xref: /openbmc/linux/drivers/net/ifb.c (revision e481ff3f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ifb.c:
3 
4 	The purpose of this driver is to provide a device that allows
5 	for sharing of resources:
6 
7 	1) qdiscs/policies that are per device as opposed to system wide.
8 	ifb allows for a device which can be redirected to thus providing
9 	an impression of sharing.
10 
11 	2) Allows for queueing incoming traffic for shaping instead of
12 	dropping.
13 
14 	The original concept is based on what is known as the IMQ
15 	driver initially written by Martin Devera, later rewritten
16 	by Patrick McHardy and then maintained by Andre Correa.
17 
18 	You need the tc action  mirror or redirect to feed this device
19 	packets.
20 
21 
22 	Authors:	Jamal Hadi Salim (2005)
23 
24 */
25 
26 
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <net/pkt_sched.h>
35 #include <net/net_namespace.h>
36 
37 #define TX_Q_LIMIT    32
38 struct ifb_q_private {
39 	struct net_device	*dev;
40 	struct tasklet_struct   ifb_tasklet;
41 	int			tasklet_pending;
42 	int			txqnum;
43 	struct sk_buff_head     rq;
44 	u64			rx_packets;
45 	u64			rx_bytes;
46 	struct u64_stats_sync	rsync;
47 
48 	struct u64_stats_sync	tsync;
49 	u64			tx_packets;
50 	u64			tx_bytes;
51 	struct sk_buff_head     tq;
52 } ____cacheline_aligned_in_smp;
53 
54 struct ifb_dev_private {
55 	struct ifb_q_private *tx_private;
56 };
57 
58 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
59 static int ifb_open(struct net_device *dev);
60 static int ifb_close(struct net_device *dev);
61 
62 static void ifb_ri_tasklet(struct tasklet_struct *t)
63 {
64 	struct ifb_q_private *txp = from_tasklet(txp, t, ifb_tasklet);
65 	struct netdev_queue *txq;
66 	struct sk_buff *skb;
67 
68 	txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
69 	skb = skb_peek(&txp->tq);
70 	if (!skb) {
71 		if (!__netif_tx_trylock(txq))
72 			goto resched;
73 		skb_queue_splice_tail_init(&txp->rq, &txp->tq);
74 		__netif_tx_unlock(txq);
75 	}
76 
77 	while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
78 		skb->redirected = 0;
79 		skb->tc_skip_classify = 1;
80 
81 		u64_stats_update_begin(&txp->tsync);
82 		txp->tx_packets++;
83 		txp->tx_bytes += skb->len;
84 		u64_stats_update_end(&txp->tsync);
85 
86 		rcu_read_lock();
87 		skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
88 		if (!skb->dev) {
89 			rcu_read_unlock();
90 			dev_kfree_skb(skb);
91 			txp->dev->stats.tx_dropped++;
92 			if (skb_queue_len(&txp->tq) != 0)
93 				goto resched;
94 			break;
95 		}
96 		rcu_read_unlock();
97 		skb->skb_iif = txp->dev->ifindex;
98 
99 		if (!skb->from_ingress) {
100 			dev_queue_xmit(skb);
101 		} else {
102 			skb_pull_rcsum(skb, skb->mac_len);
103 			netif_receive_skb(skb);
104 		}
105 	}
106 
107 	if (__netif_tx_trylock(txq)) {
108 		skb = skb_peek(&txp->rq);
109 		if (!skb) {
110 			txp->tasklet_pending = 0;
111 			if (netif_tx_queue_stopped(txq))
112 				netif_tx_wake_queue(txq);
113 		} else {
114 			__netif_tx_unlock(txq);
115 			goto resched;
116 		}
117 		__netif_tx_unlock(txq);
118 	} else {
119 resched:
120 		txp->tasklet_pending = 1;
121 		tasklet_schedule(&txp->ifb_tasklet);
122 	}
123 
124 }
125 
126 static void ifb_stats64(struct net_device *dev,
127 			struct rtnl_link_stats64 *stats)
128 {
129 	struct ifb_dev_private *dp = netdev_priv(dev);
130 	struct ifb_q_private *txp = dp->tx_private;
131 	unsigned int start;
132 	u64 packets, bytes;
133 	int i;
134 
135 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
136 		do {
137 			start = u64_stats_fetch_begin_irq(&txp->rsync);
138 			packets = txp->rx_packets;
139 			bytes = txp->rx_bytes;
140 		} while (u64_stats_fetch_retry_irq(&txp->rsync, start));
141 		stats->rx_packets += packets;
142 		stats->rx_bytes += bytes;
143 
144 		do {
145 			start = u64_stats_fetch_begin_irq(&txp->tsync);
146 			packets = txp->tx_packets;
147 			bytes = txp->tx_bytes;
148 		} while (u64_stats_fetch_retry_irq(&txp->tsync, start));
149 		stats->tx_packets += packets;
150 		stats->tx_bytes += bytes;
151 	}
152 	stats->rx_dropped = dev->stats.rx_dropped;
153 	stats->tx_dropped = dev->stats.tx_dropped;
154 }
155 
156 static int ifb_dev_init(struct net_device *dev)
157 {
158 	struct ifb_dev_private *dp = netdev_priv(dev);
159 	struct ifb_q_private *txp;
160 	int i;
161 
162 	txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
163 	if (!txp)
164 		return -ENOMEM;
165 	dp->tx_private = txp;
166 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
167 		txp->txqnum = i;
168 		txp->dev = dev;
169 		__skb_queue_head_init(&txp->rq);
170 		__skb_queue_head_init(&txp->tq);
171 		u64_stats_init(&txp->rsync);
172 		u64_stats_init(&txp->tsync);
173 		tasklet_setup(&txp->ifb_tasklet, ifb_ri_tasklet);
174 		netif_tx_start_queue(netdev_get_tx_queue(dev, i));
175 	}
176 	return 0;
177 }
178 
179 static const struct net_device_ops ifb_netdev_ops = {
180 	.ndo_open	= ifb_open,
181 	.ndo_stop	= ifb_close,
182 	.ndo_get_stats64 = ifb_stats64,
183 	.ndo_start_xmit	= ifb_xmit,
184 	.ndo_validate_addr = eth_validate_addr,
185 	.ndo_init	= ifb_dev_init,
186 };
187 
188 #define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG  | NETIF_F_FRAGLIST	| \
189 		      NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL	| \
190 		      NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX		| \
191 		      NETIF_F_HW_VLAN_STAG_TX)
192 
193 static void ifb_dev_free(struct net_device *dev)
194 {
195 	struct ifb_dev_private *dp = netdev_priv(dev);
196 	struct ifb_q_private *txp = dp->tx_private;
197 	int i;
198 
199 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
200 		tasklet_kill(&txp->ifb_tasklet);
201 		__skb_queue_purge(&txp->rq);
202 		__skb_queue_purge(&txp->tq);
203 	}
204 	kfree(dp->tx_private);
205 }
206 
207 static void ifb_setup(struct net_device *dev)
208 {
209 	/* Initialize the device structure. */
210 	dev->netdev_ops = &ifb_netdev_ops;
211 
212 	/* Fill in device structure with ethernet-generic values. */
213 	ether_setup(dev);
214 	dev->tx_queue_len = TX_Q_LIMIT;
215 
216 	dev->features |= IFB_FEATURES;
217 	dev->hw_features |= dev->features;
218 	dev->hw_enc_features |= dev->features;
219 	dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
220 					       NETIF_F_HW_VLAN_STAG_TX);
221 
222 	dev->flags |= IFF_NOARP;
223 	dev->flags &= ~IFF_MULTICAST;
224 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
225 	netif_keep_dst(dev);
226 	eth_hw_addr_random(dev);
227 	dev->needs_free_netdev = true;
228 	dev->priv_destructor = ifb_dev_free;
229 
230 	dev->min_mtu = 0;
231 	dev->max_mtu = 0;
232 }
233 
234 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
235 {
236 	struct ifb_dev_private *dp = netdev_priv(dev);
237 	struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);
238 
239 	u64_stats_update_begin(&txp->rsync);
240 	txp->rx_packets++;
241 	txp->rx_bytes += skb->len;
242 	u64_stats_update_end(&txp->rsync);
243 
244 	if (!skb->redirected || !skb->skb_iif) {
245 		dev_kfree_skb(skb);
246 		dev->stats.rx_dropped++;
247 		return NETDEV_TX_OK;
248 	}
249 
250 	if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
251 		netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));
252 
253 	__skb_queue_tail(&txp->rq, skb);
254 	if (!txp->tasklet_pending) {
255 		txp->tasklet_pending = 1;
256 		tasklet_schedule(&txp->ifb_tasklet);
257 	}
258 
259 	return NETDEV_TX_OK;
260 }
261 
262 static int ifb_close(struct net_device *dev)
263 {
264 	netif_tx_stop_all_queues(dev);
265 	return 0;
266 }
267 
268 static int ifb_open(struct net_device *dev)
269 {
270 	netif_tx_start_all_queues(dev);
271 	return 0;
272 }
273 
274 static int ifb_validate(struct nlattr *tb[], struct nlattr *data[],
275 			struct netlink_ext_ack *extack)
276 {
277 	if (tb[IFLA_ADDRESS]) {
278 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
279 			return -EINVAL;
280 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
281 			return -EADDRNOTAVAIL;
282 	}
283 	return 0;
284 }
285 
286 static struct rtnl_link_ops ifb_link_ops __read_mostly = {
287 	.kind		= "ifb",
288 	.priv_size	= sizeof(struct ifb_dev_private),
289 	.setup		= ifb_setup,
290 	.validate	= ifb_validate,
291 };
292 
293 /* Number of ifb devices to be set up by this module.
294  * Note that these legacy devices have one queue.
295  * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
296  */
297 static int numifbs = 2;
298 module_param(numifbs, int, 0);
299 MODULE_PARM_DESC(numifbs, "Number of ifb devices");
300 
301 static int __init ifb_init_one(int index)
302 {
303 	struct net_device *dev_ifb;
304 	int err;
305 
306 	dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
307 			       NET_NAME_UNKNOWN, ifb_setup);
308 
309 	if (!dev_ifb)
310 		return -ENOMEM;
311 
312 	dev_ifb->rtnl_link_ops = &ifb_link_ops;
313 	err = register_netdevice(dev_ifb);
314 	if (err < 0)
315 		goto err;
316 
317 	return 0;
318 
319 err:
320 	free_netdev(dev_ifb);
321 	return err;
322 }
323 
324 static int __init ifb_init_module(void)
325 {
326 	int i, err;
327 
328 	down_write(&pernet_ops_rwsem);
329 	rtnl_lock();
330 	err = __rtnl_link_register(&ifb_link_ops);
331 	if (err < 0)
332 		goto out;
333 
334 	for (i = 0; i < numifbs && !err; i++) {
335 		err = ifb_init_one(i);
336 		cond_resched();
337 	}
338 	if (err)
339 		__rtnl_link_unregister(&ifb_link_ops);
340 
341 out:
342 	rtnl_unlock();
343 	up_write(&pernet_ops_rwsem);
344 
345 	return err;
346 }
347 
348 static void __exit ifb_cleanup_module(void)
349 {
350 	rtnl_link_unregister(&ifb_link_ops);
351 }
352 
353 module_init(ifb_init_module);
354 module_exit(ifb_cleanup_module);
355 MODULE_LICENSE("GPL");
356 MODULE_AUTHOR("Jamal Hadi Salim");
357 MODULE_ALIAS_RTNL_LINK("ifb");
358