xref: /openbmc/linux/drivers/net/ifb.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ifb.c:
3 
4 	The purpose of this driver is to provide a device that allows
5 	for sharing of resources:
6 
7 	1) qdiscs/policies that are per device as opposed to system wide.
8 	ifb allows for a device which can be redirected to thus providing
9 	an impression of sharing.
10 
11 	2) Allows for queueing incoming traffic for shaping instead of
12 	dropping.
13 
14 	The original concept is based on what is known as the IMQ
15 	driver initially written by Martin Devera, later rewritten
16 	by Patrick McHardy and then maintained by Andre Correa.
17 
18 	You need the tc action  mirror or redirect to feed this device
19        	packets.
20 
21 
22   	Authors:	Jamal Hadi Salim (2005)
23 
24 */
25 
26 
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <net/pkt_sched.h>
35 #include <net/net_namespace.h>
36 
37 #define TX_Q_LIMIT    32
38 struct ifb_q_private {
39 	struct net_device	*dev;
40 	struct tasklet_struct   ifb_tasklet;
41 	int			tasklet_pending;
42 	int			txqnum;
43 	struct sk_buff_head     rq;
44 	u64			rx_packets;
45 	u64			rx_bytes;
46 	struct u64_stats_sync	rsync;
47 
48 	struct u64_stats_sync	tsync;
49 	u64			tx_packets;
50 	u64			tx_bytes;
51 	struct sk_buff_head     tq;
52 } ____cacheline_aligned_in_smp;
53 
54 struct ifb_dev_private {
55 	struct ifb_q_private *tx_private;
56 };
57 
58 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
59 static int ifb_open(struct net_device *dev);
60 static int ifb_close(struct net_device *dev);
61 
62 static void ifb_ri_tasklet(unsigned long _txp)
63 {
64 	struct ifb_q_private *txp = (struct ifb_q_private *)_txp;
65 	struct netdev_queue *txq;
66 	struct sk_buff *skb;
67 
68 	txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
69 	skb = skb_peek(&txp->tq);
70 	if (!skb) {
71 		if (!__netif_tx_trylock(txq))
72 			goto resched;
73 		skb_queue_splice_tail_init(&txp->rq, &txp->tq);
74 		__netif_tx_unlock(txq);
75 	}
76 
77 	while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
78 		skb->redirected = 0;
79 		skb->tc_skip_classify = 1;
80 
81 		u64_stats_update_begin(&txp->tsync);
82 		txp->tx_packets++;
83 		txp->tx_bytes += skb->len;
84 		u64_stats_update_end(&txp->tsync);
85 
86 		rcu_read_lock();
87 		skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
88 		if (!skb->dev) {
89 			rcu_read_unlock();
90 			dev_kfree_skb(skb);
91 			txp->dev->stats.tx_dropped++;
92 			if (skb_queue_len(&txp->tq) != 0)
93 				goto resched;
94 			break;
95 		}
96 		rcu_read_unlock();
97 		skb->skb_iif = txp->dev->ifindex;
98 
99 		if (!skb->from_ingress) {
100 			dev_queue_xmit(skb);
101 		} else {
102 			skb_pull_rcsum(skb, skb->mac_len);
103 			netif_receive_skb(skb);
104 		}
105 	}
106 
107 	if (__netif_tx_trylock(txq)) {
108 		skb = skb_peek(&txp->rq);
109 		if (!skb) {
110 			txp->tasklet_pending = 0;
111 			if (netif_tx_queue_stopped(txq))
112 				netif_tx_wake_queue(txq);
113 		} else {
114 			__netif_tx_unlock(txq);
115 			goto resched;
116 		}
117 		__netif_tx_unlock(txq);
118 	} else {
119 resched:
120 		txp->tasklet_pending = 1;
121 		tasklet_schedule(&txp->ifb_tasklet);
122 	}
123 
124 }
125 
126 static void ifb_stats64(struct net_device *dev,
127 			struct rtnl_link_stats64 *stats)
128 {
129 	struct ifb_dev_private *dp = netdev_priv(dev);
130 	struct ifb_q_private *txp = dp->tx_private;
131 	unsigned int start;
132 	u64 packets, bytes;
133 	int i;
134 
135 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
136 		do {
137 			start = u64_stats_fetch_begin_irq(&txp->rsync);
138 			packets = txp->rx_packets;
139 			bytes = txp->rx_bytes;
140 		} while (u64_stats_fetch_retry_irq(&txp->rsync, start));
141 		stats->rx_packets += packets;
142 		stats->rx_bytes += bytes;
143 
144 		do {
145 			start = u64_stats_fetch_begin_irq(&txp->tsync);
146 			packets = txp->tx_packets;
147 			bytes = txp->tx_bytes;
148 		} while (u64_stats_fetch_retry_irq(&txp->tsync, start));
149 		stats->tx_packets += packets;
150 		stats->tx_bytes += bytes;
151 	}
152 	stats->rx_dropped = dev->stats.rx_dropped;
153 	stats->tx_dropped = dev->stats.tx_dropped;
154 }
155 
156 static int ifb_dev_init(struct net_device *dev)
157 {
158 	struct ifb_dev_private *dp = netdev_priv(dev);
159 	struct ifb_q_private *txp;
160 	int i;
161 
162 	txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
163 	if (!txp)
164 		return -ENOMEM;
165 	dp->tx_private = txp;
166 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
167 		txp->txqnum = i;
168 		txp->dev = dev;
169 		__skb_queue_head_init(&txp->rq);
170 		__skb_queue_head_init(&txp->tq);
171 		u64_stats_init(&txp->rsync);
172 		u64_stats_init(&txp->tsync);
173 		tasklet_init(&txp->ifb_tasklet, ifb_ri_tasklet,
174 			     (unsigned long)txp);
175 		netif_tx_start_queue(netdev_get_tx_queue(dev, i));
176 	}
177 	return 0;
178 }
179 
180 static const struct net_device_ops ifb_netdev_ops = {
181 	.ndo_open	= ifb_open,
182 	.ndo_stop	= ifb_close,
183 	.ndo_get_stats64 = ifb_stats64,
184 	.ndo_start_xmit	= ifb_xmit,
185 	.ndo_validate_addr = eth_validate_addr,
186 	.ndo_init	= ifb_dev_init,
187 };
188 
189 #define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG  | NETIF_F_FRAGLIST	| \
190 		      NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL	| \
191 		      NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX		| \
192 		      NETIF_F_HW_VLAN_STAG_TX)
193 
194 static void ifb_dev_free(struct net_device *dev)
195 {
196 	struct ifb_dev_private *dp = netdev_priv(dev);
197 	struct ifb_q_private *txp = dp->tx_private;
198 	int i;
199 
200 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
201 		tasklet_kill(&txp->ifb_tasklet);
202 		__skb_queue_purge(&txp->rq);
203 		__skb_queue_purge(&txp->tq);
204 	}
205 	kfree(dp->tx_private);
206 }
207 
208 static void ifb_setup(struct net_device *dev)
209 {
210 	/* Initialize the device structure. */
211 	dev->netdev_ops = &ifb_netdev_ops;
212 
213 	/* Fill in device structure with ethernet-generic values. */
214 	ether_setup(dev);
215 	dev->tx_queue_len = TX_Q_LIMIT;
216 
217 	dev->features |= IFB_FEATURES;
218 	dev->hw_features |= dev->features;
219 	dev->hw_enc_features |= dev->features;
220 	dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
221 					       NETIF_F_HW_VLAN_STAG_TX);
222 
223 	dev->flags |= IFF_NOARP;
224 	dev->flags &= ~IFF_MULTICAST;
225 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
226 	netif_keep_dst(dev);
227 	eth_hw_addr_random(dev);
228 	dev->needs_free_netdev = true;
229 	dev->priv_destructor = ifb_dev_free;
230 
231 	dev->min_mtu = 0;
232 	dev->max_mtu = 0;
233 }
234 
235 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
236 {
237 	struct ifb_dev_private *dp = netdev_priv(dev);
238 	struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);
239 
240 	u64_stats_update_begin(&txp->rsync);
241 	txp->rx_packets++;
242 	txp->rx_bytes += skb->len;
243 	u64_stats_update_end(&txp->rsync);
244 
245 	if (!skb->redirected || !skb->skb_iif) {
246 		dev_kfree_skb(skb);
247 		dev->stats.rx_dropped++;
248 		return NETDEV_TX_OK;
249 	}
250 
251 	if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
252 		netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));
253 
254 	__skb_queue_tail(&txp->rq, skb);
255 	if (!txp->tasklet_pending) {
256 		txp->tasklet_pending = 1;
257 		tasklet_schedule(&txp->ifb_tasklet);
258 	}
259 
260 	return NETDEV_TX_OK;
261 }
262 
263 static int ifb_close(struct net_device *dev)
264 {
265 	netif_tx_stop_all_queues(dev);
266 	return 0;
267 }
268 
269 static int ifb_open(struct net_device *dev)
270 {
271 	netif_tx_start_all_queues(dev);
272 	return 0;
273 }
274 
275 static int ifb_validate(struct nlattr *tb[], struct nlattr *data[],
276 			struct netlink_ext_ack *extack)
277 {
278 	if (tb[IFLA_ADDRESS]) {
279 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
280 			return -EINVAL;
281 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
282 			return -EADDRNOTAVAIL;
283 	}
284 	return 0;
285 }
286 
287 static struct rtnl_link_ops ifb_link_ops __read_mostly = {
288 	.kind		= "ifb",
289 	.priv_size	= sizeof(struct ifb_dev_private),
290 	.setup		= ifb_setup,
291 	.validate	= ifb_validate,
292 };
293 
294 /* Number of ifb devices to be set up by this module.
295  * Note that these legacy devices have one queue.
296  * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
297  */
298 static int numifbs = 2;
299 module_param(numifbs, int, 0);
300 MODULE_PARM_DESC(numifbs, "Number of ifb devices");
301 
302 static int __init ifb_init_one(int index)
303 {
304 	struct net_device *dev_ifb;
305 	int err;
306 
307 	dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
308 			       NET_NAME_UNKNOWN, ifb_setup);
309 
310 	if (!dev_ifb)
311 		return -ENOMEM;
312 
313 	dev_ifb->rtnl_link_ops = &ifb_link_ops;
314 	err = register_netdevice(dev_ifb);
315 	if (err < 0)
316 		goto err;
317 
318 	return 0;
319 
320 err:
321 	free_netdev(dev_ifb);
322 	return err;
323 }
324 
325 static int __init ifb_init_module(void)
326 {
327 	int i, err;
328 
329 	down_write(&pernet_ops_rwsem);
330 	rtnl_lock();
331 	err = __rtnl_link_register(&ifb_link_ops);
332 	if (err < 0)
333 		goto out;
334 
335 	for (i = 0; i < numifbs && !err; i++) {
336 		err = ifb_init_one(i);
337 		cond_resched();
338 	}
339 	if (err)
340 		__rtnl_link_unregister(&ifb_link_ops);
341 
342 out:
343 	rtnl_unlock();
344 	up_write(&pernet_ops_rwsem);
345 
346 	return err;
347 }
348 
349 static void __exit ifb_cleanup_module(void)
350 {
351 	rtnl_link_unregister(&ifb_link_ops);
352 }
353 
354 module_init(ifb_init_module);
355 module_exit(ifb_cleanup_module);
356 MODULE_LICENSE("GPL");
357 MODULE_AUTHOR("Jamal Hadi Salim");
358 MODULE_ALIAS_RTNL_LINK("ifb");
359