xref: /openbmc/linux/drivers/net/ifb.c (revision eccd0a80dc7f4be65430236db475546b0ab9ec37)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ifb.c:
3 
4 	The purpose of this driver is to provide a device that allows
5 	for sharing of resources:
6 
7 	1) qdiscs/policies that are per device as opposed to system wide.
8 	ifb allows for a device which can be redirected to thus providing
9 	an impression of sharing.
10 
11 	2) Allows for queueing incoming traffic for shaping instead of
12 	dropping.
13 
14 	The original concept is based on what is known as the IMQ
15 	driver initially written by Martin Devera, later rewritten
16 	by Patrick McHardy and then maintained by Andre Correa.
17 
18 	You need the tc action  mirror or redirect to feed this device
19 	packets.
20 
21 
22 	Authors:	Jamal Hadi Salim (2005)
23 
24 */
25 
26 
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <linux/netfilter_netdev.h>
35 #include <net/pkt_sched.h>
36 #include <net/net_namespace.h>
37 
38 #define TX_Q_LIMIT    32
39 struct ifb_q_private {
40 	struct net_device	*dev;
41 	struct tasklet_struct   ifb_tasklet;
42 	int			tasklet_pending;
43 	int			txqnum;
44 	struct sk_buff_head     rq;
45 	u64			rx_packets;
46 	u64			rx_bytes;
47 	struct u64_stats_sync	rsync;
48 
49 	struct u64_stats_sync	tsync;
50 	u64			tx_packets;
51 	u64			tx_bytes;
52 	struct sk_buff_head     tq;
53 } ____cacheline_aligned_in_smp;
54 
55 struct ifb_dev_private {
56 	struct ifb_q_private *tx_private;
57 };
58 
59 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
60 static int ifb_open(struct net_device *dev);
61 static int ifb_close(struct net_device *dev);
62 
63 static void ifb_ri_tasklet(struct tasklet_struct *t)
64 {
65 	struct ifb_q_private *txp = from_tasklet(txp, t, ifb_tasklet);
66 	struct netdev_queue *txq;
67 	struct sk_buff *skb;
68 
69 	txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
70 	skb = skb_peek(&txp->tq);
71 	if (!skb) {
72 		if (!__netif_tx_trylock(txq))
73 			goto resched;
74 		skb_queue_splice_tail_init(&txp->rq, &txp->tq);
75 		__netif_tx_unlock(txq);
76 	}
77 
78 	while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
79 		/* Skip tc and netfilter to prevent redirection loop. */
80 		skb->redirected = 0;
81 		skb->tc_skip_classify = 1;
82 		nf_skip_egress(skb, true);
83 
84 		u64_stats_update_begin(&txp->tsync);
85 		txp->tx_packets++;
86 		txp->tx_bytes += skb->len;
87 		u64_stats_update_end(&txp->tsync);
88 
89 		rcu_read_lock();
90 		skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
91 		if (!skb->dev) {
92 			rcu_read_unlock();
93 			dev_kfree_skb(skb);
94 			txp->dev->stats.tx_dropped++;
95 			if (skb_queue_len(&txp->tq) != 0)
96 				goto resched;
97 			break;
98 		}
99 		rcu_read_unlock();
100 		skb->skb_iif = txp->dev->ifindex;
101 
102 		if (!skb->from_ingress) {
103 			dev_queue_xmit(skb);
104 		} else {
105 			skb_pull_rcsum(skb, skb->mac_len);
106 			netif_receive_skb(skb);
107 		}
108 	}
109 
110 	if (__netif_tx_trylock(txq)) {
111 		skb = skb_peek(&txp->rq);
112 		if (!skb) {
113 			txp->tasklet_pending = 0;
114 			if (netif_tx_queue_stopped(txq))
115 				netif_tx_wake_queue(txq);
116 		} else {
117 			__netif_tx_unlock(txq);
118 			goto resched;
119 		}
120 		__netif_tx_unlock(txq);
121 	} else {
122 resched:
123 		txp->tasklet_pending = 1;
124 		tasklet_schedule(&txp->ifb_tasklet);
125 	}
126 
127 }
128 
129 static void ifb_stats64(struct net_device *dev,
130 			struct rtnl_link_stats64 *stats)
131 {
132 	struct ifb_dev_private *dp = netdev_priv(dev);
133 	struct ifb_q_private *txp = dp->tx_private;
134 	unsigned int start;
135 	u64 packets, bytes;
136 	int i;
137 
138 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
139 		do {
140 			start = u64_stats_fetch_begin_irq(&txp->rsync);
141 			packets = txp->rx_packets;
142 			bytes = txp->rx_bytes;
143 		} while (u64_stats_fetch_retry_irq(&txp->rsync, start));
144 		stats->rx_packets += packets;
145 		stats->rx_bytes += bytes;
146 
147 		do {
148 			start = u64_stats_fetch_begin_irq(&txp->tsync);
149 			packets = txp->tx_packets;
150 			bytes = txp->tx_bytes;
151 		} while (u64_stats_fetch_retry_irq(&txp->tsync, start));
152 		stats->tx_packets += packets;
153 		stats->tx_bytes += bytes;
154 	}
155 	stats->rx_dropped = dev->stats.rx_dropped;
156 	stats->tx_dropped = dev->stats.tx_dropped;
157 }
158 
159 static int ifb_dev_init(struct net_device *dev)
160 {
161 	struct ifb_dev_private *dp = netdev_priv(dev);
162 	struct ifb_q_private *txp;
163 	int i;
164 
165 	txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
166 	if (!txp)
167 		return -ENOMEM;
168 	dp->tx_private = txp;
169 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
170 		txp->txqnum = i;
171 		txp->dev = dev;
172 		__skb_queue_head_init(&txp->rq);
173 		__skb_queue_head_init(&txp->tq);
174 		u64_stats_init(&txp->rsync);
175 		u64_stats_init(&txp->tsync);
176 		tasklet_setup(&txp->ifb_tasklet, ifb_ri_tasklet);
177 		netif_tx_start_queue(netdev_get_tx_queue(dev, i));
178 	}
179 	return 0;
180 }
181 
182 static const struct net_device_ops ifb_netdev_ops = {
183 	.ndo_open	= ifb_open,
184 	.ndo_stop	= ifb_close,
185 	.ndo_get_stats64 = ifb_stats64,
186 	.ndo_start_xmit	= ifb_xmit,
187 	.ndo_validate_addr = eth_validate_addr,
188 	.ndo_init	= ifb_dev_init,
189 };
190 
191 #define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG  | NETIF_F_FRAGLIST	| \
192 		      NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL	| \
193 		      NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX		| \
194 		      NETIF_F_HW_VLAN_STAG_TX)
195 
196 static void ifb_dev_free(struct net_device *dev)
197 {
198 	struct ifb_dev_private *dp = netdev_priv(dev);
199 	struct ifb_q_private *txp = dp->tx_private;
200 	int i;
201 
202 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
203 		tasklet_kill(&txp->ifb_tasklet);
204 		__skb_queue_purge(&txp->rq);
205 		__skb_queue_purge(&txp->tq);
206 	}
207 	kfree(dp->tx_private);
208 }
209 
210 static void ifb_setup(struct net_device *dev)
211 {
212 	/* Initialize the device structure. */
213 	dev->netdev_ops = &ifb_netdev_ops;
214 
215 	/* Fill in device structure with ethernet-generic values. */
216 	ether_setup(dev);
217 	dev->tx_queue_len = TX_Q_LIMIT;
218 
219 	dev->features |= IFB_FEATURES;
220 	dev->hw_features |= dev->features;
221 	dev->hw_enc_features |= dev->features;
222 	dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
223 					       NETIF_F_HW_VLAN_STAG_TX);
224 
225 	dev->flags |= IFF_NOARP;
226 	dev->flags &= ~IFF_MULTICAST;
227 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
228 	netif_keep_dst(dev);
229 	eth_hw_addr_random(dev);
230 	dev->needs_free_netdev = true;
231 	dev->priv_destructor = ifb_dev_free;
232 
233 	dev->min_mtu = 0;
234 	dev->max_mtu = 0;
235 }
236 
237 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
238 {
239 	struct ifb_dev_private *dp = netdev_priv(dev);
240 	struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);
241 
242 	u64_stats_update_begin(&txp->rsync);
243 	txp->rx_packets++;
244 	txp->rx_bytes += skb->len;
245 	u64_stats_update_end(&txp->rsync);
246 
247 	if (!skb->redirected || !skb->skb_iif) {
248 		dev_kfree_skb(skb);
249 		dev->stats.rx_dropped++;
250 		return NETDEV_TX_OK;
251 	}
252 
253 	if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
254 		netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));
255 
256 	__skb_queue_tail(&txp->rq, skb);
257 	if (!txp->tasklet_pending) {
258 		txp->tasklet_pending = 1;
259 		tasklet_schedule(&txp->ifb_tasklet);
260 	}
261 
262 	return NETDEV_TX_OK;
263 }
264 
265 static int ifb_close(struct net_device *dev)
266 {
267 	netif_tx_stop_all_queues(dev);
268 	return 0;
269 }
270 
271 static int ifb_open(struct net_device *dev)
272 {
273 	netif_tx_start_all_queues(dev);
274 	return 0;
275 }
276 
277 static int ifb_validate(struct nlattr *tb[], struct nlattr *data[],
278 			struct netlink_ext_ack *extack)
279 {
280 	if (tb[IFLA_ADDRESS]) {
281 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
282 			return -EINVAL;
283 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
284 			return -EADDRNOTAVAIL;
285 	}
286 	return 0;
287 }
288 
289 static struct rtnl_link_ops ifb_link_ops __read_mostly = {
290 	.kind		= "ifb",
291 	.priv_size	= sizeof(struct ifb_dev_private),
292 	.setup		= ifb_setup,
293 	.validate	= ifb_validate,
294 };
295 
296 /* Number of ifb devices to be set up by this module.
297  * Note that these legacy devices have one queue.
298  * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
299  */
300 static int numifbs = 2;
301 module_param(numifbs, int, 0);
302 MODULE_PARM_DESC(numifbs, "Number of ifb devices");
303 
304 static int __init ifb_init_one(int index)
305 {
306 	struct net_device *dev_ifb;
307 	int err;
308 
309 	dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
310 			       NET_NAME_UNKNOWN, ifb_setup);
311 
312 	if (!dev_ifb)
313 		return -ENOMEM;
314 
315 	dev_ifb->rtnl_link_ops = &ifb_link_ops;
316 	err = register_netdevice(dev_ifb);
317 	if (err < 0)
318 		goto err;
319 
320 	return 0;
321 
322 err:
323 	free_netdev(dev_ifb);
324 	return err;
325 }
326 
327 static int __init ifb_init_module(void)
328 {
329 	int i, err;
330 
331 	down_write(&pernet_ops_rwsem);
332 	rtnl_lock();
333 	err = __rtnl_link_register(&ifb_link_ops);
334 	if (err < 0)
335 		goto out;
336 
337 	for (i = 0; i < numifbs && !err; i++) {
338 		err = ifb_init_one(i);
339 		cond_resched();
340 	}
341 	if (err)
342 		__rtnl_link_unregister(&ifb_link_ops);
343 
344 out:
345 	rtnl_unlock();
346 	up_write(&pernet_ops_rwsem);
347 
348 	return err;
349 }
350 
351 static void __exit ifb_cleanup_module(void)
352 {
353 	rtnl_link_unregister(&ifb_link_ops);
354 }
355 
356 module_init(ifb_init_module);
357 module_exit(ifb_cleanup_module);
358 MODULE_LICENSE("GPL");
359 MODULE_AUTHOR("Jamal Hadi Salim");
360 MODULE_ALIAS_RTNL_LINK("ifb");
361