xref: /openbmc/linux/drivers/net/ieee802154/at86rf230.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AT86RF230/RF231 driver
4  *
5  * Copyright (C) 2009-2012 Siemens AG
6  *
7  * Written by:
8  * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
9  * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
10  * Alexander Aring <aar@pengutronix.de>
11  */
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/hrtimer.h>
15 #include <linux/jiffies.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/gpio.h>
19 #include <linux/delay.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/at86rf230.h>
22 #include <linux/regmap.h>
23 #include <linux/skbuff.h>
24 #include <linux/of_gpio.h>
25 #include <linux/ieee802154.h>
26 #include <linux/debugfs.h>
27 
28 #include <net/mac802154.h>
29 #include <net/cfg802154.h>
30 
31 #include "at86rf230.h"
32 
33 struct at86rf230_local;
34 /* at86rf2xx chip depend data.
35  * All timings are in us.
36  */
37 struct at86rf2xx_chip_data {
38 	u16 t_sleep_cycle;
39 	u16 t_channel_switch;
40 	u16 t_reset_to_off;
41 	u16 t_off_to_aack;
42 	u16 t_off_to_tx_on;
43 	u16 t_off_to_sleep;
44 	u16 t_sleep_to_off;
45 	u16 t_frame;
46 	u16 t_p_ack;
47 	int rssi_base_val;
48 
49 	int (*set_channel)(struct at86rf230_local *, u8, u8);
50 	int (*set_txpower)(struct at86rf230_local *, s32);
51 };
52 
53 #define AT86RF2XX_MAX_BUF		(127 + 3)
54 /* tx retries to access the TX_ON state
55  * if it's above then force change will be started.
56  *
57  * We assume the max_frame_retries (7) value of 802.15.4 here.
58  */
59 #define AT86RF2XX_MAX_TX_RETRIES	7
60 /* We use the recommended 5 minutes timeout to recalibrate */
61 #define AT86RF2XX_CAL_LOOP_TIMEOUT	(5 * 60 * HZ)
62 
63 struct at86rf230_state_change {
64 	struct at86rf230_local *lp;
65 	int irq;
66 
67 	struct hrtimer timer;
68 	struct spi_message msg;
69 	struct spi_transfer trx;
70 	u8 buf[AT86RF2XX_MAX_BUF];
71 
72 	void (*complete)(void *context);
73 	u8 from_state;
74 	u8 to_state;
75 
76 	bool free;
77 };
78 
79 struct at86rf230_trac {
80 	u64 success;
81 	u64 success_data_pending;
82 	u64 success_wait_for_ack;
83 	u64 channel_access_failure;
84 	u64 no_ack;
85 	u64 invalid;
86 };
87 
88 struct at86rf230_local {
89 	struct spi_device *spi;
90 
91 	struct ieee802154_hw *hw;
92 	struct at86rf2xx_chip_data *data;
93 	struct regmap *regmap;
94 	int slp_tr;
95 	bool sleep;
96 
97 	struct completion state_complete;
98 	struct at86rf230_state_change state;
99 
100 	unsigned long cal_timeout;
101 	bool is_tx;
102 	bool is_tx_from_off;
103 	u8 tx_retry;
104 	struct sk_buff *tx_skb;
105 	struct at86rf230_state_change tx;
106 
107 	struct at86rf230_trac trac;
108 };
109 
110 #define AT86RF2XX_NUMREGS 0x3F
111 
112 static void
113 at86rf230_async_state_change(struct at86rf230_local *lp,
114 			     struct at86rf230_state_change *ctx,
115 			     const u8 state, void (*complete)(void *context));
116 
117 static inline void
118 at86rf230_sleep(struct at86rf230_local *lp)
119 {
120 	if (gpio_is_valid(lp->slp_tr)) {
121 		gpio_set_value(lp->slp_tr, 1);
122 		usleep_range(lp->data->t_off_to_sleep,
123 			     lp->data->t_off_to_sleep + 10);
124 		lp->sleep = true;
125 	}
126 }
127 
128 static inline void
129 at86rf230_awake(struct at86rf230_local *lp)
130 {
131 	if (gpio_is_valid(lp->slp_tr)) {
132 		gpio_set_value(lp->slp_tr, 0);
133 		usleep_range(lp->data->t_sleep_to_off,
134 			     lp->data->t_sleep_to_off + 100);
135 		lp->sleep = false;
136 	}
137 }
138 
139 static inline int
140 __at86rf230_write(struct at86rf230_local *lp,
141 		  unsigned int addr, unsigned int data)
142 {
143 	bool sleep = lp->sleep;
144 	int ret;
145 
146 	/* awake for register setting if sleep */
147 	if (sleep)
148 		at86rf230_awake(lp);
149 
150 	ret = regmap_write(lp->regmap, addr, data);
151 
152 	/* sleep again if was sleeping */
153 	if (sleep)
154 		at86rf230_sleep(lp);
155 
156 	return ret;
157 }
158 
159 static inline int
160 __at86rf230_read(struct at86rf230_local *lp,
161 		 unsigned int addr, unsigned int *data)
162 {
163 	bool sleep = lp->sleep;
164 	int ret;
165 
166 	/* awake for register setting if sleep */
167 	if (sleep)
168 		at86rf230_awake(lp);
169 
170 	ret = regmap_read(lp->regmap, addr, data);
171 
172 	/* sleep again if was sleeping */
173 	if (sleep)
174 		at86rf230_sleep(lp);
175 
176 	return ret;
177 }
178 
179 static inline int
180 at86rf230_read_subreg(struct at86rf230_local *lp,
181 		      unsigned int addr, unsigned int mask,
182 		      unsigned int shift, unsigned int *data)
183 {
184 	int rc;
185 
186 	rc = __at86rf230_read(lp, addr, data);
187 	if (!rc)
188 		*data = (*data & mask) >> shift;
189 
190 	return rc;
191 }
192 
193 static inline int
194 at86rf230_write_subreg(struct at86rf230_local *lp,
195 		       unsigned int addr, unsigned int mask,
196 		       unsigned int shift, unsigned int data)
197 {
198 	bool sleep = lp->sleep;
199 	int ret;
200 
201 	/* awake for register setting if sleep */
202 	if (sleep)
203 		at86rf230_awake(lp);
204 
205 	ret = regmap_update_bits(lp->regmap, addr, mask, data << shift);
206 
207 	/* sleep again if was sleeping */
208 	if (sleep)
209 		at86rf230_sleep(lp);
210 
211 	return ret;
212 }
213 
214 static inline void
215 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
216 {
217 	gpio_set_value(lp->slp_tr, 1);
218 	udelay(1);
219 	gpio_set_value(lp->slp_tr, 0);
220 }
221 
222 static bool
223 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
224 {
225 	switch (reg) {
226 	case RG_TRX_STATE:
227 	case RG_TRX_CTRL_0:
228 	case RG_TRX_CTRL_1:
229 	case RG_PHY_TX_PWR:
230 	case RG_PHY_ED_LEVEL:
231 	case RG_PHY_CC_CCA:
232 	case RG_CCA_THRES:
233 	case RG_RX_CTRL:
234 	case RG_SFD_VALUE:
235 	case RG_TRX_CTRL_2:
236 	case RG_ANT_DIV:
237 	case RG_IRQ_MASK:
238 	case RG_VREG_CTRL:
239 	case RG_BATMON:
240 	case RG_XOSC_CTRL:
241 	case RG_RX_SYN:
242 	case RG_XAH_CTRL_1:
243 	case RG_FTN_CTRL:
244 	case RG_PLL_CF:
245 	case RG_PLL_DCU:
246 	case RG_SHORT_ADDR_0:
247 	case RG_SHORT_ADDR_1:
248 	case RG_PAN_ID_0:
249 	case RG_PAN_ID_1:
250 	case RG_IEEE_ADDR_0:
251 	case RG_IEEE_ADDR_1:
252 	case RG_IEEE_ADDR_2:
253 	case RG_IEEE_ADDR_3:
254 	case RG_IEEE_ADDR_4:
255 	case RG_IEEE_ADDR_5:
256 	case RG_IEEE_ADDR_6:
257 	case RG_IEEE_ADDR_7:
258 	case RG_XAH_CTRL_0:
259 	case RG_CSMA_SEED_0:
260 	case RG_CSMA_SEED_1:
261 	case RG_CSMA_BE:
262 		return true;
263 	default:
264 		return false;
265 	}
266 }
267 
268 static bool
269 at86rf230_reg_readable(struct device *dev, unsigned int reg)
270 {
271 	bool rc;
272 
273 	/* all writeable are also readable */
274 	rc = at86rf230_reg_writeable(dev, reg);
275 	if (rc)
276 		return rc;
277 
278 	/* readonly regs */
279 	switch (reg) {
280 	case RG_TRX_STATUS:
281 	case RG_PHY_RSSI:
282 	case RG_IRQ_STATUS:
283 	case RG_PART_NUM:
284 	case RG_VERSION_NUM:
285 	case RG_MAN_ID_1:
286 	case RG_MAN_ID_0:
287 		return true;
288 	default:
289 		return false;
290 	}
291 }
292 
293 static bool
294 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
295 {
296 	/* can be changed during runtime */
297 	switch (reg) {
298 	case RG_TRX_STATUS:
299 	case RG_TRX_STATE:
300 	case RG_PHY_RSSI:
301 	case RG_PHY_ED_LEVEL:
302 	case RG_IRQ_STATUS:
303 	case RG_VREG_CTRL:
304 	case RG_PLL_CF:
305 	case RG_PLL_DCU:
306 		return true;
307 	default:
308 		return false;
309 	}
310 }
311 
312 static bool
313 at86rf230_reg_precious(struct device *dev, unsigned int reg)
314 {
315 	/* don't clear irq line on read */
316 	switch (reg) {
317 	case RG_IRQ_STATUS:
318 		return true;
319 	default:
320 		return false;
321 	}
322 }
323 
324 static const struct regmap_config at86rf230_regmap_spi_config = {
325 	.reg_bits = 8,
326 	.val_bits = 8,
327 	.write_flag_mask = CMD_REG | CMD_WRITE,
328 	.read_flag_mask = CMD_REG,
329 	.cache_type = REGCACHE_RBTREE,
330 	.max_register = AT86RF2XX_NUMREGS,
331 	.writeable_reg = at86rf230_reg_writeable,
332 	.readable_reg = at86rf230_reg_readable,
333 	.volatile_reg = at86rf230_reg_volatile,
334 	.precious_reg = at86rf230_reg_precious,
335 };
336 
337 static void
338 at86rf230_async_error_recover_complete(void *context)
339 {
340 	struct at86rf230_state_change *ctx = context;
341 	struct at86rf230_local *lp = ctx->lp;
342 
343 	if (ctx->free)
344 		kfree(ctx);
345 
346 	ieee802154_wake_queue(lp->hw);
347 }
348 
349 static void
350 at86rf230_async_error_recover(void *context)
351 {
352 	struct at86rf230_state_change *ctx = context;
353 	struct at86rf230_local *lp = ctx->lp;
354 
355 	lp->is_tx = 0;
356 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
357 				     at86rf230_async_error_recover_complete);
358 }
359 
360 static inline void
361 at86rf230_async_error(struct at86rf230_local *lp,
362 		      struct at86rf230_state_change *ctx, int rc)
363 {
364 	dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
365 
366 	at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
367 				     at86rf230_async_error_recover);
368 }
369 
370 /* Generic function to get some register value in async mode */
371 static void
372 at86rf230_async_read_reg(struct at86rf230_local *lp, u8 reg,
373 			 struct at86rf230_state_change *ctx,
374 			 void (*complete)(void *context))
375 {
376 	int rc;
377 
378 	u8 *tx_buf = ctx->buf;
379 
380 	tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
381 	ctx->msg.complete = complete;
382 	rc = spi_async(lp->spi, &ctx->msg);
383 	if (rc)
384 		at86rf230_async_error(lp, ctx, rc);
385 }
386 
387 static void
388 at86rf230_async_write_reg(struct at86rf230_local *lp, u8 reg, u8 val,
389 			  struct at86rf230_state_change *ctx,
390 			  void (*complete)(void *context))
391 {
392 	int rc;
393 
394 	ctx->buf[0] = (reg & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
395 	ctx->buf[1] = val;
396 	ctx->msg.complete = complete;
397 	rc = spi_async(lp->spi, &ctx->msg);
398 	if (rc)
399 		at86rf230_async_error(lp, ctx, rc);
400 }
401 
402 static void
403 at86rf230_async_state_assert(void *context)
404 {
405 	struct at86rf230_state_change *ctx = context;
406 	struct at86rf230_local *lp = ctx->lp;
407 	const u8 *buf = ctx->buf;
408 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
409 
410 	/* Assert state change */
411 	if (trx_state != ctx->to_state) {
412 		/* Special handling if transceiver state is in
413 		 * STATE_BUSY_RX_AACK and a SHR was detected.
414 		 */
415 		if  (trx_state == STATE_BUSY_RX_AACK) {
416 			/* Undocumented race condition. If we send a state
417 			 * change to STATE_RX_AACK_ON the transceiver could
418 			 * change his state automatically to STATE_BUSY_RX_AACK
419 			 * if a SHR was detected. This is not an error, but we
420 			 * can't assert this.
421 			 */
422 			if (ctx->to_state == STATE_RX_AACK_ON)
423 				goto done;
424 
425 			/* If we change to STATE_TX_ON without forcing and
426 			 * transceiver state is STATE_BUSY_RX_AACK, we wait
427 			 * 'tFrame + tPAck' receiving time. In this time the
428 			 * PDU should be received. If the transceiver is still
429 			 * in STATE_BUSY_RX_AACK, we run a force state change
430 			 * to STATE_TX_ON. This is a timeout handling, if the
431 			 * transceiver stucks in STATE_BUSY_RX_AACK.
432 			 *
433 			 * Additional we do several retries to try to get into
434 			 * TX_ON state without forcing. If the retries are
435 			 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
436 			 * will do a force change.
437 			 */
438 			if (ctx->to_state == STATE_TX_ON ||
439 			    ctx->to_state == STATE_TRX_OFF) {
440 				u8 state = ctx->to_state;
441 
442 				if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
443 					state = STATE_FORCE_TRX_OFF;
444 				lp->tx_retry++;
445 
446 				at86rf230_async_state_change(lp, ctx, state,
447 							     ctx->complete);
448 				return;
449 			}
450 		}
451 
452 		dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
453 			 ctx->from_state, ctx->to_state, trx_state);
454 	}
455 
456 done:
457 	if (ctx->complete)
458 		ctx->complete(context);
459 }
460 
461 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
462 {
463 	struct at86rf230_state_change *ctx =
464 		container_of(timer, struct at86rf230_state_change, timer);
465 	struct at86rf230_local *lp = ctx->lp;
466 
467 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
468 				 at86rf230_async_state_assert);
469 
470 	return HRTIMER_NORESTART;
471 }
472 
473 /* Do state change timing delay. */
474 static void
475 at86rf230_async_state_delay(void *context)
476 {
477 	struct at86rf230_state_change *ctx = context;
478 	struct at86rf230_local *lp = ctx->lp;
479 	struct at86rf2xx_chip_data *c = lp->data;
480 	bool force = false;
481 	ktime_t tim;
482 
483 	/* The force state changes are will show as normal states in the
484 	 * state status subregister. We change the to_state to the
485 	 * corresponding one and remember if it was a force change, this
486 	 * differs if we do a state change from STATE_BUSY_RX_AACK.
487 	 */
488 	switch (ctx->to_state) {
489 	case STATE_FORCE_TX_ON:
490 		ctx->to_state = STATE_TX_ON;
491 		force = true;
492 		break;
493 	case STATE_FORCE_TRX_OFF:
494 		ctx->to_state = STATE_TRX_OFF;
495 		force = true;
496 		break;
497 	default:
498 		break;
499 	}
500 
501 	switch (ctx->from_state) {
502 	case STATE_TRX_OFF:
503 		switch (ctx->to_state) {
504 		case STATE_RX_AACK_ON:
505 			tim = c->t_off_to_aack * NSEC_PER_USEC;
506 			/* state change from TRX_OFF to RX_AACK_ON to do a
507 			 * calibration, we need to reset the timeout for the
508 			 * next one.
509 			 */
510 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
511 			goto change;
512 		case STATE_TX_ARET_ON:
513 		case STATE_TX_ON:
514 			tim = c->t_off_to_tx_on * NSEC_PER_USEC;
515 			/* state change from TRX_OFF to TX_ON or ARET_ON to do
516 			 * a calibration, we need to reset the timeout for the
517 			 * next one.
518 			 */
519 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
520 			goto change;
521 		default:
522 			break;
523 		}
524 		break;
525 	case STATE_BUSY_RX_AACK:
526 		switch (ctx->to_state) {
527 		case STATE_TRX_OFF:
528 		case STATE_TX_ON:
529 			/* Wait for worst case receiving time if we
530 			 * didn't make a force change from BUSY_RX_AACK
531 			 * to TX_ON or TRX_OFF.
532 			 */
533 			if (!force) {
534 				tim = (c->t_frame + c->t_p_ack) * NSEC_PER_USEC;
535 				goto change;
536 			}
537 			break;
538 		default:
539 			break;
540 		}
541 		break;
542 	/* Default value, means RESET state */
543 	case STATE_P_ON:
544 		switch (ctx->to_state) {
545 		case STATE_TRX_OFF:
546 			tim = c->t_reset_to_off * NSEC_PER_USEC;
547 			goto change;
548 		default:
549 			break;
550 		}
551 		break;
552 	default:
553 		break;
554 	}
555 
556 	/* Default delay is 1us in the most cases */
557 	udelay(1);
558 	at86rf230_async_state_timer(&ctx->timer);
559 	return;
560 
561 change:
562 	hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
563 }
564 
565 static void
566 at86rf230_async_state_change_start(void *context)
567 {
568 	struct at86rf230_state_change *ctx = context;
569 	struct at86rf230_local *lp = ctx->lp;
570 	u8 *buf = ctx->buf;
571 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
572 
573 	/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
574 	if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
575 		udelay(1);
576 		at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
577 					 at86rf230_async_state_change_start);
578 		return;
579 	}
580 
581 	/* Check if we already are in the state which we change in */
582 	if (trx_state == ctx->to_state) {
583 		if (ctx->complete)
584 			ctx->complete(context);
585 		return;
586 	}
587 
588 	/* Set current state to the context of state change */
589 	ctx->from_state = trx_state;
590 
591 	/* Going into the next step for a state change which do a timing
592 	 * relevant delay.
593 	 */
594 	at86rf230_async_write_reg(lp, RG_TRX_STATE, ctx->to_state, ctx,
595 				  at86rf230_async_state_delay);
596 }
597 
598 static void
599 at86rf230_async_state_change(struct at86rf230_local *lp,
600 			     struct at86rf230_state_change *ctx,
601 			     const u8 state, void (*complete)(void *context))
602 {
603 	/* Initialization for the state change context */
604 	ctx->to_state = state;
605 	ctx->complete = complete;
606 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
607 				 at86rf230_async_state_change_start);
608 }
609 
610 static void
611 at86rf230_sync_state_change_complete(void *context)
612 {
613 	struct at86rf230_state_change *ctx = context;
614 	struct at86rf230_local *lp = ctx->lp;
615 
616 	complete(&lp->state_complete);
617 }
618 
619 /* This function do a sync framework above the async state change.
620  * Some callbacks of the IEEE 802.15.4 driver interface need to be
621  * handled synchronously.
622  */
623 static int
624 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
625 {
626 	unsigned long rc;
627 
628 	at86rf230_async_state_change(lp, &lp->state, state,
629 				     at86rf230_sync_state_change_complete);
630 
631 	rc = wait_for_completion_timeout(&lp->state_complete,
632 					 msecs_to_jiffies(100));
633 	if (!rc) {
634 		at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
635 		return -ETIMEDOUT;
636 	}
637 
638 	return 0;
639 }
640 
641 static void
642 at86rf230_tx_complete(void *context)
643 {
644 	struct at86rf230_state_change *ctx = context;
645 	struct at86rf230_local *lp = ctx->lp;
646 
647 	ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
648 	kfree(ctx);
649 }
650 
651 static void
652 at86rf230_tx_on(void *context)
653 {
654 	struct at86rf230_state_change *ctx = context;
655 	struct at86rf230_local *lp = ctx->lp;
656 
657 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
658 				     at86rf230_tx_complete);
659 }
660 
661 static void
662 at86rf230_tx_trac_check(void *context)
663 {
664 	struct at86rf230_state_change *ctx = context;
665 	struct at86rf230_local *lp = ctx->lp;
666 
667 	if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) {
668 		u8 trac = TRAC_MASK(ctx->buf[1]);
669 
670 		switch (trac) {
671 		case TRAC_SUCCESS:
672 			lp->trac.success++;
673 			break;
674 		case TRAC_SUCCESS_DATA_PENDING:
675 			lp->trac.success_data_pending++;
676 			break;
677 		case TRAC_CHANNEL_ACCESS_FAILURE:
678 			lp->trac.channel_access_failure++;
679 			break;
680 		case TRAC_NO_ACK:
681 			lp->trac.no_ack++;
682 			break;
683 		case TRAC_INVALID:
684 			lp->trac.invalid++;
685 			break;
686 		default:
687 			WARN_ONCE(1, "received tx trac status %d\n", trac);
688 			break;
689 		}
690 	}
691 
692 	at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on);
693 }
694 
695 static void
696 at86rf230_rx_read_frame_complete(void *context)
697 {
698 	struct at86rf230_state_change *ctx = context;
699 	struct at86rf230_local *lp = ctx->lp;
700 	const u8 *buf = ctx->buf;
701 	struct sk_buff *skb;
702 	u8 len, lqi;
703 
704 	len = buf[1];
705 	if (!ieee802154_is_valid_psdu_len(len)) {
706 		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
707 		len = IEEE802154_MTU;
708 	}
709 	lqi = buf[2 + len];
710 
711 	skb = dev_alloc_skb(IEEE802154_MTU);
712 	if (!skb) {
713 		dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
714 		kfree(ctx);
715 		return;
716 	}
717 
718 	skb_put_data(skb, buf + 2, len);
719 	ieee802154_rx_irqsafe(lp->hw, skb, lqi);
720 	kfree(ctx);
721 }
722 
723 static void
724 at86rf230_rx_trac_check(void *context)
725 {
726 	struct at86rf230_state_change *ctx = context;
727 	struct at86rf230_local *lp = ctx->lp;
728 	u8 *buf = ctx->buf;
729 	int rc;
730 
731 	if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) {
732 		u8 trac = TRAC_MASK(buf[1]);
733 
734 		switch (trac) {
735 		case TRAC_SUCCESS:
736 			lp->trac.success++;
737 			break;
738 		case TRAC_SUCCESS_WAIT_FOR_ACK:
739 			lp->trac.success_wait_for_ack++;
740 			break;
741 		case TRAC_INVALID:
742 			lp->trac.invalid++;
743 			break;
744 		default:
745 			WARN_ONCE(1, "received rx trac status %d\n", trac);
746 			break;
747 		}
748 	}
749 
750 	buf[0] = CMD_FB;
751 	ctx->trx.len = AT86RF2XX_MAX_BUF;
752 	ctx->msg.complete = at86rf230_rx_read_frame_complete;
753 	rc = spi_async(lp->spi, &ctx->msg);
754 	if (rc) {
755 		ctx->trx.len = 2;
756 		at86rf230_async_error(lp, ctx, rc);
757 	}
758 }
759 
760 static void
761 at86rf230_irq_trx_end(void *context)
762 {
763 	struct at86rf230_state_change *ctx = context;
764 	struct at86rf230_local *lp = ctx->lp;
765 
766 	if (lp->is_tx) {
767 		lp->is_tx = 0;
768 		at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
769 					 at86rf230_tx_trac_check);
770 	} else {
771 		at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
772 					 at86rf230_rx_trac_check);
773 	}
774 }
775 
776 static void
777 at86rf230_irq_status(void *context)
778 {
779 	struct at86rf230_state_change *ctx = context;
780 	struct at86rf230_local *lp = ctx->lp;
781 	const u8 *buf = ctx->buf;
782 	u8 irq = buf[1];
783 
784 	enable_irq(lp->spi->irq);
785 
786 	if (irq & IRQ_TRX_END) {
787 		at86rf230_irq_trx_end(ctx);
788 	} else {
789 		dev_err(&lp->spi->dev, "not supported irq %02x received\n",
790 			irq);
791 		kfree(ctx);
792 	}
793 }
794 
795 static void
796 at86rf230_setup_spi_messages(struct at86rf230_local *lp,
797 			     struct at86rf230_state_change *state)
798 {
799 	state->lp = lp;
800 	state->irq = lp->spi->irq;
801 	spi_message_init(&state->msg);
802 	state->msg.context = state;
803 	state->trx.len = 2;
804 	state->trx.tx_buf = state->buf;
805 	state->trx.rx_buf = state->buf;
806 	spi_message_add_tail(&state->trx, &state->msg);
807 	hrtimer_init(&state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
808 	state->timer.function = at86rf230_async_state_timer;
809 }
810 
811 static irqreturn_t at86rf230_isr(int irq, void *data)
812 {
813 	struct at86rf230_local *lp = data;
814 	struct at86rf230_state_change *ctx;
815 	int rc;
816 
817 	disable_irq_nosync(irq);
818 
819 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
820 	if (!ctx) {
821 		enable_irq(irq);
822 		return IRQ_NONE;
823 	}
824 
825 	at86rf230_setup_spi_messages(lp, ctx);
826 	/* tell on error handling to free ctx */
827 	ctx->free = true;
828 
829 	ctx->buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
830 	ctx->msg.complete = at86rf230_irq_status;
831 	rc = spi_async(lp->spi, &ctx->msg);
832 	if (rc) {
833 		at86rf230_async_error(lp, ctx, rc);
834 		enable_irq(irq);
835 		return IRQ_NONE;
836 	}
837 
838 	return IRQ_HANDLED;
839 }
840 
841 static void
842 at86rf230_write_frame_complete(void *context)
843 {
844 	struct at86rf230_state_change *ctx = context;
845 	struct at86rf230_local *lp = ctx->lp;
846 
847 	ctx->trx.len = 2;
848 
849 	if (gpio_is_valid(lp->slp_tr))
850 		at86rf230_slp_tr_rising_edge(lp);
851 	else
852 		at86rf230_async_write_reg(lp, RG_TRX_STATE, STATE_BUSY_TX, ctx,
853 					  NULL);
854 }
855 
856 static void
857 at86rf230_write_frame(void *context)
858 {
859 	struct at86rf230_state_change *ctx = context;
860 	struct at86rf230_local *lp = ctx->lp;
861 	struct sk_buff *skb = lp->tx_skb;
862 	u8 *buf = ctx->buf;
863 	int rc;
864 
865 	lp->is_tx = 1;
866 
867 	buf[0] = CMD_FB | CMD_WRITE;
868 	buf[1] = skb->len + 2;
869 	memcpy(buf + 2, skb->data, skb->len);
870 	ctx->trx.len = skb->len + 2;
871 	ctx->msg.complete = at86rf230_write_frame_complete;
872 	rc = spi_async(lp->spi, &ctx->msg);
873 	if (rc) {
874 		ctx->trx.len = 2;
875 		at86rf230_async_error(lp, ctx, rc);
876 	}
877 }
878 
879 static void
880 at86rf230_xmit_tx_on(void *context)
881 {
882 	struct at86rf230_state_change *ctx = context;
883 	struct at86rf230_local *lp = ctx->lp;
884 
885 	at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
886 				     at86rf230_write_frame);
887 }
888 
889 static void
890 at86rf230_xmit_start(void *context)
891 {
892 	struct at86rf230_state_change *ctx = context;
893 	struct at86rf230_local *lp = ctx->lp;
894 
895 	/* check if we change from off state */
896 	if (lp->is_tx_from_off)
897 		at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
898 					     at86rf230_write_frame);
899 	else
900 		at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
901 					     at86rf230_xmit_tx_on);
902 }
903 
904 static int
905 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
906 {
907 	struct at86rf230_local *lp = hw->priv;
908 	struct at86rf230_state_change *ctx = &lp->tx;
909 
910 	lp->tx_skb = skb;
911 	lp->tx_retry = 0;
912 
913 	/* After 5 minutes in PLL and the same frequency we run again the
914 	 * calibration loops which is recommended by at86rf2xx datasheets.
915 	 *
916 	 * The calibration is initiate by a state change from TRX_OFF
917 	 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
918 	 * function then to start in the next 5 minutes.
919 	 */
920 	if (time_is_before_jiffies(lp->cal_timeout)) {
921 		lp->is_tx_from_off = true;
922 		at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
923 					     at86rf230_xmit_start);
924 	} else {
925 		lp->is_tx_from_off = false;
926 		at86rf230_xmit_start(ctx);
927 	}
928 
929 	return 0;
930 }
931 
932 static int
933 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
934 {
935 	WARN_ON(!level);
936 	*level = 0xbe;
937 	return 0;
938 }
939 
940 static int
941 at86rf230_start(struct ieee802154_hw *hw)
942 {
943 	struct at86rf230_local *lp = hw->priv;
944 
945 	/* reset trac stats on start */
946 	if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS))
947 		memset(&lp->trac, 0, sizeof(struct at86rf230_trac));
948 
949 	at86rf230_awake(lp);
950 	enable_irq(lp->spi->irq);
951 
952 	return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON);
953 }
954 
955 static void
956 at86rf230_stop(struct ieee802154_hw *hw)
957 {
958 	struct at86rf230_local *lp = hw->priv;
959 	u8 csma_seed[2];
960 
961 	at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
962 
963 	disable_irq(lp->spi->irq);
964 
965 	/* It's recommended to set random new csma_seeds before sleep state.
966 	 * Makes only sense in the stop callback, not doing this inside of
967 	 * at86rf230_sleep, this is also used when we don't transmit afterwards
968 	 * when calling start callback again.
969 	 */
970 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
971 	at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
972 	at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
973 
974 	at86rf230_sleep(lp);
975 }
976 
977 static int
978 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
979 {
980 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
981 }
982 
983 #define AT86RF2XX_MAX_ED_LEVELS 0xF
984 static const s32 at86rf233_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
985 	-9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600,
986 	-7400, -7200, -7000, -6800, -6600, -6400,
987 };
988 
989 static const s32 at86rf231_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
990 	-9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300,
991 	-7100, -6900, -6700, -6500, -6300, -6100,
992 };
993 
994 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = {
995 	-10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200,
996 	-8000, -7800, -7600, -7400, -7200, -7000,
997 };
998 
999 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = {
1000 	-9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000,
1001 	-7800, -7600, -7400, -7200, -7000, -6800,
1002 };
1003 
1004 static inline int
1005 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val)
1006 {
1007 	unsigned int cca_ed_thres;
1008 	int rc;
1009 
1010 	rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres);
1011 	if (rc < 0)
1012 		return rc;
1013 
1014 	switch (rssi_base_val) {
1015 	case -98:
1016 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98;
1017 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98);
1018 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres];
1019 		break;
1020 	case -100:
1021 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1022 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1023 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres];
1024 		break;
1025 	default:
1026 		WARN_ON(1);
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static int
1033 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1034 {
1035 	int rc;
1036 
1037 	if (channel == 0)
1038 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1039 	else
1040 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1041 	if (rc < 0)
1042 		return rc;
1043 
1044 	if (page == 0) {
1045 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1046 		lp->data->rssi_base_val = -100;
1047 	} else {
1048 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1049 		lp->data->rssi_base_val = -98;
1050 	}
1051 	if (rc < 0)
1052 		return rc;
1053 
1054 	rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val);
1055 	if (rc < 0)
1056 		return rc;
1057 
1058 	/* This sets the symbol_duration according frequency on the 212.
1059 	 * TODO move this handling while set channel and page in cfg802154.
1060 	 * We can do that, this timings are according 802.15.4 standard.
1061 	 * If we do that in cfg802154, this is a more generic calculation.
1062 	 *
1063 	 * This should also protected from ifs_timer. Means cancel timer and
1064 	 * init with a new value. For now, this is okay.
1065 	 */
1066 	if (channel == 0) {
1067 		if (page == 0) {
1068 			/* SUB:0 and BPSK:0 -> BPSK-20 */
1069 			lp->hw->phy->symbol_duration = 50;
1070 		} else {
1071 			/* SUB:1 and BPSK:0 -> BPSK-40 */
1072 			lp->hw->phy->symbol_duration = 25;
1073 		}
1074 	} else {
1075 		if (page == 0)
1076 			/* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1077 			lp->hw->phy->symbol_duration = 40;
1078 		else
1079 			/* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1080 			lp->hw->phy->symbol_duration = 16;
1081 	}
1082 
1083 	lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1084 				   lp->hw->phy->symbol_duration;
1085 	lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1086 				   lp->hw->phy->symbol_duration;
1087 
1088 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1089 }
1090 
1091 static int
1092 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1093 {
1094 	struct at86rf230_local *lp = hw->priv;
1095 	int rc;
1096 
1097 	rc = lp->data->set_channel(lp, page, channel);
1098 	/* Wait for PLL */
1099 	usleep_range(lp->data->t_channel_switch,
1100 		     lp->data->t_channel_switch + 10);
1101 
1102 	lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1103 	return rc;
1104 }
1105 
1106 static int
1107 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1108 			   struct ieee802154_hw_addr_filt *filt,
1109 			   unsigned long changed)
1110 {
1111 	struct at86rf230_local *lp = hw->priv;
1112 
1113 	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1114 		u16 addr = le16_to_cpu(filt->short_addr);
1115 
1116 		dev_vdbg(&lp->spi->dev, "%s called for saddr\n", __func__);
1117 		__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1118 		__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1119 	}
1120 
1121 	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1122 		u16 pan = le16_to_cpu(filt->pan_id);
1123 
1124 		dev_vdbg(&lp->spi->dev, "%s called for pan id\n", __func__);
1125 		__at86rf230_write(lp, RG_PAN_ID_0, pan);
1126 		__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1127 	}
1128 
1129 	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1130 		u8 i, addr[8];
1131 
1132 		memcpy(addr, &filt->ieee_addr, 8);
1133 		dev_vdbg(&lp->spi->dev, "%s called for IEEE addr\n", __func__);
1134 		for (i = 0; i < 8; i++)
1135 			__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1136 	}
1137 
1138 	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1139 		dev_vdbg(&lp->spi->dev, "%s called for panc change\n", __func__);
1140 		if (filt->pan_coord)
1141 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1142 		else
1143 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 #define AT86RF23X_MAX_TX_POWERS 0xF
1150 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1151 	400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600,
1152 	-800, -1200, -1700,
1153 };
1154 
1155 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1156 	300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700,
1157 	-900, -1200, -1700,
1158 };
1159 
1160 #define AT86RF212_MAX_TX_POWERS 0x1F
1161 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = {
1162 	500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
1163 	-800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
1164 	-1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
1165 };
1166 
1167 static int
1168 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm)
1169 {
1170 	u32 i;
1171 
1172 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1173 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1174 			return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i);
1175 	}
1176 
1177 	return -EINVAL;
1178 }
1179 
1180 static int
1181 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm)
1182 {
1183 	u32 i;
1184 
1185 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1186 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1187 			return at86rf230_write_subreg(lp, SR_TX_PWR_212, i);
1188 	}
1189 
1190 	return -EINVAL;
1191 }
1192 
1193 static int
1194 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm)
1195 {
1196 	struct at86rf230_local *lp = hw->priv;
1197 
1198 	return lp->data->set_txpower(lp, mbm);
1199 }
1200 
1201 static int
1202 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1203 {
1204 	struct at86rf230_local *lp = hw->priv;
1205 
1206 	return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1207 }
1208 
1209 static int
1210 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1211 		       const struct wpan_phy_cca *cca)
1212 {
1213 	struct at86rf230_local *lp = hw->priv;
1214 	u8 val;
1215 
1216 	/* mapping 802.15.4 to driver spec */
1217 	switch (cca->mode) {
1218 	case NL802154_CCA_ENERGY:
1219 		val = 1;
1220 		break;
1221 	case NL802154_CCA_CARRIER:
1222 		val = 2;
1223 		break;
1224 	case NL802154_CCA_ENERGY_CARRIER:
1225 		switch (cca->opt) {
1226 		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1227 			val = 3;
1228 			break;
1229 		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1230 			val = 0;
1231 			break;
1232 		default:
1233 			return -EINVAL;
1234 		}
1235 		break;
1236 	default:
1237 		return -EINVAL;
1238 	}
1239 
1240 	return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1241 }
1242 
1243 static int
1244 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
1245 {
1246 	struct at86rf230_local *lp = hw->priv;
1247 	u32 i;
1248 
1249 	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
1250 		if (hw->phy->supported.cca_ed_levels[i] == mbm)
1251 			return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i);
1252 	}
1253 
1254 	return -EINVAL;
1255 }
1256 
1257 static int
1258 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1259 			  u8 retries)
1260 {
1261 	struct at86rf230_local *lp = hw->priv;
1262 	int rc;
1263 
1264 	rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1265 	if (rc)
1266 		return rc;
1267 
1268 	rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1269 	if (rc)
1270 		return rc;
1271 
1272 	return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1273 }
1274 
1275 static int
1276 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1277 {
1278 	struct at86rf230_local *lp = hw->priv;
1279 
1280 	return at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1281 }
1282 
1283 static int
1284 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1285 {
1286 	struct at86rf230_local *lp = hw->priv;
1287 	int rc;
1288 
1289 	if (on) {
1290 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1291 		if (rc < 0)
1292 			return rc;
1293 
1294 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1295 		if (rc < 0)
1296 			return rc;
1297 	} else {
1298 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1299 		if (rc < 0)
1300 			return rc;
1301 
1302 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1303 		if (rc < 0)
1304 			return rc;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 static const struct ieee802154_ops at86rf230_ops = {
1311 	.owner = THIS_MODULE,
1312 	.xmit_async = at86rf230_xmit,
1313 	.ed = at86rf230_ed,
1314 	.set_channel = at86rf230_channel,
1315 	.start = at86rf230_start,
1316 	.stop = at86rf230_stop,
1317 	.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1318 	.set_txpower = at86rf230_set_txpower,
1319 	.set_lbt = at86rf230_set_lbt,
1320 	.set_cca_mode = at86rf230_set_cca_mode,
1321 	.set_cca_ed_level = at86rf230_set_cca_ed_level,
1322 	.set_csma_params = at86rf230_set_csma_params,
1323 	.set_frame_retries = at86rf230_set_frame_retries,
1324 	.set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1325 };
1326 
1327 static struct at86rf2xx_chip_data at86rf233_data = {
1328 	.t_sleep_cycle = 330,
1329 	.t_channel_switch = 11,
1330 	.t_reset_to_off = 26,
1331 	.t_off_to_aack = 80,
1332 	.t_off_to_tx_on = 80,
1333 	.t_off_to_sleep = 35,
1334 	.t_sleep_to_off = 1000,
1335 	.t_frame = 4096,
1336 	.t_p_ack = 545,
1337 	.rssi_base_val = -94,
1338 	.set_channel = at86rf23x_set_channel,
1339 	.set_txpower = at86rf23x_set_txpower,
1340 };
1341 
1342 static struct at86rf2xx_chip_data at86rf231_data = {
1343 	.t_sleep_cycle = 330,
1344 	.t_channel_switch = 24,
1345 	.t_reset_to_off = 37,
1346 	.t_off_to_aack = 110,
1347 	.t_off_to_tx_on = 110,
1348 	.t_off_to_sleep = 35,
1349 	.t_sleep_to_off = 1000,
1350 	.t_frame = 4096,
1351 	.t_p_ack = 545,
1352 	.rssi_base_val = -91,
1353 	.set_channel = at86rf23x_set_channel,
1354 	.set_txpower = at86rf23x_set_txpower,
1355 };
1356 
1357 static struct at86rf2xx_chip_data at86rf212_data = {
1358 	.t_sleep_cycle = 330,
1359 	.t_channel_switch = 11,
1360 	.t_reset_to_off = 26,
1361 	.t_off_to_aack = 200,
1362 	.t_off_to_tx_on = 200,
1363 	.t_off_to_sleep = 35,
1364 	.t_sleep_to_off = 1000,
1365 	.t_frame = 4096,
1366 	.t_p_ack = 545,
1367 	.rssi_base_val = -100,
1368 	.set_channel = at86rf212_set_channel,
1369 	.set_txpower = at86rf212_set_txpower,
1370 };
1371 
1372 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1373 {
1374 	int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1375 	unsigned int dvdd;
1376 	u8 csma_seed[2];
1377 
1378 	rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1379 	if (rc)
1380 		return rc;
1381 
1382 	irq_type = irq_get_trigger_type(lp->spi->irq);
1383 	if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1384 	    irq_type == IRQ_TYPE_LEVEL_LOW)
1385 		irq_pol = IRQ_ACTIVE_LOW;
1386 
1387 	rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1388 	if (rc)
1389 		return rc;
1390 
1391 	rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1392 	if (rc)
1393 		return rc;
1394 
1395 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1396 	if (rc)
1397 		return rc;
1398 
1399 	/* reset values differs in at86rf231 and at86rf233 */
1400 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1401 	if (rc)
1402 		return rc;
1403 
1404 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1405 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1406 	if (rc)
1407 		return rc;
1408 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1409 	if (rc)
1410 		return rc;
1411 
1412 	/* CLKM changes are applied immediately */
1413 	rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1414 	if (rc)
1415 		return rc;
1416 
1417 	/* Turn CLKM Off */
1418 	rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1419 	if (rc)
1420 		return rc;
1421 	/* Wait the next SLEEP cycle */
1422 	usleep_range(lp->data->t_sleep_cycle,
1423 		     lp->data->t_sleep_cycle + 100);
1424 
1425 	/* xtal_trim value is calculated by:
1426 	 * CL = 0.5 * (CX + CTRIM + CPAR)
1427 	 *
1428 	 * whereas:
1429 	 * CL = capacitor of used crystal
1430 	 * CX = connected capacitors at xtal pins
1431 	 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1432 	 *	  but this is different on each board setup. You need to fine
1433 	 *	  tuning this value via CTRIM.
1434 	 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1435 	 *	   0 pF upto 4.5 pF.
1436 	 *
1437 	 * Examples:
1438 	 * atben transceiver:
1439 	 *
1440 	 * CL = 8 pF
1441 	 * CX = 12 pF
1442 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1443 	 * CTRIM = 0.9 pF
1444 	 *
1445 	 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1446 	 *
1447 	 * xtal_trim = 0x3
1448 	 *
1449 	 * openlabs transceiver:
1450 	 *
1451 	 * CL = 16 pF
1452 	 * CX = 22 pF
1453 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1454 	 * CTRIM = 4.5 pF
1455 	 *
1456 	 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1457 	 *
1458 	 * xtal_trim = 0xf
1459 	 */
1460 	rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1461 	if (rc)
1462 		return rc;
1463 
1464 	rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1465 	if (rc)
1466 		return rc;
1467 	if (!dvdd) {
1468 		dev_err(&lp->spi->dev, "DVDD error\n");
1469 		return -EINVAL;
1470 	}
1471 
1472 	/* Force setting slotted operation bit to 0. Sometimes the atben
1473 	 * sets this bit and I don't know why. We set this always force
1474 	 * to zero while probing.
1475 	 */
1476 	return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1477 }
1478 
1479 static int
1480 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1481 		    u8 *xtal_trim)
1482 {
1483 	struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1484 	int ret;
1485 
1486 	if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1487 		if (!pdata)
1488 			return -ENOENT;
1489 
1490 		*rstn = pdata->rstn;
1491 		*slp_tr = pdata->slp_tr;
1492 		*xtal_trim = pdata->xtal_trim;
1493 		return 0;
1494 	}
1495 
1496 	*rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1497 	*slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1498 	ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1499 	if (ret < 0 && ret != -EINVAL)
1500 		return ret;
1501 
1502 	return 0;
1503 }
1504 
1505 static int
1506 at86rf230_detect_device(struct at86rf230_local *lp)
1507 {
1508 	unsigned int part, version, val;
1509 	u16 man_id = 0;
1510 	const char *chip;
1511 	int rc;
1512 
1513 	rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1514 	if (rc)
1515 		return rc;
1516 	man_id |= val;
1517 
1518 	rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1519 	if (rc)
1520 		return rc;
1521 	man_id |= (val << 8);
1522 
1523 	rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1524 	if (rc)
1525 		return rc;
1526 
1527 	rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1528 	if (rc)
1529 		return rc;
1530 
1531 	if (man_id != 0x001f) {
1532 		dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1533 			man_id >> 8, man_id & 0xFF);
1534 		return -EINVAL;
1535 	}
1536 
1537 	lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
1538 			IEEE802154_HW_CSMA_PARAMS |
1539 			IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
1540 			IEEE802154_HW_PROMISCUOUS;
1541 
1542 	lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
1543 			     WPAN_PHY_FLAG_CCA_ED_LEVEL |
1544 			     WPAN_PHY_FLAG_CCA_MODE;
1545 
1546 	lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1547 		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
1548 	lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
1549 		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
1550 
1551 	lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1552 
1553 	switch (part) {
1554 	case 2:
1555 		chip = "at86rf230";
1556 		rc = -ENOTSUPP;
1557 		goto not_supp;
1558 	case 3:
1559 		chip = "at86rf231";
1560 		lp->data = &at86rf231_data;
1561 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1562 		lp->hw->phy->current_channel = 11;
1563 		lp->hw->phy->symbol_duration = 16;
1564 		lp->hw->phy->supported.tx_powers = at86rf231_powers;
1565 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers);
1566 		lp->hw->phy->supported.cca_ed_levels = at86rf231_ed_levels;
1567 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf231_ed_levels);
1568 		break;
1569 	case 7:
1570 		chip = "at86rf212";
1571 		lp->data = &at86rf212_data;
1572 		lp->hw->flags |= IEEE802154_HW_LBT;
1573 		lp->hw->phy->supported.channels[0] = 0x00007FF;
1574 		lp->hw->phy->supported.channels[2] = 0x00007FF;
1575 		lp->hw->phy->current_channel = 5;
1576 		lp->hw->phy->symbol_duration = 25;
1577 		lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH;
1578 		lp->hw->phy->supported.tx_powers = at86rf212_powers;
1579 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers);
1580 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1581 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1582 		break;
1583 	case 11:
1584 		chip = "at86rf233";
1585 		lp->data = &at86rf233_data;
1586 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1587 		lp->hw->phy->current_channel = 13;
1588 		lp->hw->phy->symbol_duration = 16;
1589 		lp->hw->phy->supported.tx_powers = at86rf233_powers;
1590 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers);
1591 		lp->hw->phy->supported.cca_ed_levels = at86rf233_ed_levels;
1592 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf233_ed_levels);
1593 		break;
1594 	default:
1595 		chip = "unknown";
1596 		rc = -ENOTSUPP;
1597 		goto not_supp;
1598 	}
1599 
1600 	lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7];
1601 	lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0];
1602 
1603 not_supp:
1604 	dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1605 
1606 	return rc;
1607 }
1608 
1609 #ifdef CONFIG_IEEE802154_AT86RF230_DEBUGFS
1610 static struct dentry *at86rf230_debugfs_root;
1611 
1612 static int at86rf230_stats_show(struct seq_file *file, void *offset)
1613 {
1614 	struct at86rf230_local *lp = file->private;
1615 
1616 	seq_printf(file, "SUCCESS:\t\t%8llu\n", lp->trac.success);
1617 	seq_printf(file, "SUCCESS_DATA_PENDING:\t%8llu\n",
1618 		   lp->trac.success_data_pending);
1619 	seq_printf(file, "SUCCESS_WAIT_FOR_ACK:\t%8llu\n",
1620 		   lp->trac.success_wait_for_ack);
1621 	seq_printf(file, "CHANNEL_ACCESS_FAILURE:\t%8llu\n",
1622 		   lp->trac.channel_access_failure);
1623 	seq_printf(file, "NO_ACK:\t\t\t%8llu\n", lp->trac.no_ack);
1624 	seq_printf(file, "INVALID:\t\t%8llu\n", lp->trac.invalid);
1625 	return 0;
1626 }
1627 DEFINE_SHOW_ATTRIBUTE(at86rf230_stats);
1628 
1629 static void at86rf230_debugfs_init(struct at86rf230_local *lp)
1630 {
1631 	char debugfs_dir_name[DNAME_INLINE_LEN + 1] = "at86rf230-";
1632 
1633 	strncat(debugfs_dir_name, dev_name(&lp->spi->dev), DNAME_INLINE_LEN);
1634 
1635 	at86rf230_debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL);
1636 
1637 	debugfs_create_file("trac_stats", 0444, at86rf230_debugfs_root, lp,
1638 			    &at86rf230_stats_fops);
1639 }
1640 
1641 static void at86rf230_debugfs_remove(void)
1642 {
1643 	debugfs_remove_recursive(at86rf230_debugfs_root);
1644 }
1645 #else
1646 static void at86rf230_debugfs_init(struct at86rf230_local *lp) { }
1647 static void at86rf230_debugfs_remove(void) { }
1648 #endif
1649 
1650 static int at86rf230_probe(struct spi_device *spi)
1651 {
1652 	struct ieee802154_hw *hw;
1653 	struct at86rf230_local *lp;
1654 	unsigned int status;
1655 	int rc, irq_type, rstn, slp_tr;
1656 	u8 xtal_trim = 0;
1657 
1658 	if (!spi->irq) {
1659 		dev_err(&spi->dev, "no IRQ specified\n");
1660 		return -EINVAL;
1661 	}
1662 
1663 	rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1664 	if (rc < 0) {
1665 		dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1666 		return rc;
1667 	}
1668 
1669 	if (gpio_is_valid(rstn)) {
1670 		rc = devm_gpio_request_one(&spi->dev, rstn,
1671 					   GPIOF_OUT_INIT_HIGH, "rstn");
1672 		if (rc)
1673 			return rc;
1674 	}
1675 
1676 	if (gpio_is_valid(slp_tr)) {
1677 		rc = devm_gpio_request_one(&spi->dev, slp_tr,
1678 					   GPIOF_OUT_INIT_LOW, "slp_tr");
1679 		if (rc)
1680 			return rc;
1681 	}
1682 
1683 	/* Reset */
1684 	if (gpio_is_valid(rstn)) {
1685 		udelay(1);
1686 		gpio_set_value_cansleep(rstn, 0);
1687 		udelay(1);
1688 		gpio_set_value_cansleep(rstn, 1);
1689 		usleep_range(120, 240);
1690 	}
1691 
1692 	hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1693 	if (!hw)
1694 		return -ENOMEM;
1695 
1696 	lp = hw->priv;
1697 	lp->hw = hw;
1698 	lp->spi = spi;
1699 	lp->slp_tr = slp_tr;
1700 	hw->parent = &spi->dev;
1701 	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1702 
1703 	lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1704 	if (IS_ERR(lp->regmap)) {
1705 		rc = PTR_ERR(lp->regmap);
1706 		dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1707 			rc);
1708 		goto free_dev;
1709 	}
1710 
1711 	at86rf230_setup_spi_messages(lp, &lp->state);
1712 	at86rf230_setup_spi_messages(lp, &lp->tx);
1713 
1714 	rc = at86rf230_detect_device(lp);
1715 	if (rc < 0)
1716 		goto free_dev;
1717 
1718 	init_completion(&lp->state_complete);
1719 
1720 	spi_set_drvdata(spi, lp);
1721 
1722 	rc = at86rf230_hw_init(lp, xtal_trim);
1723 	if (rc)
1724 		goto free_dev;
1725 
1726 	/* Read irq status register to reset irq line */
1727 	rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1728 	if (rc)
1729 		goto free_dev;
1730 
1731 	irq_type = irq_get_trigger_type(spi->irq);
1732 	if (!irq_type)
1733 		irq_type = IRQF_TRIGGER_HIGH;
1734 
1735 	rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1736 			      IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1737 	if (rc)
1738 		goto free_dev;
1739 
1740 	/* disable_irq by default and wait for starting hardware */
1741 	disable_irq(spi->irq);
1742 
1743 	/* going into sleep by default */
1744 	at86rf230_sleep(lp);
1745 
1746 	at86rf230_debugfs_init(lp);
1747 
1748 	rc = ieee802154_register_hw(lp->hw);
1749 	if (rc)
1750 		goto free_debugfs;
1751 
1752 	return rc;
1753 
1754 free_debugfs:
1755 	at86rf230_debugfs_remove();
1756 free_dev:
1757 	ieee802154_free_hw(lp->hw);
1758 
1759 	return rc;
1760 }
1761 
1762 static int at86rf230_remove(struct spi_device *spi)
1763 {
1764 	struct at86rf230_local *lp = spi_get_drvdata(spi);
1765 
1766 	/* mask all at86rf230 irq's */
1767 	at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1768 	ieee802154_unregister_hw(lp->hw);
1769 	ieee802154_free_hw(lp->hw);
1770 	at86rf230_debugfs_remove();
1771 	dev_dbg(&spi->dev, "unregistered at86rf230\n");
1772 
1773 	return 0;
1774 }
1775 
1776 static const struct of_device_id at86rf230_of_match[] = {
1777 	{ .compatible = "atmel,at86rf230", },
1778 	{ .compatible = "atmel,at86rf231", },
1779 	{ .compatible = "atmel,at86rf233", },
1780 	{ .compatible = "atmel,at86rf212", },
1781 	{ },
1782 };
1783 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1784 
1785 static const struct spi_device_id at86rf230_device_id[] = {
1786 	{ .name = "at86rf230", },
1787 	{ .name = "at86rf231", },
1788 	{ .name = "at86rf233", },
1789 	{ .name = "at86rf212", },
1790 	{ },
1791 };
1792 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1793 
1794 static struct spi_driver at86rf230_driver = {
1795 	.id_table = at86rf230_device_id,
1796 	.driver = {
1797 		.of_match_table = of_match_ptr(at86rf230_of_match),
1798 		.name	= "at86rf230",
1799 	},
1800 	.probe      = at86rf230_probe,
1801 	.remove     = at86rf230_remove,
1802 };
1803 
1804 module_spi_driver(at86rf230_driver);
1805 
1806 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1807 MODULE_LICENSE("GPL v2");
1808