xref: /openbmc/linux/drivers/net/ifb.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /* drivers/net/ifb.c:
2 
3 	The purpose of this driver is to provide a device that allows
4 	for sharing of resources:
5 
6 	1) qdiscs/policies that are per device as opposed to system wide.
7 	ifb allows for a device which can be redirected to thus providing
8 	an impression of sharing.
9 
10 	2) Allows for queueing incoming traffic for shaping instead of
11 	dropping.
12 
13 	The original concept is based on what is known as the IMQ
14 	driver initially written by Martin Devera, later rewritten
15 	by Patrick McHardy and then maintained by Andre Correa.
16 
17 	You need the tc action  mirror or redirect to feed this device
18        	packets.
19 
20 	This program is free software; you can redistribute it and/or
21 	modify it under the terms of the GNU General Public License
22 	as published by the Free Software Foundation; either version
23 	2 of the License, or (at your option) any later version.
24 
25   	Authors:	Jamal Hadi Salim (2005)
26 
27 */
28 
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/interrupt.h>
36 #include <linux/moduleparam.h>
37 #include <net/pkt_sched.h>
38 #include <net/net_namespace.h>
39 
40 #define TX_Q_LIMIT    32
41 struct ifb_q_private {
42 	struct net_device	*dev;
43 	struct tasklet_struct   ifb_tasklet;
44 	int			tasklet_pending;
45 	int			txqnum;
46 	struct sk_buff_head     rq;
47 	u64			rx_packets;
48 	u64			rx_bytes;
49 	struct u64_stats_sync	rsync;
50 
51 	struct u64_stats_sync	tsync;
52 	u64			tx_packets;
53 	u64			tx_bytes;
54 	struct sk_buff_head     tq;
55 } ____cacheline_aligned_in_smp;
56 
57 struct ifb_dev_private {
58 	struct ifb_q_private *tx_private;
59 };
60 
61 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
62 static int ifb_open(struct net_device *dev);
63 static int ifb_close(struct net_device *dev);
64 
65 static void ifb_ri_tasklet(unsigned long _txp)
66 {
67 	struct ifb_q_private *txp = (struct ifb_q_private *)_txp;
68 	struct netdev_queue *txq;
69 	struct sk_buff *skb;
70 
71 	txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
72 	skb = skb_peek(&txp->tq);
73 	if (!skb) {
74 		if (!__netif_tx_trylock(txq))
75 			goto resched;
76 		skb_queue_splice_tail_init(&txp->rq, &txp->tq);
77 		__netif_tx_unlock(txq);
78 	}
79 
80 	while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
81 		skb->tc_redirected = 0;
82 		skb->tc_skip_classify = 1;
83 
84 		u64_stats_update_begin(&txp->tsync);
85 		txp->tx_packets++;
86 		txp->tx_bytes += skb->len;
87 		u64_stats_update_end(&txp->tsync);
88 
89 		rcu_read_lock();
90 		skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
91 		if (!skb->dev) {
92 			rcu_read_unlock();
93 			dev_kfree_skb(skb);
94 			txp->dev->stats.tx_dropped++;
95 			if (skb_queue_len(&txp->tq) != 0)
96 				goto resched;
97 			break;
98 		}
99 		rcu_read_unlock();
100 		skb->skb_iif = txp->dev->ifindex;
101 
102 		if (!skb->tc_from_ingress) {
103 			dev_queue_xmit(skb);
104 		} else {
105 			skb_pull(skb, skb->mac_len);
106 			netif_receive_skb(skb);
107 		}
108 	}
109 
110 	if (__netif_tx_trylock(txq)) {
111 		skb = skb_peek(&txp->rq);
112 		if (!skb) {
113 			txp->tasklet_pending = 0;
114 			if (netif_tx_queue_stopped(txq))
115 				netif_tx_wake_queue(txq);
116 		} else {
117 			__netif_tx_unlock(txq);
118 			goto resched;
119 		}
120 		__netif_tx_unlock(txq);
121 	} else {
122 resched:
123 		txp->tasklet_pending = 1;
124 		tasklet_schedule(&txp->ifb_tasklet);
125 	}
126 
127 }
128 
129 static void ifb_stats64(struct net_device *dev,
130 			struct rtnl_link_stats64 *stats)
131 {
132 	struct ifb_dev_private *dp = netdev_priv(dev);
133 	struct ifb_q_private *txp = dp->tx_private;
134 	unsigned int start;
135 	u64 packets, bytes;
136 	int i;
137 
138 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
139 		do {
140 			start = u64_stats_fetch_begin_irq(&txp->rsync);
141 			packets = txp->rx_packets;
142 			bytes = txp->rx_bytes;
143 		} while (u64_stats_fetch_retry_irq(&txp->rsync, start));
144 		stats->rx_packets += packets;
145 		stats->rx_bytes += bytes;
146 
147 		do {
148 			start = u64_stats_fetch_begin_irq(&txp->tsync);
149 			packets = txp->tx_packets;
150 			bytes = txp->tx_bytes;
151 		} while (u64_stats_fetch_retry_irq(&txp->tsync, start));
152 		stats->tx_packets += packets;
153 		stats->tx_bytes += bytes;
154 	}
155 	stats->rx_dropped = dev->stats.rx_dropped;
156 	stats->tx_dropped = dev->stats.tx_dropped;
157 }
158 
159 static int ifb_dev_init(struct net_device *dev)
160 {
161 	struct ifb_dev_private *dp = netdev_priv(dev);
162 	struct ifb_q_private *txp;
163 	int i;
164 
165 	txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
166 	if (!txp)
167 		return -ENOMEM;
168 	dp->tx_private = txp;
169 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
170 		txp->txqnum = i;
171 		txp->dev = dev;
172 		__skb_queue_head_init(&txp->rq);
173 		__skb_queue_head_init(&txp->tq);
174 		u64_stats_init(&txp->rsync);
175 		u64_stats_init(&txp->tsync);
176 		tasklet_init(&txp->ifb_tasklet, ifb_ri_tasklet,
177 			     (unsigned long)txp);
178 		netif_tx_start_queue(netdev_get_tx_queue(dev, i));
179 	}
180 	return 0;
181 }
182 
183 static const struct net_device_ops ifb_netdev_ops = {
184 	.ndo_open	= ifb_open,
185 	.ndo_stop	= ifb_close,
186 	.ndo_get_stats64 = ifb_stats64,
187 	.ndo_start_xmit	= ifb_xmit,
188 	.ndo_validate_addr = eth_validate_addr,
189 	.ndo_init	= ifb_dev_init,
190 };
191 
192 #define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG  | NETIF_F_FRAGLIST	| \
193 		      NETIF_F_TSO_ECN | NETIF_F_TSO | NETIF_F_TSO6	| \
194 		      NETIF_F_GSO_ENCAP_ALL 				| \
195 		      NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX		| \
196 		      NETIF_F_HW_VLAN_STAG_TX)
197 
198 static void ifb_dev_free(struct net_device *dev)
199 {
200 	struct ifb_dev_private *dp = netdev_priv(dev);
201 	struct ifb_q_private *txp = dp->tx_private;
202 	int i;
203 
204 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
205 		tasklet_kill(&txp->ifb_tasklet);
206 		__skb_queue_purge(&txp->rq);
207 		__skb_queue_purge(&txp->tq);
208 	}
209 	kfree(dp->tx_private);
210 }
211 
212 static void ifb_setup(struct net_device *dev)
213 {
214 	/* Initialize the device structure. */
215 	dev->netdev_ops = &ifb_netdev_ops;
216 
217 	/* Fill in device structure with ethernet-generic values. */
218 	ether_setup(dev);
219 	dev->tx_queue_len = TX_Q_LIMIT;
220 
221 	dev->features |= IFB_FEATURES;
222 	dev->hw_features |= dev->features;
223 	dev->hw_enc_features |= dev->features;
224 	dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
225 					       NETIF_F_HW_VLAN_STAG_TX);
226 
227 	dev->flags |= IFF_NOARP;
228 	dev->flags &= ~IFF_MULTICAST;
229 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
230 	netif_keep_dst(dev);
231 	eth_hw_addr_random(dev);
232 	dev->needs_free_netdev = true;
233 	dev->priv_destructor = ifb_dev_free;
234 }
235 
236 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
237 {
238 	struct ifb_dev_private *dp = netdev_priv(dev);
239 	struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);
240 
241 	u64_stats_update_begin(&txp->rsync);
242 	txp->rx_packets++;
243 	txp->rx_bytes += skb->len;
244 	u64_stats_update_end(&txp->rsync);
245 
246 	if (!skb->tc_redirected || !skb->skb_iif) {
247 		dev_kfree_skb(skb);
248 		dev->stats.rx_dropped++;
249 		return NETDEV_TX_OK;
250 	}
251 
252 	if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
253 		netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));
254 
255 	__skb_queue_tail(&txp->rq, skb);
256 	if (!txp->tasklet_pending) {
257 		txp->tasklet_pending = 1;
258 		tasklet_schedule(&txp->ifb_tasklet);
259 	}
260 
261 	return NETDEV_TX_OK;
262 }
263 
264 static int ifb_close(struct net_device *dev)
265 {
266 	netif_tx_stop_all_queues(dev);
267 	return 0;
268 }
269 
270 static int ifb_open(struct net_device *dev)
271 {
272 	netif_tx_start_all_queues(dev);
273 	return 0;
274 }
275 
276 static int ifb_validate(struct nlattr *tb[], struct nlattr *data[],
277 			struct netlink_ext_ack *extack)
278 {
279 	if (tb[IFLA_ADDRESS]) {
280 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
281 			return -EINVAL;
282 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
283 			return -EADDRNOTAVAIL;
284 	}
285 	return 0;
286 }
287 
288 static struct rtnl_link_ops ifb_link_ops __read_mostly = {
289 	.kind		= "ifb",
290 	.priv_size	= sizeof(struct ifb_dev_private),
291 	.setup		= ifb_setup,
292 	.validate	= ifb_validate,
293 };
294 
295 /* Number of ifb devices to be set up by this module.
296  * Note that these legacy devices have one queue.
297  * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
298  */
299 static int numifbs = 2;
300 module_param(numifbs, int, 0);
301 MODULE_PARM_DESC(numifbs, "Number of ifb devices");
302 
303 static int __init ifb_init_one(int index)
304 {
305 	struct net_device *dev_ifb;
306 	int err;
307 
308 	dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
309 			       NET_NAME_UNKNOWN, ifb_setup);
310 
311 	if (!dev_ifb)
312 		return -ENOMEM;
313 
314 	dev_ifb->rtnl_link_ops = &ifb_link_ops;
315 	err = register_netdevice(dev_ifb);
316 	if (err < 0)
317 		goto err;
318 
319 	return 0;
320 
321 err:
322 	free_netdev(dev_ifb);
323 	return err;
324 }
325 
326 static int __init ifb_init_module(void)
327 {
328 	int i, err;
329 
330 	rtnl_lock();
331 	err = __rtnl_link_register(&ifb_link_ops);
332 	if (err < 0)
333 		goto out;
334 
335 	for (i = 0; i < numifbs && !err; i++) {
336 		err = ifb_init_one(i);
337 		cond_resched();
338 	}
339 	if (err)
340 		__rtnl_link_unregister(&ifb_link_ops);
341 
342 out:
343 	rtnl_unlock();
344 
345 	return err;
346 }
347 
348 static void __exit ifb_cleanup_module(void)
349 {
350 	rtnl_link_unregister(&ifb_link_ops);
351 }
352 
353 module_init(ifb_init_module);
354 module_exit(ifb_cleanup_module);
355 MODULE_LICENSE("GPL");
356 MODULE_AUTHOR("Jamal Hadi Salim");
357 MODULE_ALIAS_RTNL_LINK("ifb");
358