1 /* 2 * http://www.cascoda.com/products/ca-821x/ 3 * Copyright (c) 2016, Cascoda, Ltd. 4 * All rights reserved. 5 * 6 * This code is dual-licensed under both GPLv2 and 3-clause BSD. What follows is 7 * the license notice for both respectively. 8 * 9 ******************************************************************************* 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 2 14 * of the License, or (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 ******************************************************************************* 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions are met: 25 * 26 * 1. Redistributions of source code must retain the above copyright notice, 27 * this list of conditions and the following disclaimer. 28 * 29 * 2. Redistributions in binary form must reproduce the above copyright notice, 30 * this list of conditions and the following disclaimer in the documentation 31 * and/or other materials provided with the distribution. 32 * 33 * 3. Neither the name of the copyright holder nor the names of its contributors 34 * may be used to endorse or promote products derived from this software without 35 * specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 38 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE 41 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 42 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 43 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 44 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 45 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 47 * POSSIBILITY OF SUCH DAMAGE. 48 */ 49 50 #include <linux/cdev.h> 51 #include <linux/clk-provider.h> 52 #include <linux/debugfs.h> 53 #include <linux/delay.h> 54 #include <linux/gpio/consumer.h> 55 #include <linux/gpio.h> 56 #include <linux/ieee802154.h> 57 #include <linux/io.h> 58 #include <linux/kfifo.h> 59 #include <linux/of.h> 60 #include <linux/of_gpio.h> 61 #include <linux/module.h> 62 #include <linux/mutex.h> 63 #include <linux/poll.h> 64 #include <linux/skbuff.h> 65 #include <linux/slab.h> 66 #include <linux/spi/spi.h> 67 #include <linux/spinlock.h> 68 #include <linux/string.h> 69 #include <linux/workqueue.h> 70 #include <linux/interrupt.h> 71 72 #include <net/ieee802154_netdev.h> 73 #include <net/mac802154.h> 74 75 #define DRIVER_NAME "ca8210" 76 77 /* external clock frequencies */ 78 #define ONE_MHZ 1000000 79 #define TWO_MHZ (2 * ONE_MHZ) 80 #define FOUR_MHZ (4 * ONE_MHZ) 81 #define EIGHT_MHZ (8 * ONE_MHZ) 82 #define SIXTEEN_MHZ (16 * ONE_MHZ) 83 84 /* spi constants */ 85 #define CA8210_SPI_BUF_SIZE 256 86 #define CA8210_SYNC_TIMEOUT 1000 /* Timeout for synchronous commands [ms] */ 87 88 /* test interface constants */ 89 #define CA8210_TEST_INT_FILE_NAME "ca8210_test" 90 #define CA8210_TEST_INT_FIFO_SIZE 256 91 92 /* HWME attribute IDs */ 93 #define HWME_EDTHRESHOLD (0x04) 94 #define HWME_EDVALUE (0x06) 95 #define HWME_SYSCLKOUT (0x0F) 96 #define HWME_LQILIMIT (0x11) 97 98 /* TDME attribute IDs */ 99 #define TDME_CHANNEL (0x00) 100 #define TDME_ATM_CONFIG (0x06) 101 102 #define MAX_HWME_ATTRIBUTE_SIZE 16 103 #define MAX_TDME_ATTRIBUTE_SIZE 2 104 105 /* PHY/MAC PIB Attribute Enumerations */ 106 #define PHY_CURRENT_CHANNEL (0x00) 107 #define PHY_TRANSMIT_POWER (0x02) 108 #define PHY_CCA_MODE (0x03) 109 #define MAC_ASSOCIATION_PERMIT (0x41) 110 #define MAC_AUTO_REQUEST (0x42) 111 #define MAC_BATT_LIFE_EXT (0x43) 112 #define MAC_BATT_LIFE_EXT_PERIODS (0x44) 113 #define MAC_BEACON_PAYLOAD (0x45) 114 #define MAC_BEACON_PAYLOAD_LENGTH (0x46) 115 #define MAC_BEACON_ORDER (0x47) 116 #define MAC_GTS_PERMIT (0x4d) 117 #define MAC_MAX_CSMA_BACKOFFS (0x4e) 118 #define MAC_MIN_BE (0x4f) 119 #define MAC_PAN_ID (0x50) 120 #define MAC_PROMISCUOUS_MODE (0x51) 121 #define MAC_RX_ON_WHEN_IDLE (0x52) 122 #define MAC_SHORT_ADDRESS (0x53) 123 #define MAC_SUPERFRAME_ORDER (0x54) 124 #define MAC_ASSOCIATED_PAN_COORD (0x56) 125 #define MAC_MAX_BE (0x57) 126 #define MAC_MAX_FRAME_RETRIES (0x59) 127 #define MAC_RESPONSE_WAIT_TIME (0x5A) 128 #define MAC_SECURITY_ENABLED (0x5D) 129 130 #define MAC_AUTO_REQUEST_SECURITY_LEVEL (0x78) 131 #define MAC_AUTO_REQUEST_KEY_ID_MODE (0x79) 132 133 #define NS_IEEE_ADDRESS (0xFF) /* Non-standard IEEE address */ 134 135 /* MAC Address Mode Definitions */ 136 #define MAC_MODE_NO_ADDR (0x00) 137 #define MAC_MODE_SHORT_ADDR (0x02) 138 #define MAC_MODE_LONG_ADDR (0x03) 139 140 /* MAC constants */ 141 #define MAX_BEACON_OVERHEAD (75) 142 #define MAX_BEACON_PAYLOAD_LENGTH (IEEE802154_MTU - MAX_BEACON_OVERHEAD) 143 144 #define MAX_ATTRIBUTE_SIZE (122) 145 #define MAX_DATA_SIZE (114) 146 147 #define CA8210_VALID_CHANNELS (0x07FFF800) 148 149 /* MAC workarounds for V1.1 and MPW silicon (V0.x) */ 150 #define CA8210_MAC_WORKAROUNDS (0) 151 #define CA8210_MAC_MPW (0) 152 153 /* memory manipulation macros */ 154 #define LS_BYTE(x) ((u8)((x) & 0xFF)) 155 #define MS_BYTE(x) ((u8)(((x) >> 8) & 0xFF)) 156 157 /* message ID codes in SPI commands */ 158 /* downstream */ 159 #define MCPS_DATA_REQUEST (0x00) 160 #define MLME_ASSOCIATE_REQUEST (0x02) 161 #define MLME_ASSOCIATE_RESPONSE (0x03) 162 #define MLME_DISASSOCIATE_REQUEST (0x04) 163 #define MLME_GET_REQUEST (0x05) 164 #define MLME_ORPHAN_RESPONSE (0x06) 165 #define MLME_RESET_REQUEST (0x07) 166 #define MLME_RX_ENABLE_REQUEST (0x08) 167 #define MLME_SCAN_REQUEST (0x09) 168 #define MLME_SET_REQUEST (0x0A) 169 #define MLME_START_REQUEST (0x0B) 170 #define MLME_POLL_REQUEST (0x0D) 171 #define HWME_SET_REQUEST (0x0E) 172 #define HWME_GET_REQUEST (0x0F) 173 #define TDME_SETSFR_REQUEST (0x11) 174 #define TDME_GETSFR_REQUEST (0x12) 175 #define TDME_SET_REQUEST (0x14) 176 /* upstream */ 177 #define MCPS_DATA_INDICATION (0x00) 178 #define MCPS_DATA_CONFIRM (0x01) 179 #define MLME_RESET_CONFIRM (0x0A) 180 #define MLME_SET_CONFIRM (0x0E) 181 #define MLME_START_CONFIRM (0x0F) 182 #define HWME_SET_CONFIRM (0x12) 183 #define HWME_GET_CONFIRM (0x13) 184 #define HWME_WAKEUP_INDICATION (0x15) 185 #define TDME_SETSFR_CONFIRM (0x17) 186 187 /* SPI command IDs */ 188 /* bit indicating a confirm or indication from slave to master */ 189 #define SPI_S2M (0x20) 190 /* bit indicating a synchronous message */ 191 #define SPI_SYN (0x40) 192 193 /* SPI command definitions */ 194 #define SPI_IDLE (0xFF) 195 #define SPI_NACK (0xF0) 196 197 #define SPI_MCPS_DATA_REQUEST (MCPS_DATA_REQUEST) 198 #define SPI_MCPS_DATA_INDICATION (MCPS_DATA_INDICATION + SPI_S2M) 199 #define SPI_MCPS_DATA_CONFIRM (MCPS_DATA_CONFIRM + SPI_S2M) 200 201 #define SPI_MLME_ASSOCIATE_REQUEST (MLME_ASSOCIATE_REQUEST) 202 #define SPI_MLME_RESET_REQUEST (MLME_RESET_REQUEST + SPI_SYN) 203 #define SPI_MLME_SET_REQUEST (MLME_SET_REQUEST + SPI_SYN) 204 #define SPI_MLME_START_REQUEST (MLME_START_REQUEST + SPI_SYN) 205 #define SPI_MLME_RESET_CONFIRM (MLME_RESET_CONFIRM + SPI_S2M + SPI_SYN) 206 #define SPI_MLME_SET_CONFIRM (MLME_SET_CONFIRM + SPI_S2M + SPI_SYN) 207 #define SPI_MLME_START_CONFIRM (MLME_START_CONFIRM + SPI_S2M + SPI_SYN) 208 209 #define SPI_HWME_SET_REQUEST (HWME_SET_REQUEST + SPI_SYN) 210 #define SPI_HWME_GET_REQUEST (HWME_GET_REQUEST + SPI_SYN) 211 #define SPI_HWME_SET_CONFIRM (HWME_SET_CONFIRM + SPI_S2M + SPI_SYN) 212 #define SPI_HWME_GET_CONFIRM (HWME_GET_CONFIRM + SPI_S2M + SPI_SYN) 213 #define SPI_HWME_WAKEUP_INDICATION (HWME_WAKEUP_INDICATION + SPI_S2M) 214 215 #define SPI_TDME_SETSFR_REQUEST (TDME_SETSFR_REQUEST + SPI_SYN) 216 #define SPI_TDME_SET_REQUEST (TDME_SET_REQUEST + SPI_SYN) 217 #define SPI_TDME_SETSFR_CONFIRM (TDME_SETSFR_CONFIRM + SPI_S2M + SPI_SYN) 218 219 /* TDME SFR addresses */ 220 /* Page 0 */ 221 #define CA8210_SFR_PACFG (0xB1) 222 #define CA8210_SFR_MACCON (0xD8) 223 #define CA8210_SFR_PACFGIB (0xFE) 224 /* Page 1 */ 225 #define CA8210_SFR_LOTXCAL (0xBF) 226 #define CA8210_SFR_PTHRH (0xD1) 227 #define CA8210_SFR_PRECFG (0xD3) 228 #define CA8210_SFR_LNAGX40 (0xE1) 229 #define CA8210_SFR_LNAGX41 (0xE2) 230 #define CA8210_SFR_LNAGX42 (0xE3) 231 #define CA8210_SFR_LNAGX43 (0xE4) 232 #define CA8210_SFR_LNAGX44 (0xE5) 233 #define CA8210_SFR_LNAGX45 (0xE6) 234 #define CA8210_SFR_LNAGX46 (0xE7) 235 #define CA8210_SFR_LNAGX47 (0xE9) 236 237 #define PACFGIB_DEFAULT_CURRENT (0x3F) 238 #define PTHRH_DEFAULT_THRESHOLD (0x5A) 239 #define LNAGX40_DEFAULT_GAIN (0x29) /* 10dB */ 240 #define LNAGX41_DEFAULT_GAIN (0x54) /* 21dB */ 241 #define LNAGX42_DEFAULT_GAIN (0x6C) /* 27dB */ 242 #define LNAGX43_DEFAULT_GAIN (0x7A) /* 30dB */ 243 #define LNAGX44_DEFAULT_GAIN (0x84) /* 33dB */ 244 #define LNAGX45_DEFAULT_GAIN (0x8B) /* 34dB */ 245 #define LNAGX46_DEFAULT_GAIN (0x92) /* 36dB */ 246 #define LNAGX47_DEFAULT_GAIN (0x96) /* 37dB */ 247 248 #define CA8210_IOCTL_HARD_RESET (0x00) 249 250 /* Structs/Enums */ 251 252 /** 253 * struct cas_control - spi transfer structure 254 * @msg: spi_message for each exchange 255 * @transfer: spi_transfer for each exchange 256 * @tx_buf: source array for transmission 257 * @tx_in_buf: array storing bytes received during transmission 258 * @priv: pointer to private data 259 * 260 * This structure stores all the necessary data passed around during a single 261 * spi exchange. 262 */ 263 struct cas_control { 264 struct spi_message msg; 265 struct spi_transfer transfer; 266 267 u8 tx_buf[CA8210_SPI_BUF_SIZE]; 268 u8 tx_in_buf[CA8210_SPI_BUF_SIZE]; 269 270 struct ca8210_priv *priv; 271 }; 272 273 /** 274 * struct ca8210_test - ca8210 test interface structure 275 * @ca8210_dfs_spi_int: pointer to the entry in the debug fs for this device 276 * @up_fifo: fifo for upstream messages 277 * @readq: read wait queue 278 * 279 * This structure stores all the data pertaining to the debug interface 280 */ 281 struct ca8210_test { 282 struct dentry *ca8210_dfs_spi_int; 283 struct kfifo up_fifo; 284 wait_queue_head_t readq; 285 }; 286 287 /** 288 * struct ca8210_priv - ca8210 private data structure 289 * @spi: pointer to the ca8210 spi device object 290 * @hw: pointer to the ca8210 ieee802154_hw object 291 * @hw_registered: true if hw has been registered with ieee802154 292 * @lock: spinlock protecting the private data area 293 * @mlme_workqueue: workqueue for triggering MLME Reset 294 * @irq_workqueue: workqueue for irq processing 295 * @tx_skb: current socket buffer to transmit 296 * @nextmsduhandle: msdu handle to pass to the 15.4 MAC layer for the 297 * next transmission 298 * @clk: external clock provided by the ca8210 299 * @last_dsn: sequence number of last data packet received, for 300 * resend detection 301 * @test: test interface data section for this instance 302 * @async_tx_pending: true if an asynchronous transmission was started and 303 * is not complete 304 * @sync_command_response: pointer to buffer to fill with sync response 305 * @ca8210_is_awake: nonzero if ca8210 is initialised, ready for comms 306 * @sync_down: counts number of downstream synchronous commands 307 * @sync_up: counts number of upstream synchronous commands 308 * @spi_transfer_complete: completion object for a single spi_transfer 309 * @sync_exchange_complete: completion object for a complete synchronous API 310 * exchange 311 * @promiscuous: whether the ca8210 is in promiscuous mode or not 312 * @retries: records how many times the current pending spi 313 * transfer has been retried 314 */ 315 struct ca8210_priv { 316 struct spi_device *spi; 317 struct ieee802154_hw *hw; 318 bool hw_registered; 319 spinlock_t lock; 320 struct workqueue_struct *mlme_workqueue; 321 struct workqueue_struct *irq_workqueue; 322 struct sk_buff *tx_skb; 323 u8 nextmsduhandle; 324 struct clk *clk; 325 int last_dsn; 326 struct ca8210_test test; 327 bool async_tx_pending; 328 u8 *sync_command_response; 329 struct completion ca8210_is_awake; 330 int sync_down, sync_up; 331 struct completion spi_transfer_complete, sync_exchange_complete; 332 bool promiscuous; 333 int retries; 334 }; 335 336 /** 337 * struct work_priv_container - link between a work object and the relevant 338 * device's private data 339 * @work: work object being executed 340 * @priv: device's private data section 341 * 342 */ 343 struct work_priv_container { 344 struct work_struct work; 345 struct ca8210_priv *priv; 346 }; 347 348 /** 349 * struct ca8210_platform_data - ca8210 platform data structure 350 * @extclockenable: true if the external clock is to be enabled 351 * @extclockfreq: frequency of the external clock 352 * @extclockgpio: ca8210 output gpio of the external clock 353 * @gpio_reset: gpio number of ca8210 reset line 354 * @gpio_irq: gpio number of ca8210 interrupt line 355 * @irq_id: identifier for the ca8210 irq 356 * 357 */ 358 struct ca8210_platform_data { 359 bool extclockenable; 360 unsigned int extclockfreq; 361 unsigned int extclockgpio; 362 int gpio_reset; 363 int gpio_irq; 364 int irq_id; 365 }; 366 367 /** 368 * struct fulladdr - full MAC addressing information structure 369 * @mode: address mode (none, short, extended) 370 * @pan_id: 16-bit LE pan id 371 * @address: LE address, variable length as specified by mode 372 * 373 */ 374 struct fulladdr { 375 u8 mode; 376 u8 pan_id[2]; 377 u8 address[8]; 378 }; 379 380 /** 381 * union macaddr: generic MAC address container 382 * @short_address: 16-bit short address 383 * @ieee_address: 64-bit extended address as LE byte array 384 * 385 */ 386 union macaddr { 387 u16 short_address; 388 u8 ieee_address[8]; 389 }; 390 391 /** 392 * struct secspec: security specification for SAP commands 393 * @security_level: 0-7, controls level of authentication & encryption 394 * @key_id_mode: 0-3, specifies how to obtain key 395 * @key_source: extended key retrieval data 396 * @key_index: single-byte key identifier 397 * 398 */ 399 struct secspec { 400 u8 security_level; 401 u8 key_id_mode; 402 u8 key_source[8]; 403 u8 key_index; 404 }; 405 406 /* downlink functions parameter set definitions */ 407 struct mcps_data_request_pset { 408 u8 src_addr_mode; 409 struct fulladdr dst; 410 u8 msdu_length; 411 u8 msdu_handle; 412 u8 tx_options; 413 u8 msdu[MAX_DATA_SIZE]; 414 }; 415 416 struct mlme_set_request_pset { 417 u8 pib_attribute; 418 u8 pib_attribute_index; 419 u8 pib_attribute_length; 420 u8 pib_attribute_value[MAX_ATTRIBUTE_SIZE]; 421 }; 422 423 struct hwme_set_request_pset { 424 u8 hw_attribute; 425 u8 hw_attribute_length; 426 u8 hw_attribute_value[MAX_HWME_ATTRIBUTE_SIZE]; 427 }; 428 429 struct hwme_get_request_pset { 430 u8 hw_attribute; 431 }; 432 433 struct tdme_setsfr_request_pset { 434 u8 sfr_page; 435 u8 sfr_address; 436 u8 sfr_value; 437 }; 438 439 /* uplink functions parameter set definitions */ 440 struct hwme_set_confirm_pset { 441 u8 status; 442 u8 hw_attribute; 443 }; 444 445 struct hwme_get_confirm_pset { 446 u8 status; 447 u8 hw_attribute; 448 u8 hw_attribute_length; 449 u8 hw_attribute_value[MAX_HWME_ATTRIBUTE_SIZE]; 450 }; 451 452 struct tdme_setsfr_confirm_pset { 453 u8 status; 454 u8 sfr_page; 455 u8 sfr_address; 456 }; 457 458 struct mac_message { 459 u8 command_id; 460 u8 length; 461 union { 462 struct mcps_data_request_pset data_req; 463 struct mlme_set_request_pset set_req; 464 struct hwme_set_request_pset hwme_set_req; 465 struct hwme_get_request_pset hwme_get_req; 466 struct tdme_setsfr_request_pset tdme_set_sfr_req; 467 struct hwme_set_confirm_pset hwme_set_cnf; 468 struct hwme_get_confirm_pset hwme_get_cnf; 469 struct tdme_setsfr_confirm_pset tdme_set_sfr_cnf; 470 u8 u8param; 471 u8 status; 472 u8 payload[148]; 473 } pdata; 474 }; 475 476 union pa_cfg_sfr { 477 struct { 478 u8 bias_current_trim : 3; 479 u8 /* reserved */ : 1; 480 u8 buffer_capacitor_trim : 3; 481 u8 boost : 1; 482 }; 483 u8 paib; 484 }; 485 486 struct preamble_cfg_sfr { 487 u8 timeout_symbols : 3; 488 u8 acquisition_symbols : 3; 489 u8 search_symbols : 2; 490 }; 491 492 static int (*cascoda_api_upstream)( 493 const u8 *buf, 494 size_t len, 495 void *device_ref 496 ); 497 498 /** 499 * link_to_linux_err() - Translates an 802.15.4 return code into the closest 500 * linux error 501 * @link_status: 802.15.4 status code 502 * 503 * Return: 0 or Linux error code 504 */ 505 static int link_to_linux_err(int link_status) 506 { 507 if (link_status < 0) { 508 /* status is already a Linux code */ 509 return link_status; 510 } 511 switch (link_status) { 512 case IEEE802154_SUCCESS: 513 case IEEE802154_REALIGNMENT: 514 return 0; 515 case IEEE802154_IMPROPER_KEY_TYPE: 516 return -EKEYREJECTED; 517 case IEEE802154_IMPROPER_SECURITY_LEVEL: 518 case IEEE802154_UNSUPPORTED_LEGACY: 519 case IEEE802154_DENIED: 520 return -EACCES; 521 case IEEE802154_BEACON_LOST: 522 case IEEE802154_NO_ACK: 523 case IEEE802154_NO_BEACON: 524 return -ENETUNREACH; 525 case IEEE802154_CHANNEL_ACCESS_FAILURE: 526 case IEEE802154_TX_ACTIVE: 527 case IEEE802154_SCAN_IN_PROGRESS: 528 return -EBUSY; 529 case IEEE802154_DISABLE_TRX_FAILURE: 530 case IEEE802154_OUT_OF_CAP: 531 return -EAGAIN; 532 case IEEE802154_FRAME_TOO_LONG: 533 return -EMSGSIZE; 534 case IEEE802154_INVALID_GTS: 535 case IEEE802154_PAST_TIME: 536 return -EBADSLT; 537 case IEEE802154_INVALID_HANDLE: 538 return -EBADMSG; 539 case IEEE802154_INVALID_PARAMETER: 540 case IEEE802154_UNSUPPORTED_ATTRIBUTE: 541 case IEEE802154_ON_TIME_TOO_LONG: 542 case IEEE802154_INVALID_INDEX: 543 return -EINVAL; 544 case IEEE802154_NO_DATA: 545 return -ENODATA; 546 case IEEE802154_NO_SHORT_ADDRESS: 547 return -EFAULT; 548 case IEEE802154_PAN_ID_CONFLICT: 549 return -EADDRINUSE; 550 case IEEE802154_TRANSACTION_EXPIRED: 551 return -ETIME; 552 case IEEE802154_TRANSACTION_OVERFLOW: 553 return -ENOBUFS; 554 case IEEE802154_UNAVAILABLE_KEY: 555 return -ENOKEY; 556 case IEEE802154_INVALID_ADDRESS: 557 return -ENXIO; 558 case IEEE802154_TRACKING_OFF: 559 case IEEE802154_SUPERFRAME_OVERLAP: 560 return -EREMOTEIO; 561 case IEEE802154_LIMIT_REACHED: 562 return -EDQUOT; 563 case IEEE802154_READ_ONLY: 564 return -EROFS; 565 default: 566 return -EPROTO; 567 } 568 } 569 570 /** 571 * ca8210_test_int_driver_write() - Writes a message to the test interface to be 572 * read by the userspace 573 * @buf: Buffer containing upstream message 574 * @len: length of message to write 575 * @spi: SPI device of message originator 576 * 577 * Return: 0 or linux error code 578 */ 579 static int ca8210_test_int_driver_write( 580 const u8 *buf, 581 size_t len, 582 void *spi 583 ) 584 { 585 struct ca8210_priv *priv = spi_get_drvdata(spi); 586 struct ca8210_test *test = &priv->test; 587 char *fifo_buffer; 588 int i; 589 590 dev_dbg( 591 &priv->spi->dev, 592 "test_interface: Buffering upstream message:\n" 593 ); 594 for (i = 0; i < len; i++) 595 dev_dbg(&priv->spi->dev, "%#03x\n", buf[i]); 596 597 fifo_buffer = kmemdup(buf, len, GFP_KERNEL); 598 if (!fifo_buffer) 599 return -ENOMEM; 600 kfifo_in(&test->up_fifo, &fifo_buffer, 4); 601 wake_up_interruptible(&priv->test.readq); 602 603 return 0; 604 } 605 606 /* SPI Operation */ 607 608 static int ca8210_net_rx( 609 struct ieee802154_hw *hw, 610 u8 *command, 611 size_t len 612 ); 613 static u8 mlme_reset_request_sync( 614 u8 set_default_pib, 615 void *device_ref 616 ); 617 static int ca8210_spi_transfer( 618 struct spi_device *spi, 619 const u8 *buf, 620 size_t len 621 ); 622 623 /** 624 * ca8210_reset_send() - Hard resets the ca8210 for a given time 625 * @spi: Pointer to target ca8210 spi device 626 * @ms: Milliseconds to hold the reset line low for 627 */ 628 static void ca8210_reset_send(struct spi_device *spi, unsigned int ms) 629 { 630 struct ca8210_platform_data *pdata = spi->dev.platform_data; 631 struct ca8210_priv *priv = spi_get_drvdata(spi); 632 long status; 633 634 gpio_set_value(pdata->gpio_reset, 0); 635 reinit_completion(&priv->ca8210_is_awake); 636 msleep(ms); 637 gpio_set_value(pdata->gpio_reset, 1); 638 priv->promiscuous = false; 639 640 /* Wait until wakeup indication seen */ 641 status = wait_for_completion_interruptible_timeout( 642 &priv->ca8210_is_awake, 643 msecs_to_jiffies(CA8210_SYNC_TIMEOUT) 644 ); 645 if (status == 0) { 646 dev_crit( 647 &spi->dev, 648 "Fatal: No wakeup from ca8210 after reset!\n" 649 ); 650 } 651 652 dev_dbg(&spi->dev, "Reset the device\n"); 653 } 654 655 /** 656 * ca8210_mlme_reset_worker() - Resets the MLME, Called when the MAC OVERFLOW 657 * condition happens. 658 * @work: Pointer to work being executed 659 */ 660 static void ca8210_mlme_reset_worker(struct work_struct *work) 661 { 662 struct work_priv_container *wpc = container_of( 663 work, 664 struct work_priv_container, 665 work 666 ); 667 struct ca8210_priv *priv = wpc->priv; 668 669 mlme_reset_request_sync(0, priv->spi); 670 kfree(wpc); 671 } 672 673 /** 674 * ca8210_rx_done() - Calls various message dispatches responding to a received 675 * command 676 * @cas_ctl: Pointer to the cas_control object for the relevant spi transfer 677 * 678 * Presents a received SAP command from the ca8210 to the Cascoda EVBME, test 679 * interface and network driver. 680 */ 681 static void ca8210_rx_done(struct cas_control *cas_ctl) 682 { 683 u8 *buf; 684 unsigned int len; 685 struct work_priv_container *mlme_reset_wpc; 686 struct ca8210_priv *priv = cas_ctl->priv; 687 688 buf = cas_ctl->tx_in_buf; 689 len = buf[1] + 2; 690 if (len > CA8210_SPI_BUF_SIZE) { 691 dev_crit( 692 &priv->spi->dev, 693 "Received packet len (%u) erroneously long\n", 694 len 695 ); 696 goto finish; 697 } 698 699 if (buf[0] & SPI_SYN) { 700 if (priv->sync_command_response) { 701 memcpy(priv->sync_command_response, buf, len); 702 complete(&priv->sync_exchange_complete); 703 } else { 704 if (cascoda_api_upstream) 705 cascoda_api_upstream(buf, len, priv->spi); 706 priv->sync_up++; 707 } 708 } else { 709 if (cascoda_api_upstream) 710 cascoda_api_upstream(buf, len, priv->spi); 711 } 712 713 ca8210_net_rx(priv->hw, buf, len); 714 if (buf[0] == SPI_MCPS_DATA_CONFIRM) { 715 if (buf[3] == IEEE802154_TRANSACTION_OVERFLOW) { 716 dev_info( 717 &priv->spi->dev, 718 "Waiting for transaction overflow to stabilise...\n"); 719 msleep(2000); 720 dev_info( 721 &priv->spi->dev, 722 "Resetting MAC...\n"); 723 724 mlme_reset_wpc = kmalloc(sizeof(*mlme_reset_wpc), 725 GFP_KERNEL); 726 if (!mlme_reset_wpc) 727 goto finish; 728 INIT_WORK( 729 &mlme_reset_wpc->work, 730 ca8210_mlme_reset_worker 731 ); 732 mlme_reset_wpc->priv = priv; 733 queue_work(priv->mlme_workqueue, &mlme_reset_wpc->work); 734 } 735 } else if (buf[0] == SPI_HWME_WAKEUP_INDICATION) { 736 dev_notice( 737 &priv->spi->dev, 738 "Wakeup indication received, reason:\n" 739 ); 740 switch (buf[2]) { 741 case 0: 742 dev_notice( 743 &priv->spi->dev, 744 "Transceiver woken up from Power Up / System Reset\n" 745 ); 746 break; 747 case 1: 748 dev_notice( 749 &priv->spi->dev, 750 "Watchdog Timer Time-Out\n" 751 ); 752 break; 753 case 2: 754 dev_notice( 755 &priv->spi->dev, 756 "Transceiver woken up from Power-Off by Sleep Timer Time-Out\n"); 757 break; 758 case 3: 759 dev_notice( 760 &priv->spi->dev, 761 "Transceiver woken up from Power-Off by GPIO Activity\n" 762 ); 763 break; 764 case 4: 765 dev_notice( 766 &priv->spi->dev, 767 "Transceiver woken up from Standby by Sleep Timer Time-Out\n" 768 ); 769 break; 770 case 5: 771 dev_notice( 772 &priv->spi->dev, 773 "Transceiver woken up from Standby by GPIO Activity\n" 774 ); 775 break; 776 case 6: 777 dev_notice( 778 &priv->spi->dev, 779 "Sleep-Timer Time-Out in Active Mode\n" 780 ); 781 break; 782 default: 783 dev_warn(&priv->spi->dev, "Wakeup reason unknown\n"); 784 break; 785 } 786 complete(&priv->ca8210_is_awake); 787 } 788 789 finish:; 790 } 791 792 static void ca8210_remove(struct spi_device *spi_device); 793 794 /** 795 * ca8210_spi_transfer_complete() - Called when a single spi transfer has 796 * completed 797 * @context: Pointer to the cas_control object for the finished transfer 798 */ 799 static void ca8210_spi_transfer_complete(void *context) 800 { 801 struct cas_control *cas_ctl = context; 802 struct ca8210_priv *priv = cas_ctl->priv; 803 bool duplex_rx = false; 804 int i; 805 u8 retry_buffer[CA8210_SPI_BUF_SIZE]; 806 807 if ( 808 cas_ctl->tx_in_buf[0] == SPI_NACK || 809 (cas_ctl->tx_in_buf[0] == SPI_IDLE && 810 cas_ctl->tx_in_buf[1] == SPI_NACK) 811 ) { 812 /* ca8210 is busy */ 813 dev_info(&priv->spi->dev, "ca8210 was busy during attempted write\n"); 814 if (cas_ctl->tx_buf[0] == SPI_IDLE) { 815 dev_warn( 816 &priv->spi->dev, 817 "IRQ servicing NACKd, dropping transfer\n" 818 ); 819 kfree(cas_ctl); 820 return; 821 } 822 if (priv->retries > 3) { 823 dev_err(&priv->spi->dev, "too many retries!\n"); 824 kfree(cas_ctl); 825 ca8210_remove(priv->spi); 826 return; 827 } 828 memcpy(retry_buffer, cas_ctl->tx_buf, CA8210_SPI_BUF_SIZE); 829 kfree(cas_ctl); 830 ca8210_spi_transfer( 831 priv->spi, 832 retry_buffer, 833 CA8210_SPI_BUF_SIZE 834 ); 835 priv->retries++; 836 dev_info(&priv->spi->dev, "retried spi write\n"); 837 return; 838 } else if ( 839 cas_ctl->tx_in_buf[0] != SPI_IDLE && 840 cas_ctl->tx_in_buf[0] != SPI_NACK 841 ) { 842 duplex_rx = true; 843 } 844 845 if (duplex_rx) { 846 dev_dbg(&priv->spi->dev, "READ CMD DURING TX\n"); 847 for (i = 0; i < cas_ctl->tx_in_buf[1] + 2; i++) 848 dev_dbg( 849 &priv->spi->dev, 850 "%#03x\n", 851 cas_ctl->tx_in_buf[i] 852 ); 853 ca8210_rx_done(cas_ctl); 854 } 855 complete(&priv->spi_transfer_complete); 856 kfree(cas_ctl); 857 priv->retries = 0; 858 } 859 860 /** 861 * ca8210_spi_transfer() - Initiate duplex spi transfer with ca8210 862 * @spi: Pointer to spi device for transfer 863 * @buf: Octet array to send 864 * @len: length of the buffer being sent 865 * 866 * Return: 0 or linux error code 867 */ 868 static int ca8210_spi_transfer( 869 struct spi_device *spi, 870 const u8 *buf, 871 size_t len 872 ) 873 { 874 int i, status = 0; 875 struct ca8210_priv *priv; 876 struct cas_control *cas_ctl; 877 878 if (!spi) { 879 pr_crit("NULL spi device passed to %s\n", __func__); 880 return -ENODEV; 881 } 882 883 priv = spi_get_drvdata(spi); 884 reinit_completion(&priv->spi_transfer_complete); 885 886 dev_dbg(&spi->dev, "%s called\n", __func__); 887 888 cas_ctl = kzalloc(sizeof(*cas_ctl), GFP_ATOMIC); 889 if (!cas_ctl) 890 return -ENOMEM; 891 892 cas_ctl->priv = priv; 893 memset(cas_ctl->tx_buf, SPI_IDLE, CA8210_SPI_BUF_SIZE); 894 memset(cas_ctl->tx_in_buf, SPI_IDLE, CA8210_SPI_BUF_SIZE); 895 memcpy(cas_ctl->tx_buf, buf, len); 896 897 for (i = 0; i < len; i++) 898 dev_dbg(&spi->dev, "%#03x\n", cas_ctl->tx_buf[i]); 899 900 spi_message_init(&cas_ctl->msg); 901 902 cas_ctl->transfer.tx_nbits = 1; /* 1 MOSI line */ 903 cas_ctl->transfer.rx_nbits = 1; /* 1 MISO line */ 904 cas_ctl->transfer.speed_hz = 0; /* Use device setting */ 905 cas_ctl->transfer.bits_per_word = 0; /* Use device setting */ 906 cas_ctl->transfer.tx_buf = cas_ctl->tx_buf; 907 cas_ctl->transfer.rx_buf = cas_ctl->tx_in_buf; 908 cas_ctl->transfer.delay.value = 0; 909 cas_ctl->transfer.delay.unit = SPI_DELAY_UNIT_USECS; 910 cas_ctl->transfer.cs_change = 0; 911 cas_ctl->transfer.len = sizeof(struct mac_message); 912 cas_ctl->msg.complete = ca8210_spi_transfer_complete; 913 cas_ctl->msg.context = cas_ctl; 914 915 spi_message_add_tail( 916 &cas_ctl->transfer, 917 &cas_ctl->msg 918 ); 919 920 status = spi_async(spi, &cas_ctl->msg); 921 if (status < 0) { 922 dev_crit( 923 &spi->dev, 924 "status %d from spi_sync in write\n", 925 status 926 ); 927 } 928 929 return status; 930 } 931 932 /** 933 * ca8210_spi_exchange() - Exchange API/SAP commands with the radio 934 * @buf: Octet array of command being sent downstream 935 * @len: length of buf 936 * @response: buffer for storing synchronous response 937 * @device_ref: spi_device pointer for ca8210 938 * 939 * Effectively calls ca8210_spi_transfer to write buf[] to the spi, then for 940 * synchronous commands waits for the corresponding response to be read from 941 * the spi before returning. The response is written to the response parameter. 942 * 943 * Return: 0 or linux error code 944 */ 945 static int ca8210_spi_exchange( 946 const u8 *buf, 947 size_t len, 948 u8 *response, 949 void *device_ref 950 ) 951 { 952 int status = 0; 953 struct spi_device *spi = device_ref; 954 struct ca8210_priv *priv = spi->dev.driver_data; 955 long wait_remaining; 956 957 if ((buf[0] & SPI_SYN) && response) { /* if sync wait for confirm */ 958 reinit_completion(&priv->sync_exchange_complete); 959 priv->sync_command_response = response; 960 } 961 962 do { 963 reinit_completion(&priv->spi_transfer_complete); 964 status = ca8210_spi_transfer(priv->spi, buf, len); 965 if (status) { 966 dev_warn( 967 &spi->dev, 968 "spi write failed, returned %d\n", 969 status 970 ); 971 if (status == -EBUSY) 972 continue; 973 if (((buf[0] & SPI_SYN) && response)) 974 complete(&priv->sync_exchange_complete); 975 goto cleanup; 976 } 977 978 wait_remaining = wait_for_completion_interruptible_timeout( 979 &priv->spi_transfer_complete, 980 msecs_to_jiffies(1000) 981 ); 982 if (wait_remaining == -ERESTARTSYS) { 983 status = -ERESTARTSYS; 984 } else if (wait_remaining == 0) { 985 dev_err( 986 &spi->dev, 987 "SPI downstream transfer timed out!\n" 988 ); 989 status = -ETIME; 990 goto cleanup; 991 } 992 } while (status < 0); 993 994 if (!((buf[0] & SPI_SYN) && response)) 995 goto cleanup; 996 997 wait_remaining = wait_for_completion_interruptible_timeout( 998 &priv->sync_exchange_complete, 999 msecs_to_jiffies(CA8210_SYNC_TIMEOUT) 1000 ); 1001 if (wait_remaining == -ERESTARTSYS) { 1002 status = -ERESTARTSYS; 1003 } else if (wait_remaining == 0) { 1004 dev_err( 1005 &spi->dev, 1006 "Synchronous confirm timeout\n" 1007 ); 1008 status = -ETIME; 1009 } 1010 1011 cleanup: 1012 priv->sync_command_response = NULL; 1013 return status; 1014 } 1015 1016 /** 1017 * ca8210_interrupt_handler() - Called when an irq is received from the ca8210 1018 * @irq: Id of the irq being handled 1019 * @dev_id: Pointer passed by the system, pointing to the ca8210's private data 1020 * 1021 * This function is called when the irq line from the ca8210 is asserted, 1022 * signifying that the ca8210 has a message to send upstream to us. Starts the 1023 * asynchronous spi read. 1024 * 1025 * Return: irq return code 1026 */ 1027 static irqreturn_t ca8210_interrupt_handler(int irq, void *dev_id) 1028 { 1029 struct ca8210_priv *priv = dev_id; 1030 int status; 1031 1032 dev_dbg(&priv->spi->dev, "irq: Interrupt occurred\n"); 1033 do { 1034 status = ca8210_spi_transfer(priv->spi, NULL, 0); 1035 if (status && (status != -EBUSY)) { 1036 dev_warn( 1037 &priv->spi->dev, 1038 "spi read failed, returned %d\n", 1039 status 1040 ); 1041 } 1042 } while (status == -EBUSY); 1043 return IRQ_HANDLED; 1044 } 1045 1046 static int (*cascoda_api_downstream)( 1047 const u8 *buf, 1048 size_t len, 1049 u8 *response, 1050 void *device_ref 1051 ) = ca8210_spi_exchange; 1052 1053 /* Cascoda API / 15.4 SAP Primitives */ 1054 1055 /** 1056 * tdme_setsfr_request_sync() - TDME_SETSFR_request/confirm according to API 1057 * @sfr_page: SFR Page 1058 * @sfr_address: SFR Address 1059 * @sfr_value: SFR Value 1060 * @device_ref: Nondescript pointer to target device 1061 * 1062 * Return: 802.15.4 status code of TDME-SETSFR.confirm 1063 */ 1064 static u8 tdme_setsfr_request_sync( 1065 u8 sfr_page, 1066 u8 sfr_address, 1067 u8 sfr_value, 1068 void *device_ref 1069 ) 1070 { 1071 int ret; 1072 struct mac_message command, response; 1073 struct spi_device *spi = device_ref; 1074 1075 command.command_id = SPI_TDME_SETSFR_REQUEST; 1076 command.length = 3; 1077 command.pdata.tdme_set_sfr_req.sfr_page = sfr_page; 1078 command.pdata.tdme_set_sfr_req.sfr_address = sfr_address; 1079 command.pdata.tdme_set_sfr_req.sfr_value = sfr_value; 1080 response.command_id = SPI_IDLE; 1081 ret = cascoda_api_downstream( 1082 &command.command_id, 1083 command.length + 2, 1084 &response.command_id, 1085 device_ref 1086 ); 1087 if (ret) { 1088 dev_crit(&spi->dev, "cascoda_api_downstream returned %d", ret); 1089 return IEEE802154_SYSTEM_ERROR; 1090 } 1091 1092 if (response.command_id != SPI_TDME_SETSFR_CONFIRM) { 1093 dev_crit( 1094 &spi->dev, 1095 "sync response to SPI_TDME_SETSFR_REQUEST was not SPI_TDME_SETSFR_CONFIRM, it was %d\n", 1096 response.command_id 1097 ); 1098 return IEEE802154_SYSTEM_ERROR; 1099 } 1100 1101 return response.pdata.tdme_set_sfr_cnf.status; 1102 } 1103 1104 /** 1105 * tdme_chipinit() - TDME Chip Register Default Initialisation Macro 1106 * @device_ref: Nondescript pointer to target device 1107 * 1108 * Return: 802.15.4 status code of API calls 1109 */ 1110 static u8 tdme_chipinit(void *device_ref) 1111 { 1112 u8 status = IEEE802154_SUCCESS; 1113 u8 sfr_address; 1114 struct spi_device *spi = device_ref; 1115 struct preamble_cfg_sfr pre_cfg_value = { 1116 .timeout_symbols = 3, 1117 .acquisition_symbols = 3, 1118 .search_symbols = 1, 1119 }; 1120 /* LNA Gain Settings */ 1121 status = tdme_setsfr_request_sync( 1122 1, (sfr_address = CA8210_SFR_LNAGX40), 1123 LNAGX40_DEFAULT_GAIN, device_ref); 1124 if (status) 1125 goto finish; 1126 status = tdme_setsfr_request_sync( 1127 1, (sfr_address = CA8210_SFR_LNAGX41), 1128 LNAGX41_DEFAULT_GAIN, device_ref); 1129 if (status) 1130 goto finish; 1131 status = tdme_setsfr_request_sync( 1132 1, (sfr_address = CA8210_SFR_LNAGX42), 1133 LNAGX42_DEFAULT_GAIN, device_ref); 1134 if (status) 1135 goto finish; 1136 status = tdme_setsfr_request_sync( 1137 1, (sfr_address = CA8210_SFR_LNAGX43), 1138 LNAGX43_DEFAULT_GAIN, device_ref); 1139 if (status) 1140 goto finish; 1141 status = tdme_setsfr_request_sync( 1142 1, (sfr_address = CA8210_SFR_LNAGX44), 1143 LNAGX44_DEFAULT_GAIN, device_ref); 1144 if (status) 1145 goto finish; 1146 status = tdme_setsfr_request_sync( 1147 1, (sfr_address = CA8210_SFR_LNAGX45), 1148 LNAGX45_DEFAULT_GAIN, device_ref); 1149 if (status) 1150 goto finish; 1151 status = tdme_setsfr_request_sync( 1152 1, (sfr_address = CA8210_SFR_LNAGX46), 1153 LNAGX46_DEFAULT_GAIN, device_ref); 1154 if (status) 1155 goto finish; 1156 status = tdme_setsfr_request_sync( 1157 1, (sfr_address = CA8210_SFR_LNAGX47), 1158 LNAGX47_DEFAULT_GAIN, device_ref); 1159 if (status) 1160 goto finish; 1161 /* Preamble Timing Config */ 1162 status = tdme_setsfr_request_sync( 1163 1, (sfr_address = CA8210_SFR_PRECFG), 1164 *((u8 *)&pre_cfg_value), device_ref); 1165 if (status) 1166 goto finish; 1167 /* Preamble Threshold High */ 1168 status = tdme_setsfr_request_sync( 1169 1, (sfr_address = CA8210_SFR_PTHRH), 1170 PTHRH_DEFAULT_THRESHOLD, device_ref); 1171 if (status) 1172 goto finish; 1173 /* Tx Output Power 8 dBm */ 1174 status = tdme_setsfr_request_sync( 1175 0, (sfr_address = CA8210_SFR_PACFGIB), 1176 PACFGIB_DEFAULT_CURRENT, device_ref); 1177 if (status) 1178 goto finish; 1179 1180 finish: 1181 if (status != IEEE802154_SUCCESS) { 1182 dev_err( 1183 &spi->dev, 1184 "failed to set sfr at %#03x, status = %#03x\n", 1185 sfr_address, 1186 status 1187 ); 1188 } 1189 return status; 1190 } 1191 1192 /** 1193 * tdme_channelinit() - TDME Channel Register Default Initialisation Macro (Tx) 1194 * @channel: 802.15.4 channel to initialise chip for 1195 * @device_ref: Nondescript pointer to target device 1196 * 1197 * Return: 802.15.4 status code of API calls 1198 */ 1199 static u8 tdme_channelinit(u8 channel, void *device_ref) 1200 { 1201 /* Transceiver front-end local oscillator tx two-point calibration 1202 * value. Tuned for the hardware. 1203 */ 1204 u8 txcalval; 1205 1206 if (channel >= 25) 1207 txcalval = 0xA7; 1208 else if (channel >= 23) 1209 txcalval = 0xA8; 1210 else if (channel >= 22) 1211 txcalval = 0xA9; 1212 else if (channel >= 20) 1213 txcalval = 0xAA; 1214 else if (channel >= 17) 1215 txcalval = 0xAB; 1216 else if (channel >= 16) 1217 txcalval = 0xAC; 1218 else if (channel >= 14) 1219 txcalval = 0xAD; 1220 else if (channel >= 12) 1221 txcalval = 0xAE; 1222 else 1223 txcalval = 0xAF; 1224 1225 return tdme_setsfr_request_sync( 1226 1, 1227 CA8210_SFR_LOTXCAL, 1228 txcalval, 1229 device_ref 1230 ); /* LO Tx Cal */ 1231 } 1232 1233 /** 1234 * tdme_checkpibattribute() - Checks Attribute Values that are not checked in 1235 * MAC 1236 * @pib_attribute: Attribute Number 1237 * @pib_attribute_length: Attribute length 1238 * @pib_attribute_value: Pointer to Attribute Value 1239 * 1240 * Return: 802.15.4 status code of checks 1241 */ 1242 static u8 tdme_checkpibattribute( 1243 u8 pib_attribute, 1244 u8 pib_attribute_length, 1245 const void *pib_attribute_value 1246 ) 1247 { 1248 u8 status = IEEE802154_SUCCESS; 1249 u8 value; 1250 1251 value = *((u8 *)pib_attribute_value); 1252 1253 switch (pib_attribute) { 1254 /* PHY */ 1255 case PHY_TRANSMIT_POWER: 1256 if (value > 0x3F) 1257 status = IEEE802154_INVALID_PARAMETER; 1258 break; 1259 case PHY_CCA_MODE: 1260 if (value > 0x03) 1261 status = IEEE802154_INVALID_PARAMETER; 1262 break; 1263 /* MAC */ 1264 case MAC_BATT_LIFE_EXT_PERIODS: 1265 if (value < 6 || value > 41) 1266 status = IEEE802154_INVALID_PARAMETER; 1267 break; 1268 case MAC_BEACON_PAYLOAD: 1269 if (pib_attribute_length > MAX_BEACON_PAYLOAD_LENGTH) 1270 status = IEEE802154_INVALID_PARAMETER; 1271 break; 1272 case MAC_BEACON_PAYLOAD_LENGTH: 1273 if (value > MAX_BEACON_PAYLOAD_LENGTH) 1274 status = IEEE802154_INVALID_PARAMETER; 1275 break; 1276 case MAC_BEACON_ORDER: 1277 if (value > 15) 1278 status = IEEE802154_INVALID_PARAMETER; 1279 break; 1280 case MAC_MAX_BE: 1281 if (value < 3 || value > 8) 1282 status = IEEE802154_INVALID_PARAMETER; 1283 break; 1284 case MAC_MAX_CSMA_BACKOFFS: 1285 if (value > 5) 1286 status = IEEE802154_INVALID_PARAMETER; 1287 break; 1288 case MAC_MAX_FRAME_RETRIES: 1289 if (value > 7) 1290 status = IEEE802154_INVALID_PARAMETER; 1291 break; 1292 case MAC_MIN_BE: 1293 if (value > 8) 1294 status = IEEE802154_INVALID_PARAMETER; 1295 break; 1296 case MAC_RESPONSE_WAIT_TIME: 1297 if (value < 2 || value > 64) 1298 status = IEEE802154_INVALID_PARAMETER; 1299 break; 1300 case MAC_SUPERFRAME_ORDER: 1301 if (value > 15) 1302 status = IEEE802154_INVALID_PARAMETER; 1303 break; 1304 /* boolean */ 1305 case MAC_ASSOCIATED_PAN_COORD: 1306 case MAC_ASSOCIATION_PERMIT: 1307 case MAC_AUTO_REQUEST: 1308 case MAC_BATT_LIFE_EXT: 1309 case MAC_GTS_PERMIT: 1310 case MAC_PROMISCUOUS_MODE: 1311 case MAC_RX_ON_WHEN_IDLE: 1312 case MAC_SECURITY_ENABLED: 1313 if (value > 1) 1314 status = IEEE802154_INVALID_PARAMETER; 1315 break; 1316 /* MAC SEC */ 1317 case MAC_AUTO_REQUEST_SECURITY_LEVEL: 1318 if (value > 7) 1319 status = IEEE802154_INVALID_PARAMETER; 1320 break; 1321 case MAC_AUTO_REQUEST_KEY_ID_MODE: 1322 if (value > 3) 1323 status = IEEE802154_INVALID_PARAMETER; 1324 break; 1325 default: 1326 break; 1327 } 1328 1329 return status; 1330 } 1331 1332 /** 1333 * tdme_settxpower() - Sets the tx power for MLME_SET phyTransmitPower 1334 * @txp: Transmit Power 1335 * @device_ref: Nondescript pointer to target device 1336 * 1337 * Normalised to 802.15.4 Definition (6-bit, signed): 1338 * Bit 7-6: not used 1339 * Bit 5-0: tx power (-32 - +31 dB) 1340 * 1341 * Return: 802.15.4 status code of api calls 1342 */ 1343 static u8 tdme_settxpower(u8 txp, void *device_ref) 1344 { 1345 u8 status; 1346 s8 txp_val; 1347 u8 txp_ext; 1348 union pa_cfg_sfr pa_cfg_val; 1349 1350 /* extend from 6 to 8 bit */ 1351 txp_ext = 0x3F & txp; 1352 if (txp_ext & 0x20) 1353 txp_ext += 0xC0; 1354 txp_val = (s8)txp_ext; 1355 1356 if (CA8210_MAC_MPW) { 1357 if (txp_val > 0) { 1358 /* 8 dBm: ptrim = 5, itrim = +3 => +4 dBm */ 1359 pa_cfg_val.bias_current_trim = 3; 1360 pa_cfg_val.buffer_capacitor_trim = 5; 1361 pa_cfg_val.boost = 1; 1362 } else { 1363 /* 0 dBm: ptrim = 7, itrim = +3 => -6 dBm */ 1364 pa_cfg_val.bias_current_trim = 3; 1365 pa_cfg_val.buffer_capacitor_trim = 7; 1366 pa_cfg_val.boost = 0; 1367 } 1368 /* write PACFG */ 1369 status = tdme_setsfr_request_sync( 1370 0, 1371 CA8210_SFR_PACFG, 1372 pa_cfg_val.paib, 1373 device_ref 1374 ); 1375 } else { 1376 /* Look-Up Table for Setting Current and Frequency Trim values 1377 * for desired Output Power 1378 */ 1379 if (txp_val > 8) { 1380 pa_cfg_val.paib = 0x3F; 1381 } else if (txp_val == 8) { 1382 pa_cfg_val.paib = 0x32; 1383 } else if (txp_val == 7) { 1384 pa_cfg_val.paib = 0x22; 1385 } else if (txp_val == 6) { 1386 pa_cfg_val.paib = 0x18; 1387 } else if (txp_val == 5) { 1388 pa_cfg_val.paib = 0x10; 1389 } else if (txp_val == 4) { 1390 pa_cfg_val.paib = 0x0C; 1391 } else if (txp_val == 3) { 1392 pa_cfg_val.paib = 0x08; 1393 } else if (txp_val == 2) { 1394 pa_cfg_val.paib = 0x05; 1395 } else if (txp_val == 1) { 1396 pa_cfg_val.paib = 0x03; 1397 } else if (txp_val == 0) { 1398 pa_cfg_val.paib = 0x01; 1399 } else { /* < 0 */ 1400 pa_cfg_val.paib = 0x00; 1401 } 1402 /* write PACFGIB */ 1403 status = tdme_setsfr_request_sync( 1404 0, 1405 CA8210_SFR_PACFGIB, 1406 pa_cfg_val.paib, 1407 device_ref 1408 ); 1409 } 1410 1411 return status; 1412 } 1413 1414 /** 1415 * mcps_data_request() - mcps_data_request (Send Data) according to API Spec 1416 * @src_addr_mode: Source Addressing Mode 1417 * @dst_address_mode: Destination Addressing Mode 1418 * @dst_pan_id: Destination PAN ID 1419 * @dst_addr: Pointer to Destination Address 1420 * @msdu_length: length of Data 1421 * @msdu: Pointer to Data 1422 * @msdu_handle: Handle of Data 1423 * @tx_options: Tx Options Bit Field 1424 * @security: Pointer to Security Structure or NULL 1425 * @device_ref: Nondescript pointer to target device 1426 * 1427 * Return: 802.15.4 status code of action 1428 */ 1429 static u8 mcps_data_request( 1430 u8 src_addr_mode, 1431 u8 dst_address_mode, 1432 u16 dst_pan_id, 1433 union macaddr *dst_addr, 1434 u8 msdu_length, 1435 u8 *msdu, 1436 u8 msdu_handle, 1437 u8 tx_options, 1438 struct secspec *security, 1439 void *device_ref 1440 ) 1441 { 1442 struct secspec *psec; 1443 struct mac_message command; 1444 1445 command.command_id = SPI_MCPS_DATA_REQUEST; 1446 command.pdata.data_req.src_addr_mode = src_addr_mode; 1447 command.pdata.data_req.dst.mode = dst_address_mode; 1448 if (dst_address_mode != MAC_MODE_NO_ADDR) { 1449 command.pdata.data_req.dst.pan_id[0] = LS_BYTE(dst_pan_id); 1450 command.pdata.data_req.dst.pan_id[1] = MS_BYTE(dst_pan_id); 1451 if (dst_address_mode == MAC_MODE_SHORT_ADDR) { 1452 command.pdata.data_req.dst.address[0] = LS_BYTE( 1453 dst_addr->short_address 1454 ); 1455 command.pdata.data_req.dst.address[1] = MS_BYTE( 1456 dst_addr->short_address 1457 ); 1458 } else { /* MAC_MODE_LONG_ADDR*/ 1459 memcpy( 1460 command.pdata.data_req.dst.address, 1461 dst_addr->ieee_address, 1462 8 1463 ); 1464 } 1465 } 1466 command.pdata.data_req.msdu_length = msdu_length; 1467 command.pdata.data_req.msdu_handle = msdu_handle; 1468 command.pdata.data_req.tx_options = tx_options; 1469 memcpy(command.pdata.data_req.msdu, msdu, msdu_length); 1470 psec = (struct secspec *)(command.pdata.data_req.msdu + msdu_length); 1471 command.length = sizeof(struct mcps_data_request_pset) - 1472 MAX_DATA_SIZE + msdu_length; 1473 if (!security || security->security_level == 0) { 1474 psec->security_level = 0; 1475 command.length += 1; 1476 } else { 1477 *psec = *security; 1478 command.length += sizeof(struct secspec); 1479 } 1480 1481 if (ca8210_spi_transfer(device_ref, &command.command_id, 1482 command.length + 2)) 1483 return IEEE802154_SYSTEM_ERROR; 1484 1485 return IEEE802154_SUCCESS; 1486 } 1487 1488 /** 1489 * mlme_reset_request_sync() - MLME_RESET_request/confirm according to API Spec 1490 * @set_default_pib: Set defaults in PIB 1491 * @device_ref: Nondescript pointer to target device 1492 * 1493 * Return: 802.15.4 status code of MLME-RESET.confirm 1494 */ 1495 static u8 mlme_reset_request_sync( 1496 u8 set_default_pib, 1497 void *device_ref 1498 ) 1499 { 1500 u8 status; 1501 struct mac_message command, response; 1502 struct spi_device *spi = device_ref; 1503 1504 command.command_id = SPI_MLME_RESET_REQUEST; 1505 command.length = 1; 1506 command.pdata.u8param = set_default_pib; 1507 1508 if (cascoda_api_downstream( 1509 &command.command_id, 1510 command.length + 2, 1511 &response.command_id, 1512 device_ref)) { 1513 dev_err(&spi->dev, "cascoda_api_downstream failed\n"); 1514 return IEEE802154_SYSTEM_ERROR; 1515 } 1516 1517 if (response.command_id != SPI_MLME_RESET_CONFIRM) 1518 return IEEE802154_SYSTEM_ERROR; 1519 1520 status = response.pdata.status; 1521 1522 /* reset COORD Bit for Channel Filtering as Coordinator */ 1523 if (CA8210_MAC_WORKAROUNDS && set_default_pib && !status) { 1524 status = tdme_setsfr_request_sync( 1525 0, 1526 CA8210_SFR_MACCON, 1527 0, 1528 device_ref 1529 ); 1530 } 1531 1532 return status; 1533 } 1534 1535 /** 1536 * mlme_set_request_sync() - MLME_SET_request/confirm according to API Spec 1537 * @pib_attribute: Attribute Number 1538 * @pib_attribute_index: Index within Attribute if an Array 1539 * @pib_attribute_length: Attribute length 1540 * @pib_attribute_value: Pointer to Attribute Value 1541 * @device_ref: Nondescript pointer to target device 1542 * 1543 * Return: 802.15.4 status code of MLME-SET.confirm 1544 */ 1545 static u8 mlme_set_request_sync( 1546 u8 pib_attribute, 1547 u8 pib_attribute_index, 1548 u8 pib_attribute_length, 1549 const void *pib_attribute_value, 1550 void *device_ref 1551 ) 1552 { 1553 u8 status; 1554 struct mac_message command, response; 1555 1556 /* pre-check the validity of pib_attribute values that are not checked 1557 * in MAC 1558 */ 1559 if (tdme_checkpibattribute( 1560 pib_attribute, pib_attribute_length, pib_attribute_value)) { 1561 return IEEE802154_INVALID_PARAMETER; 1562 } 1563 1564 if (pib_attribute == PHY_CURRENT_CHANNEL) { 1565 status = tdme_channelinit( 1566 *((u8 *)pib_attribute_value), 1567 device_ref 1568 ); 1569 if (status) 1570 return status; 1571 } 1572 1573 if (pib_attribute == PHY_TRANSMIT_POWER) { 1574 return tdme_settxpower( 1575 *((u8 *)pib_attribute_value), 1576 device_ref 1577 ); 1578 } 1579 1580 command.command_id = SPI_MLME_SET_REQUEST; 1581 command.length = sizeof(struct mlme_set_request_pset) - 1582 MAX_ATTRIBUTE_SIZE + pib_attribute_length; 1583 command.pdata.set_req.pib_attribute = pib_attribute; 1584 command.pdata.set_req.pib_attribute_index = pib_attribute_index; 1585 command.pdata.set_req.pib_attribute_length = pib_attribute_length; 1586 memcpy( 1587 command.pdata.set_req.pib_attribute_value, 1588 pib_attribute_value, 1589 pib_attribute_length 1590 ); 1591 1592 if (cascoda_api_downstream( 1593 &command.command_id, 1594 command.length + 2, 1595 &response.command_id, 1596 device_ref)) { 1597 return IEEE802154_SYSTEM_ERROR; 1598 } 1599 1600 if (response.command_id != SPI_MLME_SET_CONFIRM) 1601 return IEEE802154_SYSTEM_ERROR; 1602 1603 return response.pdata.status; 1604 } 1605 1606 /** 1607 * hwme_set_request_sync() - HWME_SET_request/confirm according to API Spec 1608 * @hw_attribute: Attribute Number 1609 * @hw_attribute_length: Attribute length 1610 * @hw_attribute_value: Pointer to Attribute Value 1611 * @device_ref: Nondescript pointer to target device 1612 * 1613 * Return: 802.15.4 status code of HWME-SET.confirm 1614 */ 1615 static u8 hwme_set_request_sync( 1616 u8 hw_attribute, 1617 u8 hw_attribute_length, 1618 u8 *hw_attribute_value, 1619 void *device_ref 1620 ) 1621 { 1622 struct mac_message command, response; 1623 1624 command.command_id = SPI_HWME_SET_REQUEST; 1625 command.length = 2 + hw_attribute_length; 1626 command.pdata.hwme_set_req.hw_attribute = hw_attribute; 1627 command.pdata.hwme_set_req.hw_attribute_length = hw_attribute_length; 1628 memcpy( 1629 command.pdata.hwme_set_req.hw_attribute_value, 1630 hw_attribute_value, 1631 hw_attribute_length 1632 ); 1633 1634 if (cascoda_api_downstream( 1635 &command.command_id, 1636 command.length + 2, 1637 &response.command_id, 1638 device_ref)) { 1639 return IEEE802154_SYSTEM_ERROR; 1640 } 1641 1642 if (response.command_id != SPI_HWME_SET_CONFIRM) 1643 return IEEE802154_SYSTEM_ERROR; 1644 1645 return response.pdata.hwme_set_cnf.status; 1646 } 1647 1648 /** 1649 * hwme_get_request_sync() - HWME_GET_request/confirm according to API Spec 1650 * @hw_attribute: Attribute Number 1651 * @hw_attribute_length: Attribute length 1652 * @hw_attribute_value: Pointer to Attribute Value 1653 * @device_ref: Nondescript pointer to target device 1654 * 1655 * Return: 802.15.4 status code of HWME-GET.confirm 1656 */ 1657 static u8 hwme_get_request_sync( 1658 u8 hw_attribute, 1659 u8 *hw_attribute_length, 1660 u8 *hw_attribute_value, 1661 void *device_ref 1662 ) 1663 { 1664 struct mac_message command, response; 1665 1666 command.command_id = SPI_HWME_GET_REQUEST; 1667 command.length = 1; 1668 command.pdata.hwme_get_req.hw_attribute = hw_attribute; 1669 1670 if (cascoda_api_downstream( 1671 &command.command_id, 1672 command.length + 2, 1673 &response.command_id, 1674 device_ref)) { 1675 return IEEE802154_SYSTEM_ERROR; 1676 } 1677 1678 if (response.command_id != SPI_HWME_GET_CONFIRM) 1679 return IEEE802154_SYSTEM_ERROR; 1680 1681 if (response.pdata.hwme_get_cnf.status == IEEE802154_SUCCESS) { 1682 *hw_attribute_length = 1683 response.pdata.hwme_get_cnf.hw_attribute_length; 1684 memcpy( 1685 hw_attribute_value, 1686 response.pdata.hwme_get_cnf.hw_attribute_value, 1687 *hw_attribute_length 1688 ); 1689 } 1690 1691 return response.pdata.hwme_get_cnf.status; 1692 } 1693 1694 /* Network driver operation */ 1695 1696 /** 1697 * ca8210_async_xmit_complete() - Called to announce that an asynchronous 1698 * transmission has finished 1699 * @hw: ieee802154_hw of ca8210 that has finished exchange 1700 * @msduhandle: Identifier of transmission that has completed 1701 * @status: Returned 802.15.4 status code of the transmission 1702 * 1703 * Return: 0 or linux error code 1704 */ 1705 static int ca8210_async_xmit_complete( 1706 struct ieee802154_hw *hw, 1707 u8 msduhandle, 1708 u8 status) 1709 { 1710 struct ca8210_priv *priv = hw->priv; 1711 1712 if (priv->nextmsduhandle != msduhandle) { 1713 dev_err( 1714 &priv->spi->dev, 1715 "Unexpected msdu_handle on data confirm, Expected %d, got %d\n", 1716 priv->nextmsduhandle, 1717 msduhandle 1718 ); 1719 return -EIO; 1720 } 1721 1722 priv->async_tx_pending = false; 1723 priv->nextmsduhandle++; 1724 1725 if (status) { 1726 dev_err( 1727 &priv->spi->dev, 1728 "Link transmission unsuccessful, status = %d\n", 1729 status 1730 ); 1731 if (status != IEEE802154_TRANSACTION_OVERFLOW) { 1732 ieee802154_xmit_error(priv->hw, priv->tx_skb, status); 1733 return 0; 1734 } 1735 } 1736 ieee802154_xmit_complete(priv->hw, priv->tx_skb, true); 1737 1738 return 0; 1739 } 1740 1741 /** 1742 * ca8210_skb_rx() - Contructs a properly framed socket buffer from a received 1743 * MCPS_DATA_indication 1744 * @hw: ieee802154_hw that MCPS_DATA_indication was received by 1745 * @len: length of MCPS_DATA_indication 1746 * @data_ind: Octet array of MCPS_DATA_indication 1747 * 1748 * Called by the spi driver whenever a SAP command is received, this function 1749 * will ascertain whether the command is of interest to the network driver and 1750 * take necessary action. 1751 * 1752 * Return: 0 or linux error code 1753 */ 1754 static int ca8210_skb_rx( 1755 struct ieee802154_hw *hw, 1756 size_t len, 1757 u8 *data_ind 1758 ) 1759 { 1760 struct ieee802154_hdr hdr; 1761 int msdulen; 1762 int hlen; 1763 u8 mpdulinkquality = data_ind[23]; 1764 struct sk_buff *skb; 1765 struct ca8210_priv *priv = hw->priv; 1766 1767 /* Allocate mtu size buffer for every rx packet */ 1768 skb = dev_alloc_skb(IEEE802154_MTU + sizeof(hdr)); 1769 if (!skb) 1770 return -ENOMEM; 1771 1772 skb_reserve(skb, sizeof(hdr)); 1773 1774 msdulen = data_ind[22]; /* msdu_length */ 1775 if (msdulen > IEEE802154_MTU) { 1776 dev_err( 1777 &priv->spi->dev, 1778 "received erroneously large msdu length!\n" 1779 ); 1780 kfree_skb(skb); 1781 return -EMSGSIZE; 1782 } 1783 dev_dbg(&priv->spi->dev, "skb buffer length = %d\n", msdulen); 1784 1785 if (priv->promiscuous) 1786 goto copy_payload; 1787 1788 /* Populate hdr */ 1789 hdr.sec.level = data_ind[29 + msdulen]; 1790 dev_dbg(&priv->spi->dev, "security level: %#03x\n", hdr.sec.level); 1791 if (hdr.sec.level > 0) { 1792 hdr.sec.key_id_mode = data_ind[30 + msdulen]; 1793 memcpy(&hdr.sec.extended_src, &data_ind[31 + msdulen], 8); 1794 hdr.sec.key_id = data_ind[39 + msdulen]; 1795 } 1796 hdr.source.mode = data_ind[0]; 1797 dev_dbg(&priv->spi->dev, "srcAddrMode: %#03x\n", hdr.source.mode); 1798 hdr.source.pan_id = *(u16 *)&data_ind[1]; 1799 dev_dbg(&priv->spi->dev, "srcPanId: %#06x\n", hdr.source.pan_id); 1800 memcpy(&hdr.source.extended_addr, &data_ind[3], 8); 1801 hdr.dest.mode = data_ind[11]; 1802 dev_dbg(&priv->spi->dev, "dstAddrMode: %#03x\n", hdr.dest.mode); 1803 hdr.dest.pan_id = *(u16 *)&data_ind[12]; 1804 dev_dbg(&priv->spi->dev, "dstPanId: %#06x\n", hdr.dest.pan_id); 1805 memcpy(&hdr.dest.extended_addr, &data_ind[14], 8); 1806 1807 /* Fill in FC implicitly */ 1808 hdr.fc.type = 1; /* Data frame */ 1809 if (hdr.sec.level) 1810 hdr.fc.security_enabled = 1; 1811 else 1812 hdr.fc.security_enabled = 0; 1813 if (data_ind[1] != data_ind[12] || data_ind[2] != data_ind[13]) 1814 hdr.fc.intra_pan = 1; 1815 else 1816 hdr.fc.intra_pan = 0; 1817 hdr.fc.dest_addr_mode = hdr.dest.mode; 1818 hdr.fc.source_addr_mode = hdr.source.mode; 1819 1820 /* Add hdr to front of buffer */ 1821 hlen = ieee802154_hdr_push(skb, &hdr); 1822 1823 if (hlen < 0) { 1824 dev_crit(&priv->spi->dev, "failed to push mac hdr onto skb!\n"); 1825 kfree_skb(skb); 1826 return hlen; 1827 } 1828 1829 skb_reset_mac_header(skb); 1830 skb->mac_len = hlen; 1831 1832 copy_payload: 1833 /* Add <msdulen> bytes of space to the back of the buffer */ 1834 /* Copy msdu to skb */ 1835 skb_put_data(skb, &data_ind[29], msdulen); 1836 1837 ieee802154_rx_irqsafe(hw, skb, mpdulinkquality); 1838 return 0; 1839 } 1840 1841 /** 1842 * ca8210_net_rx() - Acts upon received SAP commands relevant to the network 1843 * driver 1844 * @hw: ieee802154_hw that command was received by 1845 * @command: Octet array of received command 1846 * @len: length of the received command 1847 * 1848 * Called by the spi driver whenever a SAP command is received, this function 1849 * will ascertain whether the command is of interest to the network driver and 1850 * take necessary action. 1851 * 1852 * Return: 0 or linux error code 1853 */ 1854 static int ca8210_net_rx(struct ieee802154_hw *hw, u8 *command, size_t len) 1855 { 1856 struct ca8210_priv *priv = hw->priv; 1857 unsigned long flags; 1858 u8 status; 1859 1860 dev_dbg(&priv->spi->dev, "%s: CmdID = %d\n", __func__, command[0]); 1861 1862 if (command[0] == SPI_MCPS_DATA_INDICATION) { 1863 /* Received data */ 1864 spin_lock_irqsave(&priv->lock, flags); 1865 if (command[26] == priv->last_dsn) { 1866 dev_dbg( 1867 &priv->spi->dev, 1868 "DSN %d resend received, ignoring...\n", 1869 command[26] 1870 ); 1871 spin_unlock_irqrestore(&priv->lock, flags); 1872 return 0; 1873 } 1874 priv->last_dsn = command[26]; 1875 spin_unlock_irqrestore(&priv->lock, flags); 1876 return ca8210_skb_rx(hw, len - 2, command + 2); 1877 } else if (command[0] == SPI_MCPS_DATA_CONFIRM) { 1878 status = command[3]; 1879 if (priv->async_tx_pending) { 1880 return ca8210_async_xmit_complete( 1881 hw, 1882 command[2], 1883 status 1884 ); 1885 } 1886 } 1887 1888 return 0; 1889 } 1890 1891 /** 1892 * ca8210_skb_tx() - Transmits a given socket buffer using the ca8210 1893 * @skb: Socket buffer to transmit 1894 * @msduhandle: Data identifier to pass to the 802.15.4 MAC 1895 * @priv: Pointer to private data section of target ca8210 1896 * 1897 * Return: 0 or linux error code 1898 */ 1899 static int ca8210_skb_tx( 1900 struct sk_buff *skb, 1901 u8 msduhandle, 1902 struct ca8210_priv *priv 1903 ) 1904 { 1905 struct ieee802154_hdr header = { }; 1906 struct secspec secspec; 1907 int mac_len, status; 1908 1909 dev_dbg(&priv->spi->dev, "%s called\n", __func__); 1910 1911 /* Get addressing info from skb - ieee802154 layer creates a full 1912 * packet 1913 */ 1914 mac_len = ieee802154_hdr_peek_addrs(skb, &header); 1915 if (mac_len < 0) 1916 return mac_len; 1917 1918 secspec.security_level = header.sec.level; 1919 secspec.key_id_mode = header.sec.key_id_mode; 1920 if (secspec.key_id_mode == 2) 1921 memcpy(secspec.key_source, &header.sec.short_src, 4); 1922 else if (secspec.key_id_mode == 3) 1923 memcpy(secspec.key_source, &header.sec.extended_src, 8); 1924 secspec.key_index = header.sec.key_id; 1925 1926 /* Pass to Cascoda API */ 1927 status = mcps_data_request( 1928 header.source.mode, 1929 header.dest.mode, 1930 header.dest.pan_id, 1931 (union macaddr *)&header.dest.extended_addr, 1932 skb->len - mac_len, 1933 &skb->data[mac_len], 1934 msduhandle, 1935 header.fc.ack_request, 1936 &secspec, 1937 priv->spi 1938 ); 1939 return link_to_linux_err(status); 1940 } 1941 1942 /** 1943 * ca8210_start() - Starts the network driver 1944 * @hw: ieee802154_hw of ca8210 being started 1945 * 1946 * Return: 0 or linux error code 1947 */ 1948 static int ca8210_start(struct ieee802154_hw *hw) 1949 { 1950 int status; 1951 u8 rx_on_when_idle; 1952 u8 lqi_threshold = 0; 1953 struct ca8210_priv *priv = hw->priv; 1954 1955 priv->last_dsn = -1; 1956 /* Turn receiver on when idle for now just to test rx */ 1957 rx_on_when_idle = 1; 1958 status = mlme_set_request_sync( 1959 MAC_RX_ON_WHEN_IDLE, 1960 0, 1961 1, 1962 &rx_on_when_idle, 1963 priv->spi 1964 ); 1965 if (status) { 1966 dev_crit( 1967 &priv->spi->dev, 1968 "Setting rx_on_when_idle failed, status = %d\n", 1969 status 1970 ); 1971 return link_to_linux_err(status); 1972 } 1973 status = hwme_set_request_sync( 1974 HWME_LQILIMIT, 1975 1, 1976 &lqi_threshold, 1977 priv->spi 1978 ); 1979 if (status) { 1980 dev_crit( 1981 &priv->spi->dev, 1982 "Setting lqilimit failed, status = %d\n", 1983 status 1984 ); 1985 return link_to_linux_err(status); 1986 } 1987 1988 return 0; 1989 } 1990 1991 /** 1992 * ca8210_stop() - Stops the network driver 1993 * @hw: ieee802154_hw of ca8210 being stopped 1994 * 1995 * Return: 0 or linux error code 1996 */ 1997 static void ca8210_stop(struct ieee802154_hw *hw) 1998 { 1999 } 2000 2001 /** 2002 * ca8210_xmit_async() - Asynchronously transmits a given socket buffer using 2003 * the ca8210 2004 * @hw: ieee802154_hw of ca8210 to transmit from 2005 * @skb: Socket buffer to transmit 2006 * 2007 * Return: 0 or linux error code 2008 */ 2009 static int ca8210_xmit_async(struct ieee802154_hw *hw, struct sk_buff *skb) 2010 { 2011 struct ca8210_priv *priv = hw->priv; 2012 int status; 2013 2014 dev_dbg(&priv->spi->dev, "calling %s\n", __func__); 2015 2016 priv->tx_skb = skb; 2017 priv->async_tx_pending = true; 2018 status = ca8210_skb_tx(skb, priv->nextmsduhandle, priv); 2019 return status; 2020 } 2021 2022 /** 2023 * ca8210_get_ed() - Returns the measured energy on the current channel at this 2024 * instant in time 2025 * @hw: ieee802154_hw of target ca8210 2026 * @level: Measured Energy Detect level 2027 * 2028 * Return: 0 or linux error code 2029 */ 2030 static int ca8210_get_ed(struct ieee802154_hw *hw, u8 *level) 2031 { 2032 u8 lenvar; 2033 struct ca8210_priv *priv = hw->priv; 2034 2035 return link_to_linux_err( 2036 hwme_get_request_sync(HWME_EDVALUE, &lenvar, level, priv->spi) 2037 ); 2038 } 2039 2040 /** 2041 * ca8210_set_channel() - Sets the current operating 802.15.4 channel of the 2042 * ca8210 2043 * @hw: ieee802154_hw of target ca8210 2044 * @page: Channel page to set 2045 * @channel: Channel number to set 2046 * 2047 * Return: 0 or linux error code 2048 */ 2049 static int ca8210_set_channel( 2050 struct ieee802154_hw *hw, 2051 u8 page, 2052 u8 channel 2053 ) 2054 { 2055 u8 status; 2056 struct ca8210_priv *priv = hw->priv; 2057 2058 status = mlme_set_request_sync( 2059 PHY_CURRENT_CHANNEL, 2060 0, 2061 1, 2062 &channel, 2063 priv->spi 2064 ); 2065 if (status) { 2066 dev_err( 2067 &priv->spi->dev, 2068 "error setting channel, MLME-SET.confirm status = %d\n", 2069 status 2070 ); 2071 } 2072 return link_to_linux_err(status); 2073 } 2074 2075 /** 2076 * ca8210_set_hw_addr_filt() - Sets the address filtering parameters of the 2077 * ca8210 2078 * @hw: ieee802154_hw of target ca8210 2079 * @filt: Filtering parameters 2080 * @changed: Bitmap representing which parameters to change 2081 * 2082 * Effectively just sets the actual addressing information identifying this node 2083 * as all filtering is performed by the ca8210 as detailed in the IEEE 802.15.4 2084 * 2006 specification. 2085 * 2086 * Return: 0 or linux error code 2087 */ 2088 static int ca8210_set_hw_addr_filt( 2089 struct ieee802154_hw *hw, 2090 struct ieee802154_hw_addr_filt *filt, 2091 unsigned long changed 2092 ) 2093 { 2094 u8 status = 0; 2095 struct ca8210_priv *priv = hw->priv; 2096 2097 if (changed & IEEE802154_AFILT_PANID_CHANGED) { 2098 status = mlme_set_request_sync( 2099 MAC_PAN_ID, 2100 0, 2101 2, 2102 &filt->pan_id, priv->spi 2103 ); 2104 if (status) { 2105 dev_err( 2106 &priv->spi->dev, 2107 "error setting pan id, MLME-SET.confirm status = %d", 2108 status 2109 ); 2110 return link_to_linux_err(status); 2111 } 2112 } 2113 if (changed & IEEE802154_AFILT_SADDR_CHANGED) { 2114 status = mlme_set_request_sync( 2115 MAC_SHORT_ADDRESS, 2116 0, 2117 2, 2118 &filt->short_addr, priv->spi 2119 ); 2120 if (status) { 2121 dev_err( 2122 &priv->spi->dev, 2123 "error setting short address, MLME-SET.confirm status = %d", 2124 status 2125 ); 2126 return link_to_linux_err(status); 2127 } 2128 } 2129 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { 2130 status = mlme_set_request_sync( 2131 NS_IEEE_ADDRESS, 2132 0, 2133 8, 2134 &filt->ieee_addr, 2135 priv->spi 2136 ); 2137 if (status) { 2138 dev_err( 2139 &priv->spi->dev, 2140 "error setting ieee address, MLME-SET.confirm status = %d", 2141 status 2142 ); 2143 return link_to_linux_err(status); 2144 } 2145 } 2146 /* TODO: Should use MLME_START to set coord bit? */ 2147 return 0; 2148 } 2149 2150 /** 2151 * ca8210_set_tx_power() - Sets the transmit power of the ca8210 2152 * @hw: ieee802154_hw of target ca8210 2153 * @mbm: Transmit power in mBm (dBm*100) 2154 * 2155 * Return: 0 or linux error code 2156 */ 2157 static int ca8210_set_tx_power(struct ieee802154_hw *hw, s32 mbm) 2158 { 2159 struct ca8210_priv *priv = hw->priv; 2160 2161 mbm /= 100; 2162 return link_to_linux_err( 2163 mlme_set_request_sync(PHY_TRANSMIT_POWER, 0, 1, &mbm, priv->spi) 2164 ); 2165 } 2166 2167 /** 2168 * ca8210_set_cca_mode() - Sets the clear channel assessment mode of the ca8210 2169 * @hw: ieee802154_hw of target ca8210 2170 * @cca: CCA mode to set 2171 * 2172 * Return: 0 or linux error code 2173 */ 2174 static int ca8210_set_cca_mode( 2175 struct ieee802154_hw *hw, 2176 const struct wpan_phy_cca *cca 2177 ) 2178 { 2179 u8 status; 2180 u8 cca_mode; 2181 struct ca8210_priv *priv = hw->priv; 2182 2183 cca_mode = cca->mode & 3; 2184 if (cca_mode == 3 && cca->opt == NL802154_CCA_OPT_ENERGY_CARRIER_OR) { 2185 /* cca_mode 0 == CS OR ED, 3 == CS AND ED */ 2186 cca_mode = 0; 2187 } 2188 status = mlme_set_request_sync( 2189 PHY_CCA_MODE, 2190 0, 2191 1, 2192 &cca_mode, 2193 priv->spi 2194 ); 2195 if (status) { 2196 dev_err( 2197 &priv->spi->dev, 2198 "error setting cca mode, MLME-SET.confirm status = %d", 2199 status 2200 ); 2201 } 2202 return link_to_linux_err(status); 2203 } 2204 2205 /** 2206 * ca8210_set_cca_ed_level() - Sets the CCA ED level of the ca8210 2207 * @hw: ieee802154_hw of target ca8210 2208 * @level: ED level to set (in mbm) 2209 * 2210 * Sets the minimum threshold of measured energy above which the ca8210 will 2211 * back off and retry a transmission. 2212 * 2213 * Return: 0 or linux error code 2214 */ 2215 static int ca8210_set_cca_ed_level(struct ieee802154_hw *hw, s32 level) 2216 { 2217 u8 status; 2218 u8 ed_threshold = (level / 100) * 2 + 256; 2219 struct ca8210_priv *priv = hw->priv; 2220 2221 status = hwme_set_request_sync( 2222 HWME_EDTHRESHOLD, 2223 1, 2224 &ed_threshold, 2225 priv->spi 2226 ); 2227 if (status) { 2228 dev_err( 2229 &priv->spi->dev, 2230 "error setting ed threshold, HWME-SET.confirm status = %d", 2231 status 2232 ); 2233 } 2234 return link_to_linux_err(status); 2235 } 2236 2237 /** 2238 * ca8210_set_csma_params() - Sets the CSMA parameters of the ca8210 2239 * @hw: ieee802154_hw of target ca8210 2240 * @min_be: Minimum backoff exponent when backing off a transmission 2241 * @max_be: Maximum backoff exponent when backing off a transmission 2242 * @retries: Number of times to retry after backing off 2243 * 2244 * Return: 0 or linux error code 2245 */ 2246 static int ca8210_set_csma_params( 2247 struct ieee802154_hw *hw, 2248 u8 min_be, 2249 u8 max_be, 2250 u8 retries 2251 ) 2252 { 2253 u8 status; 2254 struct ca8210_priv *priv = hw->priv; 2255 2256 status = mlme_set_request_sync(MAC_MIN_BE, 0, 1, &min_be, priv->spi); 2257 if (status) { 2258 dev_err( 2259 &priv->spi->dev, 2260 "error setting min be, MLME-SET.confirm status = %d", 2261 status 2262 ); 2263 return link_to_linux_err(status); 2264 } 2265 status = mlme_set_request_sync(MAC_MAX_BE, 0, 1, &max_be, priv->spi); 2266 if (status) { 2267 dev_err( 2268 &priv->spi->dev, 2269 "error setting max be, MLME-SET.confirm status = %d", 2270 status 2271 ); 2272 return link_to_linux_err(status); 2273 } 2274 status = mlme_set_request_sync( 2275 MAC_MAX_CSMA_BACKOFFS, 2276 0, 2277 1, 2278 &retries, 2279 priv->spi 2280 ); 2281 if (status) { 2282 dev_err( 2283 &priv->spi->dev, 2284 "error setting max csma backoffs, MLME-SET.confirm status = %d", 2285 status 2286 ); 2287 } 2288 return link_to_linux_err(status); 2289 } 2290 2291 /** 2292 * ca8210_set_frame_retries() - Sets the maximum frame retries of the ca8210 2293 * @hw: ieee802154_hw of target ca8210 2294 * @retries: Number of retries 2295 * 2296 * Sets the number of times to retry a transmission if no acknowledgment was 2297 * received from the other end when one was requested. 2298 * 2299 * Return: 0 or linux error code 2300 */ 2301 static int ca8210_set_frame_retries(struct ieee802154_hw *hw, s8 retries) 2302 { 2303 u8 status; 2304 struct ca8210_priv *priv = hw->priv; 2305 2306 status = mlme_set_request_sync( 2307 MAC_MAX_FRAME_RETRIES, 2308 0, 2309 1, 2310 &retries, 2311 priv->spi 2312 ); 2313 if (status) { 2314 dev_err( 2315 &priv->spi->dev, 2316 "error setting frame retries, MLME-SET.confirm status = %d", 2317 status 2318 ); 2319 } 2320 return link_to_linux_err(status); 2321 } 2322 2323 static int ca8210_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) 2324 { 2325 u8 status; 2326 struct ca8210_priv *priv = hw->priv; 2327 2328 status = mlme_set_request_sync( 2329 MAC_PROMISCUOUS_MODE, 2330 0, 2331 1, 2332 (const void *)&on, 2333 priv->spi 2334 ); 2335 if (status) { 2336 dev_err( 2337 &priv->spi->dev, 2338 "error setting promiscuous mode, MLME-SET.confirm status = %d", 2339 status 2340 ); 2341 } else { 2342 priv->promiscuous = on; 2343 } 2344 return link_to_linux_err(status); 2345 } 2346 2347 static const struct ieee802154_ops ca8210_phy_ops = { 2348 .start = ca8210_start, 2349 .stop = ca8210_stop, 2350 .xmit_async = ca8210_xmit_async, 2351 .ed = ca8210_get_ed, 2352 .set_channel = ca8210_set_channel, 2353 .set_hw_addr_filt = ca8210_set_hw_addr_filt, 2354 .set_txpower = ca8210_set_tx_power, 2355 .set_cca_mode = ca8210_set_cca_mode, 2356 .set_cca_ed_level = ca8210_set_cca_ed_level, 2357 .set_csma_params = ca8210_set_csma_params, 2358 .set_frame_retries = ca8210_set_frame_retries, 2359 .set_promiscuous_mode = ca8210_set_promiscuous_mode 2360 }; 2361 2362 /* Test/EVBME Interface */ 2363 2364 /** 2365 * ca8210_test_int_open() - Opens the test interface to the userspace 2366 * @inodp: inode representation of file interface 2367 * @filp: file interface 2368 * 2369 * Return: 0 or linux error code 2370 */ 2371 static int ca8210_test_int_open(struct inode *inodp, struct file *filp) 2372 { 2373 struct ca8210_priv *priv = inodp->i_private; 2374 2375 filp->private_data = priv; 2376 return 0; 2377 } 2378 2379 /** 2380 * ca8210_test_check_upstream() - Checks a command received from the upstream 2381 * testing interface for required action 2382 * @buf: Buffer containing command to check 2383 * @device_ref: Nondescript pointer to target device 2384 * 2385 * Return: 0 or linux error code 2386 */ 2387 static int ca8210_test_check_upstream(u8 *buf, void *device_ref) 2388 { 2389 int ret; 2390 u8 response[CA8210_SPI_BUF_SIZE]; 2391 2392 if (buf[0] == SPI_MLME_SET_REQUEST) { 2393 ret = tdme_checkpibattribute(buf[2], buf[4], buf + 5); 2394 if (ret) { 2395 response[0] = SPI_MLME_SET_CONFIRM; 2396 response[1] = 3; 2397 response[2] = IEEE802154_INVALID_PARAMETER; 2398 response[3] = buf[2]; 2399 response[4] = buf[3]; 2400 if (cascoda_api_upstream) 2401 cascoda_api_upstream(response, 5, device_ref); 2402 return ret; 2403 } 2404 } 2405 if (buf[0] == SPI_MLME_ASSOCIATE_REQUEST) { 2406 return tdme_channelinit(buf[2], device_ref); 2407 } else if (buf[0] == SPI_MLME_START_REQUEST) { 2408 return tdme_channelinit(buf[4], device_ref); 2409 } else if ( 2410 (buf[0] == SPI_MLME_SET_REQUEST) && 2411 (buf[2] == PHY_CURRENT_CHANNEL) 2412 ) { 2413 return tdme_channelinit(buf[5], device_ref); 2414 } else if ( 2415 (buf[0] == SPI_TDME_SET_REQUEST) && 2416 (buf[2] == TDME_CHANNEL) 2417 ) { 2418 return tdme_channelinit(buf[4], device_ref); 2419 } else if ( 2420 (CA8210_MAC_WORKAROUNDS) && 2421 (buf[0] == SPI_MLME_RESET_REQUEST) && 2422 (buf[2] == 1) 2423 ) { 2424 /* reset COORD Bit for Channel Filtering as Coordinator */ 2425 return tdme_setsfr_request_sync( 2426 0, 2427 CA8210_SFR_MACCON, 2428 0, 2429 device_ref 2430 ); 2431 } 2432 return 0; 2433 } /* End of EVBMECheckSerialCommand() */ 2434 2435 /** 2436 * ca8210_test_int_user_write() - Called by a process in userspace to send a 2437 * message to the ca8210 drivers 2438 * @filp: file interface 2439 * @in_buf: Buffer containing message to write 2440 * @len: length of message 2441 * @off: file offset 2442 * 2443 * Return: 0 or linux error code 2444 */ 2445 static ssize_t ca8210_test_int_user_write( 2446 struct file *filp, 2447 const char __user *in_buf, 2448 size_t len, 2449 loff_t *off 2450 ) 2451 { 2452 int ret; 2453 struct ca8210_priv *priv = filp->private_data; 2454 u8 command[CA8210_SPI_BUF_SIZE]; 2455 2456 memset(command, SPI_IDLE, 6); 2457 if (len > CA8210_SPI_BUF_SIZE || len < 2) { 2458 dev_warn( 2459 &priv->spi->dev, 2460 "userspace requested erroneous write length (%zu)\n", 2461 len 2462 ); 2463 return -EBADE; 2464 } 2465 2466 ret = copy_from_user(command, in_buf, len); 2467 if (ret) { 2468 dev_err( 2469 &priv->spi->dev, 2470 "%d bytes could not be copied from userspace\n", 2471 ret 2472 ); 2473 return -EIO; 2474 } 2475 if (len != command[1] + 2) { 2476 dev_err( 2477 &priv->spi->dev, 2478 "write len does not match packet length field\n" 2479 ); 2480 return -EBADE; 2481 } 2482 2483 ret = ca8210_test_check_upstream(command, priv->spi); 2484 if (ret == 0) { 2485 ret = ca8210_spi_exchange( 2486 command, 2487 command[1] + 2, 2488 NULL, 2489 priv->spi 2490 ); 2491 if (ret < 0) { 2492 /* effectively 0 bytes were written successfully */ 2493 dev_err( 2494 &priv->spi->dev, 2495 "spi exchange failed\n" 2496 ); 2497 return ret; 2498 } 2499 if (command[0] & SPI_SYN) 2500 priv->sync_down++; 2501 } 2502 2503 return len; 2504 } 2505 2506 /** 2507 * ca8210_test_int_user_read() - Called by a process in userspace to read a 2508 * message from the ca8210 drivers 2509 * @filp: file interface 2510 * @buf: Buffer to write message to 2511 * @len: length of message to read (ignored) 2512 * @offp: file offset 2513 * 2514 * If the O_NONBLOCK flag was set when opening the file then this function will 2515 * not block, i.e. it will return if the fifo is empty. Otherwise the function 2516 * will block, i.e. wait until new data arrives. 2517 * 2518 * Return: number of bytes read 2519 */ 2520 static ssize_t ca8210_test_int_user_read( 2521 struct file *filp, 2522 char __user *buf, 2523 size_t len, 2524 loff_t *offp 2525 ) 2526 { 2527 int i, cmdlen; 2528 struct ca8210_priv *priv = filp->private_data; 2529 unsigned char *fifo_buffer; 2530 unsigned long bytes_not_copied; 2531 2532 if (filp->f_flags & O_NONBLOCK) { 2533 /* Non-blocking mode */ 2534 if (kfifo_is_empty(&priv->test.up_fifo)) 2535 return 0; 2536 } else { 2537 /* Blocking mode */ 2538 wait_event_interruptible( 2539 priv->test.readq, 2540 !kfifo_is_empty(&priv->test.up_fifo) 2541 ); 2542 } 2543 2544 if (kfifo_out(&priv->test.up_fifo, &fifo_buffer, 4) != 4) { 2545 dev_err( 2546 &priv->spi->dev, 2547 "test_interface: Wrong number of elements popped from upstream fifo\n" 2548 ); 2549 return 0; 2550 } 2551 cmdlen = fifo_buffer[1]; 2552 bytes_not_copied = cmdlen + 2; 2553 2554 bytes_not_copied = copy_to_user(buf, fifo_buffer, bytes_not_copied); 2555 if (bytes_not_copied > 0) { 2556 dev_err( 2557 &priv->spi->dev, 2558 "%lu bytes could not be copied to user space!\n", 2559 bytes_not_copied 2560 ); 2561 } 2562 2563 dev_dbg(&priv->spi->dev, "test_interface: Cmd len = %d\n", cmdlen); 2564 2565 dev_dbg(&priv->spi->dev, "test_interface: Read\n"); 2566 for (i = 0; i < cmdlen + 2; i++) 2567 dev_dbg(&priv->spi->dev, "%#03x\n", fifo_buffer[i]); 2568 2569 kfree(fifo_buffer); 2570 2571 return cmdlen + 2; 2572 } 2573 2574 /** 2575 * ca8210_test_int_ioctl() - Called by a process in userspace to enact an 2576 * arbitrary action 2577 * @filp: file interface 2578 * @ioctl_num: which action to enact 2579 * @ioctl_param: arbitrary parameter for the action 2580 * 2581 * Return: status 2582 */ 2583 static long ca8210_test_int_ioctl( 2584 struct file *filp, 2585 unsigned int ioctl_num, 2586 unsigned long ioctl_param 2587 ) 2588 { 2589 struct ca8210_priv *priv = filp->private_data; 2590 2591 switch (ioctl_num) { 2592 case CA8210_IOCTL_HARD_RESET: 2593 ca8210_reset_send(priv->spi, ioctl_param); 2594 break; 2595 default: 2596 break; 2597 } 2598 return 0; 2599 } 2600 2601 /** 2602 * ca8210_test_int_poll() - Called by a process in userspace to determine which 2603 * actions are currently possible for the file 2604 * @filp: file interface 2605 * @ptable: poll table 2606 * 2607 * Return: set of poll return flags 2608 */ 2609 static __poll_t ca8210_test_int_poll( 2610 struct file *filp, 2611 struct poll_table_struct *ptable 2612 ) 2613 { 2614 __poll_t return_flags = 0; 2615 struct ca8210_priv *priv = filp->private_data; 2616 2617 poll_wait(filp, &priv->test.readq, ptable); 2618 if (!kfifo_is_empty(&priv->test.up_fifo)) 2619 return_flags |= (EPOLLIN | EPOLLRDNORM); 2620 if (wait_event_interruptible( 2621 priv->test.readq, 2622 !kfifo_is_empty(&priv->test.up_fifo))) { 2623 return EPOLLERR; 2624 } 2625 return return_flags; 2626 } 2627 2628 static const struct file_operations test_int_fops = { 2629 .read = ca8210_test_int_user_read, 2630 .write = ca8210_test_int_user_write, 2631 .open = ca8210_test_int_open, 2632 .release = NULL, 2633 .unlocked_ioctl = ca8210_test_int_ioctl, 2634 .poll = ca8210_test_int_poll 2635 }; 2636 2637 /* Init/Deinit */ 2638 2639 /** 2640 * ca8210_get_platform_data() - Populate a ca8210_platform_data object 2641 * @spi_device: Pointer to ca8210 spi device object to get data for 2642 * @pdata: Pointer to ca8210_platform_data object to populate 2643 * 2644 * Return: 0 or linux error code 2645 */ 2646 static int ca8210_get_platform_data( 2647 struct spi_device *spi_device, 2648 struct ca8210_platform_data *pdata 2649 ) 2650 { 2651 int ret = 0; 2652 2653 if (!spi_device->dev.of_node) 2654 return -EINVAL; 2655 2656 pdata->extclockenable = of_property_read_bool( 2657 spi_device->dev.of_node, 2658 "extclock-enable" 2659 ); 2660 if (pdata->extclockenable) { 2661 ret = of_property_read_u32( 2662 spi_device->dev.of_node, 2663 "extclock-freq", 2664 &pdata->extclockfreq 2665 ); 2666 if (ret < 0) 2667 return ret; 2668 2669 ret = of_property_read_u32( 2670 spi_device->dev.of_node, 2671 "extclock-gpio", 2672 &pdata->extclockgpio 2673 ); 2674 } 2675 2676 return ret; 2677 } 2678 2679 /** 2680 * ca8210_config_extern_clk() - Configure the external clock provided by the 2681 * ca8210 2682 * @pdata: Pointer to ca8210_platform_data containing clock parameters 2683 * @spi: Pointer to target ca8210 spi device 2684 * @on: True to turn the clock on, false to turn off 2685 * 2686 * The external clock is configured with a frequency and output pin taken from 2687 * the platform data. 2688 * 2689 * Return: 0 or linux error code 2690 */ 2691 static int ca8210_config_extern_clk( 2692 struct ca8210_platform_data *pdata, 2693 struct spi_device *spi, 2694 bool on 2695 ) 2696 { 2697 u8 clkparam[2]; 2698 2699 if (on) { 2700 dev_info(&spi->dev, "Switching external clock on\n"); 2701 switch (pdata->extclockfreq) { 2702 case SIXTEEN_MHZ: 2703 clkparam[0] = 1; 2704 break; 2705 case EIGHT_MHZ: 2706 clkparam[0] = 2; 2707 break; 2708 case FOUR_MHZ: 2709 clkparam[0] = 3; 2710 break; 2711 case TWO_MHZ: 2712 clkparam[0] = 4; 2713 break; 2714 case ONE_MHZ: 2715 clkparam[0] = 5; 2716 break; 2717 default: 2718 dev_crit(&spi->dev, "Invalid extclock-freq\n"); 2719 return -EINVAL; 2720 } 2721 clkparam[1] = pdata->extclockgpio; 2722 } else { 2723 dev_info(&spi->dev, "Switching external clock off\n"); 2724 clkparam[0] = 0; /* off */ 2725 clkparam[1] = 0; 2726 } 2727 return link_to_linux_err( 2728 hwme_set_request_sync(HWME_SYSCLKOUT, 2, clkparam, spi) 2729 ); 2730 } 2731 2732 /** 2733 * ca8210_register_ext_clock() - Register ca8210's external clock with kernel 2734 * @spi: Pointer to target ca8210 spi device 2735 * 2736 * Return: 0 or linux error code 2737 */ 2738 static int ca8210_register_ext_clock(struct spi_device *spi) 2739 { 2740 struct device_node *np = spi->dev.of_node; 2741 struct ca8210_priv *priv = spi_get_drvdata(spi); 2742 struct ca8210_platform_data *pdata = spi->dev.platform_data; 2743 int ret = 0; 2744 2745 if (!np) 2746 return -EFAULT; 2747 2748 priv->clk = clk_register_fixed_rate( 2749 &spi->dev, 2750 np->name, 2751 NULL, 2752 0, 2753 pdata->extclockfreq 2754 ); 2755 2756 if (IS_ERR(priv->clk)) { 2757 dev_crit(&spi->dev, "Failed to register external clk\n"); 2758 return PTR_ERR(priv->clk); 2759 } 2760 ret = of_clk_add_provider(np, of_clk_src_simple_get, priv->clk); 2761 if (ret) { 2762 clk_unregister(priv->clk); 2763 dev_crit( 2764 &spi->dev, 2765 "Failed to register external clock as clock provider\n" 2766 ); 2767 } else { 2768 dev_info(&spi->dev, "External clock set as clock provider\n"); 2769 } 2770 2771 return ret; 2772 } 2773 2774 /** 2775 * ca8210_unregister_ext_clock() - Unregister ca8210's external clock with 2776 * kernel 2777 * @spi: Pointer to target ca8210 spi device 2778 */ 2779 static void ca8210_unregister_ext_clock(struct spi_device *spi) 2780 { 2781 struct ca8210_priv *priv = spi_get_drvdata(spi); 2782 2783 if (!priv->clk) 2784 return 2785 2786 of_clk_del_provider(spi->dev.of_node); 2787 clk_unregister(priv->clk); 2788 dev_info(&spi->dev, "External clock unregistered\n"); 2789 } 2790 2791 /** 2792 * ca8210_reset_init() - Initialise the reset input to the ca8210 2793 * @spi: Pointer to target ca8210 spi device 2794 * 2795 * Return: 0 or linux error code 2796 */ 2797 static int ca8210_reset_init(struct spi_device *spi) 2798 { 2799 int ret; 2800 struct ca8210_platform_data *pdata = spi->dev.platform_data; 2801 2802 pdata->gpio_reset = of_get_named_gpio( 2803 spi->dev.of_node, 2804 "reset-gpio", 2805 0 2806 ); 2807 2808 ret = gpio_direction_output(pdata->gpio_reset, 1); 2809 if (ret < 0) { 2810 dev_crit( 2811 &spi->dev, 2812 "Reset GPIO %d did not set to output mode\n", 2813 pdata->gpio_reset 2814 ); 2815 } 2816 2817 return ret; 2818 } 2819 2820 /** 2821 * ca8210_interrupt_init() - Initialise the irq output from the ca8210 2822 * @spi: Pointer to target ca8210 spi device 2823 * 2824 * Return: 0 or linux error code 2825 */ 2826 static int ca8210_interrupt_init(struct spi_device *spi) 2827 { 2828 int ret; 2829 struct ca8210_platform_data *pdata = spi->dev.platform_data; 2830 2831 pdata->gpio_irq = of_get_named_gpio( 2832 spi->dev.of_node, 2833 "irq-gpio", 2834 0 2835 ); 2836 2837 pdata->irq_id = gpio_to_irq(pdata->gpio_irq); 2838 if (pdata->irq_id < 0) { 2839 dev_crit( 2840 &spi->dev, 2841 "Could not get irq for gpio pin %d\n", 2842 pdata->gpio_irq 2843 ); 2844 gpio_free(pdata->gpio_irq); 2845 return pdata->irq_id; 2846 } 2847 2848 ret = request_irq( 2849 pdata->irq_id, 2850 ca8210_interrupt_handler, 2851 IRQF_TRIGGER_FALLING, 2852 "ca8210-irq", 2853 spi_get_drvdata(spi) 2854 ); 2855 if (ret) { 2856 dev_crit(&spi->dev, "request_irq %d failed\n", pdata->irq_id); 2857 gpio_free(pdata->gpio_irq); 2858 } 2859 2860 return ret; 2861 } 2862 2863 /** 2864 * ca8210_dev_com_init() - Initialise the spi communication component 2865 * @priv: Pointer to private data structure 2866 * 2867 * Return: 0 or linux error code 2868 */ 2869 static int ca8210_dev_com_init(struct ca8210_priv *priv) 2870 { 2871 priv->mlme_workqueue = alloc_ordered_workqueue( 2872 "MLME work queue", 2873 WQ_UNBOUND 2874 ); 2875 if (!priv->mlme_workqueue) { 2876 dev_crit(&priv->spi->dev, "alloc of mlme_workqueue failed!\n"); 2877 return -ENOMEM; 2878 } 2879 2880 priv->irq_workqueue = alloc_ordered_workqueue( 2881 "ca8210 irq worker", 2882 WQ_UNBOUND 2883 ); 2884 if (!priv->irq_workqueue) { 2885 dev_crit(&priv->spi->dev, "alloc of irq_workqueue failed!\n"); 2886 destroy_workqueue(priv->mlme_workqueue); 2887 return -ENOMEM; 2888 } 2889 2890 return 0; 2891 } 2892 2893 /** 2894 * ca8210_dev_com_clear() - Deinitialise the spi communication component 2895 * @priv: Pointer to private data structure 2896 */ 2897 static void ca8210_dev_com_clear(struct ca8210_priv *priv) 2898 { 2899 destroy_workqueue(priv->mlme_workqueue); 2900 destroy_workqueue(priv->irq_workqueue); 2901 } 2902 2903 #define CA8210_MAX_TX_POWERS (9) 2904 static const s32 ca8210_tx_powers[CA8210_MAX_TX_POWERS] = { 2905 800, 700, 600, 500, 400, 300, 200, 100, 0 2906 }; 2907 2908 #define CA8210_MAX_ED_LEVELS (21) 2909 static const s32 ca8210_ed_levels[CA8210_MAX_ED_LEVELS] = { 2910 -10300, -10250, -10200, -10150, -10100, -10050, -10000, -9950, -9900, 2911 -9850, -9800, -9750, -9700, -9650, -9600, -9550, -9500, -9450, -9400, 2912 -9350, -9300 2913 }; 2914 2915 /** 2916 * ca8210_hw_setup() - Populate the ieee802154_hw phy attributes with the 2917 * ca8210's defaults 2918 * @ca8210_hw: Pointer to ieee802154_hw to populate 2919 */ 2920 static void ca8210_hw_setup(struct ieee802154_hw *ca8210_hw) 2921 { 2922 /* Support channels 11-26 */ 2923 ca8210_hw->phy->supported.channels[0] = CA8210_VALID_CHANNELS; 2924 ca8210_hw->phy->supported.tx_powers_size = CA8210_MAX_TX_POWERS; 2925 ca8210_hw->phy->supported.tx_powers = ca8210_tx_powers; 2926 ca8210_hw->phy->supported.cca_ed_levels_size = CA8210_MAX_ED_LEVELS; 2927 ca8210_hw->phy->supported.cca_ed_levels = ca8210_ed_levels; 2928 ca8210_hw->phy->current_channel = 18; 2929 ca8210_hw->phy->current_page = 0; 2930 ca8210_hw->phy->transmit_power = 800; 2931 ca8210_hw->phy->cca.mode = NL802154_CCA_ENERGY_CARRIER; 2932 ca8210_hw->phy->cca.opt = NL802154_CCA_OPT_ENERGY_CARRIER_AND; 2933 ca8210_hw->phy->cca_ed_level = -9800; 2934 ca8210_hw->phy->symbol_duration = 16; 2935 ca8210_hw->phy->lifs_period = 40 * ca8210_hw->phy->symbol_duration; 2936 ca8210_hw->phy->sifs_period = 12 * ca8210_hw->phy->symbol_duration; 2937 ca8210_hw->flags = 2938 IEEE802154_HW_AFILT | 2939 IEEE802154_HW_OMIT_CKSUM | 2940 IEEE802154_HW_FRAME_RETRIES | 2941 IEEE802154_HW_PROMISCUOUS | 2942 IEEE802154_HW_CSMA_PARAMS; 2943 ca8210_hw->phy->flags = 2944 WPAN_PHY_FLAG_TXPOWER | 2945 WPAN_PHY_FLAG_CCA_ED_LEVEL | 2946 WPAN_PHY_FLAG_CCA_MODE | 2947 WPAN_PHY_FLAG_DATAGRAMS_ONLY; 2948 } 2949 2950 /** 2951 * ca8210_test_interface_init() - Initialise the test file interface 2952 * @priv: Pointer to private data structure 2953 * 2954 * Provided as an alternative to the standard linux network interface, the test 2955 * interface exposes a file in the filesystem (ca8210_test) that allows 2956 * 802.15.4 SAP Commands and Cascoda EVBME commands to be sent directly to 2957 * the stack. 2958 * 2959 * Return: 0 or linux error code 2960 */ 2961 static int ca8210_test_interface_init(struct ca8210_priv *priv) 2962 { 2963 struct ca8210_test *test = &priv->test; 2964 char node_name[32]; 2965 2966 snprintf( 2967 node_name, 2968 sizeof(node_name), 2969 "ca8210@%d_%d", 2970 priv->spi->master->bus_num, 2971 spi_get_chipselect(priv->spi, 0) 2972 ); 2973 2974 test->ca8210_dfs_spi_int = debugfs_create_file( 2975 node_name, 2976 0600, /* S_IRUSR | S_IWUSR */ 2977 NULL, 2978 priv, 2979 &test_int_fops 2980 ); 2981 2982 debugfs_create_symlink("ca8210", NULL, node_name); 2983 init_waitqueue_head(&test->readq); 2984 return kfifo_alloc( 2985 &test->up_fifo, 2986 CA8210_TEST_INT_FIFO_SIZE, 2987 GFP_KERNEL 2988 ); 2989 } 2990 2991 /** 2992 * ca8210_test_interface_clear() - Deinitialise the test file interface 2993 * @priv: Pointer to private data structure 2994 */ 2995 static void ca8210_test_interface_clear(struct ca8210_priv *priv) 2996 { 2997 struct ca8210_test *test = &priv->test; 2998 2999 debugfs_remove(test->ca8210_dfs_spi_int); 3000 kfifo_free(&test->up_fifo); 3001 dev_info(&priv->spi->dev, "Test interface removed\n"); 3002 } 3003 3004 /** 3005 * ca8210_remove() - Shut down a ca8210 upon being disconnected 3006 * @spi_device: Pointer to spi device data structure 3007 * 3008 * Return: 0 or linux error code 3009 */ 3010 static void ca8210_remove(struct spi_device *spi_device) 3011 { 3012 struct ca8210_priv *priv; 3013 struct ca8210_platform_data *pdata; 3014 3015 dev_info(&spi_device->dev, "Removing ca8210\n"); 3016 3017 pdata = spi_device->dev.platform_data; 3018 if (pdata) { 3019 if (pdata->extclockenable) { 3020 ca8210_unregister_ext_clock(spi_device); 3021 ca8210_config_extern_clk(pdata, spi_device, 0); 3022 } 3023 free_irq(pdata->irq_id, spi_device->dev.driver_data); 3024 kfree(pdata); 3025 spi_device->dev.platform_data = NULL; 3026 } 3027 /* get spi_device private data */ 3028 priv = spi_get_drvdata(spi_device); 3029 if (priv) { 3030 dev_info( 3031 &spi_device->dev, 3032 "sync_down = %d, sync_up = %d\n", 3033 priv->sync_down, 3034 priv->sync_up 3035 ); 3036 ca8210_dev_com_clear(spi_device->dev.driver_data); 3037 if (priv->hw) { 3038 if (priv->hw_registered) 3039 ieee802154_unregister_hw(priv->hw); 3040 ieee802154_free_hw(priv->hw); 3041 priv->hw = NULL; 3042 dev_info( 3043 &spi_device->dev, 3044 "Unregistered & freed ieee802154_hw.\n" 3045 ); 3046 } 3047 if (IS_ENABLED(CONFIG_IEEE802154_CA8210_DEBUGFS)) 3048 ca8210_test_interface_clear(priv); 3049 } 3050 } 3051 3052 /** 3053 * ca8210_probe() - Set up a connected ca8210 upon being detected by the system 3054 * @spi_device: Pointer to spi device data structure 3055 * 3056 * Return: 0 or linux error code 3057 */ 3058 static int ca8210_probe(struct spi_device *spi_device) 3059 { 3060 struct ca8210_priv *priv; 3061 struct ieee802154_hw *hw; 3062 struct ca8210_platform_data *pdata; 3063 int ret; 3064 3065 dev_info(&spi_device->dev, "Inserting ca8210\n"); 3066 3067 /* allocate ieee802154_hw and private data */ 3068 hw = ieee802154_alloc_hw(sizeof(struct ca8210_priv), &ca8210_phy_ops); 3069 if (!hw) { 3070 dev_crit(&spi_device->dev, "ieee802154_alloc_hw failed\n"); 3071 ret = -ENOMEM; 3072 goto error; 3073 } 3074 3075 priv = hw->priv; 3076 priv->hw = hw; 3077 priv->spi = spi_device; 3078 hw->parent = &spi_device->dev; 3079 spin_lock_init(&priv->lock); 3080 priv->async_tx_pending = false; 3081 priv->hw_registered = false; 3082 priv->sync_up = 0; 3083 priv->sync_down = 0; 3084 priv->promiscuous = false; 3085 priv->retries = 0; 3086 init_completion(&priv->ca8210_is_awake); 3087 init_completion(&priv->spi_transfer_complete); 3088 init_completion(&priv->sync_exchange_complete); 3089 spi_set_drvdata(priv->spi, priv); 3090 if (IS_ENABLED(CONFIG_IEEE802154_CA8210_DEBUGFS)) { 3091 cascoda_api_upstream = ca8210_test_int_driver_write; 3092 ca8210_test_interface_init(priv); 3093 } else { 3094 cascoda_api_upstream = NULL; 3095 } 3096 ca8210_hw_setup(hw); 3097 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); 3098 3099 pdata = kmalloc(sizeof(*pdata), GFP_KERNEL); 3100 if (!pdata) { 3101 ret = -ENOMEM; 3102 goto error; 3103 } 3104 3105 priv->spi->dev.platform_data = pdata; 3106 ret = ca8210_get_platform_data(priv->spi, pdata); 3107 if (ret) { 3108 dev_crit(&spi_device->dev, "ca8210_get_platform_data failed\n"); 3109 goto error; 3110 } 3111 3112 ret = ca8210_dev_com_init(priv); 3113 if (ret) { 3114 dev_crit(&spi_device->dev, "ca8210_dev_com_init failed\n"); 3115 goto error; 3116 } 3117 ret = ca8210_reset_init(priv->spi); 3118 if (ret) { 3119 dev_crit(&spi_device->dev, "ca8210_reset_init failed\n"); 3120 goto error; 3121 } 3122 3123 ret = ca8210_interrupt_init(priv->spi); 3124 if (ret) { 3125 dev_crit(&spi_device->dev, "ca8210_interrupt_init failed\n"); 3126 goto error; 3127 } 3128 3129 msleep(100); 3130 3131 ca8210_reset_send(priv->spi, 1); 3132 3133 ret = tdme_chipinit(priv->spi); 3134 if (ret) { 3135 dev_crit(&spi_device->dev, "tdme_chipinit failed\n"); 3136 goto error; 3137 } 3138 3139 if (pdata->extclockenable) { 3140 ret = ca8210_config_extern_clk(pdata, priv->spi, 1); 3141 if (ret) { 3142 dev_crit( 3143 &spi_device->dev, 3144 "ca8210_config_extern_clk failed\n" 3145 ); 3146 goto error; 3147 } 3148 ret = ca8210_register_ext_clock(priv->spi); 3149 if (ret) { 3150 dev_crit( 3151 &spi_device->dev, 3152 "ca8210_register_ext_clock failed\n" 3153 ); 3154 goto error; 3155 } 3156 } 3157 3158 ret = ieee802154_register_hw(hw); 3159 if (ret) { 3160 dev_crit(&spi_device->dev, "ieee802154_register_hw failed\n"); 3161 goto error; 3162 } 3163 priv->hw_registered = true; 3164 3165 return 0; 3166 error: 3167 msleep(100); /* wait for pending spi transfers to complete */ 3168 ca8210_remove(spi_device); 3169 return link_to_linux_err(ret); 3170 } 3171 3172 static const struct of_device_id ca8210_of_ids[] = { 3173 {.compatible = "cascoda,ca8210", }, 3174 {}, 3175 }; 3176 MODULE_DEVICE_TABLE(of, ca8210_of_ids); 3177 3178 static struct spi_driver ca8210_spi_driver = { 3179 .driver = { 3180 .name = DRIVER_NAME, 3181 .of_match_table = ca8210_of_ids, 3182 }, 3183 .probe = ca8210_probe, 3184 .remove = ca8210_remove 3185 }; 3186 3187 module_spi_driver(ca8210_spi_driver); 3188 3189 MODULE_AUTHOR("Harry Morris <h.morris@cascoda.com>"); 3190 MODULE_DESCRIPTION("CA-8210 SoftMAC driver"); 3191 MODULE_LICENSE("Dual BSD/GPL"); 3192 MODULE_VERSION("1.0"); 3193