1 /*
2  * AT86RF230/RF231 driver
3  *
4  * Copyright (C) 2009-2012 Siemens AG
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * Written by:
16  * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
17  * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
18  * Alexander Aring <aar@pengutronix.de>
19  */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/hrtimer.h>
23 #include <linux/jiffies.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/gpio.h>
27 #include <linux/delay.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/at86rf230.h>
30 #include <linux/regmap.h>
31 #include <linux/skbuff.h>
32 #include <linux/of_gpio.h>
33 #include <linux/ieee802154.h>
34 
35 #include <net/mac802154.h>
36 #include <net/cfg802154.h>
37 
38 #include "at86rf230.h"
39 
40 struct at86rf230_local;
41 /* at86rf2xx chip depend data.
42  * All timings are in us.
43  */
44 struct at86rf2xx_chip_data {
45 	u16 t_sleep_cycle;
46 	u16 t_channel_switch;
47 	u16 t_reset_to_off;
48 	u16 t_off_to_aack;
49 	u16 t_off_to_tx_on;
50 	u16 t_off_to_sleep;
51 	u16 t_sleep_to_off;
52 	u16 t_frame;
53 	u16 t_p_ack;
54 	int rssi_base_val;
55 
56 	int (*set_channel)(struct at86rf230_local *, u8, u8);
57 	int (*set_txpower)(struct at86rf230_local *, s32);
58 };
59 
60 #define AT86RF2XX_MAX_BUF		(127 + 3)
61 /* tx retries to access the TX_ON state
62  * if it's above then force change will be started.
63  *
64  * We assume the max_frame_retries (7) value of 802.15.4 here.
65  */
66 #define AT86RF2XX_MAX_TX_RETRIES	7
67 /* We use the recommended 5 minutes timeout to recalibrate */
68 #define AT86RF2XX_CAL_LOOP_TIMEOUT	(5 * 60 * HZ)
69 
70 struct at86rf230_state_change {
71 	struct at86rf230_local *lp;
72 	int irq;
73 
74 	struct hrtimer timer;
75 	struct spi_message msg;
76 	struct spi_transfer trx;
77 	u8 buf[AT86RF2XX_MAX_BUF];
78 
79 	void (*complete)(void *context);
80 	u8 from_state;
81 	u8 to_state;
82 
83 	bool irq_enable;
84 };
85 
86 struct at86rf230_local {
87 	struct spi_device *spi;
88 
89 	struct ieee802154_hw *hw;
90 	struct at86rf2xx_chip_data *data;
91 	struct regmap *regmap;
92 	int slp_tr;
93 	bool sleep;
94 
95 	struct completion state_complete;
96 	struct at86rf230_state_change state;
97 
98 	struct at86rf230_state_change irq;
99 
100 	bool tx_aret;
101 	unsigned long cal_timeout;
102 	s8 max_frame_retries;
103 	bool is_tx;
104 	bool is_tx_from_off;
105 	u8 tx_retry;
106 	struct sk_buff *tx_skb;
107 	struct at86rf230_state_change tx;
108 };
109 
110 #define AT86RF2XX_NUMREGS 0x3F
111 
112 static void
113 at86rf230_async_state_change(struct at86rf230_local *lp,
114 			     struct at86rf230_state_change *ctx,
115 			     const u8 state, void (*complete)(void *context),
116 			     const bool irq_enable);
117 
118 static inline void
119 at86rf230_sleep(struct at86rf230_local *lp)
120 {
121 	if (gpio_is_valid(lp->slp_tr)) {
122 		gpio_set_value(lp->slp_tr, 1);
123 		usleep_range(lp->data->t_off_to_sleep,
124 			     lp->data->t_off_to_sleep + 10);
125 		lp->sleep = true;
126 	}
127 }
128 
129 static inline void
130 at86rf230_awake(struct at86rf230_local *lp)
131 {
132 	if (gpio_is_valid(lp->slp_tr)) {
133 		gpio_set_value(lp->slp_tr, 0);
134 		usleep_range(lp->data->t_sleep_to_off,
135 			     lp->data->t_sleep_to_off + 100);
136 		lp->sleep = false;
137 	}
138 }
139 
140 static inline int
141 __at86rf230_write(struct at86rf230_local *lp,
142 		  unsigned int addr, unsigned int data)
143 {
144 	bool sleep = lp->sleep;
145 	int ret;
146 
147 	/* awake for register setting if sleep */
148 	if (sleep)
149 		at86rf230_awake(lp);
150 
151 	ret = regmap_write(lp->regmap, addr, data);
152 
153 	/* sleep again if was sleeping */
154 	if (sleep)
155 		at86rf230_sleep(lp);
156 
157 	return ret;
158 }
159 
160 static inline int
161 __at86rf230_read(struct at86rf230_local *lp,
162 		 unsigned int addr, unsigned int *data)
163 {
164 	bool sleep = lp->sleep;
165 	int ret;
166 
167 	/* awake for register setting if sleep */
168 	if (sleep)
169 		at86rf230_awake(lp);
170 
171 	ret = regmap_read(lp->regmap, addr, data);
172 
173 	/* sleep again if was sleeping */
174 	if (sleep)
175 		at86rf230_sleep(lp);
176 
177 	return ret;
178 }
179 
180 static inline int
181 at86rf230_read_subreg(struct at86rf230_local *lp,
182 		      unsigned int addr, unsigned int mask,
183 		      unsigned int shift, unsigned int *data)
184 {
185 	int rc;
186 
187 	rc = __at86rf230_read(lp, addr, data);
188 	if (!rc)
189 		*data = (*data & mask) >> shift;
190 
191 	return rc;
192 }
193 
194 static inline int
195 at86rf230_write_subreg(struct at86rf230_local *lp,
196 		       unsigned int addr, unsigned int mask,
197 		       unsigned int shift, unsigned int data)
198 {
199 	bool sleep = lp->sleep;
200 	int ret;
201 
202 	/* awake for register setting if sleep */
203 	if (sleep)
204 		at86rf230_awake(lp);
205 
206 	ret = regmap_update_bits(lp->regmap, addr, mask, data << shift);
207 
208 	/* sleep again if was sleeping */
209 	if (sleep)
210 		at86rf230_sleep(lp);
211 
212 	return ret;
213 }
214 
215 static inline void
216 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
217 {
218 	gpio_set_value(lp->slp_tr, 1);
219 	udelay(1);
220 	gpio_set_value(lp->slp_tr, 0);
221 }
222 
223 static bool
224 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
225 {
226 	switch (reg) {
227 	case RG_TRX_STATE:
228 	case RG_TRX_CTRL_0:
229 	case RG_TRX_CTRL_1:
230 	case RG_PHY_TX_PWR:
231 	case RG_PHY_ED_LEVEL:
232 	case RG_PHY_CC_CCA:
233 	case RG_CCA_THRES:
234 	case RG_RX_CTRL:
235 	case RG_SFD_VALUE:
236 	case RG_TRX_CTRL_2:
237 	case RG_ANT_DIV:
238 	case RG_IRQ_MASK:
239 	case RG_VREG_CTRL:
240 	case RG_BATMON:
241 	case RG_XOSC_CTRL:
242 	case RG_RX_SYN:
243 	case RG_XAH_CTRL_1:
244 	case RG_FTN_CTRL:
245 	case RG_PLL_CF:
246 	case RG_PLL_DCU:
247 	case RG_SHORT_ADDR_0:
248 	case RG_SHORT_ADDR_1:
249 	case RG_PAN_ID_0:
250 	case RG_PAN_ID_1:
251 	case RG_IEEE_ADDR_0:
252 	case RG_IEEE_ADDR_1:
253 	case RG_IEEE_ADDR_2:
254 	case RG_IEEE_ADDR_3:
255 	case RG_IEEE_ADDR_4:
256 	case RG_IEEE_ADDR_5:
257 	case RG_IEEE_ADDR_6:
258 	case RG_IEEE_ADDR_7:
259 	case RG_XAH_CTRL_0:
260 	case RG_CSMA_SEED_0:
261 	case RG_CSMA_SEED_1:
262 	case RG_CSMA_BE:
263 		return true;
264 	default:
265 		return false;
266 	}
267 }
268 
269 static bool
270 at86rf230_reg_readable(struct device *dev, unsigned int reg)
271 {
272 	bool rc;
273 
274 	/* all writeable are also readable */
275 	rc = at86rf230_reg_writeable(dev, reg);
276 	if (rc)
277 		return rc;
278 
279 	/* readonly regs */
280 	switch (reg) {
281 	case RG_TRX_STATUS:
282 	case RG_PHY_RSSI:
283 	case RG_IRQ_STATUS:
284 	case RG_PART_NUM:
285 	case RG_VERSION_NUM:
286 	case RG_MAN_ID_1:
287 	case RG_MAN_ID_0:
288 		return true;
289 	default:
290 		return false;
291 	}
292 }
293 
294 static bool
295 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
296 {
297 	/* can be changed during runtime */
298 	switch (reg) {
299 	case RG_TRX_STATUS:
300 	case RG_TRX_STATE:
301 	case RG_PHY_RSSI:
302 	case RG_PHY_ED_LEVEL:
303 	case RG_IRQ_STATUS:
304 	case RG_VREG_CTRL:
305 	case RG_PLL_CF:
306 	case RG_PLL_DCU:
307 		return true;
308 	default:
309 		return false;
310 	}
311 }
312 
313 static bool
314 at86rf230_reg_precious(struct device *dev, unsigned int reg)
315 {
316 	/* don't clear irq line on read */
317 	switch (reg) {
318 	case RG_IRQ_STATUS:
319 		return true;
320 	default:
321 		return false;
322 	}
323 }
324 
325 static const struct regmap_config at86rf230_regmap_spi_config = {
326 	.reg_bits = 8,
327 	.val_bits = 8,
328 	.write_flag_mask = CMD_REG | CMD_WRITE,
329 	.read_flag_mask = CMD_REG,
330 	.cache_type = REGCACHE_RBTREE,
331 	.max_register = AT86RF2XX_NUMREGS,
332 	.writeable_reg = at86rf230_reg_writeable,
333 	.readable_reg = at86rf230_reg_readable,
334 	.volatile_reg = at86rf230_reg_volatile,
335 	.precious_reg = at86rf230_reg_precious,
336 };
337 
338 static void
339 at86rf230_async_error_recover(void *context)
340 {
341 	struct at86rf230_state_change *ctx = context;
342 	struct at86rf230_local *lp = ctx->lp;
343 
344 	lp->is_tx = 0;
345 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false);
346 	ieee802154_wake_queue(lp->hw);
347 }
348 
349 static inline void
350 at86rf230_async_error(struct at86rf230_local *lp,
351 		      struct at86rf230_state_change *ctx, int rc)
352 {
353 	dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
354 
355 	at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
356 				     at86rf230_async_error_recover, false);
357 }
358 
359 /* Generic function to get some register value in async mode */
360 static void
361 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
362 			 struct at86rf230_state_change *ctx,
363 			 void (*complete)(void *context),
364 			 const bool irq_enable)
365 {
366 	int rc;
367 
368 	u8 *tx_buf = ctx->buf;
369 
370 	tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
371 	ctx->msg.complete = complete;
372 	ctx->irq_enable = irq_enable;
373 	rc = spi_async(lp->spi, &ctx->msg);
374 	if (rc) {
375 		if (irq_enable)
376 			enable_irq(ctx->irq);
377 
378 		at86rf230_async_error(lp, ctx, rc);
379 	}
380 }
381 
382 static inline u8 at86rf230_state_to_force(u8 state)
383 {
384 	if (state == STATE_TX_ON)
385 		return STATE_FORCE_TX_ON;
386 	else
387 		return STATE_FORCE_TRX_OFF;
388 }
389 
390 static void
391 at86rf230_async_state_assert(void *context)
392 {
393 	struct at86rf230_state_change *ctx = context;
394 	struct at86rf230_local *lp = ctx->lp;
395 	const u8 *buf = ctx->buf;
396 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
397 
398 	/* Assert state change */
399 	if (trx_state != ctx->to_state) {
400 		/* Special handling if transceiver state is in
401 		 * STATE_BUSY_RX_AACK and a SHR was detected.
402 		 */
403 		if  (trx_state == STATE_BUSY_RX_AACK) {
404 			/* Undocumented race condition. If we send a state
405 			 * change to STATE_RX_AACK_ON the transceiver could
406 			 * change his state automatically to STATE_BUSY_RX_AACK
407 			 * if a SHR was detected. This is not an error, but we
408 			 * can't assert this.
409 			 */
410 			if (ctx->to_state == STATE_RX_AACK_ON)
411 				goto done;
412 
413 			/* If we change to STATE_TX_ON without forcing and
414 			 * transceiver state is STATE_BUSY_RX_AACK, we wait
415 			 * 'tFrame + tPAck' receiving time. In this time the
416 			 * PDU should be received. If the transceiver is still
417 			 * in STATE_BUSY_RX_AACK, we run a force state change
418 			 * to STATE_TX_ON. This is a timeout handling, if the
419 			 * transceiver stucks in STATE_BUSY_RX_AACK.
420 			 *
421 			 * Additional we do several retries to try to get into
422 			 * TX_ON state without forcing. If the retries are
423 			 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
424 			 * will do a force change.
425 			 */
426 			if (ctx->to_state == STATE_TX_ON ||
427 			    ctx->to_state == STATE_TRX_OFF) {
428 				u8 state = ctx->to_state;
429 
430 				if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
431 					state = at86rf230_state_to_force(state);
432 				lp->tx_retry++;
433 
434 				at86rf230_async_state_change(lp, ctx, state,
435 							     ctx->complete,
436 							     ctx->irq_enable);
437 				return;
438 			}
439 		}
440 
441 		dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
442 			 ctx->from_state, ctx->to_state, trx_state);
443 	}
444 
445 done:
446 	if (ctx->complete)
447 		ctx->complete(context);
448 }
449 
450 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
451 {
452 	struct at86rf230_state_change *ctx =
453 		container_of(timer, struct at86rf230_state_change, timer);
454 	struct at86rf230_local *lp = ctx->lp;
455 
456 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
457 				 at86rf230_async_state_assert,
458 				 ctx->irq_enable);
459 
460 	return HRTIMER_NORESTART;
461 }
462 
463 /* Do state change timing delay. */
464 static void
465 at86rf230_async_state_delay(void *context)
466 {
467 	struct at86rf230_state_change *ctx = context;
468 	struct at86rf230_local *lp = ctx->lp;
469 	struct at86rf2xx_chip_data *c = lp->data;
470 	bool force = false;
471 	ktime_t tim;
472 
473 	/* The force state changes are will show as normal states in the
474 	 * state status subregister. We change the to_state to the
475 	 * corresponding one and remember if it was a force change, this
476 	 * differs if we do a state change from STATE_BUSY_RX_AACK.
477 	 */
478 	switch (ctx->to_state) {
479 	case STATE_FORCE_TX_ON:
480 		ctx->to_state = STATE_TX_ON;
481 		force = true;
482 		break;
483 	case STATE_FORCE_TRX_OFF:
484 		ctx->to_state = STATE_TRX_OFF;
485 		force = true;
486 		break;
487 	default:
488 		break;
489 	}
490 
491 	switch (ctx->from_state) {
492 	case STATE_TRX_OFF:
493 		switch (ctx->to_state) {
494 		case STATE_RX_AACK_ON:
495 			tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC);
496 			/* state change from TRX_OFF to RX_AACK_ON to do a
497 			 * calibration, we need to reset the timeout for the
498 			 * next one.
499 			 */
500 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
501 			goto change;
502 		case STATE_TX_ARET_ON:
503 		case STATE_TX_ON:
504 			tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC);
505 			/* state change from TRX_OFF to TX_ON or ARET_ON to do
506 			 * a calibration, we need to reset the timeout for the
507 			 * next one.
508 			 */
509 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
510 			goto change;
511 		default:
512 			break;
513 		}
514 		break;
515 	case STATE_BUSY_RX_AACK:
516 		switch (ctx->to_state) {
517 		case STATE_TRX_OFF:
518 		case STATE_TX_ON:
519 			/* Wait for worst case receiving time if we
520 			 * didn't make a force change from BUSY_RX_AACK
521 			 * to TX_ON or TRX_OFF.
522 			 */
523 			if (!force) {
524 				tim = ktime_set(0, (c->t_frame + c->t_p_ack) *
525 						   NSEC_PER_USEC);
526 				goto change;
527 			}
528 			break;
529 		default:
530 			break;
531 		}
532 		break;
533 	/* Default value, means RESET state */
534 	case STATE_P_ON:
535 		switch (ctx->to_state) {
536 		case STATE_TRX_OFF:
537 			tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC);
538 			goto change;
539 		default:
540 			break;
541 		}
542 		break;
543 	default:
544 		break;
545 	}
546 
547 	/* Default delay is 1us in the most cases */
548 	tim = ktime_set(0, NSEC_PER_USEC);
549 
550 change:
551 	hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
552 }
553 
554 static void
555 at86rf230_async_state_change_start(void *context)
556 {
557 	struct at86rf230_state_change *ctx = context;
558 	struct at86rf230_local *lp = ctx->lp;
559 	u8 *buf = ctx->buf;
560 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
561 	int rc;
562 
563 	/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
564 	if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
565 		udelay(1);
566 		at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
567 					 at86rf230_async_state_change_start,
568 					 ctx->irq_enable);
569 		return;
570 	}
571 
572 	/* Check if we already are in the state which we change in */
573 	if (trx_state == ctx->to_state) {
574 		if (ctx->complete)
575 			ctx->complete(context);
576 		return;
577 	}
578 
579 	/* Set current state to the context of state change */
580 	ctx->from_state = trx_state;
581 
582 	/* Going into the next step for a state change which do a timing
583 	 * relevant delay.
584 	 */
585 	buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
586 	buf[1] = ctx->to_state;
587 	ctx->msg.complete = at86rf230_async_state_delay;
588 	rc = spi_async(lp->spi, &ctx->msg);
589 	if (rc) {
590 		if (ctx->irq_enable)
591 			enable_irq(ctx->irq);
592 
593 		at86rf230_async_error(lp, ctx, rc);
594 	}
595 }
596 
597 static void
598 at86rf230_async_state_change(struct at86rf230_local *lp,
599 			     struct at86rf230_state_change *ctx,
600 			     const u8 state, void (*complete)(void *context),
601 			     const bool irq_enable)
602 {
603 	/* Initialization for the state change context */
604 	ctx->to_state = state;
605 	ctx->complete = complete;
606 	ctx->irq_enable = irq_enable;
607 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
608 				 at86rf230_async_state_change_start,
609 				 irq_enable);
610 }
611 
612 static void
613 at86rf230_sync_state_change_complete(void *context)
614 {
615 	struct at86rf230_state_change *ctx = context;
616 	struct at86rf230_local *lp = ctx->lp;
617 
618 	complete(&lp->state_complete);
619 }
620 
621 /* This function do a sync framework above the async state change.
622  * Some callbacks of the IEEE 802.15.4 driver interface need to be
623  * handled synchronously.
624  */
625 static int
626 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
627 {
628 	unsigned long rc;
629 
630 	at86rf230_async_state_change(lp, &lp->state, state,
631 				     at86rf230_sync_state_change_complete,
632 				     false);
633 
634 	rc = wait_for_completion_timeout(&lp->state_complete,
635 					 msecs_to_jiffies(100));
636 	if (!rc) {
637 		at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
638 		return -ETIMEDOUT;
639 	}
640 
641 	return 0;
642 }
643 
644 static void
645 at86rf230_tx_complete(void *context)
646 {
647 	struct at86rf230_state_change *ctx = context;
648 	struct at86rf230_local *lp = ctx->lp;
649 
650 	enable_irq(ctx->irq);
651 
652 	ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret);
653 }
654 
655 static void
656 at86rf230_tx_on(void *context)
657 {
658 	struct at86rf230_state_change *ctx = context;
659 	struct at86rf230_local *lp = ctx->lp;
660 
661 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
662 				     at86rf230_tx_complete, true);
663 }
664 
665 static void
666 at86rf230_tx_trac_check(void *context)
667 {
668 	struct at86rf230_state_change *ctx = context;
669 	struct at86rf230_local *lp = ctx->lp;
670 	const u8 *buf = ctx->buf;
671 	const u8 trac = (buf[1] & 0xe0) >> 5;
672 
673 	/* If trac status is different than zero we need to do a state change
674 	 * to STATE_FORCE_TRX_OFF then STATE_RX_AACK_ON to recover the
675 	 * transceiver.
676 	 */
677 	if (trac)
678 		at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
679 					     at86rf230_tx_on, true);
680 	else
681 		at86rf230_tx_on(context);
682 }
683 
684 static void
685 at86rf230_tx_trac_status(void *context)
686 {
687 	struct at86rf230_state_change *ctx = context;
688 	struct at86rf230_local *lp = ctx->lp;
689 
690 	at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
691 				 at86rf230_tx_trac_check, true);
692 }
693 
694 static void
695 at86rf230_rx_read_frame_complete(void *context)
696 {
697 	struct at86rf230_state_change *ctx = context;
698 	struct at86rf230_local *lp = ctx->lp;
699 	u8 rx_local_buf[AT86RF2XX_MAX_BUF];
700 	const u8 *buf = ctx->buf;
701 	struct sk_buff *skb;
702 	u8 len, lqi;
703 
704 	len = buf[1];
705 	if (!ieee802154_is_valid_psdu_len(len)) {
706 		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
707 		len = IEEE802154_MTU;
708 	}
709 	lqi = buf[2 + len];
710 
711 	memcpy(rx_local_buf, buf + 2, len);
712 	ctx->trx.len = 2;
713 	enable_irq(ctx->irq);
714 
715 	skb = dev_alloc_skb(IEEE802154_MTU);
716 	if (!skb) {
717 		dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
718 		return;
719 	}
720 
721 	memcpy(skb_put(skb, len), rx_local_buf, len);
722 	ieee802154_rx_irqsafe(lp->hw, skb, lqi);
723 }
724 
725 static void
726 at86rf230_rx_read_frame(void *context)
727 {
728 	struct at86rf230_state_change *ctx = context;
729 	struct at86rf230_local *lp = ctx->lp;
730 	u8 *buf = ctx->buf;
731 	int rc;
732 
733 	buf[0] = CMD_FB;
734 	ctx->trx.len = AT86RF2XX_MAX_BUF;
735 	ctx->msg.complete = at86rf230_rx_read_frame_complete;
736 	rc = spi_async(lp->spi, &ctx->msg);
737 	if (rc) {
738 		ctx->trx.len = 2;
739 		enable_irq(ctx->irq);
740 		at86rf230_async_error(lp, ctx, rc);
741 	}
742 }
743 
744 static void
745 at86rf230_rx_trac_check(void *context)
746 {
747 	/* Possible check on trac status here. This could be useful to make
748 	 * some stats why receive is failed. Not used at the moment, but it's
749 	 * maybe timing relevant. Datasheet doesn't say anything about this.
750 	 * The programming guide say do it so.
751 	 */
752 
753 	at86rf230_rx_read_frame(context);
754 }
755 
756 static void
757 at86rf230_irq_trx_end(struct at86rf230_local *lp)
758 {
759 	if (lp->is_tx) {
760 		lp->is_tx = 0;
761 
762 		if (lp->tx_aret)
763 			at86rf230_async_state_change(lp, &lp->irq,
764 						     STATE_FORCE_TX_ON,
765 						     at86rf230_tx_trac_status,
766 						     true);
767 		else
768 			at86rf230_async_state_change(lp, &lp->irq,
769 						     STATE_RX_AACK_ON,
770 						     at86rf230_tx_complete,
771 						     true);
772 	} else {
773 		at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
774 					 at86rf230_rx_trac_check, true);
775 	}
776 }
777 
778 static void
779 at86rf230_irq_status(void *context)
780 {
781 	struct at86rf230_state_change *ctx = context;
782 	struct at86rf230_local *lp = ctx->lp;
783 	const u8 *buf = ctx->buf;
784 	const u8 irq = buf[1];
785 
786 	if (irq & IRQ_TRX_END) {
787 		at86rf230_irq_trx_end(lp);
788 	} else {
789 		enable_irq(ctx->irq);
790 		dev_err(&lp->spi->dev, "not supported irq %02x received\n",
791 			irq);
792 	}
793 }
794 
795 static irqreturn_t at86rf230_isr(int irq, void *data)
796 {
797 	struct at86rf230_local *lp = data;
798 	struct at86rf230_state_change *ctx = &lp->irq;
799 	u8 *buf = ctx->buf;
800 	int rc;
801 
802 	disable_irq_nosync(irq);
803 
804 	buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
805 	ctx->msg.complete = at86rf230_irq_status;
806 	rc = spi_async(lp->spi, &ctx->msg);
807 	if (rc) {
808 		enable_irq(irq);
809 		at86rf230_async_error(lp, ctx, rc);
810 		return IRQ_NONE;
811 	}
812 
813 	return IRQ_HANDLED;
814 }
815 
816 static void
817 at86rf230_write_frame_complete(void *context)
818 {
819 	struct at86rf230_state_change *ctx = context;
820 	struct at86rf230_local *lp = ctx->lp;
821 	u8 *buf = ctx->buf;
822 	int rc;
823 
824 	ctx->trx.len = 2;
825 
826 	if (gpio_is_valid(lp->slp_tr)) {
827 		at86rf230_slp_tr_rising_edge(lp);
828 	} else {
829 		buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
830 		buf[1] = STATE_BUSY_TX;
831 		ctx->msg.complete = NULL;
832 		rc = spi_async(lp->spi, &ctx->msg);
833 		if (rc)
834 			at86rf230_async_error(lp, ctx, rc);
835 	}
836 }
837 
838 static void
839 at86rf230_write_frame(void *context)
840 {
841 	struct at86rf230_state_change *ctx = context;
842 	struct at86rf230_local *lp = ctx->lp;
843 	struct sk_buff *skb = lp->tx_skb;
844 	u8 *buf = ctx->buf;
845 	int rc;
846 
847 	lp->is_tx = 1;
848 
849 	buf[0] = CMD_FB | CMD_WRITE;
850 	buf[1] = skb->len + 2;
851 	memcpy(buf + 2, skb->data, skb->len);
852 	ctx->trx.len = skb->len + 2;
853 	ctx->msg.complete = at86rf230_write_frame_complete;
854 	rc = spi_async(lp->spi, &ctx->msg);
855 	if (rc) {
856 		ctx->trx.len = 2;
857 		at86rf230_async_error(lp, ctx, rc);
858 	}
859 }
860 
861 static void
862 at86rf230_xmit_tx_on(void *context)
863 {
864 	struct at86rf230_state_change *ctx = context;
865 	struct at86rf230_local *lp = ctx->lp;
866 
867 	at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
868 				     at86rf230_write_frame, false);
869 }
870 
871 static void
872 at86rf230_xmit_start(void *context)
873 {
874 	struct at86rf230_state_change *ctx = context;
875 	struct at86rf230_local *lp = ctx->lp;
876 
877 	/* In ARET mode we need to go into STATE_TX_ARET_ON after we
878 	 * are in STATE_TX_ON. The pfad differs here, so we change
879 	 * the complete handler.
880 	 */
881 	if (lp->tx_aret) {
882 		if (lp->is_tx_from_off) {
883 			lp->is_tx_from_off = false;
884 			at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
885 						     at86rf230_write_frame,
886 						     false);
887 		} else {
888 			at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
889 						     at86rf230_xmit_tx_on,
890 						     false);
891 		}
892 	} else {
893 		at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
894 					     at86rf230_write_frame, false);
895 	}
896 }
897 
898 static int
899 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
900 {
901 	struct at86rf230_local *lp = hw->priv;
902 	struct at86rf230_state_change *ctx = &lp->tx;
903 
904 	lp->tx_skb = skb;
905 	lp->tx_retry = 0;
906 
907 	/* After 5 minutes in PLL and the same frequency we run again the
908 	 * calibration loops which is recommended by at86rf2xx datasheets.
909 	 *
910 	 * The calibration is initiate by a state change from TRX_OFF
911 	 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
912 	 * function then to start in the next 5 minutes.
913 	 */
914 	if (time_is_before_jiffies(lp->cal_timeout)) {
915 		lp->is_tx_from_off = true;
916 		at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
917 					     at86rf230_xmit_start, false);
918 	} else {
919 		at86rf230_xmit_start(ctx);
920 	}
921 
922 	return 0;
923 }
924 
925 static int
926 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
927 {
928 	BUG_ON(!level);
929 	*level = 0xbe;
930 	return 0;
931 }
932 
933 static int
934 at86rf230_start(struct ieee802154_hw *hw)
935 {
936 	struct at86rf230_local *lp = hw->priv;
937 
938 	at86rf230_awake(lp);
939 	enable_irq(lp->spi->irq);
940 
941 	return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON);
942 }
943 
944 static void
945 at86rf230_stop(struct ieee802154_hw *hw)
946 {
947 	struct at86rf230_local *lp = hw->priv;
948 	u8 csma_seed[2];
949 
950 	at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
951 
952 	disable_irq(lp->spi->irq);
953 
954 	/* It's recommended to set random new csma_seeds before sleep state.
955 	 * Makes only sense in the stop callback, not doing this inside of
956 	 * at86rf230_sleep, this is also used when we don't transmit afterwards
957 	 * when calling start callback again.
958 	 */
959 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
960 	at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
961 	at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
962 
963 	at86rf230_sleep(lp);
964 }
965 
966 static int
967 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
968 {
969 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
970 }
971 
972 #define AT86RF2XX_MAX_ED_LEVELS 0xF
973 static const s32 at86rf23x_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
974 	-9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300,
975 	-7100, -6900, -6700, -6500, -6300, -6100,
976 };
977 
978 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = {
979 	-10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200,
980 	-8000, -7800, -7600, -7400, -7200, -7000,
981 };
982 
983 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = {
984 	-9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000,
985 	-7800, -7600, -7400, -7200, -7000, -6800,
986 };
987 
988 static inline int
989 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val)
990 {
991 	unsigned int cca_ed_thres;
992 	int rc;
993 
994 	rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres);
995 	if (rc < 0)
996 		return rc;
997 
998 	switch (rssi_base_val) {
999 	case -98:
1000 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98;
1001 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98);
1002 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres];
1003 		break;
1004 	case -100:
1005 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1006 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1007 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres];
1008 		break;
1009 	default:
1010 		WARN_ON(1);
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static int
1017 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1018 {
1019 	int rc;
1020 
1021 	if (channel == 0)
1022 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1023 	else
1024 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1025 	if (rc < 0)
1026 		return rc;
1027 
1028 	if (page == 0) {
1029 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1030 		lp->data->rssi_base_val = -100;
1031 	} else {
1032 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1033 		lp->data->rssi_base_val = -98;
1034 	}
1035 	if (rc < 0)
1036 		return rc;
1037 
1038 	rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val);
1039 	if (rc < 0)
1040 		return rc;
1041 
1042 	/* This sets the symbol_duration according frequency on the 212.
1043 	 * TODO move this handling while set channel and page in cfg802154.
1044 	 * We can do that, this timings are according 802.15.4 standard.
1045 	 * If we do that in cfg802154, this is a more generic calculation.
1046 	 *
1047 	 * This should also protected from ifs_timer. Means cancel timer and
1048 	 * init with a new value. For now, this is okay.
1049 	 */
1050 	if (channel == 0) {
1051 		if (page == 0) {
1052 			/* SUB:0 and BPSK:0 -> BPSK-20 */
1053 			lp->hw->phy->symbol_duration = 50;
1054 		} else {
1055 			/* SUB:1 and BPSK:0 -> BPSK-40 */
1056 			lp->hw->phy->symbol_duration = 25;
1057 		}
1058 	} else {
1059 		if (page == 0)
1060 			/* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1061 			lp->hw->phy->symbol_duration = 40;
1062 		else
1063 			/* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1064 			lp->hw->phy->symbol_duration = 16;
1065 	}
1066 
1067 	lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1068 				   lp->hw->phy->symbol_duration;
1069 	lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1070 				   lp->hw->phy->symbol_duration;
1071 
1072 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1073 }
1074 
1075 static int
1076 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1077 {
1078 	struct at86rf230_local *lp = hw->priv;
1079 	int rc;
1080 
1081 	rc = lp->data->set_channel(lp, page, channel);
1082 	/* Wait for PLL */
1083 	usleep_range(lp->data->t_channel_switch,
1084 		     lp->data->t_channel_switch + 10);
1085 
1086 	lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1087 	return rc;
1088 }
1089 
1090 static int
1091 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1092 			   struct ieee802154_hw_addr_filt *filt,
1093 			   unsigned long changed)
1094 {
1095 	struct at86rf230_local *lp = hw->priv;
1096 
1097 	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1098 		u16 addr = le16_to_cpu(filt->short_addr);
1099 
1100 		dev_vdbg(&lp->spi->dev,
1101 			 "at86rf230_set_hw_addr_filt called for saddr\n");
1102 		__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1103 		__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1104 	}
1105 
1106 	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1107 		u16 pan = le16_to_cpu(filt->pan_id);
1108 
1109 		dev_vdbg(&lp->spi->dev,
1110 			 "at86rf230_set_hw_addr_filt called for pan id\n");
1111 		__at86rf230_write(lp, RG_PAN_ID_0, pan);
1112 		__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1113 	}
1114 
1115 	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1116 		u8 i, addr[8];
1117 
1118 		memcpy(addr, &filt->ieee_addr, 8);
1119 		dev_vdbg(&lp->spi->dev,
1120 			 "at86rf230_set_hw_addr_filt called for IEEE addr\n");
1121 		for (i = 0; i < 8; i++)
1122 			__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1123 	}
1124 
1125 	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1126 		dev_vdbg(&lp->spi->dev,
1127 			 "at86rf230_set_hw_addr_filt called for panc change\n");
1128 		if (filt->pan_coord)
1129 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1130 		else
1131 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 #define AT86RF23X_MAX_TX_POWERS 0xF
1138 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1139 	400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600,
1140 	-800, -1200, -1700,
1141 };
1142 
1143 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1144 	300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700,
1145 	-900, -1200, -1700,
1146 };
1147 
1148 #define AT86RF212_MAX_TX_POWERS 0x1F
1149 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = {
1150 	500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
1151 	-800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
1152 	-1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
1153 };
1154 
1155 static int
1156 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm)
1157 {
1158 	u32 i;
1159 
1160 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1161 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1162 			return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i);
1163 	}
1164 
1165 	return -EINVAL;
1166 }
1167 
1168 static int
1169 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm)
1170 {
1171 	u32 i;
1172 
1173 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1174 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1175 			return at86rf230_write_subreg(lp, SR_TX_PWR_212, i);
1176 	}
1177 
1178 	return -EINVAL;
1179 }
1180 
1181 static int
1182 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm)
1183 {
1184 	struct at86rf230_local *lp = hw->priv;
1185 
1186 	return lp->data->set_txpower(lp, mbm);
1187 }
1188 
1189 static int
1190 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1191 {
1192 	struct at86rf230_local *lp = hw->priv;
1193 
1194 	return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1195 }
1196 
1197 static int
1198 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1199 		       const struct wpan_phy_cca *cca)
1200 {
1201 	struct at86rf230_local *lp = hw->priv;
1202 	u8 val;
1203 
1204 	/* mapping 802.15.4 to driver spec */
1205 	switch (cca->mode) {
1206 	case NL802154_CCA_ENERGY:
1207 		val = 1;
1208 		break;
1209 	case NL802154_CCA_CARRIER:
1210 		val = 2;
1211 		break;
1212 	case NL802154_CCA_ENERGY_CARRIER:
1213 		switch (cca->opt) {
1214 		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1215 			val = 3;
1216 			break;
1217 		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1218 			val = 0;
1219 			break;
1220 		default:
1221 			return -EINVAL;
1222 		}
1223 		break;
1224 	default:
1225 		return -EINVAL;
1226 	}
1227 
1228 	return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1229 }
1230 
1231 
1232 static int
1233 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
1234 {
1235 	struct at86rf230_local *lp = hw->priv;
1236 	u32 i;
1237 
1238 	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
1239 		if (hw->phy->supported.cca_ed_levels[i] == mbm)
1240 			return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i);
1241 	}
1242 
1243 	return -EINVAL;
1244 }
1245 
1246 static int
1247 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1248 			  u8 retries)
1249 {
1250 	struct at86rf230_local *lp = hw->priv;
1251 	int rc;
1252 
1253 	rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1254 	if (rc)
1255 		return rc;
1256 
1257 	rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1258 	if (rc)
1259 		return rc;
1260 
1261 	return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1262 }
1263 
1264 static int
1265 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1266 {
1267 	struct at86rf230_local *lp = hw->priv;
1268 	int rc = 0;
1269 
1270 	lp->tx_aret = retries >= 0;
1271 	lp->max_frame_retries = retries;
1272 
1273 	if (retries >= 0)
1274 		rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1275 
1276 	return rc;
1277 }
1278 
1279 static int
1280 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1281 {
1282 	struct at86rf230_local *lp = hw->priv;
1283 	int rc;
1284 
1285 	if (on) {
1286 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1287 		if (rc < 0)
1288 			return rc;
1289 
1290 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1291 		if (rc < 0)
1292 			return rc;
1293 	} else {
1294 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1295 		if (rc < 0)
1296 			return rc;
1297 
1298 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1299 		if (rc < 0)
1300 			return rc;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 static const struct ieee802154_ops at86rf230_ops = {
1307 	.owner = THIS_MODULE,
1308 	.xmit_async = at86rf230_xmit,
1309 	.ed = at86rf230_ed,
1310 	.set_channel = at86rf230_channel,
1311 	.start = at86rf230_start,
1312 	.stop = at86rf230_stop,
1313 	.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1314 	.set_txpower = at86rf230_set_txpower,
1315 	.set_lbt = at86rf230_set_lbt,
1316 	.set_cca_mode = at86rf230_set_cca_mode,
1317 	.set_cca_ed_level = at86rf230_set_cca_ed_level,
1318 	.set_csma_params = at86rf230_set_csma_params,
1319 	.set_frame_retries = at86rf230_set_frame_retries,
1320 	.set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1321 };
1322 
1323 static struct at86rf2xx_chip_data at86rf233_data = {
1324 	.t_sleep_cycle = 330,
1325 	.t_channel_switch = 11,
1326 	.t_reset_to_off = 26,
1327 	.t_off_to_aack = 80,
1328 	.t_off_to_tx_on = 80,
1329 	.t_off_to_sleep = 35,
1330 	.t_sleep_to_off = 210,
1331 	.t_frame = 4096,
1332 	.t_p_ack = 545,
1333 	.rssi_base_val = -91,
1334 	.set_channel = at86rf23x_set_channel,
1335 	.set_txpower = at86rf23x_set_txpower,
1336 };
1337 
1338 static struct at86rf2xx_chip_data at86rf231_data = {
1339 	.t_sleep_cycle = 330,
1340 	.t_channel_switch = 24,
1341 	.t_reset_to_off = 37,
1342 	.t_off_to_aack = 110,
1343 	.t_off_to_tx_on = 110,
1344 	.t_off_to_sleep = 35,
1345 	.t_sleep_to_off = 380,
1346 	.t_frame = 4096,
1347 	.t_p_ack = 545,
1348 	.rssi_base_val = -91,
1349 	.set_channel = at86rf23x_set_channel,
1350 	.set_txpower = at86rf23x_set_txpower,
1351 };
1352 
1353 static struct at86rf2xx_chip_data at86rf212_data = {
1354 	.t_sleep_cycle = 330,
1355 	.t_channel_switch = 11,
1356 	.t_reset_to_off = 26,
1357 	.t_off_to_aack = 200,
1358 	.t_off_to_tx_on = 200,
1359 	.t_off_to_sleep = 35,
1360 	.t_sleep_to_off = 380,
1361 	.t_frame = 4096,
1362 	.t_p_ack = 545,
1363 	.rssi_base_val = -100,
1364 	.set_channel = at86rf212_set_channel,
1365 	.set_txpower = at86rf212_set_txpower,
1366 };
1367 
1368 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1369 {
1370 	int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1371 	unsigned int dvdd;
1372 	u8 csma_seed[2];
1373 
1374 	rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1375 	if (rc)
1376 		return rc;
1377 
1378 	irq_type = irq_get_trigger_type(lp->spi->irq);
1379 	if (irq_type == IRQ_TYPE_EDGE_RISING ||
1380 	    irq_type == IRQ_TYPE_EDGE_FALLING)
1381 		dev_warn(&lp->spi->dev,
1382 			 "Using edge triggered irq's are not recommended!\n");
1383 	if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1384 	    irq_type == IRQ_TYPE_LEVEL_LOW)
1385 		irq_pol = IRQ_ACTIVE_LOW;
1386 
1387 	rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1388 	if (rc)
1389 		return rc;
1390 
1391 	rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1392 	if (rc)
1393 		return rc;
1394 
1395 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1396 	if (rc)
1397 		return rc;
1398 
1399 	/* reset values differs in at86rf231 and at86rf233 */
1400 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1401 	if (rc)
1402 		return rc;
1403 
1404 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1405 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1406 	if (rc)
1407 		return rc;
1408 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1409 	if (rc)
1410 		return rc;
1411 
1412 	/* CLKM changes are applied immediately */
1413 	rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1414 	if (rc)
1415 		return rc;
1416 
1417 	/* Turn CLKM Off */
1418 	rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1419 	if (rc)
1420 		return rc;
1421 	/* Wait the next SLEEP cycle */
1422 	usleep_range(lp->data->t_sleep_cycle,
1423 		     lp->data->t_sleep_cycle + 100);
1424 
1425 	/* xtal_trim value is calculated by:
1426 	 * CL = 0.5 * (CX + CTRIM + CPAR)
1427 	 *
1428 	 * whereas:
1429 	 * CL = capacitor of used crystal
1430 	 * CX = connected capacitors at xtal pins
1431 	 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1432 	 *	  but this is different on each board setup. You need to fine
1433 	 *	  tuning this value via CTRIM.
1434 	 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1435 	 *	   0 pF upto 4.5 pF.
1436 	 *
1437 	 * Examples:
1438 	 * atben transceiver:
1439 	 *
1440 	 * CL = 8 pF
1441 	 * CX = 12 pF
1442 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1443 	 * CTRIM = 0.9 pF
1444 	 *
1445 	 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1446 	 *
1447 	 * xtal_trim = 0x3
1448 	 *
1449 	 * openlabs transceiver:
1450 	 *
1451 	 * CL = 16 pF
1452 	 * CX = 22 pF
1453 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1454 	 * CTRIM = 4.5 pF
1455 	 *
1456 	 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1457 	 *
1458 	 * xtal_trim = 0xf
1459 	 */
1460 	rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1461 	if (rc)
1462 		return rc;
1463 
1464 	rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1465 	if (rc)
1466 		return rc;
1467 	if (!dvdd) {
1468 		dev_err(&lp->spi->dev, "DVDD error\n");
1469 		return -EINVAL;
1470 	}
1471 
1472 	/* Force setting slotted operation bit to 0. Sometimes the atben
1473 	 * sets this bit and I don't know why. We set this always force
1474 	 * to zero while probing.
1475 	 */
1476 	return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1477 }
1478 
1479 static int
1480 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1481 		    u8 *xtal_trim)
1482 {
1483 	struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1484 	int ret;
1485 
1486 	if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1487 		if (!pdata)
1488 			return -ENOENT;
1489 
1490 		*rstn = pdata->rstn;
1491 		*slp_tr = pdata->slp_tr;
1492 		*xtal_trim = pdata->xtal_trim;
1493 		return 0;
1494 	}
1495 
1496 	*rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1497 	*slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1498 	ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1499 	if (ret < 0 && ret != -EINVAL)
1500 		return ret;
1501 
1502 	return 0;
1503 }
1504 
1505 static int
1506 at86rf230_detect_device(struct at86rf230_local *lp)
1507 {
1508 	unsigned int part, version, val;
1509 	u16 man_id = 0;
1510 	const char *chip;
1511 	int rc;
1512 
1513 	rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1514 	if (rc)
1515 		return rc;
1516 	man_id |= val;
1517 
1518 	rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1519 	if (rc)
1520 		return rc;
1521 	man_id |= (val << 8);
1522 
1523 	rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1524 	if (rc)
1525 		return rc;
1526 
1527 	rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1528 	if (rc)
1529 		return rc;
1530 
1531 	if (man_id != 0x001f) {
1532 		dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1533 			man_id >> 8, man_id & 0xFF);
1534 		return -EINVAL;
1535 	}
1536 
1537 	lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
1538 			IEEE802154_HW_CSMA_PARAMS |
1539 			IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
1540 			IEEE802154_HW_PROMISCUOUS;
1541 
1542 	lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
1543 			     WPAN_PHY_FLAG_CCA_ED_LEVEL |
1544 			     WPAN_PHY_FLAG_CCA_MODE;
1545 
1546 	lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1547 		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
1548 	lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
1549 		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
1550 
1551 	lp->hw->phy->supported.cca_ed_levels = at86rf23x_ed_levels;
1552 	lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf23x_ed_levels);
1553 
1554 	lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1555 
1556 	switch (part) {
1557 	case 2:
1558 		chip = "at86rf230";
1559 		rc = -ENOTSUPP;
1560 		goto not_supp;
1561 	case 3:
1562 		chip = "at86rf231";
1563 		lp->data = &at86rf231_data;
1564 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1565 		lp->hw->phy->current_channel = 11;
1566 		lp->hw->phy->symbol_duration = 16;
1567 		lp->hw->phy->supported.tx_powers = at86rf231_powers;
1568 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers);
1569 		break;
1570 	case 7:
1571 		chip = "at86rf212";
1572 		lp->data = &at86rf212_data;
1573 		lp->hw->flags |= IEEE802154_HW_LBT;
1574 		lp->hw->phy->supported.channels[0] = 0x00007FF;
1575 		lp->hw->phy->supported.channels[2] = 0x00007FF;
1576 		lp->hw->phy->current_channel = 5;
1577 		lp->hw->phy->symbol_duration = 25;
1578 		lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH;
1579 		lp->hw->phy->supported.tx_powers = at86rf212_powers;
1580 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers);
1581 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1582 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1583 		break;
1584 	case 11:
1585 		chip = "at86rf233";
1586 		lp->data = &at86rf233_data;
1587 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1588 		lp->hw->phy->current_channel = 13;
1589 		lp->hw->phy->symbol_duration = 16;
1590 		lp->hw->phy->supported.tx_powers = at86rf233_powers;
1591 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers);
1592 		break;
1593 	default:
1594 		chip = "unknown";
1595 		rc = -ENOTSUPP;
1596 		goto not_supp;
1597 	}
1598 
1599 	lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7];
1600 	lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0];
1601 
1602 not_supp:
1603 	dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1604 
1605 	return rc;
1606 }
1607 
1608 static void
1609 at86rf230_setup_spi_messages(struct at86rf230_local *lp)
1610 {
1611 	lp->state.lp = lp;
1612 	lp->state.irq = lp->spi->irq;
1613 	spi_message_init(&lp->state.msg);
1614 	lp->state.msg.context = &lp->state;
1615 	lp->state.trx.len = 2;
1616 	lp->state.trx.tx_buf = lp->state.buf;
1617 	lp->state.trx.rx_buf = lp->state.buf;
1618 	spi_message_add_tail(&lp->state.trx, &lp->state.msg);
1619 	hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1620 	lp->state.timer.function = at86rf230_async_state_timer;
1621 
1622 	lp->irq.lp = lp;
1623 	lp->irq.irq = lp->spi->irq;
1624 	spi_message_init(&lp->irq.msg);
1625 	lp->irq.msg.context = &lp->irq;
1626 	lp->irq.trx.len = 2;
1627 	lp->irq.trx.tx_buf = lp->irq.buf;
1628 	lp->irq.trx.rx_buf = lp->irq.buf;
1629 	spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
1630 	hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1631 	lp->irq.timer.function = at86rf230_async_state_timer;
1632 
1633 	lp->tx.lp = lp;
1634 	lp->tx.irq = lp->spi->irq;
1635 	spi_message_init(&lp->tx.msg);
1636 	lp->tx.msg.context = &lp->tx;
1637 	lp->tx.trx.len = 2;
1638 	lp->tx.trx.tx_buf = lp->tx.buf;
1639 	lp->tx.trx.rx_buf = lp->tx.buf;
1640 	spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
1641 	hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1642 	lp->tx.timer.function = at86rf230_async_state_timer;
1643 }
1644 
1645 static int at86rf230_probe(struct spi_device *spi)
1646 {
1647 	struct ieee802154_hw *hw;
1648 	struct at86rf230_local *lp;
1649 	unsigned int status;
1650 	int rc, irq_type, rstn, slp_tr;
1651 	u8 xtal_trim = 0;
1652 
1653 	if (!spi->irq) {
1654 		dev_err(&spi->dev, "no IRQ specified\n");
1655 		return -EINVAL;
1656 	}
1657 
1658 	rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1659 	if (rc < 0) {
1660 		dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1661 		return rc;
1662 	}
1663 
1664 	if (gpio_is_valid(rstn)) {
1665 		rc = devm_gpio_request_one(&spi->dev, rstn,
1666 					   GPIOF_OUT_INIT_HIGH, "rstn");
1667 		if (rc)
1668 			return rc;
1669 	}
1670 
1671 	if (gpio_is_valid(slp_tr)) {
1672 		rc = devm_gpio_request_one(&spi->dev, slp_tr,
1673 					   GPIOF_OUT_INIT_LOW, "slp_tr");
1674 		if (rc)
1675 			return rc;
1676 	}
1677 
1678 	/* Reset */
1679 	if (gpio_is_valid(rstn)) {
1680 		udelay(1);
1681 		gpio_set_value(rstn, 0);
1682 		udelay(1);
1683 		gpio_set_value(rstn, 1);
1684 		usleep_range(120, 240);
1685 	}
1686 
1687 	hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1688 	if (!hw)
1689 		return -ENOMEM;
1690 
1691 	lp = hw->priv;
1692 	lp->hw = hw;
1693 	lp->spi = spi;
1694 	lp->slp_tr = slp_tr;
1695 	hw->parent = &spi->dev;
1696 	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1697 
1698 	lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1699 	if (IS_ERR(lp->regmap)) {
1700 		rc = PTR_ERR(lp->regmap);
1701 		dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1702 			rc);
1703 		goto free_dev;
1704 	}
1705 
1706 	at86rf230_setup_spi_messages(lp);
1707 
1708 	rc = at86rf230_detect_device(lp);
1709 	if (rc < 0)
1710 		goto free_dev;
1711 
1712 	init_completion(&lp->state_complete);
1713 
1714 	spi_set_drvdata(spi, lp);
1715 
1716 	rc = at86rf230_hw_init(lp, xtal_trim);
1717 	if (rc)
1718 		goto free_dev;
1719 
1720 	/* Read irq status register to reset irq line */
1721 	rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1722 	if (rc)
1723 		goto free_dev;
1724 
1725 	irq_type = irq_get_trigger_type(spi->irq);
1726 	if (!irq_type)
1727 		irq_type = IRQF_TRIGGER_HIGH;
1728 
1729 	rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1730 			      IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1731 	if (rc)
1732 		goto free_dev;
1733 
1734 	/* disable_irq by default and wait for starting hardware */
1735 	disable_irq(spi->irq);
1736 
1737 	/* going into sleep by default */
1738 	at86rf230_sleep(lp);
1739 
1740 	rc = ieee802154_register_hw(lp->hw);
1741 	if (rc)
1742 		goto free_dev;
1743 
1744 	return rc;
1745 
1746 free_dev:
1747 	ieee802154_free_hw(lp->hw);
1748 
1749 	return rc;
1750 }
1751 
1752 static int at86rf230_remove(struct spi_device *spi)
1753 {
1754 	struct at86rf230_local *lp = spi_get_drvdata(spi);
1755 
1756 	/* mask all at86rf230 irq's */
1757 	at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1758 	ieee802154_unregister_hw(lp->hw);
1759 	ieee802154_free_hw(lp->hw);
1760 	dev_dbg(&spi->dev, "unregistered at86rf230\n");
1761 
1762 	return 0;
1763 }
1764 
1765 static const struct of_device_id at86rf230_of_match[] = {
1766 	{ .compatible = "atmel,at86rf230", },
1767 	{ .compatible = "atmel,at86rf231", },
1768 	{ .compatible = "atmel,at86rf233", },
1769 	{ .compatible = "atmel,at86rf212", },
1770 	{ },
1771 };
1772 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1773 
1774 static const struct spi_device_id at86rf230_device_id[] = {
1775 	{ .name = "at86rf230", },
1776 	{ .name = "at86rf231", },
1777 	{ .name = "at86rf233", },
1778 	{ .name = "at86rf212", },
1779 	{ },
1780 };
1781 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1782 
1783 static struct spi_driver at86rf230_driver = {
1784 	.id_table = at86rf230_device_id,
1785 	.driver = {
1786 		.of_match_table = of_match_ptr(at86rf230_of_match),
1787 		.name	= "at86rf230",
1788 		.owner	= THIS_MODULE,
1789 	},
1790 	.probe      = at86rf230_probe,
1791 	.remove     = at86rf230_remove,
1792 };
1793 
1794 module_spi_driver(at86rf230_driver);
1795 
1796 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1797 MODULE_LICENSE("GPL v2");
1798