xref: /openbmc/linux/drivers/net/ieee802154/mcr20a.c (revision f7eeb00845934851b580b188f079545ab176fa5c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
4  *
5  * Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/spi/spi.h>
11 #include <linux/workqueue.h>
12 #include <linux/interrupt.h>
13 #include <linux/irq.h>
14 #include <linux/skbuff.h>
15 #include <linux/of_gpio.h>
16 #include <linux/regmap.h>
17 #include <linux/ieee802154.h>
18 #include <linux/debugfs.h>
19 
20 #include <net/mac802154.h>
21 #include <net/cfg802154.h>
22 
23 #include <linux/device.h>
24 
25 #include "mcr20a.h"
26 
27 #define	SPI_COMMAND_BUFFER		3
28 
29 #define REGISTER_READ			BIT(7)
30 #define REGISTER_WRITE			(0 << 7)
31 #define REGISTER_ACCESS			(0 << 6)
32 #define PACKET_BUFF_BURST_ACCESS	BIT(6)
33 #define PACKET_BUFF_BYTE_ACCESS		BIT(5)
34 
35 #define MCR20A_WRITE_REG(x)		(x)
36 #define MCR20A_READ_REG(x)		(REGISTER_READ | (x))
37 #define MCR20A_BURST_READ_PACKET_BUF	(0xC0)
38 #define MCR20A_BURST_WRITE_PACKET_BUF	(0x40)
39 
40 #define MCR20A_CMD_REG		0x80
41 #define MCR20A_CMD_REG_MASK	0x3f
42 #define MCR20A_CMD_WRITE	0x40
43 #define MCR20A_CMD_FB		0x20
44 
45 /* Number of Interrupt Request Status Register */
46 #define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
47 
48 /* MCR20A CCA Type */
49 enum {
50 	MCR20A_CCA_ED,	  // energy detect - CCA bit not active,
51 			  // not to be used for T and CCCA sequences
52 	MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
53 	MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
54 	MCR20A_CCA_MODE3
55 };
56 
57 enum {
58 	MCR20A_XCVSEQ_IDLE	= 0x00,
59 	MCR20A_XCVSEQ_RX	= 0x01,
60 	MCR20A_XCVSEQ_TX	= 0x02,
61 	MCR20A_XCVSEQ_CCA	= 0x03,
62 	MCR20A_XCVSEQ_TR	= 0x04,
63 	MCR20A_XCVSEQ_CCCA	= 0x05,
64 };
65 
66 /* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
67 #define	MCR20A_MIN_CHANNEL	(11)
68 #define	MCR20A_MAX_CHANNEL	(26)
69 #define	MCR20A_CHANNEL_SPACING	(5)
70 
71 /* MCR20A CCA Threshold constans */
72 #define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
73 #define MCR20A_MAX_CCA_THRESHOLD (0x00U)
74 
75 /* version 0C */
76 #define MCR20A_OVERWRITE_VERSION (0x0C)
77 
78 /* MCR20A PLL configurations */
79 static const u8  PLL_INT[16] = {
80 	/* 2405 */ 0x0B,	/* 2410 */ 0x0B,	/* 2415 */ 0x0B,
81 	/* 2420 */ 0x0B,	/* 2425 */ 0x0B,	/* 2430 */ 0x0B,
82 	/* 2435 */ 0x0C,	/* 2440 */ 0x0C,	/* 2445 */ 0x0C,
83 	/* 2450 */ 0x0C,	/* 2455 */ 0x0C,	/* 2460 */ 0x0C,
84 	/* 2465 */ 0x0D,	/* 2470 */ 0x0D,	/* 2475 */ 0x0D,
85 	/* 2480 */ 0x0D
86 };
87 
88 static const u8 PLL_FRAC[16] = {
89 	/* 2405 */ 0x28,	/* 2410 */ 0x50,	/* 2415 */ 0x78,
90 	/* 2420 */ 0xA0,	/* 2425 */ 0xC8,	/* 2430 */ 0xF0,
91 	/* 2435 */ 0x18,	/* 2440 */ 0x40,	/* 2445 */ 0x68,
92 	/* 2450 */ 0x90,	/* 2455 */ 0xB8,	/* 2460 */ 0xE0,
93 	/* 2465 */ 0x08,	/* 2470 */ 0x30,	/* 2475 */ 0x58,
94 	/* 2480 */ 0x80
95 };
96 
97 static const struct reg_sequence mar20a_iar_overwrites[] = {
98 	{ IAR_MISC_PAD_CTRL,	0x02 },
99 	{ IAR_VCO_CTRL1,	0xB3 },
100 	{ IAR_VCO_CTRL2,	0x07 },
101 	{ IAR_PA_TUNING,	0x71 },
102 	{ IAR_CHF_IBUF,		0x2F },
103 	{ IAR_CHF_QBUF,		0x2F },
104 	{ IAR_CHF_IRIN,		0x24 },
105 	{ IAR_CHF_QRIN,		0x24 },
106 	{ IAR_CHF_IL,		0x24 },
107 	{ IAR_CHF_QL,		0x24 },
108 	{ IAR_CHF_CC1,		0x32 },
109 	{ IAR_CHF_CCL,		0x1D },
110 	{ IAR_CHF_CC2,		0x2D },
111 	{ IAR_CHF_IROUT,	0x24 },
112 	{ IAR_CHF_QROUT,	0x24 },
113 	{ IAR_PA_CAL,		0x28 },
114 	{ IAR_AGC_THR1,		0x55 },
115 	{ IAR_AGC_THR2,		0x2D },
116 	{ IAR_ATT_RSSI1,	0x5F },
117 	{ IAR_ATT_RSSI2,	0x8F },
118 	{ IAR_RSSI_OFFSET,	0x61 },
119 	{ IAR_CHF_PMA_GAIN,	0x03 },
120 	{ IAR_CCA1_THRESH,	0x50 },
121 	{ IAR_CORR_NVAL,	0x13 },
122 	{ IAR_ACKDELAY,		0x3D },
123 };
124 
125 #define MCR20A_VALID_CHANNELS (0x07FFF800)
126 #define MCR20A_MAX_BUF		(127)
127 
128 #define printdev(X) (&X->spi->dev)
129 
130 /* regmap information for Direct Access Register (DAR) access */
131 #define MCR20A_DAR_WRITE	0x01
132 #define MCR20A_DAR_READ		0x00
133 #define MCR20A_DAR_NUMREGS	0x3F
134 
135 /* regmap information for Indirect Access Register (IAR) access */
136 #define MCR20A_IAR_ACCESS	0x80
137 #define MCR20A_IAR_NUMREGS	0xBEFF
138 
139 /* Read/Write SPI Commands for DAR and IAR registers. */
140 #define MCR20A_READSHORT(reg)	((reg) << 1)
141 #define MCR20A_WRITESHORT(reg)	((reg) << 1 | 1)
142 #define MCR20A_READLONG(reg)	(1 << 15 | (reg) << 5)
143 #define MCR20A_WRITELONG(reg)	(1 << 15 | (reg) << 5 | 1 << 4)
144 
145 /* Type definitions for link configuration of instantiable layers  */
146 #define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
147 
148 static bool
149 mcr20a_dar_writeable(struct device *dev, unsigned int reg)
150 {
151 	switch (reg) {
152 	case DAR_IRQ_STS1:
153 	case DAR_IRQ_STS2:
154 	case DAR_IRQ_STS3:
155 	case DAR_PHY_CTRL1:
156 	case DAR_PHY_CTRL2:
157 	case DAR_PHY_CTRL3:
158 	case DAR_PHY_CTRL4:
159 	case DAR_SRC_CTRL:
160 	case DAR_SRC_ADDRS_SUM_LSB:
161 	case DAR_SRC_ADDRS_SUM_MSB:
162 	case DAR_T3CMP_LSB:
163 	case DAR_T3CMP_MSB:
164 	case DAR_T3CMP_USB:
165 	case DAR_T2PRIMECMP_LSB:
166 	case DAR_T2PRIMECMP_MSB:
167 	case DAR_T1CMP_LSB:
168 	case DAR_T1CMP_MSB:
169 	case DAR_T1CMP_USB:
170 	case DAR_T2CMP_LSB:
171 	case DAR_T2CMP_MSB:
172 	case DAR_T2CMP_USB:
173 	case DAR_T4CMP_LSB:
174 	case DAR_T4CMP_MSB:
175 	case DAR_T4CMP_USB:
176 	case DAR_PLL_INT0:
177 	case DAR_PLL_FRAC0_LSB:
178 	case DAR_PLL_FRAC0_MSB:
179 	case DAR_PA_PWR:
180 	/* no DAR_ACM */
181 	case DAR_OVERWRITE_VER:
182 	case DAR_CLK_OUT_CTRL:
183 	case DAR_PWR_MODES:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
190 static bool
191 mcr20a_dar_readable(struct device *dev, unsigned int reg)
192 {
193 	bool rc;
194 
195 	/* all writeable are also readable */
196 	rc = mcr20a_dar_writeable(dev, reg);
197 	if (rc)
198 		return rc;
199 
200 	/* readonly regs */
201 	switch (reg) {
202 	case DAR_RX_FRM_LEN:
203 	case DAR_CCA1_ED_FNL:
204 	case DAR_EVENT_TMR_LSB:
205 	case DAR_EVENT_TMR_MSB:
206 	case DAR_EVENT_TMR_USB:
207 	case DAR_TIMESTAMP_LSB:
208 	case DAR_TIMESTAMP_MSB:
209 	case DAR_TIMESTAMP_USB:
210 	case DAR_SEQ_STATE:
211 	case DAR_LQI_VALUE:
212 	case DAR_RSSI_CCA_CONT:
213 		return true;
214 	default:
215 		return false;
216 	}
217 }
218 
219 static bool
220 mcr20a_dar_volatile(struct device *dev, unsigned int reg)
221 {
222 	/* can be changed during runtime */
223 	switch (reg) {
224 	case DAR_IRQ_STS1:
225 	case DAR_IRQ_STS2:
226 	case DAR_IRQ_STS3:
227 	/* use them in spi_async and regmap so it's volatile */
228 		return true;
229 	default:
230 		return false;
231 	}
232 }
233 
234 static bool
235 mcr20a_dar_precious(struct device *dev, unsigned int reg)
236 {
237 	/* don't clear irq line on read */
238 	switch (reg) {
239 	case DAR_IRQ_STS1:
240 	case DAR_IRQ_STS2:
241 	case DAR_IRQ_STS3:
242 		return true;
243 	default:
244 		return false;
245 	}
246 }
247 
248 static const struct regmap_config mcr20a_dar_regmap = {
249 	.name			= "mcr20a_dar",
250 	.reg_bits		= 8,
251 	.val_bits		= 8,
252 	.write_flag_mask	= REGISTER_ACCESS | REGISTER_WRITE,
253 	.read_flag_mask		= REGISTER_ACCESS | REGISTER_READ,
254 	.cache_type		= REGCACHE_RBTREE,
255 	.writeable_reg		= mcr20a_dar_writeable,
256 	.readable_reg		= mcr20a_dar_readable,
257 	.volatile_reg		= mcr20a_dar_volatile,
258 	.precious_reg		= mcr20a_dar_precious,
259 	.fast_io		= true,
260 	.can_multi_write	= true,
261 };
262 
263 static bool
264 mcr20a_iar_writeable(struct device *dev, unsigned int reg)
265 {
266 	switch (reg) {
267 	case IAR_XTAL_TRIM:
268 	case IAR_PMC_LP_TRIM:
269 	case IAR_MACPANID0_LSB:
270 	case IAR_MACPANID0_MSB:
271 	case IAR_MACSHORTADDRS0_LSB:
272 	case IAR_MACSHORTADDRS0_MSB:
273 	case IAR_MACLONGADDRS0_0:
274 	case IAR_MACLONGADDRS0_8:
275 	case IAR_MACLONGADDRS0_16:
276 	case IAR_MACLONGADDRS0_24:
277 	case IAR_MACLONGADDRS0_32:
278 	case IAR_MACLONGADDRS0_40:
279 	case IAR_MACLONGADDRS0_48:
280 	case IAR_MACLONGADDRS0_56:
281 	case IAR_RX_FRAME_FILTER:
282 	case IAR_PLL_INT1:
283 	case IAR_PLL_FRAC1_LSB:
284 	case IAR_PLL_FRAC1_MSB:
285 	case IAR_MACPANID1_LSB:
286 	case IAR_MACPANID1_MSB:
287 	case IAR_MACSHORTADDRS1_LSB:
288 	case IAR_MACSHORTADDRS1_MSB:
289 	case IAR_MACLONGADDRS1_0:
290 	case IAR_MACLONGADDRS1_8:
291 	case IAR_MACLONGADDRS1_16:
292 	case IAR_MACLONGADDRS1_24:
293 	case IAR_MACLONGADDRS1_32:
294 	case IAR_MACLONGADDRS1_40:
295 	case IAR_MACLONGADDRS1_48:
296 	case IAR_MACLONGADDRS1_56:
297 	case IAR_DUAL_PAN_CTRL:
298 	case IAR_DUAL_PAN_DWELL:
299 	case IAR_CCA1_THRESH:
300 	case IAR_CCA1_ED_OFFSET_COMP:
301 	case IAR_LQI_OFFSET_COMP:
302 	case IAR_CCA_CTRL:
303 	case IAR_CCA2_CORR_PEAKS:
304 	case IAR_CCA2_CORR_THRESH:
305 	case IAR_TMR_PRESCALE:
306 	case IAR_ANT_PAD_CTRL:
307 	case IAR_MISC_PAD_CTRL:
308 	case IAR_BSM_CTRL:
309 	case IAR_RNG:
310 	case IAR_RX_WTR_MARK:
311 	case IAR_SOFT_RESET:
312 	case IAR_TXDELAY:
313 	case IAR_ACKDELAY:
314 	case IAR_CORR_NVAL:
315 	case IAR_ANT_AGC_CTRL:
316 	case IAR_AGC_THR1:
317 	case IAR_AGC_THR2:
318 	case IAR_PA_CAL:
319 	case IAR_ATT_RSSI1:
320 	case IAR_ATT_RSSI2:
321 	case IAR_RSSI_OFFSET:
322 	case IAR_XTAL_CTRL:
323 	case IAR_CHF_PMA_GAIN:
324 	case IAR_CHF_IBUF:
325 	case IAR_CHF_QBUF:
326 	case IAR_CHF_IRIN:
327 	case IAR_CHF_QRIN:
328 	case IAR_CHF_IL:
329 	case IAR_CHF_QL:
330 	case IAR_CHF_CC1:
331 	case IAR_CHF_CCL:
332 	case IAR_CHF_CC2:
333 	case IAR_CHF_IROUT:
334 	case IAR_CHF_QROUT:
335 	case IAR_PA_TUNING:
336 	case IAR_VCO_CTRL1:
337 	case IAR_VCO_CTRL2:
338 		return true;
339 	default:
340 		return false;
341 	}
342 }
343 
344 static bool
345 mcr20a_iar_readable(struct device *dev, unsigned int reg)
346 {
347 	bool rc;
348 
349 	/* all writeable are also readable */
350 	rc = mcr20a_iar_writeable(dev, reg);
351 	if (rc)
352 		return rc;
353 
354 	/* readonly regs */
355 	switch (reg) {
356 	case IAR_PART_ID:
357 	case IAR_DUAL_PAN_STS:
358 	case IAR_RX_BYTE_COUNT:
359 	case IAR_FILTERFAIL_CODE1:
360 	case IAR_FILTERFAIL_CODE2:
361 	case IAR_RSSI:
362 		return true;
363 	default:
364 		return false;
365 	}
366 }
367 
368 static bool
369 mcr20a_iar_volatile(struct device *dev, unsigned int reg)
370 {
371 /* can be changed during runtime */
372 	switch (reg) {
373 	case IAR_DUAL_PAN_STS:
374 	case IAR_RX_BYTE_COUNT:
375 	case IAR_FILTERFAIL_CODE1:
376 	case IAR_FILTERFAIL_CODE2:
377 	case IAR_RSSI:
378 		return true;
379 	default:
380 		return false;
381 	}
382 }
383 
384 static const struct regmap_config mcr20a_iar_regmap = {
385 	.name			= "mcr20a_iar",
386 	.reg_bits		= 16,
387 	.val_bits		= 8,
388 	.write_flag_mask	= REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
389 	.read_flag_mask		= REGISTER_ACCESS | REGISTER_READ  | IAR_INDEX,
390 	.cache_type		= REGCACHE_RBTREE,
391 	.writeable_reg		= mcr20a_iar_writeable,
392 	.readable_reg		= mcr20a_iar_readable,
393 	.volatile_reg		= mcr20a_iar_volatile,
394 	.fast_io		= true,
395 };
396 
397 struct mcr20a_local {
398 	struct spi_device *spi;
399 
400 	struct ieee802154_hw *hw;
401 	struct regmap *regmap_dar;
402 	struct regmap *regmap_iar;
403 
404 	u8 *buf;
405 
406 	bool is_tx;
407 
408 	/* for writing tx buffer */
409 	struct spi_message tx_buf_msg;
410 	u8 tx_header[1];
411 	/* burst buffer write command */
412 	struct spi_transfer tx_xfer_header;
413 	u8 tx_len[1];
414 	/* len of tx packet */
415 	struct spi_transfer tx_xfer_len;
416 	/* data of tx packet */
417 	struct spi_transfer tx_xfer_buf;
418 	struct sk_buff *tx_skb;
419 
420 	/* for read length rxfifo */
421 	struct spi_message reg_msg;
422 	u8 reg_cmd[1];
423 	u8 reg_data[MCR20A_IRQSTS_NUM];
424 	struct spi_transfer reg_xfer_cmd;
425 	struct spi_transfer reg_xfer_data;
426 
427 	/* receive handling */
428 	struct spi_message rx_buf_msg;
429 	u8 rx_header[1];
430 	struct spi_transfer rx_xfer_header;
431 	u8 rx_lqi[1];
432 	struct spi_transfer rx_xfer_lqi;
433 	u8 rx_buf[MCR20A_MAX_BUF];
434 	struct spi_transfer rx_xfer_buf;
435 
436 	/* isr handling for reading intstat */
437 	struct spi_message irq_msg;
438 	u8 irq_header[1];
439 	u8 irq_data[MCR20A_IRQSTS_NUM];
440 	struct spi_transfer irq_xfer_data;
441 	struct spi_transfer irq_xfer_header;
442 };
443 
444 static void
445 mcr20a_write_tx_buf_complete(void *context)
446 {
447 	struct mcr20a_local *lp = context;
448 	int ret;
449 
450 	dev_dbg(printdev(lp), "%s\n", __func__);
451 
452 	lp->reg_msg.complete = NULL;
453 	lp->reg_cmd[0]	= MCR20A_WRITE_REG(DAR_PHY_CTRL1);
454 	lp->reg_data[0] = MCR20A_XCVSEQ_TX;
455 	lp->reg_xfer_data.len = 1;
456 
457 	ret = spi_async(lp->spi, &lp->reg_msg);
458 	if (ret)
459 		dev_err(printdev(lp), "failed to set SEQ TX\n");
460 }
461 
462 static int
463 mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
464 {
465 	struct mcr20a_local *lp = hw->priv;
466 
467 	dev_dbg(printdev(lp), "%s\n", __func__);
468 
469 	lp->tx_skb = skb;
470 
471 	print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
472 			     skb->data, skb->len, 0);
473 
474 	lp->is_tx = 1;
475 
476 	lp->reg_msg.complete	= NULL;
477 	lp->reg_cmd[0]		= MCR20A_WRITE_REG(DAR_PHY_CTRL1);
478 	lp->reg_data[0]		= MCR20A_XCVSEQ_IDLE;
479 	lp->reg_xfer_data.len	= 1;
480 
481 	return spi_async(lp->spi, &lp->reg_msg);
482 }
483 
484 static int
485 mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
486 {
487 	WARN_ON(!level);
488 	*level = 0xbe;
489 	return 0;
490 }
491 
492 static int
493 mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
494 {
495 	struct mcr20a_local *lp = hw->priv;
496 	int ret;
497 
498 	dev_dbg(printdev(lp), "%s\n", __func__);
499 
500 	/* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
501 	ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
502 	if (ret)
503 		return ret;
504 	ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
505 	if (ret)
506 		return ret;
507 	ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
508 			   PLL_FRAC[channel - 11]);
509 	if (ret)
510 		return ret;
511 
512 	return 0;
513 }
514 
515 static int
516 mcr20a_start(struct ieee802154_hw *hw)
517 {
518 	struct mcr20a_local *lp = hw->priv;
519 	int ret;
520 
521 	dev_dbg(printdev(lp), "%s\n", __func__);
522 
523 	/* No slotted operation */
524 	dev_dbg(printdev(lp), "no slotted operation\n");
525 	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
526 				 DAR_PHY_CTRL1_SLOTTED, 0x0);
527 	if (ret < 0)
528 		return ret;
529 
530 	/* enable irq */
531 	enable_irq(lp->spi->irq);
532 
533 	/* Unmask SEQ interrupt */
534 	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
535 				 DAR_PHY_CTRL2_SEQMSK, 0x0);
536 	if (ret < 0)
537 		return ret;
538 
539 	/* Start the RX sequence */
540 	dev_dbg(printdev(lp), "start the RX sequence\n");
541 	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
542 				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
543 	if (ret < 0)
544 		return ret;
545 
546 	return 0;
547 }
548 
549 static void
550 mcr20a_stop(struct ieee802154_hw *hw)
551 {
552 	struct mcr20a_local *lp = hw->priv;
553 
554 	dev_dbg(printdev(lp), "%s\n", __func__);
555 
556 	/* stop all running sequence */
557 	regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
558 			   DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
559 
560 	/* disable irq */
561 	disable_irq(lp->spi->irq);
562 }
563 
564 static int
565 mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
566 			struct ieee802154_hw_addr_filt *filt,
567 			unsigned long changed)
568 {
569 	struct mcr20a_local *lp = hw->priv;
570 
571 	dev_dbg(printdev(lp), "%s\n", __func__);
572 
573 	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
574 		u16 addr = le16_to_cpu(filt->short_addr);
575 
576 		regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
577 		regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
578 	}
579 
580 	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
581 		u16 pan = le16_to_cpu(filt->pan_id);
582 
583 		regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
584 		regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
585 	}
586 
587 	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
588 		u8 addr[8], i;
589 
590 		memcpy(addr, &filt->ieee_addr, 8);
591 		for (i = 0; i < 8; i++)
592 			regmap_write(lp->regmap_iar,
593 				     IAR_MACLONGADDRS0_0 + i, addr[i]);
594 	}
595 
596 	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
597 		if (filt->pan_coord) {
598 			regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
599 					   DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
600 		} else {
601 			regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
602 					   DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
603 		}
604 	}
605 
606 	return 0;
607 }
608 
609 /* -30 dBm to 10 dBm */
610 #define MCR20A_MAX_TX_POWERS 0x14
611 static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
612 	-3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
613 	-1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
614 };
615 
616 static int
617 mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
618 {
619 	struct mcr20a_local *lp = hw->priv;
620 	u32 i;
621 
622 	dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
623 
624 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
625 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
626 			return regmap_write(lp->regmap_dar, DAR_PA_PWR,
627 					    ((i + 8) & 0x1F));
628 	}
629 
630 	return -EINVAL;
631 }
632 
633 #define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
634 static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
635 
636 static int
637 mcr20a_set_cca_mode(struct ieee802154_hw *hw,
638 		    const struct wpan_phy_cca *cca)
639 {
640 	struct mcr20a_local *lp = hw->priv;
641 	unsigned int cca_mode = 0xff;
642 	bool cca_mode_and = false;
643 	int ret;
644 
645 	dev_dbg(printdev(lp), "%s\n", __func__);
646 
647 	/* mapping 802.15.4 to driver spec */
648 	switch (cca->mode) {
649 	case NL802154_CCA_ENERGY:
650 		cca_mode = MCR20A_CCA_MODE1;
651 		break;
652 	case NL802154_CCA_CARRIER:
653 		cca_mode = MCR20A_CCA_MODE2;
654 		break;
655 	case NL802154_CCA_ENERGY_CARRIER:
656 		switch (cca->opt) {
657 		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
658 			cca_mode = MCR20A_CCA_MODE3;
659 			cca_mode_and = true;
660 			break;
661 		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
662 			cca_mode = MCR20A_CCA_MODE3;
663 			cca_mode_and = false;
664 			break;
665 		default:
666 			return -EINVAL;
667 		}
668 		break;
669 	default:
670 		return -EINVAL;
671 	}
672 	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
673 				 DAR_PHY_CTRL4_CCATYPE_MASK,
674 				 cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
675 	if (ret < 0)
676 		return ret;
677 
678 	if (cca_mode == MCR20A_CCA_MODE3) {
679 		if (cca_mode_and) {
680 			ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
681 						 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
682 						 0x08);
683 		} else {
684 			ret = regmap_update_bits(lp->regmap_iar,
685 						 IAR_CCA_CTRL,
686 						 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
687 						 0x00);
688 		}
689 		if (ret < 0)
690 			return ret;
691 	}
692 
693 	return ret;
694 }
695 
696 static int
697 mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
698 {
699 	struct mcr20a_local *lp = hw->priv;
700 	u32 i;
701 
702 	dev_dbg(printdev(lp), "%s\n", __func__);
703 
704 	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
705 		if (hw->phy->supported.cca_ed_levels[i] == mbm)
706 			return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
707 	}
708 
709 	return 0;
710 }
711 
712 static int
713 mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
714 {
715 	struct mcr20a_local *lp = hw->priv;
716 	int ret;
717 	u8 rx_frame_filter_reg = 0x0;
718 
719 	dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
720 
721 	if (on) {
722 		/* All frame types accepted*/
723 		rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
724 		rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
725 				  IAR_RX_FRAME_FLT_NS_FT);
726 
727 		ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
728 					 DAR_PHY_CTRL4_PROMISCUOUS,
729 					 DAR_PHY_CTRL4_PROMISCUOUS);
730 		if (ret < 0)
731 			return ret;
732 
733 		ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
734 				   rx_frame_filter_reg);
735 		if (ret < 0)
736 			return ret;
737 	} else {
738 		ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
739 					 DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
740 		if (ret < 0)
741 			return ret;
742 
743 		ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
744 				   IAR_RX_FRAME_FLT_FRM_VER |
745 				   IAR_RX_FRAME_FLT_BEACON_FT |
746 				   IAR_RX_FRAME_FLT_DATA_FT |
747 				   IAR_RX_FRAME_FLT_CMD_FT);
748 		if (ret < 0)
749 			return ret;
750 	}
751 
752 	return 0;
753 }
754 
755 static const struct ieee802154_ops mcr20a_hw_ops = {
756 	.owner			= THIS_MODULE,
757 	.xmit_async		= mcr20a_xmit,
758 	.ed			= mcr20a_ed,
759 	.set_channel		= mcr20a_set_channel,
760 	.start			= mcr20a_start,
761 	.stop			= mcr20a_stop,
762 	.set_hw_addr_filt	= mcr20a_set_hw_addr_filt,
763 	.set_txpower		= mcr20a_set_txpower,
764 	.set_cca_mode		= mcr20a_set_cca_mode,
765 	.set_cca_ed_level	= mcr20a_set_cca_ed_level,
766 	.set_promiscuous_mode	= mcr20a_set_promiscuous_mode,
767 };
768 
769 static int
770 mcr20a_request_rx(struct mcr20a_local *lp)
771 {
772 	dev_dbg(printdev(lp), "%s\n", __func__);
773 
774 	/* Start the RX sequence */
775 	regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
776 				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
777 
778 	return 0;
779 }
780 
781 static void
782 mcr20a_handle_rx_read_buf_complete(void *context)
783 {
784 	struct mcr20a_local *lp = context;
785 	u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
786 	struct sk_buff *skb;
787 
788 	dev_dbg(printdev(lp), "%s\n", __func__);
789 
790 	dev_dbg(printdev(lp), "RX is done\n");
791 
792 	if (!ieee802154_is_valid_psdu_len(len)) {
793 		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
794 		len = IEEE802154_MTU;
795 	}
796 
797 	len = len - 2;  /* get rid of frame check field */
798 
799 	skb = dev_alloc_skb(len);
800 	if (!skb)
801 		return;
802 
803 	__skb_put_data(skb, lp->rx_buf, len);
804 	ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
805 
806 	print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
807 			     lp->rx_buf, len, 0);
808 	pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
809 
810 	/* start RX sequence */
811 	mcr20a_request_rx(lp);
812 }
813 
814 static void
815 mcr20a_handle_rx_read_len_complete(void *context)
816 {
817 	struct mcr20a_local *lp = context;
818 	u8 len;
819 	int ret;
820 
821 	dev_dbg(printdev(lp), "%s\n", __func__);
822 
823 	/* get the length of received frame */
824 	len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
825 	dev_dbg(printdev(lp), "frame len : %d\n", len);
826 
827 	/* prepare to read the rx buf */
828 	lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
829 	lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
830 	lp->rx_xfer_buf.len = len;
831 
832 	ret = spi_async(lp->spi, &lp->rx_buf_msg);
833 	if (ret)
834 		dev_err(printdev(lp), "failed to read rx buffer length\n");
835 }
836 
837 static int
838 mcr20a_handle_rx(struct mcr20a_local *lp)
839 {
840 	dev_dbg(printdev(lp), "%s\n", __func__);
841 	lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
842 	lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
843 	lp->reg_xfer_data.len	= 1;
844 
845 	return spi_async(lp->spi, &lp->reg_msg);
846 }
847 
848 static int
849 mcr20a_handle_tx_complete(struct mcr20a_local *lp)
850 {
851 	dev_dbg(printdev(lp), "%s\n", __func__);
852 
853 	ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
854 
855 	return mcr20a_request_rx(lp);
856 }
857 
858 static int
859 mcr20a_handle_tx(struct mcr20a_local *lp)
860 {
861 	int ret;
862 
863 	dev_dbg(printdev(lp), "%s\n", __func__);
864 
865 	/* write tx buffer */
866 	lp->tx_header[0]	= MCR20A_BURST_WRITE_PACKET_BUF;
867 	/* add 2 bytes of FCS */
868 	lp->tx_len[0]		= lp->tx_skb->len + 2;
869 	lp->tx_xfer_buf.tx_buf	= lp->tx_skb->data;
870 	/* add 1 byte psduLength */
871 	lp->tx_xfer_buf.len	= lp->tx_skb->len + 1;
872 
873 	ret = spi_async(lp->spi, &lp->tx_buf_msg);
874 	if (ret) {
875 		dev_err(printdev(lp), "SPI write Failed for TX buf\n");
876 		return ret;
877 	}
878 
879 	return 0;
880 }
881 
882 static void
883 mcr20a_irq_clean_complete(void *context)
884 {
885 	struct mcr20a_local *lp = context;
886 	u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
887 
888 	dev_dbg(printdev(lp), "%s\n", __func__);
889 
890 	enable_irq(lp->spi->irq);
891 
892 	dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
893 		lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
894 
895 	switch (seq_state) {
896 	/* TX IRQ, RX IRQ and SEQ IRQ */
897 	case (DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
898 		if (lp->is_tx) {
899 			lp->is_tx = 0;
900 			dev_dbg(printdev(lp), "TX is done. No ACK\n");
901 			mcr20a_handle_tx_complete(lp);
902 		}
903 		break;
904 	case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_SEQIRQ):
905 		/* rx is starting */
906 		dev_dbg(printdev(lp), "RX is starting\n");
907 		mcr20a_handle_rx(lp);
908 		break;
909 	case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
910 		if (lp->is_tx) {
911 			/* tx is done */
912 			lp->is_tx = 0;
913 			dev_dbg(printdev(lp), "TX is done. Get ACK\n");
914 			mcr20a_handle_tx_complete(lp);
915 		} else {
916 			/* rx is starting */
917 			dev_dbg(printdev(lp), "RX is starting\n");
918 			mcr20a_handle_rx(lp);
919 		}
920 		break;
921 	case (DAR_IRQSTS1_SEQIRQ):
922 		if (lp->is_tx) {
923 			dev_dbg(printdev(lp), "TX is starting\n");
924 			mcr20a_handle_tx(lp);
925 		} else {
926 			dev_dbg(printdev(lp), "MCR20A is stop\n");
927 		}
928 		break;
929 	}
930 }
931 
932 static void mcr20a_irq_status_complete(void *context)
933 {
934 	int ret;
935 	struct mcr20a_local *lp = context;
936 
937 	dev_dbg(printdev(lp), "%s\n", __func__);
938 	regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
939 				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
940 
941 	lp->reg_msg.complete = mcr20a_irq_clean_complete;
942 	lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
943 	memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
944 	lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
945 
946 	ret = spi_async(lp->spi, &lp->reg_msg);
947 
948 	if (ret)
949 		dev_err(printdev(lp), "failed to clean irq status\n");
950 }
951 
952 static irqreturn_t mcr20a_irq_isr(int irq, void *data)
953 {
954 	struct mcr20a_local *lp = data;
955 	int ret;
956 
957 	disable_irq_nosync(irq);
958 
959 	lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
960 	/* read IRQSTSx */
961 	ret = spi_async(lp->spi, &lp->irq_msg);
962 	if (ret) {
963 		enable_irq(irq);
964 		return IRQ_NONE;
965 	}
966 
967 	return IRQ_HANDLED;
968 }
969 
970 static void mcr20a_hw_setup(struct mcr20a_local *lp)
971 {
972 	u8 i;
973 	struct ieee802154_hw *hw = lp->hw;
974 	struct wpan_phy *phy = lp->hw->phy;
975 
976 	dev_dbg(printdev(lp), "%s\n", __func__);
977 
978 	hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
979 			IEEE802154_HW_AFILT |
980 			IEEE802154_HW_PROMISCUOUS;
981 
982 	phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
983 			WPAN_PHY_FLAG_CCA_MODE;
984 
985 	phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
986 		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
987 	phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
988 		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
989 
990 	/* initiating cca_ed_levels */
991 	for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
992 	      ++i) {
993 		mcr20a_ed_levels[i] =  -i * 100;
994 	}
995 
996 	phy->supported.cca_ed_levels = mcr20a_ed_levels;
997 	phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
998 
999 	phy->cca.mode = NL802154_CCA_ENERGY;
1000 
1001 	phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
1002 	phy->current_page = 0;
1003 	/* MCR20A default reset value */
1004 	phy->current_channel = 20;
1005 	phy->supported.tx_powers = mcr20a_powers;
1006 	phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
1007 	phy->cca_ed_level = phy->supported.cca_ed_levels[75];
1008 	phy->transmit_power = phy->supported.tx_powers[0x0F];
1009 }
1010 
1011 static void
1012 mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
1013 {
1014 	spi_message_init(&lp->tx_buf_msg);
1015 	lp->tx_buf_msg.context = lp;
1016 	lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
1017 
1018 	lp->tx_xfer_header.len = 1;
1019 	lp->tx_xfer_header.tx_buf = lp->tx_header;
1020 
1021 	lp->tx_xfer_len.len = 1;
1022 	lp->tx_xfer_len.tx_buf = lp->tx_len;
1023 
1024 	spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
1025 	spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
1026 	spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
1027 }
1028 
1029 static void
1030 mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
1031 {
1032 	spi_message_init(&lp->reg_msg);
1033 	lp->reg_msg.context = lp;
1034 
1035 	lp->reg_xfer_cmd.len = 1;
1036 	lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
1037 	lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
1038 
1039 	lp->reg_xfer_data.rx_buf = lp->reg_data;
1040 	lp->reg_xfer_data.tx_buf = lp->reg_data;
1041 
1042 	spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
1043 	spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
1044 
1045 	spi_message_init(&lp->rx_buf_msg);
1046 	lp->rx_buf_msg.context = lp;
1047 	lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
1048 	lp->rx_xfer_header.len = 1;
1049 	lp->rx_xfer_header.tx_buf = lp->rx_header;
1050 	lp->rx_xfer_header.rx_buf = lp->rx_header;
1051 
1052 	lp->rx_xfer_buf.rx_buf = lp->rx_buf;
1053 
1054 	lp->rx_xfer_lqi.len = 1;
1055 	lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
1056 
1057 	spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
1058 	spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
1059 	spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
1060 }
1061 
1062 static void
1063 mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
1064 {
1065 	spi_message_init(&lp->irq_msg);
1066 	lp->irq_msg.context		= lp;
1067 	lp->irq_msg.complete	= mcr20a_irq_status_complete;
1068 	lp->irq_xfer_header.len	= 1;
1069 	lp->irq_xfer_header.tx_buf = lp->irq_header;
1070 	lp->irq_xfer_header.rx_buf = lp->irq_header;
1071 
1072 	lp->irq_xfer_data.len	= MCR20A_IRQSTS_NUM;
1073 	lp->irq_xfer_data.rx_buf = lp->irq_data;
1074 
1075 	spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
1076 	spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
1077 }
1078 
1079 static int
1080 mcr20a_phy_init(struct mcr20a_local *lp)
1081 {
1082 	u8 index;
1083 	unsigned int phy_reg = 0;
1084 	int ret;
1085 
1086 	dev_dbg(printdev(lp), "%s\n", __func__);
1087 
1088 	/* Disable Tristate on COCO MISO for SPI reads */
1089 	ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
1090 	if (ret)
1091 		goto err_ret;
1092 
1093 	/* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
1094 	 * immediately after init
1095 	 */
1096 	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
1097 	if (ret)
1098 		goto err_ret;
1099 
1100 	/* Clear all PP IRQ bits in IRQSTS2 */
1101 	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
1102 			   DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
1103 			   DAR_IRQSTS2_WAKE_IRQ);
1104 	if (ret)
1105 		goto err_ret;
1106 
1107 	/* Disable all timer interrupts */
1108 	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
1109 	if (ret)
1110 		goto err_ret;
1111 
1112 	/*  PHY_CTRL1 : default HW settings + AUTOACK enabled */
1113 	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
1114 				 DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
1115 
1116 	/*  PHY_CTRL2 : disable all interrupts */
1117 	ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
1118 	if (ret)
1119 		goto err_ret;
1120 
1121 	/* PHY_CTRL3 : disable all timers and remaining interrupts */
1122 	ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
1123 			   DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
1124 			   DAR_PHY_CTRL3_WAKE_MSK);
1125 	if (ret)
1126 		goto err_ret;
1127 
1128 	/* SRC_CTRL : enable Acknowledge Frame Pending and
1129 	 * Source Address Matching Enable
1130 	 */
1131 	ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
1132 			   DAR_SRC_CTRL_ACK_FRM_PND |
1133 			   (DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
1134 	if (ret)
1135 		goto err_ret;
1136 
1137 	/*  RX_FRAME_FILTER */
1138 	/*  FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
1139 	ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
1140 			   IAR_RX_FRAME_FLT_FRM_VER |
1141 			   IAR_RX_FRAME_FLT_BEACON_FT |
1142 			   IAR_RX_FRAME_FLT_DATA_FT |
1143 			   IAR_RX_FRAME_FLT_CMD_FT);
1144 	if (ret)
1145 		goto err_ret;
1146 
1147 	dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
1148 		 MCR20A_OVERWRITE_VERSION);
1149 
1150 	/* Overwrites direct registers  */
1151 	ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
1152 			   MCR20A_OVERWRITE_VERSION);
1153 	if (ret)
1154 		goto err_ret;
1155 
1156 	/* Overwrites indirect registers  */
1157 	ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
1158 				     ARRAY_SIZE(mar20a_iar_overwrites));
1159 	if (ret)
1160 		goto err_ret;
1161 
1162 	/* Clear HW indirect queue */
1163 	dev_dbg(printdev(lp), "clear HW indirect queue\n");
1164 	for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
1165 		phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
1166 			       DAR_SRC_CTRL_INDEX_SHIFT)
1167 			      | (DAR_SRC_CTRL_SRCADDR_EN)
1168 			      | (DAR_SRC_CTRL_INDEX_DISABLE));
1169 		ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
1170 		if (ret)
1171 			goto err_ret;
1172 		phy_reg = 0;
1173 	}
1174 
1175 	/* Assign HW Indirect hash table to PAN0 */
1176 	ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
1177 	if (ret)
1178 		goto err_ret;
1179 
1180 	/* Clear current lvl */
1181 	phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
1182 
1183 	/* Set new lvl */
1184 	phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
1185 		IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
1186 	ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
1187 	if (ret)
1188 		goto err_ret;
1189 
1190 	/* Set CCA threshold to -75 dBm */
1191 	ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
1192 	if (ret)
1193 		goto err_ret;
1194 
1195 	/* Set prescaller to obtain 1 symbol (16us) timebase */
1196 	ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
1197 	if (ret)
1198 		goto err_ret;
1199 
1200 	/* Enable autodoze mode. */
1201 	ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
1202 				 DAR_PWR_MODES_AUTODOZE,
1203 				 DAR_PWR_MODES_AUTODOZE);
1204 	if (ret)
1205 		goto err_ret;
1206 
1207 	/* Disable clk_out */
1208 	ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
1209 				 DAR_CLK_OUT_CTRL_EN, 0x0);
1210 	if (ret)
1211 		goto err_ret;
1212 
1213 	return 0;
1214 
1215 err_ret:
1216 	return ret;
1217 }
1218 
1219 static int
1220 mcr20a_probe(struct spi_device *spi)
1221 {
1222 	struct ieee802154_hw *hw;
1223 	struct mcr20a_local *lp;
1224 	struct gpio_desc *rst_b;
1225 	int irq_type;
1226 	int ret = -ENOMEM;
1227 
1228 	dev_dbg(&spi->dev, "%s\n", __func__);
1229 
1230 	if (!spi->irq) {
1231 		dev_err(&spi->dev, "no IRQ specified\n");
1232 		return -EINVAL;
1233 	}
1234 
1235 	rst_b = devm_gpiod_get(&spi->dev, "rst_b", GPIOD_OUT_HIGH);
1236 	if (IS_ERR(rst_b)) {
1237 		ret = PTR_ERR(rst_b);
1238 		if (ret != -EPROBE_DEFER)
1239 			dev_err(&spi->dev, "Failed to get 'rst_b' gpio: %d", ret);
1240 		return ret;
1241 	}
1242 
1243 	/* reset mcr20a */
1244 	usleep_range(10, 20);
1245 	gpiod_set_value_cansleep(rst_b, 1);
1246 	usleep_range(10, 20);
1247 	gpiod_set_value_cansleep(rst_b, 0);
1248 	usleep_range(120, 240);
1249 
1250 	/* allocate ieee802154_hw and private data */
1251 	hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
1252 	if (!hw) {
1253 		dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
1254 		return ret;
1255 	}
1256 
1257 	/* init mcr20a local data */
1258 	lp = hw->priv;
1259 	lp->hw = hw;
1260 	lp->spi = spi;
1261 
1262 	/* init ieee802154_hw */
1263 	hw->parent = &spi->dev;
1264 	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1265 
1266 	/* init buf */
1267 	lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
1268 
1269 	if (!lp->buf) {
1270 		ret = -ENOMEM;
1271 		goto free_dev;
1272 	}
1273 
1274 	mcr20a_setup_tx_spi_messages(lp);
1275 	mcr20a_setup_rx_spi_messages(lp);
1276 	mcr20a_setup_irq_spi_messages(lp);
1277 
1278 	/* setup regmap */
1279 	lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
1280 	if (IS_ERR(lp->regmap_dar)) {
1281 		ret = PTR_ERR(lp->regmap_dar);
1282 		dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
1283 			ret);
1284 		goto free_dev;
1285 	}
1286 
1287 	lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
1288 	if (IS_ERR(lp->regmap_iar)) {
1289 		ret = PTR_ERR(lp->regmap_iar);
1290 		dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
1291 		goto free_dev;
1292 	}
1293 
1294 	mcr20a_hw_setup(lp);
1295 
1296 	spi_set_drvdata(spi, lp);
1297 
1298 	ret = mcr20a_phy_init(lp);
1299 	if (ret < 0) {
1300 		dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
1301 		goto free_dev;
1302 	}
1303 
1304 	irq_type = irq_get_trigger_type(spi->irq);
1305 	if (!irq_type)
1306 		irq_type = IRQF_TRIGGER_FALLING;
1307 
1308 	ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
1309 			       irq_type, dev_name(&spi->dev), lp);
1310 	if (ret) {
1311 		dev_err(&spi->dev, "could not request_irq for mcr20a\n");
1312 		ret = -ENODEV;
1313 		goto free_dev;
1314 	}
1315 
1316 	/* disable_irq by default and wait for starting hardware */
1317 	disable_irq(spi->irq);
1318 
1319 	ret = ieee802154_register_hw(hw);
1320 	if (ret) {
1321 		dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
1322 		goto free_dev;
1323 	}
1324 
1325 	return ret;
1326 
1327 free_dev:
1328 	ieee802154_free_hw(lp->hw);
1329 
1330 	return ret;
1331 }
1332 
1333 static void mcr20a_remove(struct spi_device *spi)
1334 {
1335 	struct mcr20a_local *lp = spi_get_drvdata(spi);
1336 
1337 	dev_dbg(&spi->dev, "%s\n", __func__);
1338 
1339 	ieee802154_unregister_hw(lp->hw);
1340 	ieee802154_free_hw(lp->hw);
1341 }
1342 
1343 static const struct of_device_id mcr20a_of_match[] = {
1344 	{ .compatible = "nxp,mcr20a", },
1345 	{ },
1346 };
1347 MODULE_DEVICE_TABLE(of, mcr20a_of_match);
1348 
1349 static const struct spi_device_id mcr20a_device_id[] = {
1350 	{ .name = "mcr20a", },
1351 	{ },
1352 };
1353 MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
1354 
1355 static struct spi_driver mcr20a_driver = {
1356 	.id_table = mcr20a_device_id,
1357 	.driver = {
1358 		.of_match_table = of_match_ptr(mcr20a_of_match),
1359 		.name	= "mcr20a",
1360 	},
1361 	.probe      = mcr20a_probe,
1362 	.remove     = mcr20a_remove,
1363 };
1364 
1365 module_spi_driver(mcr20a_driver);
1366 
1367 MODULE_DESCRIPTION("MCR20A Transceiver Driver");
1368 MODULE_LICENSE("GPL v2");
1369 MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");
1370