1 /* 2 * AT86RF230/RF231 driver 3 * 4 * Copyright (C) 2009-2012 Siemens AG 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 8 * as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * Written by: 16 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> 17 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> 18 * Alexander Aring <aar@pengutronix.de> 19 */ 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/hrtimer.h> 23 #include <linux/jiffies.h> 24 #include <linux/interrupt.h> 25 #include <linux/irq.h> 26 #include <linux/gpio.h> 27 #include <linux/delay.h> 28 #include <linux/spi/spi.h> 29 #include <linux/spi/at86rf230.h> 30 #include <linux/regmap.h> 31 #include <linux/skbuff.h> 32 #include <linux/of_gpio.h> 33 #include <linux/ieee802154.h> 34 35 #include <net/mac802154.h> 36 #include <net/cfg802154.h> 37 38 #include "at86rf230.h" 39 40 struct at86rf230_local; 41 /* at86rf2xx chip depend data. 42 * All timings are in us. 43 */ 44 struct at86rf2xx_chip_data { 45 u16 t_sleep_cycle; 46 u16 t_channel_switch; 47 u16 t_reset_to_off; 48 u16 t_off_to_aack; 49 u16 t_off_to_tx_on; 50 u16 t_off_to_sleep; 51 u16 t_sleep_to_off; 52 u16 t_frame; 53 u16 t_p_ack; 54 int rssi_base_val; 55 56 int (*set_channel)(struct at86rf230_local *, u8, u8); 57 int (*set_txpower)(struct at86rf230_local *, s32); 58 }; 59 60 #define AT86RF2XX_MAX_BUF (127 + 3) 61 /* tx retries to access the TX_ON state 62 * if it's above then force change will be started. 63 * 64 * We assume the max_frame_retries (7) value of 802.15.4 here. 65 */ 66 #define AT86RF2XX_MAX_TX_RETRIES 7 67 /* We use the recommended 5 minutes timeout to recalibrate */ 68 #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ) 69 70 struct at86rf230_state_change { 71 struct at86rf230_local *lp; 72 int irq; 73 74 struct hrtimer timer; 75 struct spi_message msg; 76 struct spi_transfer trx; 77 u8 buf[AT86RF2XX_MAX_BUF]; 78 79 void (*complete)(void *context); 80 u8 from_state; 81 u8 to_state; 82 83 bool irq_enable; 84 }; 85 86 struct at86rf230_local { 87 struct spi_device *spi; 88 89 struct ieee802154_hw *hw; 90 struct at86rf2xx_chip_data *data; 91 struct regmap *regmap; 92 int slp_tr; 93 bool sleep; 94 95 struct completion state_complete; 96 struct at86rf230_state_change state; 97 98 struct at86rf230_state_change irq; 99 100 bool tx_aret; 101 unsigned long cal_timeout; 102 s8 max_frame_retries; 103 bool is_tx; 104 bool is_tx_from_off; 105 u8 tx_retry; 106 struct sk_buff *tx_skb; 107 struct at86rf230_state_change tx; 108 }; 109 110 #define AT86RF2XX_NUMREGS 0x3F 111 112 static void 113 at86rf230_async_state_change(struct at86rf230_local *lp, 114 struct at86rf230_state_change *ctx, 115 const u8 state, void (*complete)(void *context), 116 const bool irq_enable); 117 118 static inline void 119 at86rf230_sleep(struct at86rf230_local *lp) 120 { 121 if (gpio_is_valid(lp->slp_tr)) { 122 gpio_set_value(lp->slp_tr, 1); 123 usleep_range(lp->data->t_off_to_sleep, 124 lp->data->t_off_to_sleep + 10); 125 lp->sleep = true; 126 } 127 } 128 129 static inline void 130 at86rf230_awake(struct at86rf230_local *lp) 131 { 132 if (gpio_is_valid(lp->slp_tr)) { 133 gpio_set_value(lp->slp_tr, 0); 134 usleep_range(lp->data->t_sleep_to_off, 135 lp->data->t_sleep_to_off + 100); 136 lp->sleep = false; 137 } 138 } 139 140 static inline int 141 __at86rf230_write(struct at86rf230_local *lp, 142 unsigned int addr, unsigned int data) 143 { 144 bool sleep = lp->sleep; 145 int ret; 146 147 /* awake for register setting if sleep */ 148 if (sleep) 149 at86rf230_awake(lp); 150 151 ret = regmap_write(lp->regmap, addr, data); 152 153 /* sleep again if was sleeping */ 154 if (sleep) 155 at86rf230_sleep(lp); 156 157 return ret; 158 } 159 160 static inline int 161 __at86rf230_read(struct at86rf230_local *lp, 162 unsigned int addr, unsigned int *data) 163 { 164 bool sleep = lp->sleep; 165 int ret; 166 167 /* awake for register setting if sleep */ 168 if (sleep) 169 at86rf230_awake(lp); 170 171 ret = regmap_read(lp->regmap, addr, data); 172 173 /* sleep again if was sleeping */ 174 if (sleep) 175 at86rf230_sleep(lp); 176 177 return ret; 178 } 179 180 static inline int 181 at86rf230_read_subreg(struct at86rf230_local *lp, 182 unsigned int addr, unsigned int mask, 183 unsigned int shift, unsigned int *data) 184 { 185 int rc; 186 187 rc = __at86rf230_read(lp, addr, data); 188 if (!rc) 189 *data = (*data & mask) >> shift; 190 191 return rc; 192 } 193 194 static inline int 195 at86rf230_write_subreg(struct at86rf230_local *lp, 196 unsigned int addr, unsigned int mask, 197 unsigned int shift, unsigned int data) 198 { 199 bool sleep = lp->sleep; 200 int ret; 201 202 /* awake for register setting if sleep */ 203 if (sleep) 204 at86rf230_awake(lp); 205 206 ret = regmap_update_bits(lp->regmap, addr, mask, data << shift); 207 208 /* sleep again if was sleeping */ 209 if (sleep) 210 at86rf230_sleep(lp); 211 212 return ret; 213 } 214 215 static inline void 216 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp) 217 { 218 gpio_set_value(lp->slp_tr, 1); 219 udelay(1); 220 gpio_set_value(lp->slp_tr, 0); 221 } 222 223 static bool 224 at86rf230_reg_writeable(struct device *dev, unsigned int reg) 225 { 226 switch (reg) { 227 case RG_TRX_STATE: 228 case RG_TRX_CTRL_0: 229 case RG_TRX_CTRL_1: 230 case RG_PHY_TX_PWR: 231 case RG_PHY_ED_LEVEL: 232 case RG_PHY_CC_CCA: 233 case RG_CCA_THRES: 234 case RG_RX_CTRL: 235 case RG_SFD_VALUE: 236 case RG_TRX_CTRL_2: 237 case RG_ANT_DIV: 238 case RG_IRQ_MASK: 239 case RG_VREG_CTRL: 240 case RG_BATMON: 241 case RG_XOSC_CTRL: 242 case RG_RX_SYN: 243 case RG_XAH_CTRL_1: 244 case RG_FTN_CTRL: 245 case RG_PLL_CF: 246 case RG_PLL_DCU: 247 case RG_SHORT_ADDR_0: 248 case RG_SHORT_ADDR_1: 249 case RG_PAN_ID_0: 250 case RG_PAN_ID_1: 251 case RG_IEEE_ADDR_0: 252 case RG_IEEE_ADDR_1: 253 case RG_IEEE_ADDR_2: 254 case RG_IEEE_ADDR_3: 255 case RG_IEEE_ADDR_4: 256 case RG_IEEE_ADDR_5: 257 case RG_IEEE_ADDR_6: 258 case RG_IEEE_ADDR_7: 259 case RG_XAH_CTRL_0: 260 case RG_CSMA_SEED_0: 261 case RG_CSMA_SEED_1: 262 case RG_CSMA_BE: 263 return true; 264 default: 265 return false; 266 } 267 } 268 269 static bool 270 at86rf230_reg_readable(struct device *dev, unsigned int reg) 271 { 272 bool rc; 273 274 /* all writeable are also readable */ 275 rc = at86rf230_reg_writeable(dev, reg); 276 if (rc) 277 return rc; 278 279 /* readonly regs */ 280 switch (reg) { 281 case RG_TRX_STATUS: 282 case RG_PHY_RSSI: 283 case RG_IRQ_STATUS: 284 case RG_PART_NUM: 285 case RG_VERSION_NUM: 286 case RG_MAN_ID_1: 287 case RG_MAN_ID_0: 288 return true; 289 default: 290 return false; 291 } 292 } 293 294 static bool 295 at86rf230_reg_volatile(struct device *dev, unsigned int reg) 296 { 297 /* can be changed during runtime */ 298 switch (reg) { 299 case RG_TRX_STATUS: 300 case RG_TRX_STATE: 301 case RG_PHY_RSSI: 302 case RG_PHY_ED_LEVEL: 303 case RG_IRQ_STATUS: 304 case RG_VREG_CTRL: 305 case RG_PLL_CF: 306 case RG_PLL_DCU: 307 return true; 308 default: 309 return false; 310 } 311 } 312 313 static bool 314 at86rf230_reg_precious(struct device *dev, unsigned int reg) 315 { 316 /* don't clear irq line on read */ 317 switch (reg) { 318 case RG_IRQ_STATUS: 319 return true; 320 default: 321 return false; 322 } 323 } 324 325 static const struct regmap_config at86rf230_regmap_spi_config = { 326 .reg_bits = 8, 327 .val_bits = 8, 328 .write_flag_mask = CMD_REG | CMD_WRITE, 329 .read_flag_mask = CMD_REG, 330 .cache_type = REGCACHE_RBTREE, 331 .max_register = AT86RF2XX_NUMREGS, 332 .writeable_reg = at86rf230_reg_writeable, 333 .readable_reg = at86rf230_reg_readable, 334 .volatile_reg = at86rf230_reg_volatile, 335 .precious_reg = at86rf230_reg_precious, 336 }; 337 338 static void 339 at86rf230_async_error_recover(void *context) 340 { 341 struct at86rf230_state_change *ctx = context; 342 struct at86rf230_local *lp = ctx->lp; 343 344 lp->is_tx = 0; 345 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false); 346 ieee802154_wake_queue(lp->hw); 347 } 348 349 static inline void 350 at86rf230_async_error(struct at86rf230_local *lp, 351 struct at86rf230_state_change *ctx, int rc) 352 { 353 dev_err(&lp->spi->dev, "spi_async error %d\n", rc); 354 355 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF, 356 at86rf230_async_error_recover, false); 357 } 358 359 /* Generic function to get some register value in async mode */ 360 static void 361 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg, 362 struct at86rf230_state_change *ctx, 363 void (*complete)(void *context), 364 const bool irq_enable) 365 { 366 int rc; 367 368 u8 *tx_buf = ctx->buf; 369 370 tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG; 371 ctx->msg.complete = complete; 372 ctx->irq_enable = irq_enable; 373 rc = spi_async(lp->spi, &ctx->msg); 374 if (rc) { 375 if (irq_enable) 376 enable_irq(ctx->irq); 377 378 at86rf230_async_error(lp, ctx, rc); 379 } 380 } 381 382 static inline u8 at86rf230_state_to_force(u8 state) 383 { 384 if (state == STATE_TX_ON) 385 return STATE_FORCE_TX_ON; 386 else 387 return STATE_FORCE_TRX_OFF; 388 } 389 390 static void 391 at86rf230_async_state_assert(void *context) 392 { 393 struct at86rf230_state_change *ctx = context; 394 struct at86rf230_local *lp = ctx->lp; 395 const u8 *buf = ctx->buf; 396 const u8 trx_state = buf[1] & TRX_STATE_MASK; 397 398 /* Assert state change */ 399 if (trx_state != ctx->to_state) { 400 /* Special handling if transceiver state is in 401 * STATE_BUSY_RX_AACK and a SHR was detected. 402 */ 403 if (trx_state == STATE_BUSY_RX_AACK) { 404 /* Undocumented race condition. If we send a state 405 * change to STATE_RX_AACK_ON the transceiver could 406 * change his state automatically to STATE_BUSY_RX_AACK 407 * if a SHR was detected. This is not an error, but we 408 * can't assert this. 409 */ 410 if (ctx->to_state == STATE_RX_AACK_ON) 411 goto done; 412 413 /* If we change to STATE_TX_ON without forcing and 414 * transceiver state is STATE_BUSY_RX_AACK, we wait 415 * 'tFrame + tPAck' receiving time. In this time the 416 * PDU should be received. If the transceiver is still 417 * in STATE_BUSY_RX_AACK, we run a force state change 418 * to STATE_TX_ON. This is a timeout handling, if the 419 * transceiver stucks in STATE_BUSY_RX_AACK. 420 * 421 * Additional we do several retries to try to get into 422 * TX_ON state without forcing. If the retries are 423 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we 424 * will do a force change. 425 */ 426 if (ctx->to_state == STATE_TX_ON || 427 ctx->to_state == STATE_TRX_OFF) { 428 u8 state = ctx->to_state; 429 430 if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES) 431 state = at86rf230_state_to_force(state); 432 lp->tx_retry++; 433 434 at86rf230_async_state_change(lp, ctx, state, 435 ctx->complete, 436 ctx->irq_enable); 437 return; 438 } 439 } 440 441 dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n", 442 ctx->from_state, ctx->to_state, trx_state); 443 } 444 445 done: 446 if (ctx->complete) 447 ctx->complete(context); 448 } 449 450 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer) 451 { 452 struct at86rf230_state_change *ctx = 453 container_of(timer, struct at86rf230_state_change, timer); 454 struct at86rf230_local *lp = ctx->lp; 455 456 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 457 at86rf230_async_state_assert, 458 ctx->irq_enable); 459 460 return HRTIMER_NORESTART; 461 } 462 463 /* Do state change timing delay. */ 464 static void 465 at86rf230_async_state_delay(void *context) 466 { 467 struct at86rf230_state_change *ctx = context; 468 struct at86rf230_local *lp = ctx->lp; 469 struct at86rf2xx_chip_data *c = lp->data; 470 bool force = false; 471 ktime_t tim; 472 473 /* The force state changes are will show as normal states in the 474 * state status subregister. We change the to_state to the 475 * corresponding one and remember if it was a force change, this 476 * differs if we do a state change from STATE_BUSY_RX_AACK. 477 */ 478 switch (ctx->to_state) { 479 case STATE_FORCE_TX_ON: 480 ctx->to_state = STATE_TX_ON; 481 force = true; 482 break; 483 case STATE_FORCE_TRX_OFF: 484 ctx->to_state = STATE_TRX_OFF; 485 force = true; 486 break; 487 default: 488 break; 489 } 490 491 switch (ctx->from_state) { 492 case STATE_TRX_OFF: 493 switch (ctx->to_state) { 494 case STATE_RX_AACK_ON: 495 tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC); 496 /* state change from TRX_OFF to RX_AACK_ON to do a 497 * calibration, we need to reset the timeout for the 498 * next one. 499 */ 500 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 501 goto change; 502 case STATE_TX_ARET_ON: 503 case STATE_TX_ON: 504 tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC); 505 /* state change from TRX_OFF to TX_ON or ARET_ON to do 506 * a calibration, we need to reset the timeout for the 507 * next one. 508 */ 509 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 510 goto change; 511 default: 512 break; 513 } 514 break; 515 case STATE_BUSY_RX_AACK: 516 switch (ctx->to_state) { 517 case STATE_TRX_OFF: 518 case STATE_TX_ON: 519 /* Wait for worst case receiving time if we 520 * didn't make a force change from BUSY_RX_AACK 521 * to TX_ON or TRX_OFF. 522 */ 523 if (!force) { 524 tim = ktime_set(0, (c->t_frame + c->t_p_ack) * 525 NSEC_PER_USEC); 526 goto change; 527 } 528 break; 529 default: 530 break; 531 } 532 break; 533 /* Default value, means RESET state */ 534 case STATE_P_ON: 535 switch (ctx->to_state) { 536 case STATE_TRX_OFF: 537 tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC); 538 goto change; 539 default: 540 break; 541 } 542 break; 543 default: 544 break; 545 } 546 547 /* Default delay is 1us in the most cases */ 548 tim = ktime_set(0, NSEC_PER_USEC); 549 550 change: 551 hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL); 552 } 553 554 static void 555 at86rf230_async_state_change_start(void *context) 556 { 557 struct at86rf230_state_change *ctx = context; 558 struct at86rf230_local *lp = ctx->lp; 559 u8 *buf = ctx->buf; 560 const u8 trx_state = buf[1] & TRX_STATE_MASK; 561 int rc; 562 563 /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */ 564 if (trx_state == STATE_TRANSITION_IN_PROGRESS) { 565 udelay(1); 566 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 567 at86rf230_async_state_change_start, 568 ctx->irq_enable); 569 return; 570 } 571 572 /* Check if we already are in the state which we change in */ 573 if (trx_state == ctx->to_state) { 574 if (ctx->complete) 575 ctx->complete(context); 576 return; 577 } 578 579 /* Set current state to the context of state change */ 580 ctx->from_state = trx_state; 581 582 /* Going into the next step for a state change which do a timing 583 * relevant delay. 584 */ 585 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE; 586 buf[1] = ctx->to_state; 587 ctx->msg.complete = at86rf230_async_state_delay; 588 rc = spi_async(lp->spi, &ctx->msg); 589 if (rc) { 590 if (ctx->irq_enable) 591 enable_irq(ctx->irq); 592 593 at86rf230_async_error(lp, ctx, rc); 594 } 595 } 596 597 static void 598 at86rf230_async_state_change(struct at86rf230_local *lp, 599 struct at86rf230_state_change *ctx, 600 const u8 state, void (*complete)(void *context), 601 const bool irq_enable) 602 { 603 /* Initialization for the state change context */ 604 ctx->to_state = state; 605 ctx->complete = complete; 606 ctx->irq_enable = irq_enable; 607 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 608 at86rf230_async_state_change_start, 609 irq_enable); 610 } 611 612 static void 613 at86rf230_sync_state_change_complete(void *context) 614 { 615 struct at86rf230_state_change *ctx = context; 616 struct at86rf230_local *lp = ctx->lp; 617 618 complete(&lp->state_complete); 619 } 620 621 /* This function do a sync framework above the async state change. 622 * Some callbacks of the IEEE 802.15.4 driver interface need to be 623 * handled synchronously. 624 */ 625 static int 626 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state) 627 { 628 unsigned long rc; 629 630 at86rf230_async_state_change(lp, &lp->state, state, 631 at86rf230_sync_state_change_complete, 632 false); 633 634 rc = wait_for_completion_timeout(&lp->state_complete, 635 msecs_to_jiffies(100)); 636 if (!rc) { 637 at86rf230_async_error(lp, &lp->state, -ETIMEDOUT); 638 return -ETIMEDOUT; 639 } 640 641 return 0; 642 } 643 644 static void 645 at86rf230_tx_complete(void *context) 646 { 647 struct at86rf230_state_change *ctx = context; 648 struct at86rf230_local *lp = ctx->lp; 649 650 enable_irq(ctx->irq); 651 652 ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret); 653 } 654 655 static void 656 at86rf230_tx_on(void *context) 657 { 658 struct at86rf230_state_change *ctx = context; 659 struct at86rf230_local *lp = ctx->lp; 660 661 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, 662 at86rf230_tx_complete, true); 663 } 664 665 static void 666 at86rf230_tx_trac_check(void *context) 667 { 668 struct at86rf230_state_change *ctx = context; 669 struct at86rf230_local *lp = ctx->lp; 670 const u8 *buf = ctx->buf; 671 const u8 trac = (buf[1] & 0xe0) >> 5; 672 673 /* If trac status is different than zero we need to do a state change 674 * to STATE_FORCE_TRX_OFF then STATE_RX_AACK_ON to recover the 675 * transceiver. 676 */ 677 if (trac) 678 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF, 679 at86rf230_tx_on, true); 680 else 681 at86rf230_tx_on(context); 682 } 683 684 static void 685 at86rf230_tx_trac_status(void *context) 686 { 687 struct at86rf230_state_change *ctx = context; 688 struct at86rf230_local *lp = ctx->lp; 689 690 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx, 691 at86rf230_tx_trac_check, true); 692 } 693 694 static void 695 at86rf230_rx_read_frame_complete(void *context) 696 { 697 struct at86rf230_state_change *ctx = context; 698 struct at86rf230_local *lp = ctx->lp; 699 u8 rx_local_buf[AT86RF2XX_MAX_BUF]; 700 const u8 *buf = ctx->buf; 701 struct sk_buff *skb; 702 u8 len, lqi; 703 704 len = buf[1]; 705 if (!ieee802154_is_valid_psdu_len(len)) { 706 dev_vdbg(&lp->spi->dev, "corrupted frame received\n"); 707 len = IEEE802154_MTU; 708 } 709 lqi = buf[2 + len]; 710 711 memcpy(rx_local_buf, buf + 2, len); 712 ctx->trx.len = 2; 713 enable_irq(ctx->irq); 714 715 skb = dev_alloc_skb(IEEE802154_MTU); 716 if (!skb) { 717 dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n"); 718 return; 719 } 720 721 memcpy(skb_put(skb, len), rx_local_buf, len); 722 ieee802154_rx_irqsafe(lp->hw, skb, lqi); 723 } 724 725 static void 726 at86rf230_rx_read_frame(void *context) 727 { 728 struct at86rf230_state_change *ctx = context; 729 struct at86rf230_local *lp = ctx->lp; 730 u8 *buf = ctx->buf; 731 int rc; 732 733 buf[0] = CMD_FB; 734 ctx->trx.len = AT86RF2XX_MAX_BUF; 735 ctx->msg.complete = at86rf230_rx_read_frame_complete; 736 rc = spi_async(lp->spi, &ctx->msg); 737 if (rc) { 738 ctx->trx.len = 2; 739 enable_irq(ctx->irq); 740 at86rf230_async_error(lp, ctx, rc); 741 } 742 } 743 744 static void 745 at86rf230_rx_trac_check(void *context) 746 { 747 /* Possible check on trac status here. This could be useful to make 748 * some stats why receive is failed. Not used at the moment, but it's 749 * maybe timing relevant. Datasheet doesn't say anything about this. 750 * The programming guide say do it so. 751 */ 752 753 at86rf230_rx_read_frame(context); 754 } 755 756 static void 757 at86rf230_irq_trx_end(struct at86rf230_local *lp) 758 { 759 if (lp->is_tx) { 760 lp->is_tx = 0; 761 762 if (lp->tx_aret) 763 at86rf230_async_state_change(lp, &lp->irq, 764 STATE_FORCE_TX_ON, 765 at86rf230_tx_trac_status, 766 true); 767 else 768 at86rf230_async_state_change(lp, &lp->irq, 769 STATE_RX_AACK_ON, 770 at86rf230_tx_complete, 771 true); 772 } else { 773 at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq, 774 at86rf230_rx_trac_check, true); 775 } 776 } 777 778 static void 779 at86rf230_irq_status(void *context) 780 { 781 struct at86rf230_state_change *ctx = context; 782 struct at86rf230_local *lp = ctx->lp; 783 const u8 *buf = ctx->buf; 784 const u8 irq = buf[1]; 785 786 if (irq & IRQ_TRX_END) { 787 at86rf230_irq_trx_end(lp); 788 } else { 789 enable_irq(ctx->irq); 790 dev_err(&lp->spi->dev, "not supported irq %02x received\n", 791 irq); 792 } 793 } 794 795 static irqreturn_t at86rf230_isr(int irq, void *data) 796 { 797 struct at86rf230_local *lp = data; 798 struct at86rf230_state_change *ctx = &lp->irq; 799 u8 *buf = ctx->buf; 800 int rc; 801 802 disable_irq_nosync(irq); 803 804 buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG; 805 ctx->msg.complete = at86rf230_irq_status; 806 rc = spi_async(lp->spi, &ctx->msg); 807 if (rc) { 808 enable_irq(irq); 809 at86rf230_async_error(lp, ctx, rc); 810 return IRQ_NONE; 811 } 812 813 return IRQ_HANDLED; 814 } 815 816 static void 817 at86rf230_write_frame_complete(void *context) 818 { 819 struct at86rf230_state_change *ctx = context; 820 struct at86rf230_local *lp = ctx->lp; 821 u8 *buf = ctx->buf; 822 int rc; 823 824 ctx->trx.len = 2; 825 826 if (gpio_is_valid(lp->slp_tr)) { 827 at86rf230_slp_tr_rising_edge(lp); 828 } else { 829 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE; 830 buf[1] = STATE_BUSY_TX; 831 ctx->msg.complete = NULL; 832 rc = spi_async(lp->spi, &ctx->msg); 833 if (rc) 834 at86rf230_async_error(lp, ctx, rc); 835 } 836 } 837 838 static void 839 at86rf230_write_frame(void *context) 840 { 841 struct at86rf230_state_change *ctx = context; 842 struct at86rf230_local *lp = ctx->lp; 843 struct sk_buff *skb = lp->tx_skb; 844 u8 *buf = ctx->buf; 845 int rc; 846 847 lp->is_tx = 1; 848 849 buf[0] = CMD_FB | CMD_WRITE; 850 buf[1] = skb->len + 2; 851 memcpy(buf + 2, skb->data, skb->len); 852 ctx->trx.len = skb->len + 2; 853 ctx->msg.complete = at86rf230_write_frame_complete; 854 rc = spi_async(lp->spi, &ctx->msg); 855 if (rc) { 856 ctx->trx.len = 2; 857 at86rf230_async_error(lp, ctx, rc); 858 } 859 } 860 861 static void 862 at86rf230_xmit_tx_on(void *context) 863 { 864 struct at86rf230_state_change *ctx = context; 865 struct at86rf230_local *lp = ctx->lp; 866 867 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, 868 at86rf230_write_frame, false); 869 } 870 871 static void 872 at86rf230_xmit_start(void *context) 873 { 874 struct at86rf230_state_change *ctx = context; 875 struct at86rf230_local *lp = ctx->lp; 876 877 /* In ARET mode we need to go into STATE_TX_ARET_ON after we 878 * are in STATE_TX_ON. The pfad differs here, so we change 879 * the complete handler. 880 */ 881 if (lp->tx_aret) { 882 if (lp->is_tx_from_off) { 883 lp->is_tx_from_off = false; 884 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, 885 at86rf230_write_frame, 886 false); 887 } else { 888 at86rf230_async_state_change(lp, ctx, STATE_TX_ON, 889 at86rf230_xmit_tx_on, 890 false); 891 } 892 } else { 893 at86rf230_async_state_change(lp, ctx, STATE_TX_ON, 894 at86rf230_write_frame, false); 895 } 896 } 897 898 static int 899 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) 900 { 901 struct at86rf230_local *lp = hw->priv; 902 struct at86rf230_state_change *ctx = &lp->tx; 903 904 lp->tx_skb = skb; 905 lp->tx_retry = 0; 906 907 /* After 5 minutes in PLL and the same frequency we run again the 908 * calibration loops which is recommended by at86rf2xx datasheets. 909 * 910 * The calibration is initiate by a state change from TRX_OFF 911 * to TX_ON, the lp->cal_timeout should be reinit by state_delay 912 * function then to start in the next 5 minutes. 913 */ 914 if (time_is_before_jiffies(lp->cal_timeout)) { 915 lp->is_tx_from_off = true; 916 at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF, 917 at86rf230_xmit_start, false); 918 } else { 919 at86rf230_xmit_start(ctx); 920 } 921 922 return 0; 923 } 924 925 static int 926 at86rf230_ed(struct ieee802154_hw *hw, u8 *level) 927 { 928 BUG_ON(!level); 929 *level = 0xbe; 930 return 0; 931 } 932 933 static int 934 at86rf230_start(struct ieee802154_hw *hw) 935 { 936 struct at86rf230_local *lp = hw->priv; 937 938 at86rf230_awake(lp); 939 enable_irq(lp->spi->irq); 940 941 return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON); 942 } 943 944 static void 945 at86rf230_stop(struct ieee802154_hw *hw) 946 { 947 struct at86rf230_local *lp = hw->priv; 948 u8 csma_seed[2]; 949 950 at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); 951 952 disable_irq(lp->spi->irq); 953 954 /* It's recommended to set random new csma_seeds before sleep state. 955 * Makes only sense in the stop callback, not doing this inside of 956 * at86rf230_sleep, this is also used when we don't transmit afterwards 957 * when calling start callback again. 958 */ 959 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); 960 at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); 961 at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); 962 963 at86rf230_sleep(lp); 964 } 965 966 static int 967 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) 968 { 969 return at86rf230_write_subreg(lp, SR_CHANNEL, channel); 970 } 971 972 #define AT86RF2XX_MAX_ED_LEVELS 0xF 973 static const s32 at86rf23x_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = { 974 -9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300, 975 -7100, -6900, -6700, -6500, -6300, -6100, 976 }; 977 978 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = { 979 -10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, 980 -8000, -7800, -7600, -7400, -7200, -7000, 981 }; 982 983 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = { 984 -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, 985 -7800, -7600, -7400, -7200, -7000, -6800, 986 }; 987 988 static inline int 989 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val) 990 { 991 unsigned int cca_ed_thres; 992 int rc; 993 994 rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres); 995 if (rc < 0) 996 return rc; 997 998 switch (rssi_base_val) { 999 case -98: 1000 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98; 1001 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98); 1002 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres]; 1003 break; 1004 case -100: 1005 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; 1006 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); 1007 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres]; 1008 break; 1009 default: 1010 WARN_ON(1); 1011 } 1012 1013 return 0; 1014 } 1015 1016 static int 1017 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) 1018 { 1019 int rc; 1020 1021 if (channel == 0) 1022 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0); 1023 else 1024 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1); 1025 if (rc < 0) 1026 return rc; 1027 1028 if (page == 0) { 1029 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0); 1030 lp->data->rssi_base_val = -100; 1031 } else { 1032 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1); 1033 lp->data->rssi_base_val = -98; 1034 } 1035 if (rc < 0) 1036 return rc; 1037 1038 rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val); 1039 if (rc < 0) 1040 return rc; 1041 1042 /* This sets the symbol_duration according frequency on the 212. 1043 * TODO move this handling while set channel and page in cfg802154. 1044 * We can do that, this timings are according 802.15.4 standard. 1045 * If we do that in cfg802154, this is a more generic calculation. 1046 * 1047 * This should also protected from ifs_timer. Means cancel timer and 1048 * init with a new value. For now, this is okay. 1049 */ 1050 if (channel == 0) { 1051 if (page == 0) { 1052 /* SUB:0 and BPSK:0 -> BPSK-20 */ 1053 lp->hw->phy->symbol_duration = 50; 1054 } else { 1055 /* SUB:1 and BPSK:0 -> BPSK-40 */ 1056 lp->hw->phy->symbol_duration = 25; 1057 } 1058 } else { 1059 if (page == 0) 1060 /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */ 1061 lp->hw->phy->symbol_duration = 40; 1062 else 1063 /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */ 1064 lp->hw->phy->symbol_duration = 16; 1065 } 1066 1067 lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD * 1068 lp->hw->phy->symbol_duration; 1069 lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD * 1070 lp->hw->phy->symbol_duration; 1071 1072 return at86rf230_write_subreg(lp, SR_CHANNEL, channel); 1073 } 1074 1075 static int 1076 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel) 1077 { 1078 struct at86rf230_local *lp = hw->priv; 1079 int rc; 1080 1081 rc = lp->data->set_channel(lp, page, channel); 1082 /* Wait for PLL */ 1083 usleep_range(lp->data->t_channel_switch, 1084 lp->data->t_channel_switch + 10); 1085 1086 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 1087 return rc; 1088 } 1089 1090 static int 1091 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw, 1092 struct ieee802154_hw_addr_filt *filt, 1093 unsigned long changed) 1094 { 1095 struct at86rf230_local *lp = hw->priv; 1096 1097 if (changed & IEEE802154_AFILT_SADDR_CHANGED) { 1098 u16 addr = le16_to_cpu(filt->short_addr); 1099 1100 dev_vdbg(&lp->spi->dev, 1101 "at86rf230_set_hw_addr_filt called for saddr\n"); 1102 __at86rf230_write(lp, RG_SHORT_ADDR_0, addr); 1103 __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8); 1104 } 1105 1106 if (changed & IEEE802154_AFILT_PANID_CHANGED) { 1107 u16 pan = le16_to_cpu(filt->pan_id); 1108 1109 dev_vdbg(&lp->spi->dev, 1110 "at86rf230_set_hw_addr_filt called for pan id\n"); 1111 __at86rf230_write(lp, RG_PAN_ID_0, pan); 1112 __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8); 1113 } 1114 1115 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { 1116 u8 i, addr[8]; 1117 1118 memcpy(addr, &filt->ieee_addr, 8); 1119 dev_vdbg(&lp->spi->dev, 1120 "at86rf230_set_hw_addr_filt called for IEEE addr\n"); 1121 for (i = 0; i < 8; i++) 1122 __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]); 1123 } 1124 1125 if (changed & IEEE802154_AFILT_PANC_CHANGED) { 1126 dev_vdbg(&lp->spi->dev, 1127 "at86rf230_set_hw_addr_filt called for panc change\n"); 1128 if (filt->pan_coord) 1129 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1); 1130 else 1131 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0); 1132 } 1133 1134 return 0; 1135 } 1136 1137 #define AT86RF23X_MAX_TX_POWERS 0xF 1138 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 1139 400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600, 1140 -800, -1200, -1700, 1141 }; 1142 1143 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 1144 300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700, 1145 -900, -1200, -1700, 1146 }; 1147 1148 #define AT86RF212_MAX_TX_POWERS 0x1F 1149 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = { 1150 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700, 1151 -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700, 1152 -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600, 1153 }; 1154 1155 static int 1156 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm) 1157 { 1158 u32 i; 1159 1160 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { 1161 if (lp->hw->phy->supported.tx_powers[i] == mbm) 1162 return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i); 1163 } 1164 1165 return -EINVAL; 1166 } 1167 1168 static int 1169 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm) 1170 { 1171 u32 i; 1172 1173 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { 1174 if (lp->hw->phy->supported.tx_powers[i] == mbm) 1175 return at86rf230_write_subreg(lp, SR_TX_PWR_212, i); 1176 } 1177 1178 return -EINVAL; 1179 } 1180 1181 static int 1182 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm) 1183 { 1184 struct at86rf230_local *lp = hw->priv; 1185 1186 return lp->data->set_txpower(lp, mbm); 1187 } 1188 1189 static int 1190 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on) 1191 { 1192 struct at86rf230_local *lp = hw->priv; 1193 1194 return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on); 1195 } 1196 1197 static int 1198 at86rf230_set_cca_mode(struct ieee802154_hw *hw, 1199 const struct wpan_phy_cca *cca) 1200 { 1201 struct at86rf230_local *lp = hw->priv; 1202 u8 val; 1203 1204 /* mapping 802.15.4 to driver spec */ 1205 switch (cca->mode) { 1206 case NL802154_CCA_ENERGY: 1207 val = 1; 1208 break; 1209 case NL802154_CCA_CARRIER: 1210 val = 2; 1211 break; 1212 case NL802154_CCA_ENERGY_CARRIER: 1213 switch (cca->opt) { 1214 case NL802154_CCA_OPT_ENERGY_CARRIER_AND: 1215 val = 3; 1216 break; 1217 case NL802154_CCA_OPT_ENERGY_CARRIER_OR: 1218 val = 0; 1219 break; 1220 default: 1221 return -EINVAL; 1222 } 1223 break; 1224 default: 1225 return -EINVAL; 1226 } 1227 1228 return at86rf230_write_subreg(lp, SR_CCA_MODE, val); 1229 } 1230 1231 1232 static int 1233 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm) 1234 { 1235 struct at86rf230_local *lp = hw->priv; 1236 u32 i; 1237 1238 for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) { 1239 if (hw->phy->supported.cca_ed_levels[i] == mbm) 1240 return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i); 1241 } 1242 1243 return -EINVAL; 1244 } 1245 1246 static int 1247 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, 1248 u8 retries) 1249 { 1250 struct at86rf230_local *lp = hw->priv; 1251 int rc; 1252 1253 rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be); 1254 if (rc) 1255 return rc; 1256 1257 rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be); 1258 if (rc) 1259 return rc; 1260 1261 return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries); 1262 } 1263 1264 static int 1265 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries) 1266 { 1267 struct at86rf230_local *lp = hw->priv; 1268 int rc = 0; 1269 1270 lp->tx_aret = retries >= 0; 1271 lp->max_frame_retries = retries; 1272 1273 if (retries >= 0) 1274 rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries); 1275 1276 return rc; 1277 } 1278 1279 static int 1280 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) 1281 { 1282 struct at86rf230_local *lp = hw->priv; 1283 int rc; 1284 1285 if (on) { 1286 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1); 1287 if (rc < 0) 1288 return rc; 1289 1290 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1); 1291 if (rc < 0) 1292 return rc; 1293 } else { 1294 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0); 1295 if (rc < 0) 1296 return rc; 1297 1298 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0); 1299 if (rc < 0) 1300 return rc; 1301 } 1302 1303 return 0; 1304 } 1305 1306 static const struct ieee802154_ops at86rf230_ops = { 1307 .owner = THIS_MODULE, 1308 .xmit_async = at86rf230_xmit, 1309 .ed = at86rf230_ed, 1310 .set_channel = at86rf230_channel, 1311 .start = at86rf230_start, 1312 .stop = at86rf230_stop, 1313 .set_hw_addr_filt = at86rf230_set_hw_addr_filt, 1314 .set_txpower = at86rf230_set_txpower, 1315 .set_lbt = at86rf230_set_lbt, 1316 .set_cca_mode = at86rf230_set_cca_mode, 1317 .set_cca_ed_level = at86rf230_set_cca_ed_level, 1318 .set_csma_params = at86rf230_set_csma_params, 1319 .set_frame_retries = at86rf230_set_frame_retries, 1320 .set_promiscuous_mode = at86rf230_set_promiscuous_mode, 1321 }; 1322 1323 static struct at86rf2xx_chip_data at86rf233_data = { 1324 .t_sleep_cycle = 330, 1325 .t_channel_switch = 11, 1326 .t_reset_to_off = 26, 1327 .t_off_to_aack = 80, 1328 .t_off_to_tx_on = 80, 1329 .t_off_to_sleep = 35, 1330 .t_sleep_to_off = 210, 1331 .t_frame = 4096, 1332 .t_p_ack = 545, 1333 .rssi_base_val = -91, 1334 .set_channel = at86rf23x_set_channel, 1335 .set_txpower = at86rf23x_set_txpower, 1336 }; 1337 1338 static struct at86rf2xx_chip_data at86rf231_data = { 1339 .t_sleep_cycle = 330, 1340 .t_channel_switch = 24, 1341 .t_reset_to_off = 37, 1342 .t_off_to_aack = 110, 1343 .t_off_to_tx_on = 110, 1344 .t_off_to_sleep = 35, 1345 .t_sleep_to_off = 380, 1346 .t_frame = 4096, 1347 .t_p_ack = 545, 1348 .rssi_base_val = -91, 1349 .set_channel = at86rf23x_set_channel, 1350 .set_txpower = at86rf23x_set_txpower, 1351 }; 1352 1353 static struct at86rf2xx_chip_data at86rf212_data = { 1354 .t_sleep_cycle = 330, 1355 .t_channel_switch = 11, 1356 .t_reset_to_off = 26, 1357 .t_off_to_aack = 200, 1358 .t_off_to_tx_on = 200, 1359 .t_off_to_sleep = 35, 1360 .t_sleep_to_off = 380, 1361 .t_frame = 4096, 1362 .t_p_ack = 545, 1363 .rssi_base_val = -100, 1364 .set_channel = at86rf212_set_channel, 1365 .set_txpower = at86rf212_set_txpower, 1366 }; 1367 1368 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim) 1369 { 1370 int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH; 1371 unsigned int dvdd; 1372 u8 csma_seed[2]; 1373 1374 rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); 1375 if (rc) 1376 return rc; 1377 1378 irq_type = irq_get_trigger_type(lp->spi->irq); 1379 if (irq_type == IRQ_TYPE_EDGE_RISING || 1380 irq_type == IRQ_TYPE_EDGE_FALLING) 1381 dev_warn(&lp->spi->dev, 1382 "Using edge triggered irq's are not recommended!\n"); 1383 if (irq_type == IRQ_TYPE_EDGE_FALLING || 1384 irq_type == IRQ_TYPE_LEVEL_LOW) 1385 irq_pol = IRQ_ACTIVE_LOW; 1386 1387 rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol); 1388 if (rc) 1389 return rc; 1390 1391 rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1); 1392 if (rc) 1393 return rc; 1394 1395 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END); 1396 if (rc) 1397 return rc; 1398 1399 /* reset values differs in at86rf231 and at86rf233 */ 1400 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0); 1401 if (rc) 1402 return rc; 1403 1404 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); 1405 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); 1406 if (rc) 1407 return rc; 1408 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); 1409 if (rc) 1410 return rc; 1411 1412 /* CLKM changes are applied immediately */ 1413 rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00); 1414 if (rc) 1415 return rc; 1416 1417 /* Turn CLKM Off */ 1418 rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00); 1419 if (rc) 1420 return rc; 1421 /* Wait the next SLEEP cycle */ 1422 usleep_range(lp->data->t_sleep_cycle, 1423 lp->data->t_sleep_cycle + 100); 1424 1425 /* xtal_trim value is calculated by: 1426 * CL = 0.5 * (CX + CTRIM + CPAR) 1427 * 1428 * whereas: 1429 * CL = capacitor of used crystal 1430 * CX = connected capacitors at xtal pins 1431 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF, 1432 * but this is different on each board setup. You need to fine 1433 * tuning this value via CTRIM. 1434 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is 1435 * 0 pF upto 4.5 pF. 1436 * 1437 * Examples: 1438 * atben transceiver: 1439 * 1440 * CL = 8 pF 1441 * CX = 12 pF 1442 * CPAR = 3 pF (We assume the magic constant from datasheet) 1443 * CTRIM = 0.9 pF 1444 * 1445 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF 1446 * 1447 * xtal_trim = 0x3 1448 * 1449 * openlabs transceiver: 1450 * 1451 * CL = 16 pF 1452 * CX = 22 pF 1453 * CPAR = 3 pF (We assume the magic constant from datasheet) 1454 * CTRIM = 4.5 pF 1455 * 1456 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF 1457 * 1458 * xtal_trim = 0xf 1459 */ 1460 rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim); 1461 if (rc) 1462 return rc; 1463 1464 rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd); 1465 if (rc) 1466 return rc; 1467 if (!dvdd) { 1468 dev_err(&lp->spi->dev, "DVDD error\n"); 1469 return -EINVAL; 1470 } 1471 1472 /* Force setting slotted operation bit to 0. Sometimes the atben 1473 * sets this bit and I don't know why. We set this always force 1474 * to zero while probing. 1475 */ 1476 return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0); 1477 } 1478 1479 static int 1480 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr, 1481 u8 *xtal_trim) 1482 { 1483 struct at86rf230_platform_data *pdata = spi->dev.platform_data; 1484 int ret; 1485 1486 if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) { 1487 if (!pdata) 1488 return -ENOENT; 1489 1490 *rstn = pdata->rstn; 1491 *slp_tr = pdata->slp_tr; 1492 *xtal_trim = pdata->xtal_trim; 1493 return 0; 1494 } 1495 1496 *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0); 1497 *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0); 1498 ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim); 1499 if (ret < 0 && ret != -EINVAL) 1500 return ret; 1501 1502 return 0; 1503 } 1504 1505 static int 1506 at86rf230_detect_device(struct at86rf230_local *lp) 1507 { 1508 unsigned int part, version, val; 1509 u16 man_id = 0; 1510 const char *chip; 1511 int rc; 1512 1513 rc = __at86rf230_read(lp, RG_MAN_ID_0, &val); 1514 if (rc) 1515 return rc; 1516 man_id |= val; 1517 1518 rc = __at86rf230_read(lp, RG_MAN_ID_1, &val); 1519 if (rc) 1520 return rc; 1521 man_id |= (val << 8); 1522 1523 rc = __at86rf230_read(lp, RG_PART_NUM, &part); 1524 if (rc) 1525 return rc; 1526 1527 rc = __at86rf230_read(lp, RG_VERSION_NUM, &version); 1528 if (rc) 1529 return rc; 1530 1531 if (man_id != 0x001f) { 1532 dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n", 1533 man_id >> 8, man_id & 0xFF); 1534 return -EINVAL; 1535 } 1536 1537 lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | 1538 IEEE802154_HW_CSMA_PARAMS | 1539 IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT | 1540 IEEE802154_HW_PROMISCUOUS; 1541 1542 lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER | 1543 WPAN_PHY_FLAG_CCA_ED_LEVEL | 1544 WPAN_PHY_FLAG_CCA_MODE; 1545 1546 lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) | 1547 BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER); 1548 lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) | 1549 BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR); 1550 1551 lp->hw->phy->supported.cca_ed_levels = at86rf23x_ed_levels; 1552 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf23x_ed_levels); 1553 1554 lp->hw->phy->cca.mode = NL802154_CCA_ENERGY; 1555 1556 switch (part) { 1557 case 2: 1558 chip = "at86rf230"; 1559 rc = -ENOTSUPP; 1560 goto not_supp; 1561 case 3: 1562 chip = "at86rf231"; 1563 lp->data = &at86rf231_data; 1564 lp->hw->phy->supported.channels[0] = 0x7FFF800; 1565 lp->hw->phy->current_channel = 11; 1566 lp->hw->phy->symbol_duration = 16; 1567 lp->hw->phy->supported.tx_powers = at86rf231_powers; 1568 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers); 1569 break; 1570 case 7: 1571 chip = "at86rf212"; 1572 lp->data = &at86rf212_data; 1573 lp->hw->flags |= IEEE802154_HW_LBT; 1574 lp->hw->phy->supported.channels[0] = 0x00007FF; 1575 lp->hw->phy->supported.channels[2] = 0x00007FF; 1576 lp->hw->phy->current_channel = 5; 1577 lp->hw->phy->symbol_duration = 25; 1578 lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH; 1579 lp->hw->phy->supported.tx_powers = at86rf212_powers; 1580 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers); 1581 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; 1582 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); 1583 break; 1584 case 11: 1585 chip = "at86rf233"; 1586 lp->data = &at86rf233_data; 1587 lp->hw->phy->supported.channels[0] = 0x7FFF800; 1588 lp->hw->phy->current_channel = 13; 1589 lp->hw->phy->symbol_duration = 16; 1590 lp->hw->phy->supported.tx_powers = at86rf233_powers; 1591 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers); 1592 break; 1593 default: 1594 chip = "unknown"; 1595 rc = -ENOTSUPP; 1596 goto not_supp; 1597 } 1598 1599 lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7]; 1600 lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0]; 1601 1602 not_supp: 1603 dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version); 1604 1605 return rc; 1606 } 1607 1608 static void 1609 at86rf230_setup_spi_messages(struct at86rf230_local *lp) 1610 { 1611 lp->state.lp = lp; 1612 lp->state.irq = lp->spi->irq; 1613 spi_message_init(&lp->state.msg); 1614 lp->state.msg.context = &lp->state; 1615 lp->state.trx.len = 2; 1616 lp->state.trx.tx_buf = lp->state.buf; 1617 lp->state.trx.rx_buf = lp->state.buf; 1618 spi_message_add_tail(&lp->state.trx, &lp->state.msg); 1619 hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1620 lp->state.timer.function = at86rf230_async_state_timer; 1621 1622 lp->irq.lp = lp; 1623 lp->irq.irq = lp->spi->irq; 1624 spi_message_init(&lp->irq.msg); 1625 lp->irq.msg.context = &lp->irq; 1626 lp->irq.trx.len = 2; 1627 lp->irq.trx.tx_buf = lp->irq.buf; 1628 lp->irq.trx.rx_buf = lp->irq.buf; 1629 spi_message_add_tail(&lp->irq.trx, &lp->irq.msg); 1630 hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1631 lp->irq.timer.function = at86rf230_async_state_timer; 1632 1633 lp->tx.lp = lp; 1634 lp->tx.irq = lp->spi->irq; 1635 spi_message_init(&lp->tx.msg); 1636 lp->tx.msg.context = &lp->tx; 1637 lp->tx.trx.len = 2; 1638 lp->tx.trx.tx_buf = lp->tx.buf; 1639 lp->tx.trx.rx_buf = lp->tx.buf; 1640 spi_message_add_tail(&lp->tx.trx, &lp->tx.msg); 1641 hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1642 lp->tx.timer.function = at86rf230_async_state_timer; 1643 } 1644 1645 static int at86rf230_probe(struct spi_device *spi) 1646 { 1647 struct ieee802154_hw *hw; 1648 struct at86rf230_local *lp; 1649 unsigned int status; 1650 int rc, irq_type, rstn, slp_tr; 1651 u8 xtal_trim = 0; 1652 1653 if (!spi->irq) { 1654 dev_err(&spi->dev, "no IRQ specified\n"); 1655 return -EINVAL; 1656 } 1657 1658 rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim); 1659 if (rc < 0) { 1660 dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc); 1661 return rc; 1662 } 1663 1664 if (gpio_is_valid(rstn)) { 1665 rc = devm_gpio_request_one(&spi->dev, rstn, 1666 GPIOF_OUT_INIT_HIGH, "rstn"); 1667 if (rc) 1668 return rc; 1669 } 1670 1671 if (gpio_is_valid(slp_tr)) { 1672 rc = devm_gpio_request_one(&spi->dev, slp_tr, 1673 GPIOF_OUT_INIT_LOW, "slp_tr"); 1674 if (rc) 1675 return rc; 1676 } 1677 1678 /* Reset */ 1679 if (gpio_is_valid(rstn)) { 1680 udelay(1); 1681 gpio_set_value(rstn, 0); 1682 udelay(1); 1683 gpio_set_value(rstn, 1); 1684 usleep_range(120, 240); 1685 } 1686 1687 hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops); 1688 if (!hw) 1689 return -ENOMEM; 1690 1691 lp = hw->priv; 1692 lp->hw = hw; 1693 lp->spi = spi; 1694 lp->slp_tr = slp_tr; 1695 hw->parent = &spi->dev; 1696 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); 1697 1698 lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config); 1699 if (IS_ERR(lp->regmap)) { 1700 rc = PTR_ERR(lp->regmap); 1701 dev_err(&spi->dev, "Failed to allocate register map: %d\n", 1702 rc); 1703 goto free_dev; 1704 } 1705 1706 at86rf230_setup_spi_messages(lp); 1707 1708 rc = at86rf230_detect_device(lp); 1709 if (rc < 0) 1710 goto free_dev; 1711 1712 init_completion(&lp->state_complete); 1713 1714 spi_set_drvdata(spi, lp); 1715 1716 rc = at86rf230_hw_init(lp, xtal_trim); 1717 if (rc) 1718 goto free_dev; 1719 1720 /* Read irq status register to reset irq line */ 1721 rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status); 1722 if (rc) 1723 goto free_dev; 1724 1725 irq_type = irq_get_trigger_type(spi->irq); 1726 if (!irq_type) 1727 irq_type = IRQF_TRIGGER_HIGH; 1728 1729 rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr, 1730 IRQF_SHARED | irq_type, dev_name(&spi->dev), lp); 1731 if (rc) 1732 goto free_dev; 1733 1734 /* disable_irq by default and wait for starting hardware */ 1735 disable_irq(spi->irq); 1736 1737 /* going into sleep by default */ 1738 at86rf230_sleep(lp); 1739 1740 rc = ieee802154_register_hw(lp->hw); 1741 if (rc) 1742 goto free_dev; 1743 1744 return rc; 1745 1746 free_dev: 1747 ieee802154_free_hw(lp->hw); 1748 1749 return rc; 1750 } 1751 1752 static int at86rf230_remove(struct spi_device *spi) 1753 { 1754 struct at86rf230_local *lp = spi_get_drvdata(spi); 1755 1756 /* mask all at86rf230 irq's */ 1757 at86rf230_write_subreg(lp, SR_IRQ_MASK, 0); 1758 ieee802154_unregister_hw(lp->hw); 1759 ieee802154_free_hw(lp->hw); 1760 dev_dbg(&spi->dev, "unregistered at86rf230\n"); 1761 1762 return 0; 1763 } 1764 1765 static const struct of_device_id at86rf230_of_match[] = { 1766 { .compatible = "atmel,at86rf230", }, 1767 { .compatible = "atmel,at86rf231", }, 1768 { .compatible = "atmel,at86rf233", }, 1769 { .compatible = "atmel,at86rf212", }, 1770 { }, 1771 }; 1772 MODULE_DEVICE_TABLE(of, at86rf230_of_match); 1773 1774 static const struct spi_device_id at86rf230_device_id[] = { 1775 { .name = "at86rf230", }, 1776 { .name = "at86rf231", }, 1777 { .name = "at86rf233", }, 1778 { .name = "at86rf212", }, 1779 { }, 1780 }; 1781 MODULE_DEVICE_TABLE(spi, at86rf230_device_id); 1782 1783 static struct spi_driver at86rf230_driver = { 1784 .id_table = at86rf230_device_id, 1785 .driver = { 1786 .of_match_table = of_match_ptr(at86rf230_of_match), 1787 .name = "at86rf230", 1788 .owner = THIS_MODULE, 1789 }, 1790 .probe = at86rf230_probe, 1791 .remove = at86rf230_remove, 1792 }; 1793 1794 module_spi_driver(at86rf230_driver); 1795 1796 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver"); 1797 MODULE_LICENSE("GPL v2"); 1798