0) 1712 return ret; 1713 channel->evt_ring_id = ret; 1714 1715 evt_ring = &gsi->evt_ring[channel->evt_ring_id]; 1716 evt_ring->channel = channel; 1717 1718 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); 1719 if (!ret) 1720 return 0; /* Success! */ 1721 1722 dev_err(gsi->dev, "error %d allocating channel %u event ring\n", 1723 ret, gsi_channel_id(channel)); 1724 1725 gsi_evt_ring_id_free(gsi, channel->evt_ring_id); 1726 1727 return ret; 1728 } 1729 1730 /* Inverse of gsi_channel_evt_ring_init() */ 1731 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) 1732 { 1733 u32 evt_ring_id = channel->evt_ring_id; 1734 struct gsi *gsi = channel->gsi; 1735 struct gsi_evt_ring *evt_ring; 1736 1737 evt_ring = &gsi->evt_ring[evt_ring_id]; 1738 gsi_ring_free(gsi, &evt_ring->ring); 1739 gsi_evt_ring_id_free(gsi, evt_ring_id); 1740 } 1741 1742 /* Init function for event rings */ 1743 static void gsi_evt_ring_init(struct gsi *gsi) 1744 { 1745 u32 evt_ring_id = 0; 1746 1747 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); 1748 gsi->event_enable_bitmap = 0; 1749 do 1750 init_completion(&gsi->evt_ring[evt_ring_id].completion); 1751 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX); 1752 } 1753 1754 /* Inverse of gsi_evt_ring_init() */ 1755 static void gsi_evt_ring_exit(struct gsi *gsi) 1756 { 1757 /* Nothing to do */ 1758 } 1759 1760 static bool gsi_channel_data_valid(struct gsi *gsi, 1761 const struct ipa_gsi_endpoint_data *data) 1762 { 1763 #ifdef IPA_VALIDATION 1764 u32 channel_id = data->channel_id; 1765 struct device *dev = gsi->dev; 1766 1767 /* Make sure channel ids are in the range driver supports */ 1768 if (channel_id >= GSI_CHANNEL_COUNT_MAX) { 1769 dev_err(dev, "bad channel id %u; must be less than %u\n", 1770 channel_id, GSI_CHANNEL_COUNT_MAX); 1771 return false; 1772 } 1773 1774 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { 1775 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); 1776 return false; 1777 } 1778 1779 if (!data->channel.tlv_count || 1780 data->channel.tlv_count > GSI_TLV_MAX) { 1781 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", 1782 channel_id, data->channel.tlv_count, GSI_TLV_MAX); 1783 return false; 1784 } 1785 1786 /* We have to allow at least one maximally-sized transaction to 1787 * be outstanding (which would use tlv_count TREs). Given how 1788 * gsi_channel_tre_max() is computed, tre_count has to be almost 1789 * twice the TLV FIFO size to satisfy this requirement. 1790 */ 1791 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { 1792 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", 1793 channel_id, data->channel.tlv_count, 1794 data->channel.tre_count); 1795 return false; 1796 } 1797 1798 if (!is_power_of_2(data->channel.tre_count)) { 1799 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", 1800 channel_id, data->channel.tre_count); 1801 return false; 1802 } 1803 1804 if (!is_power_of_2(data->channel.event_count)) { 1805 dev_err(dev, "channel %u bad event_count %u; not power of 2\n", 1806 channel_id, data->channel.event_count); 1807 return false; 1808 } 1809 #endif /* IPA_VALIDATION */ 1810 1811 return true; 1812 } 1813 1814 /* Init function for a single channel */ 1815 static int gsi_channel_init_one(struct gsi *gsi, 1816 const struct ipa_gsi_endpoint_data *data, 1817 bool command, bool prefetch) 1818 { 1819 struct gsi_channel *channel; 1820 u32 tre_count; 1821 int ret; 1822 1823 if (!gsi_channel_data_valid(gsi, data)) 1824 return -EINVAL; 1825 1826 /* Worst case we need an event for every outstanding TRE */ 1827 if (data->channel.tre_count > data->channel.event_count) { 1828 tre_count = data->channel.event_count; 1829 dev_warn(gsi->dev, "channel %u limited to %u TREs\n", 1830 data->channel_id, tre_count); 1831 } else { 1832 tre_count = data->channel.tre_count; 1833 } 1834 1835 channel = &gsi->channel[data->channel_id]; 1836 memset(channel, 0, sizeof(*channel)); 1837 1838 channel->gsi = gsi; 1839 channel->toward_ipa = data->toward_ipa; 1840 channel->command = command; 1841 channel->use_prefetch = command && prefetch; 1842 channel->tlv_count = data->channel.tlv_count; 1843 channel->tre_count = tre_count; 1844 channel->event_count = data->channel.event_count; 1845 init_completion(&channel->completion); 1846 1847 ret = gsi_channel_evt_ring_init(channel); 1848 if (ret) 1849 goto err_clear_gsi; 1850 1851 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); 1852 if (ret) { 1853 dev_err(gsi->dev, "error %d allocating channel %u ring\n", 1854 ret, data->channel_id); 1855 goto err_channel_evt_ring_exit; 1856 } 1857 1858 ret = gsi_channel_trans_init(gsi, data->channel_id); 1859 if (ret) 1860 goto err_ring_free; 1861 1862 if (command) { 1863 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); 1864 1865 ret = ipa_cmd_pool_init(channel, tre_max); 1866 } 1867 if (!ret) 1868 return 0; /* Success! */ 1869 1870 gsi_channel_trans_exit(channel); 1871 err_ring_free: 1872 gsi_ring_free(gsi, &channel->tre_ring); 1873 err_channel_evt_ring_exit: 1874 gsi_channel_evt_ring_exit(channel); 1875 err_clear_gsi: 1876 channel->gsi = NULL; /* Mark it not (fully) initialized */ 1877 1878 return ret; 1879 } 1880 1881 /* Inverse of gsi_channel_init_one() */ 1882 static void gsi_channel_exit_one(struct gsi_channel *channel) 1883 { 1884 if (!channel->gsi) 1885 return; /* Ignore uninitialized channels */ 1886 1887 if (channel->command) 1888 ipa_cmd_pool_exit(channel); 1889 gsi_channel_trans_exit(channel); 1890 gsi_ring_free(channel->gsi, &channel->tre_ring); 1891 gsi_channel_evt_ring_exit(channel); 1892 } 1893 1894 /* Init function for channels */ 1895 static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count, 1896 const struct ipa_gsi_endpoint_data *data, 1897 bool modem_alloc) 1898 { 1899 int ret = 0; 1900 u32 i; 1901 1902 gsi_evt_ring_init(gsi); 1903 1904 /* The endpoint data array is indexed by endpoint name */ 1905 for (i = 0; i < count; i++) { 1906 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; 1907 1908 if (ipa_gsi_endpoint_data_empty(&data[i])) 1909 continue; /* Skip over empty slots */ 1910 1911 /* Mark modem channels to be allocated (hardware workaround) */ 1912 if (data[i].ee_id == GSI_EE_MODEM) { 1913 if (modem_alloc) 1914 gsi->modem_channel_bitmap |= 1915 BIT(data[i].channel_id); 1916 continue; 1917 } 1918 1919 ret = gsi_channel_init_one(gsi, &data[i], command, prefetch); 1920 if (ret) 1921 goto err_unwind; 1922 } 1923 1924 return ret; 1925 1926 err_unwind: 1927 while (i--) { 1928 if (ipa_gsi_endpoint_data_empty(&data[i])) 1929 continue; 1930 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { 1931 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); 1932 continue; 1933 } 1934 gsi_channel_exit_one(&gsi->channel[data->channel_id]); 1935 } 1936 gsi_evt_ring_exit(gsi); 1937 1938 return ret; 1939 } 1940 1941 /* Inverse of gsi_channel_init() */ 1942 static void gsi_channel_exit(struct gsi *gsi) 1943 { 1944 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; 1945 1946 do 1947 gsi_channel_exit_one(&gsi->channel[channel_id]); 1948 while (channel_id--); 1949 gsi->modem_channel_bitmap = 0; 1950 1951 gsi_evt_ring_exit(gsi); 1952 } 1953 1954 /* Init function for GSI. GSI hardware does not need to be "ready" */ 1955 int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch, 1956 u32 count, const struct ipa_gsi_endpoint_data *data, 1957 bool modem_alloc) 1958 { 1959 struct device *dev = &pdev->dev; 1960 struct resource *res; 1961 resource_size_t size; 1962 unsigned int irq; 1963 int ret; 1964 1965 gsi_validate_build(); 1966 1967 gsi->dev = dev; 1968 1969 /* The GSI layer performs NAPI on all endpoints. NAPI requires a 1970 * network device structure, but the GSI layer does not have one, 1971 * so we must create a dummy network device for this purpose. 1972 */ 1973 init_dummy_netdev(&gsi->dummy_dev); 1974 1975 ret = platform_get_irq_byname(pdev, "gsi"); 1976 if (ret <= 0) { 1977 dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret); 1978 return ret ? : -EINVAL; 1979 } 1980 irq = ret; 1981 1982 ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); 1983 if (ret) { 1984 dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret); 1985 return ret; 1986 } 1987 gsi->irq = irq; 1988 1989 /* Get GSI memory range and map it */ 1990 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); 1991 if (!res) { 1992 dev_err(dev, "DT error getting \"gsi\" memory property\n"); 1993 ret = -ENODEV; 1994 goto err_free_irq; 1995 } 1996 1997 size = resource_size(res); 1998 if (res->start > U32_MAX || size > U32_MAX - res->start) { 1999 dev_err(dev, "DT memory resource \"gsi\" out of range\n"); 2000 ret = -EINVAL; 2001 goto err_free_irq; 2002 } 2003 2004 gsi->virt = ioremap(res->start, size); 2005 if (!gsi->virt) { 2006 dev_err(dev, "unable to remap \"gsi\" memory\n"); 2007 ret = -ENOMEM; 2008 goto err_free_irq; 2009 } 2010 2011 ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc); 2012 if (ret) 2013 goto err_iounmap; 2014 2015 mutex_init(&gsi->mutex); 2016 init_completion(&gsi->completion); 2017 2018 return 0; 2019 2020 err_iounmap: 2021 iounmap(gsi->virt); 2022 err_free_irq: 2023 free_irq(gsi->irq, gsi); 2024 2025 return ret; 2026 } 2027 2028 /* Inverse of gsi_init() */ 2029 void gsi_exit(struct gsi *gsi) 2030 { 2031 mutex_destroy(&gsi->mutex); 2032 gsi_channel_exit(gsi); 2033 free_irq(gsi->irq, gsi); 2034 iounmap(gsi->virt); 2035 } 2036 2037 /* The maximum number of outstanding TREs on a channel. This limits 2038 * a channel's maximum number of transactions outstanding (worst case 2039 * is one TRE per transaction). 2040 * 2041 * The absolute limit is the number of TREs in the channel's TRE ring, 2042 * and in theory we should be able use all of them. But in practice, 2043 * doing that led to the hardware reporting exhaustion of event ring 2044 * slots for writing completion information. So the hardware limit 2045 * would be (tre_count - 1). 2046 * 2047 * We reduce it a bit further though. Transaction resource pools are 2048 * sized to be a little larger than this maximum, to allow resource 2049 * allocations to always be contiguous. The number of entries in a 2050 * TRE ring buffer is a power of 2, and the extra resources in a pool 2051 * tends to nearly double the memory allocated for it. Reducing the 2052 * maximum number of outstanding TREs allows the number of entries in 2053 * a pool to avoid crossing that power-of-2 boundary, and this can 2054 * substantially reduce pool memory requirements. The number we 2055 * reduce it by matches the number added in gsi_trans_pool_init(). 2056 */ 2057 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) 2058 { 2059 struct gsi_channel *channel = &gsi->channel[channel_id]; 2060 2061 /* Hardware limit is channel->tre_count - 1 */ 2062 return channel->tre_count - (channel->tlv_count - 1); 2063 } 2064 2065 /* Returns the maximum number of TREs in a single transaction for a channel */ 2066 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) 2067 { 2068 struct gsi_channel *channel = &gsi->channel[channel_id]; 2069 2070 return channel->tlv_count; 2071 } 2072