1 /* 2 * AT86RF230/RF231 driver 3 * 4 * Copyright (C) 2009-2012 Siemens AG 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 8 * as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * Written by: 16 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> 17 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> 18 * Alexander Aring <aar@pengutronix.de> 19 */ 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/hrtimer.h> 23 #include <linux/jiffies.h> 24 #include <linux/interrupt.h> 25 #include <linux/irq.h> 26 #include <linux/gpio.h> 27 #include <linux/delay.h> 28 #include <linux/spi/spi.h> 29 #include <linux/spi/at86rf230.h> 30 #include <linux/regmap.h> 31 #include <linux/skbuff.h> 32 #include <linux/of_gpio.h> 33 #include <linux/ieee802154.h> 34 35 #include <net/mac802154.h> 36 #include <net/cfg802154.h> 37 38 #include "at86rf230.h" 39 40 struct at86rf230_local; 41 /* at86rf2xx chip depend data. 42 * All timings are in us. 43 */ 44 struct at86rf2xx_chip_data { 45 u16 t_sleep_cycle; 46 u16 t_channel_switch; 47 u16 t_reset_to_off; 48 u16 t_off_to_aack; 49 u16 t_off_to_tx_on; 50 u16 t_off_to_sleep; 51 u16 t_sleep_to_off; 52 u16 t_frame; 53 u16 t_p_ack; 54 int rssi_base_val; 55 56 int (*set_channel)(struct at86rf230_local *, u8, u8); 57 int (*set_txpower)(struct at86rf230_local *, s32); 58 }; 59 60 #define AT86RF2XX_MAX_BUF (127 + 3) 61 /* tx retries to access the TX_ON state 62 * if it's above then force change will be started. 63 * 64 * We assume the max_frame_retries (7) value of 802.15.4 here. 65 */ 66 #define AT86RF2XX_MAX_TX_RETRIES 7 67 /* We use the recommended 5 minutes timeout to recalibrate */ 68 #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ) 69 70 struct at86rf230_state_change { 71 struct at86rf230_local *lp; 72 int irq; 73 74 struct hrtimer timer; 75 struct spi_message msg; 76 struct spi_transfer trx; 77 u8 buf[AT86RF2XX_MAX_BUF]; 78 79 void (*complete)(void *context); 80 u8 from_state; 81 u8 to_state; 82 83 bool irq_enable; 84 }; 85 86 struct at86rf230_local { 87 struct spi_device *spi; 88 89 struct ieee802154_hw *hw; 90 struct at86rf2xx_chip_data *data; 91 struct regmap *regmap; 92 int slp_tr; 93 bool sleep; 94 95 struct completion state_complete; 96 struct at86rf230_state_change state; 97 98 struct at86rf230_state_change irq; 99 100 bool tx_aret; 101 unsigned long cal_timeout; 102 s8 max_frame_retries; 103 bool is_tx; 104 bool is_tx_from_off; 105 u8 tx_retry; 106 struct sk_buff *tx_skb; 107 struct at86rf230_state_change tx; 108 }; 109 110 #define AT86RF2XX_NUMREGS 0x3F 111 112 static void 113 at86rf230_async_state_change(struct at86rf230_local *lp, 114 struct at86rf230_state_change *ctx, 115 const u8 state, void (*complete)(void *context), 116 const bool irq_enable); 117 118 static inline void 119 at86rf230_sleep(struct at86rf230_local *lp) 120 { 121 if (gpio_is_valid(lp->slp_tr)) { 122 gpio_set_value(lp->slp_tr, 1); 123 usleep_range(lp->data->t_off_to_sleep, 124 lp->data->t_off_to_sleep + 10); 125 lp->sleep = true; 126 } 127 } 128 129 static inline void 130 at86rf230_awake(struct at86rf230_local *lp) 131 { 132 if (gpio_is_valid(lp->slp_tr)) { 133 gpio_set_value(lp->slp_tr, 0); 134 usleep_range(lp->data->t_sleep_to_off, 135 lp->data->t_sleep_to_off + 100); 136 lp->sleep = false; 137 } 138 } 139 140 static inline int 141 __at86rf230_write(struct at86rf230_local *lp, 142 unsigned int addr, unsigned int data) 143 { 144 bool sleep = lp->sleep; 145 int ret; 146 147 /* awake for register setting if sleep */ 148 if (sleep) 149 at86rf230_awake(lp); 150 151 ret = regmap_write(lp->regmap, addr, data); 152 153 /* sleep again if was sleeping */ 154 if (sleep) 155 at86rf230_sleep(lp); 156 157 return ret; 158 } 159 160 static inline int 161 __at86rf230_read(struct at86rf230_local *lp, 162 unsigned int addr, unsigned int *data) 163 { 164 bool sleep = lp->sleep; 165 int ret; 166 167 /* awake for register setting if sleep */ 168 if (sleep) 169 at86rf230_awake(lp); 170 171 ret = regmap_read(lp->regmap, addr, data); 172 173 /* sleep again if was sleeping */ 174 if (sleep) 175 at86rf230_sleep(lp); 176 177 return ret; 178 } 179 180 static inline int 181 at86rf230_read_subreg(struct at86rf230_local *lp, 182 unsigned int addr, unsigned int mask, 183 unsigned int shift, unsigned int *data) 184 { 185 int rc; 186 187 rc = __at86rf230_read(lp, addr, data); 188 if (!rc) 189 *data = (*data & mask) >> shift; 190 191 return rc; 192 } 193 194 static inline int 195 at86rf230_write_subreg(struct at86rf230_local *lp, 196 unsigned int addr, unsigned int mask, 197 unsigned int shift, unsigned int data) 198 { 199 bool sleep = lp->sleep; 200 int ret; 201 202 /* awake for register setting if sleep */ 203 if (sleep) 204 at86rf230_awake(lp); 205 206 ret = regmap_update_bits(lp->regmap, addr, mask, data << shift); 207 208 /* sleep again if was sleeping */ 209 if (sleep) 210 at86rf230_sleep(lp); 211 212 return ret; 213 } 214 215 static inline void 216 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp) 217 { 218 gpio_set_value(lp->slp_tr, 1); 219 udelay(1); 220 gpio_set_value(lp->slp_tr, 0); 221 } 222 223 static bool 224 at86rf230_reg_writeable(struct device *dev, unsigned int reg) 225 { 226 switch (reg) { 227 case RG_TRX_STATE: 228 case RG_TRX_CTRL_0: 229 case RG_TRX_CTRL_1: 230 case RG_PHY_TX_PWR: 231 case RG_PHY_ED_LEVEL: 232 case RG_PHY_CC_CCA: 233 case RG_CCA_THRES: 234 case RG_RX_CTRL: 235 case RG_SFD_VALUE: 236 case RG_TRX_CTRL_2: 237 case RG_ANT_DIV: 238 case RG_IRQ_MASK: 239 case RG_VREG_CTRL: 240 case RG_BATMON: 241 case RG_XOSC_CTRL: 242 case RG_RX_SYN: 243 case RG_XAH_CTRL_1: 244 case RG_FTN_CTRL: 245 case RG_PLL_CF: 246 case RG_PLL_DCU: 247 case RG_SHORT_ADDR_0: 248 case RG_SHORT_ADDR_1: 249 case RG_PAN_ID_0: 250 case RG_PAN_ID_1: 251 case RG_IEEE_ADDR_0: 252 case RG_IEEE_ADDR_1: 253 case RG_IEEE_ADDR_2: 254 case RG_IEEE_ADDR_3: 255 case RG_IEEE_ADDR_4: 256 case RG_IEEE_ADDR_5: 257 case RG_IEEE_ADDR_6: 258 case RG_IEEE_ADDR_7: 259 case RG_XAH_CTRL_0: 260 case RG_CSMA_SEED_0: 261 case RG_CSMA_SEED_1: 262 case RG_CSMA_BE: 263 return true; 264 default: 265 return false; 266 } 267 } 268 269 static bool 270 at86rf230_reg_readable(struct device *dev, unsigned int reg) 271 { 272 bool rc; 273 274 /* all writeable are also readable */ 275 rc = at86rf230_reg_writeable(dev, reg); 276 if (rc) 277 return rc; 278 279 /* readonly regs */ 280 switch (reg) { 281 case RG_TRX_STATUS: 282 case RG_PHY_RSSI: 283 case RG_IRQ_STATUS: 284 case RG_PART_NUM: 285 case RG_VERSION_NUM: 286 case RG_MAN_ID_1: 287 case RG_MAN_ID_0: 288 return true; 289 default: 290 return false; 291 } 292 } 293 294 static bool 295 at86rf230_reg_volatile(struct device *dev, unsigned int reg) 296 { 297 /* can be changed during runtime */ 298 switch (reg) { 299 case RG_TRX_STATUS: 300 case RG_TRX_STATE: 301 case RG_PHY_RSSI: 302 case RG_PHY_ED_LEVEL: 303 case RG_IRQ_STATUS: 304 case RG_VREG_CTRL: 305 case RG_PLL_CF: 306 case RG_PLL_DCU: 307 return true; 308 default: 309 return false; 310 } 311 } 312 313 static bool 314 at86rf230_reg_precious(struct device *dev, unsigned int reg) 315 { 316 /* don't clear irq line on read */ 317 switch (reg) { 318 case RG_IRQ_STATUS: 319 return true; 320 default: 321 return false; 322 } 323 } 324 325 static const struct regmap_config at86rf230_regmap_spi_config = { 326 .reg_bits = 8, 327 .val_bits = 8, 328 .write_flag_mask = CMD_REG | CMD_WRITE, 329 .read_flag_mask = CMD_REG, 330 .cache_type = REGCACHE_RBTREE, 331 .max_register = AT86RF2XX_NUMREGS, 332 .writeable_reg = at86rf230_reg_writeable, 333 .readable_reg = at86rf230_reg_readable, 334 .volatile_reg = at86rf230_reg_volatile, 335 .precious_reg = at86rf230_reg_precious, 336 }; 337 338 static void 339 at86rf230_async_error_recover(void *context) 340 { 341 struct at86rf230_state_change *ctx = context; 342 struct at86rf230_local *lp = ctx->lp; 343 344 lp->is_tx = 0; 345 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false); 346 ieee802154_wake_queue(lp->hw); 347 } 348 349 static inline void 350 at86rf230_async_error(struct at86rf230_local *lp, 351 struct at86rf230_state_change *ctx, int rc) 352 { 353 dev_err(&lp->spi->dev, "spi_async error %d\n", rc); 354 355 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF, 356 at86rf230_async_error_recover, false); 357 } 358 359 /* Generic function to get some register value in async mode */ 360 static void 361 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg, 362 struct at86rf230_state_change *ctx, 363 void (*complete)(void *context), 364 const bool irq_enable) 365 { 366 int rc; 367 368 u8 *tx_buf = ctx->buf; 369 370 tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG; 371 ctx->msg.complete = complete; 372 ctx->irq_enable = irq_enable; 373 rc = spi_async(lp->spi, &ctx->msg); 374 if (rc) { 375 if (irq_enable) 376 enable_irq(ctx->irq); 377 378 at86rf230_async_error(lp, ctx, rc); 379 } 380 } 381 382 static inline u8 at86rf230_state_to_force(u8 state) 383 { 384 if (state == STATE_TX_ON) 385 return STATE_FORCE_TX_ON; 386 else 387 return STATE_FORCE_TRX_OFF; 388 } 389 390 static void 391 at86rf230_async_state_assert(void *context) 392 { 393 struct at86rf230_state_change *ctx = context; 394 struct at86rf230_local *lp = ctx->lp; 395 const u8 *buf = ctx->buf; 396 const u8 trx_state = buf[1] & TRX_STATE_MASK; 397 398 /* Assert state change */ 399 if (trx_state != ctx->to_state) { 400 /* Special handling if transceiver state is in 401 * STATE_BUSY_RX_AACK and a SHR was detected. 402 */ 403 if (trx_state == STATE_BUSY_RX_AACK) { 404 /* Undocumented race condition. If we send a state 405 * change to STATE_RX_AACK_ON the transceiver could 406 * change his state automatically to STATE_BUSY_RX_AACK 407 * if a SHR was detected. This is not an error, but we 408 * can't assert this. 409 */ 410 if (ctx->to_state == STATE_RX_AACK_ON) 411 goto done; 412 413 /* If we change to STATE_TX_ON without forcing and 414 * transceiver state is STATE_BUSY_RX_AACK, we wait 415 * 'tFrame + tPAck' receiving time. In this time the 416 * PDU should be received. If the transceiver is still 417 * in STATE_BUSY_RX_AACK, we run a force state change 418 * to STATE_TX_ON. This is a timeout handling, if the 419 * transceiver stucks in STATE_BUSY_RX_AACK. 420 * 421 * Additional we do several retries to try to get into 422 * TX_ON state without forcing. If the retries are 423 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we 424 * will do a force change. 425 */ 426 if (ctx->to_state == STATE_TX_ON || 427 ctx->to_state == STATE_TRX_OFF) { 428 u8 state = ctx->to_state; 429 430 if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES) 431 state = at86rf230_state_to_force(state); 432 lp->tx_retry++; 433 434 at86rf230_async_state_change(lp, ctx, state, 435 ctx->complete, 436 ctx->irq_enable); 437 return; 438 } 439 } 440 441 dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n", 442 ctx->from_state, ctx->to_state, trx_state); 443 } 444 445 done: 446 if (ctx->complete) 447 ctx->complete(context); 448 } 449 450 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer) 451 { 452 struct at86rf230_state_change *ctx = 453 container_of(timer, struct at86rf230_state_change, timer); 454 struct at86rf230_local *lp = ctx->lp; 455 456 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 457 at86rf230_async_state_assert, 458 ctx->irq_enable); 459 460 return HRTIMER_NORESTART; 461 } 462 463 /* Do state change timing delay. */ 464 static void 465 at86rf230_async_state_delay(void *context) 466 { 467 struct at86rf230_state_change *ctx = context; 468 struct at86rf230_local *lp = ctx->lp; 469 struct at86rf2xx_chip_data *c = lp->data; 470 bool force = false; 471 ktime_t tim; 472 473 /* The force state changes are will show as normal states in the 474 * state status subregister. We change the to_state to the 475 * corresponding one and remember if it was a force change, this 476 * differs if we do a state change from STATE_BUSY_RX_AACK. 477 */ 478 switch (ctx->to_state) { 479 case STATE_FORCE_TX_ON: 480 ctx->to_state = STATE_TX_ON; 481 force = true; 482 break; 483 case STATE_FORCE_TRX_OFF: 484 ctx->to_state = STATE_TRX_OFF; 485 force = true; 486 break; 487 default: 488 break; 489 } 490 491 switch (ctx->from_state) { 492 case STATE_TRX_OFF: 493 switch (ctx->to_state) { 494 case STATE_RX_AACK_ON: 495 tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC); 496 /* state change from TRX_OFF to RX_AACK_ON to do a 497 * calibration, we need to reset the timeout for the 498 * next one. 499 */ 500 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 501 goto change; 502 case STATE_TX_ARET_ON: 503 case STATE_TX_ON: 504 tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC); 505 /* state change from TRX_OFF to TX_ON or ARET_ON to do 506 * a calibration, we need to reset the timeout for the 507 * next one. 508 */ 509 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 510 goto change; 511 default: 512 break; 513 } 514 break; 515 case STATE_BUSY_RX_AACK: 516 switch (ctx->to_state) { 517 case STATE_TRX_OFF: 518 case STATE_TX_ON: 519 /* Wait for worst case receiving time if we 520 * didn't make a force change from BUSY_RX_AACK 521 * to TX_ON or TRX_OFF. 522 */ 523 if (!force) { 524 tim = ktime_set(0, (c->t_frame + c->t_p_ack) * 525 NSEC_PER_USEC); 526 goto change; 527 } 528 break; 529 default: 530 break; 531 } 532 break; 533 /* Default value, means RESET state */ 534 case STATE_P_ON: 535 switch (ctx->to_state) { 536 case STATE_TRX_OFF: 537 tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC); 538 goto change; 539 default: 540 break; 541 } 542 break; 543 default: 544 break; 545 } 546 547 /* Default delay is 1us in the most cases */ 548 udelay(1); 549 at86rf230_async_state_timer(&ctx->timer); 550 return; 551 552 change: 553 hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL); 554 } 555 556 static void 557 at86rf230_async_state_change_start(void *context) 558 { 559 struct at86rf230_state_change *ctx = context; 560 struct at86rf230_local *lp = ctx->lp; 561 u8 *buf = ctx->buf; 562 const u8 trx_state = buf[1] & TRX_STATE_MASK; 563 int rc; 564 565 /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */ 566 if (trx_state == STATE_TRANSITION_IN_PROGRESS) { 567 udelay(1); 568 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 569 at86rf230_async_state_change_start, 570 ctx->irq_enable); 571 return; 572 } 573 574 /* Check if we already are in the state which we change in */ 575 if (trx_state == ctx->to_state) { 576 if (ctx->complete) 577 ctx->complete(context); 578 return; 579 } 580 581 /* Set current state to the context of state change */ 582 ctx->from_state = trx_state; 583 584 /* Going into the next step for a state change which do a timing 585 * relevant delay. 586 */ 587 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE; 588 buf[1] = ctx->to_state; 589 ctx->msg.complete = at86rf230_async_state_delay; 590 rc = spi_async(lp->spi, &ctx->msg); 591 if (rc) { 592 if (ctx->irq_enable) 593 enable_irq(ctx->irq); 594 595 at86rf230_async_error(lp, ctx, rc); 596 } 597 } 598 599 static void 600 at86rf230_async_state_change(struct at86rf230_local *lp, 601 struct at86rf230_state_change *ctx, 602 const u8 state, void (*complete)(void *context), 603 const bool irq_enable) 604 { 605 /* Initialization for the state change context */ 606 ctx->to_state = state; 607 ctx->complete = complete; 608 ctx->irq_enable = irq_enable; 609 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 610 at86rf230_async_state_change_start, 611 irq_enable); 612 } 613 614 static void 615 at86rf230_sync_state_change_complete(void *context) 616 { 617 struct at86rf230_state_change *ctx = context; 618 struct at86rf230_local *lp = ctx->lp; 619 620 complete(&lp->state_complete); 621 } 622 623 /* This function do a sync framework above the async state change. 624 * Some callbacks of the IEEE 802.15.4 driver interface need to be 625 * handled synchronously. 626 */ 627 static int 628 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state) 629 { 630 unsigned long rc; 631 632 at86rf230_async_state_change(lp, &lp->state, state, 633 at86rf230_sync_state_change_complete, 634 false); 635 636 rc = wait_for_completion_timeout(&lp->state_complete, 637 msecs_to_jiffies(100)); 638 if (!rc) { 639 at86rf230_async_error(lp, &lp->state, -ETIMEDOUT); 640 return -ETIMEDOUT; 641 } 642 643 return 0; 644 } 645 646 static void 647 at86rf230_tx_complete(void *context) 648 { 649 struct at86rf230_state_change *ctx = context; 650 struct at86rf230_local *lp = ctx->lp; 651 652 enable_irq(ctx->irq); 653 654 ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret); 655 } 656 657 static void 658 at86rf230_tx_on(void *context) 659 { 660 struct at86rf230_state_change *ctx = context; 661 struct at86rf230_local *lp = ctx->lp; 662 663 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, 664 at86rf230_tx_complete, true); 665 } 666 667 static void 668 at86rf230_tx_trac_check(void *context) 669 { 670 struct at86rf230_state_change *ctx = context; 671 struct at86rf230_local *lp = ctx->lp; 672 const u8 *buf = ctx->buf; 673 const u8 trac = (buf[1] & 0xe0) >> 5; 674 675 /* If trac status is different than zero we need to do a state change 676 * to STATE_FORCE_TRX_OFF then STATE_RX_AACK_ON to recover the 677 * transceiver. 678 */ 679 if (trac) 680 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF, 681 at86rf230_tx_on, true); 682 else 683 at86rf230_tx_on(context); 684 } 685 686 static void 687 at86rf230_tx_trac_status(void *context) 688 { 689 struct at86rf230_state_change *ctx = context; 690 struct at86rf230_local *lp = ctx->lp; 691 692 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx, 693 at86rf230_tx_trac_check, true); 694 } 695 696 static void 697 at86rf230_rx_read_frame_complete(void *context) 698 { 699 struct at86rf230_state_change *ctx = context; 700 struct at86rf230_local *lp = ctx->lp; 701 u8 rx_local_buf[AT86RF2XX_MAX_BUF]; 702 const u8 *buf = ctx->buf; 703 struct sk_buff *skb; 704 u8 len, lqi; 705 706 len = buf[1]; 707 if (!ieee802154_is_valid_psdu_len(len)) { 708 dev_vdbg(&lp->spi->dev, "corrupted frame received\n"); 709 len = IEEE802154_MTU; 710 } 711 lqi = buf[2 + len]; 712 713 memcpy(rx_local_buf, buf + 2, len); 714 ctx->trx.len = 2; 715 enable_irq(ctx->irq); 716 717 skb = dev_alloc_skb(IEEE802154_MTU); 718 if (!skb) { 719 dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n"); 720 return; 721 } 722 723 memcpy(skb_put(skb, len), rx_local_buf, len); 724 ieee802154_rx_irqsafe(lp->hw, skb, lqi); 725 } 726 727 static void 728 at86rf230_rx_read_frame(void *context) 729 { 730 struct at86rf230_state_change *ctx = context; 731 struct at86rf230_local *lp = ctx->lp; 732 u8 *buf = ctx->buf; 733 int rc; 734 735 buf[0] = CMD_FB; 736 ctx->trx.len = AT86RF2XX_MAX_BUF; 737 ctx->msg.complete = at86rf230_rx_read_frame_complete; 738 rc = spi_async(lp->spi, &ctx->msg); 739 if (rc) { 740 ctx->trx.len = 2; 741 enable_irq(ctx->irq); 742 at86rf230_async_error(lp, ctx, rc); 743 } 744 } 745 746 static void 747 at86rf230_rx_trac_check(void *context) 748 { 749 /* Possible check on trac status here. This could be useful to make 750 * some stats why receive is failed. Not used at the moment, but it's 751 * maybe timing relevant. Datasheet doesn't say anything about this. 752 * The programming guide say do it so. 753 */ 754 755 at86rf230_rx_read_frame(context); 756 } 757 758 static void 759 at86rf230_irq_trx_end(struct at86rf230_local *lp) 760 { 761 if (lp->is_tx) { 762 lp->is_tx = 0; 763 764 if (lp->tx_aret) 765 at86rf230_async_state_change(lp, &lp->irq, 766 STATE_FORCE_TX_ON, 767 at86rf230_tx_trac_status, 768 true); 769 else 770 at86rf230_async_state_change(lp, &lp->irq, 771 STATE_RX_AACK_ON, 772 at86rf230_tx_complete, 773 true); 774 } else { 775 at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq, 776 at86rf230_rx_trac_check, true); 777 } 778 } 779 780 static void 781 at86rf230_irq_status(void *context) 782 { 783 struct at86rf230_state_change *ctx = context; 784 struct at86rf230_local *lp = ctx->lp; 785 const u8 *buf = ctx->buf; 786 const u8 irq = buf[1]; 787 788 if (irq & IRQ_TRX_END) { 789 at86rf230_irq_trx_end(lp); 790 } else { 791 enable_irq(ctx->irq); 792 dev_err(&lp->spi->dev, "not supported irq %02x received\n", 793 irq); 794 } 795 } 796 797 static irqreturn_t at86rf230_isr(int irq, void *data) 798 { 799 struct at86rf230_local *lp = data; 800 struct at86rf230_state_change *ctx = &lp->irq; 801 u8 *buf = ctx->buf; 802 int rc; 803 804 disable_irq_nosync(irq); 805 806 buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG; 807 ctx->msg.complete = at86rf230_irq_status; 808 rc = spi_async(lp->spi, &ctx->msg); 809 if (rc) { 810 enable_irq(irq); 811 at86rf230_async_error(lp, ctx, rc); 812 return IRQ_NONE; 813 } 814 815 return IRQ_HANDLED; 816 } 817 818 static void 819 at86rf230_write_frame_complete(void *context) 820 { 821 struct at86rf230_state_change *ctx = context; 822 struct at86rf230_local *lp = ctx->lp; 823 u8 *buf = ctx->buf; 824 int rc; 825 826 ctx->trx.len = 2; 827 828 if (gpio_is_valid(lp->slp_tr)) { 829 at86rf230_slp_tr_rising_edge(lp); 830 } else { 831 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE; 832 buf[1] = STATE_BUSY_TX; 833 ctx->msg.complete = NULL; 834 rc = spi_async(lp->spi, &ctx->msg); 835 if (rc) 836 at86rf230_async_error(lp, ctx, rc); 837 } 838 } 839 840 static void 841 at86rf230_write_frame(void *context) 842 { 843 struct at86rf230_state_change *ctx = context; 844 struct at86rf230_local *lp = ctx->lp; 845 struct sk_buff *skb = lp->tx_skb; 846 u8 *buf = ctx->buf; 847 int rc; 848 849 lp->is_tx = 1; 850 851 buf[0] = CMD_FB | CMD_WRITE; 852 buf[1] = skb->len + 2; 853 memcpy(buf + 2, skb->data, skb->len); 854 ctx->trx.len = skb->len + 2; 855 ctx->msg.complete = at86rf230_write_frame_complete; 856 rc = spi_async(lp->spi, &ctx->msg); 857 if (rc) { 858 ctx->trx.len = 2; 859 at86rf230_async_error(lp, ctx, rc); 860 } 861 } 862 863 static void 864 at86rf230_xmit_tx_on(void *context) 865 { 866 struct at86rf230_state_change *ctx = context; 867 struct at86rf230_local *lp = ctx->lp; 868 869 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, 870 at86rf230_write_frame, false); 871 } 872 873 static void 874 at86rf230_xmit_start(void *context) 875 { 876 struct at86rf230_state_change *ctx = context; 877 struct at86rf230_local *lp = ctx->lp; 878 879 /* In ARET mode we need to go into STATE_TX_ARET_ON after we 880 * are in STATE_TX_ON. The pfad differs here, so we change 881 * the complete handler. 882 */ 883 if (lp->tx_aret) { 884 if (lp->is_tx_from_off) { 885 lp->is_tx_from_off = false; 886 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, 887 at86rf230_write_frame, 888 false); 889 } else { 890 at86rf230_async_state_change(lp, ctx, STATE_TX_ON, 891 at86rf230_xmit_tx_on, 892 false); 893 } 894 } else { 895 at86rf230_async_state_change(lp, ctx, STATE_TX_ON, 896 at86rf230_write_frame, false); 897 } 898 } 899 900 static int 901 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) 902 { 903 struct at86rf230_local *lp = hw->priv; 904 struct at86rf230_state_change *ctx = &lp->tx; 905 906 lp->tx_skb = skb; 907 lp->tx_retry = 0; 908 909 /* After 5 minutes in PLL and the same frequency we run again the 910 * calibration loops which is recommended by at86rf2xx datasheets. 911 * 912 * The calibration is initiate by a state change from TRX_OFF 913 * to TX_ON, the lp->cal_timeout should be reinit by state_delay 914 * function then to start in the next 5 minutes. 915 */ 916 if (time_is_before_jiffies(lp->cal_timeout)) { 917 lp->is_tx_from_off = true; 918 at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF, 919 at86rf230_xmit_start, false); 920 } else { 921 at86rf230_xmit_start(ctx); 922 } 923 924 return 0; 925 } 926 927 static int 928 at86rf230_ed(struct ieee802154_hw *hw, u8 *level) 929 { 930 BUG_ON(!level); 931 *level = 0xbe; 932 return 0; 933 } 934 935 static int 936 at86rf230_start(struct ieee802154_hw *hw) 937 { 938 struct at86rf230_local *lp = hw->priv; 939 940 at86rf230_awake(lp); 941 enable_irq(lp->spi->irq); 942 943 return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON); 944 } 945 946 static void 947 at86rf230_stop(struct ieee802154_hw *hw) 948 { 949 struct at86rf230_local *lp = hw->priv; 950 u8 csma_seed[2]; 951 952 at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); 953 954 disable_irq(lp->spi->irq); 955 956 /* It's recommended to set random new csma_seeds before sleep state. 957 * Makes only sense in the stop callback, not doing this inside of 958 * at86rf230_sleep, this is also used when we don't transmit afterwards 959 * when calling start callback again. 960 */ 961 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); 962 at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); 963 at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); 964 965 at86rf230_sleep(lp); 966 } 967 968 static int 969 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) 970 { 971 return at86rf230_write_subreg(lp, SR_CHANNEL, channel); 972 } 973 974 #define AT86RF2XX_MAX_ED_LEVELS 0xF 975 static const s32 at86rf23x_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = { 976 -9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300, 977 -7100, -6900, -6700, -6500, -6300, -6100, 978 }; 979 980 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = { 981 -10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, 982 -8000, -7800, -7600, -7400, -7200, -7000, 983 }; 984 985 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = { 986 -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, 987 -7800, -7600, -7400, -7200, -7000, -6800, 988 }; 989 990 static inline int 991 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val) 992 { 993 unsigned int cca_ed_thres; 994 int rc; 995 996 rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres); 997 if (rc < 0) 998 return rc; 999 1000 switch (rssi_base_val) { 1001 case -98: 1002 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98; 1003 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98); 1004 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres]; 1005 break; 1006 case -100: 1007 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; 1008 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); 1009 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres]; 1010 break; 1011 default: 1012 WARN_ON(1); 1013 } 1014 1015 return 0; 1016 } 1017 1018 static int 1019 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) 1020 { 1021 int rc; 1022 1023 if (channel == 0) 1024 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0); 1025 else 1026 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1); 1027 if (rc < 0) 1028 return rc; 1029 1030 if (page == 0) { 1031 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0); 1032 lp->data->rssi_base_val = -100; 1033 } else { 1034 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1); 1035 lp->data->rssi_base_val = -98; 1036 } 1037 if (rc < 0) 1038 return rc; 1039 1040 rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val); 1041 if (rc < 0) 1042 return rc; 1043 1044 /* This sets the symbol_duration according frequency on the 212. 1045 * TODO move this handling while set channel and page in cfg802154. 1046 * We can do that, this timings are according 802.15.4 standard. 1047 * If we do that in cfg802154, this is a more generic calculation. 1048 * 1049 * This should also protected from ifs_timer. Means cancel timer and 1050 * init with a new value. For now, this is okay. 1051 */ 1052 if (channel == 0) { 1053 if (page == 0) { 1054 /* SUB:0 and BPSK:0 -> BPSK-20 */ 1055 lp->hw->phy->symbol_duration = 50; 1056 } else { 1057 /* SUB:1 and BPSK:0 -> BPSK-40 */ 1058 lp->hw->phy->symbol_duration = 25; 1059 } 1060 } else { 1061 if (page == 0) 1062 /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */ 1063 lp->hw->phy->symbol_duration = 40; 1064 else 1065 /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */ 1066 lp->hw->phy->symbol_duration = 16; 1067 } 1068 1069 lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD * 1070 lp->hw->phy->symbol_duration; 1071 lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD * 1072 lp->hw->phy->symbol_duration; 1073 1074 return at86rf230_write_subreg(lp, SR_CHANNEL, channel); 1075 } 1076 1077 static int 1078 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel) 1079 { 1080 struct at86rf230_local *lp = hw->priv; 1081 int rc; 1082 1083 rc = lp->data->set_channel(lp, page, channel); 1084 /* Wait for PLL */ 1085 usleep_range(lp->data->t_channel_switch, 1086 lp->data->t_channel_switch + 10); 1087 1088 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 1089 return rc; 1090 } 1091 1092 static int 1093 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw, 1094 struct ieee802154_hw_addr_filt *filt, 1095 unsigned long changed) 1096 { 1097 struct at86rf230_local *lp = hw->priv; 1098 1099 if (changed & IEEE802154_AFILT_SADDR_CHANGED) { 1100 u16 addr = le16_to_cpu(filt->short_addr); 1101 1102 dev_vdbg(&lp->spi->dev, 1103 "at86rf230_set_hw_addr_filt called for saddr\n"); 1104 __at86rf230_write(lp, RG_SHORT_ADDR_0, addr); 1105 __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8); 1106 } 1107 1108 if (changed & IEEE802154_AFILT_PANID_CHANGED) { 1109 u16 pan = le16_to_cpu(filt->pan_id); 1110 1111 dev_vdbg(&lp->spi->dev, 1112 "at86rf230_set_hw_addr_filt called for pan id\n"); 1113 __at86rf230_write(lp, RG_PAN_ID_0, pan); 1114 __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8); 1115 } 1116 1117 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { 1118 u8 i, addr[8]; 1119 1120 memcpy(addr, &filt->ieee_addr, 8); 1121 dev_vdbg(&lp->spi->dev, 1122 "at86rf230_set_hw_addr_filt called for IEEE addr\n"); 1123 for (i = 0; i < 8; i++) 1124 __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]); 1125 } 1126 1127 if (changed & IEEE802154_AFILT_PANC_CHANGED) { 1128 dev_vdbg(&lp->spi->dev, 1129 "at86rf230_set_hw_addr_filt called for panc change\n"); 1130 if (filt->pan_coord) 1131 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1); 1132 else 1133 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0); 1134 } 1135 1136 return 0; 1137 } 1138 1139 #define AT86RF23X_MAX_TX_POWERS 0xF 1140 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 1141 400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600, 1142 -800, -1200, -1700, 1143 }; 1144 1145 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 1146 300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700, 1147 -900, -1200, -1700, 1148 }; 1149 1150 #define AT86RF212_MAX_TX_POWERS 0x1F 1151 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = { 1152 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700, 1153 -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700, 1154 -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600, 1155 }; 1156 1157 static int 1158 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm) 1159 { 1160 u32 i; 1161 1162 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { 1163 if (lp->hw->phy->supported.tx_powers[i] == mbm) 1164 return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i); 1165 } 1166 1167 return -EINVAL; 1168 } 1169 1170 static int 1171 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm) 1172 { 1173 u32 i; 1174 1175 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { 1176 if (lp->hw->phy->supported.tx_powers[i] == mbm) 1177 return at86rf230_write_subreg(lp, SR_TX_PWR_212, i); 1178 } 1179 1180 return -EINVAL; 1181 } 1182 1183 static int 1184 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm) 1185 { 1186 struct at86rf230_local *lp = hw->priv; 1187 1188 return lp->data->set_txpower(lp, mbm); 1189 } 1190 1191 static int 1192 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on) 1193 { 1194 struct at86rf230_local *lp = hw->priv; 1195 1196 return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on); 1197 } 1198 1199 static int 1200 at86rf230_set_cca_mode(struct ieee802154_hw *hw, 1201 const struct wpan_phy_cca *cca) 1202 { 1203 struct at86rf230_local *lp = hw->priv; 1204 u8 val; 1205 1206 /* mapping 802.15.4 to driver spec */ 1207 switch (cca->mode) { 1208 case NL802154_CCA_ENERGY: 1209 val = 1; 1210 break; 1211 case NL802154_CCA_CARRIER: 1212 val = 2; 1213 break; 1214 case NL802154_CCA_ENERGY_CARRIER: 1215 switch (cca->opt) { 1216 case NL802154_CCA_OPT_ENERGY_CARRIER_AND: 1217 val = 3; 1218 break; 1219 case NL802154_CCA_OPT_ENERGY_CARRIER_OR: 1220 val = 0; 1221 break; 1222 default: 1223 return -EINVAL; 1224 } 1225 break; 1226 default: 1227 return -EINVAL; 1228 } 1229 1230 return at86rf230_write_subreg(lp, SR_CCA_MODE, val); 1231 } 1232 1233 1234 static int 1235 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm) 1236 { 1237 struct at86rf230_local *lp = hw->priv; 1238 u32 i; 1239 1240 for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) { 1241 if (hw->phy->supported.cca_ed_levels[i] == mbm) 1242 return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i); 1243 } 1244 1245 return -EINVAL; 1246 } 1247 1248 static int 1249 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, 1250 u8 retries) 1251 { 1252 struct at86rf230_local *lp = hw->priv; 1253 int rc; 1254 1255 rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be); 1256 if (rc) 1257 return rc; 1258 1259 rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be); 1260 if (rc) 1261 return rc; 1262 1263 return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries); 1264 } 1265 1266 static int 1267 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries) 1268 { 1269 struct at86rf230_local *lp = hw->priv; 1270 int rc = 0; 1271 1272 lp->tx_aret = retries >= 0; 1273 lp->max_frame_retries = retries; 1274 1275 if (retries >= 0) 1276 rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries); 1277 1278 return rc; 1279 } 1280 1281 static int 1282 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) 1283 { 1284 struct at86rf230_local *lp = hw->priv; 1285 int rc; 1286 1287 if (on) { 1288 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1); 1289 if (rc < 0) 1290 return rc; 1291 1292 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1); 1293 if (rc < 0) 1294 return rc; 1295 } else { 1296 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0); 1297 if (rc < 0) 1298 return rc; 1299 1300 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0); 1301 if (rc < 0) 1302 return rc; 1303 } 1304 1305 return 0; 1306 } 1307 1308 static const struct ieee802154_ops at86rf230_ops = { 1309 .owner = THIS_MODULE, 1310 .xmit_async = at86rf230_xmit, 1311 .ed = at86rf230_ed, 1312 .set_channel = at86rf230_channel, 1313 .start = at86rf230_start, 1314 .stop = at86rf230_stop, 1315 .set_hw_addr_filt = at86rf230_set_hw_addr_filt, 1316 .set_txpower = at86rf230_set_txpower, 1317 .set_lbt = at86rf230_set_lbt, 1318 .set_cca_mode = at86rf230_set_cca_mode, 1319 .set_cca_ed_level = at86rf230_set_cca_ed_level, 1320 .set_csma_params = at86rf230_set_csma_params, 1321 .set_frame_retries = at86rf230_set_frame_retries, 1322 .set_promiscuous_mode = at86rf230_set_promiscuous_mode, 1323 }; 1324 1325 static struct at86rf2xx_chip_data at86rf233_data = { 1326 .t_sleep_cycle = 330, 1327 .t_channel_switch = 11, 1328 .t_reset_to_off = 26, 1329 .t_off_to_aack = 80, 1330 .t_off_to_tx_on = 80, 1331 .t_off_to_sleep = 35, 1332 .t_sleep_to_off = 210, 1333 .t_frame = 4096, 1334 .t_p_ack = 545, 1335 .rssi_base_val = -91, 1336 .set_channel = at86rf23x_set_channel, 1337 .set_txpower = at86rf23x_set_txpower, 1338 }; 1339 1340 static struct at86rf2xx_chip_data at86rf231_data = { 1341 .t_sleep_cycle = 330, 1342 .t_channel_switch = 24, 1343 .t_reset_to_off = 37, 1344 .t_off_to_aack = 110, 1345 .t_off_to_tx_on = 110, 1346 .t_off_to_sleep = 35, 1347 .t_sleep_to_off = 380, 1348 .t_frame = 4096, 1349 .t_p_ack = 545, 1350 .rssi_base_val = -91, 1351 .set_channel = at86rf23x_set_channel, 1352 .set_txpower = at86rf23x_set_txpower, 1353 }; 1354 1355 static struct at86rf2xx_chip_data at86rf212_data = { 1356 .t_sleep_cycle = 330, 1357 .t_channel_switch = 11, 1358 .t_reset_to_off = 26, 1359 .t_off_to_aack = 200, 1360 .t_off_to_tx_on = 200, 1361 .t_off_to_sleep = 35, 1362 .t_sleep_to_off = 380, 1363 .t_frame = 4096, 1364 .t_p_ack = 545, 1365 .rssi_base_val = -100, 1366 .set_channel = at86rf212_set_channel, 1367 .set_txpower = at86rf212_set_txpower, 1368 }; 1369 1370 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim) 1371 { 1372 int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH; 1373 unsigned int dvdd; 1374 u8 csma_seed[2]; 1375 1376 rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); 1377 if (rc) 1378 return rc; 1379 1380 irq_type = irq_get_trigger_type(lp->spi->irq); 1381 if (irq_type == IRQ_TYPE_EDGE_RISING || 1382 irq_type == IRQ_TYPE_EDGE_FALLING) 1383 dev_warn(&lp->spi->dev, 1384 "Using edge triggered irq's are not recommended!\n"); 1385 if (irq_type == IRQ_TYPE_EDGE_FALLING || 1386 irq_type == IRQ_TYPE_LEVEL_LOW) 1387 irq_pol = IRQ_ACTIVE_LOW; 1388 1389 rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol); 1390 if (rc) 1391 return rc; 1392 1393 rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1); 1394 if (rc) 1395 return rc; 1396 1397 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END); 1398 if (rc) 1399 return rc; 1400 1401 /* reset values differs in at86rf231 and at86rf233 */ 1402 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0); 1403 if (rc) 1404 return rc; 1405 1406 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); 1407 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); 1408 if (rc) 1409 return rc; 1410 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); 1411 if (rc) 1412 return rc; 1413 1414 /* CLKM changes are applied immediately */ 1415 rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00); 1416 if (rc) 1417 return rc; 1418 1419 /* Turn CLKM Off */ 1420 rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00); 1421 if (rc) 1422 return rc; 1423 /* Wait the next SLEEP cycle */ 1424 usleep_range(lp->data->t_sleep_cycle, 1425 lp->data->t_sleep_cycle + 100); 1426 1427 /* xtal_trim value is calculated by: 1428 * CL = 0.5 * (CX + CTRIM + CPAR) 1429 * 1430 * whereas: 1431 * CL = capacitor of used crystal 1432 * CX = connected capacitors at xtal pins 1433 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF, 1434 * but this is different on each board setup. You need to fine 1435 * tuning this value via CTRIM. 1436 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is 1437 * 0 pF upto 4.5 pF. 1438 * 1439 * Examples: 1440 * atben transceiver: 1441 * 1442 * CL = 8 pF 1443 * CX = 12 pF 1444 * CPAR = 3 pF (We assume the magic constant from datasheet) 1445 * CTRIM = 0.9 pF 1446 * 1447 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF 1448 * 1449 * xtal_trim = 0x3 1450 * 1451 * openlabs transceiver: 1452 * 1453 * CL = 16 pF 1454 * CX = 22 pF 1455 * CPAR = 3 pF (We assume the magic constant from datasheet) 1456 * CTRIM = 4.5 pF 1457 * 1458 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF 1459 * 1460 * xtal_trim = 0xf 1461 */ 1462 rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim); 1463 if (rc) 1464 return rc; 1465 1466 rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd); 1467 if (rc) 1468 return rc; 1469 if (!dvdd) { 1470 dev_err(&lp->spi->dev, "DVDD error\n"); 1471 return -EINVAL; 1472 } 1473 1474 /* Force setting slotted operation bit to 0. Sometimes the atben 1475 * sets this bit and I don't know why. We set this always force 1476 * to zero while probing. 1477 */ 1478 return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0); 1479 } 1480 1481 static int 1482 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr, 1483 u8 *xtal_trim) 1484 { 1485 struct at86rf230_platform_data *pdata = spi->dev.platform_data; 1486 int ret; 1487 1488 if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) { 1489 if (!pdata) 1490 return -ENOENT; 1491 1492 *rstn = pdata->rstn; 1493 *slp_tr = pdata->slp_tr; 1494 *xtal_trim = pdata->xtal_trim; 1495 return 0; 1496 } 1497 1498 *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0); 1499 *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0); 1500 ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim); 1501 if (ret < 0 && ret != -EINVAL) 1502 return ret; 1503 1504 return 0; 1505 } 1506 1507 static int 1508 at86rf230_detect_device(struct at86rf230_local *lp) 1509 { 1510 unsigned int part, version, val; 1511 u16 man_id = 0; 1512 const char *chip; 1513 int rc; 1514 1515 rc = __at86rf230_read(lp, RG_MAN_ID_0, &val); 1516 if (rc) 1517 return rc; 1518 man_id |= val; 1519 1520 rc = __at86rf230_read(lp, RG_MAN_ID_1, &val); 1521 if (rc) 1522 return rc; 1523 man_id |= (val << 8); 1524 1525 rc = __at86rf230_read(lp, RG_PART_NUM, &part); 1526 if (rc) 1527 return rc; 1528 1529 rc = __at86rf230_read(lp, RG_VERSION_NUM, &version); 1530 if (rc) 1531 return rc; 1532 1533 if (man_id != 0x001f) { 1534 dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n", 1535 man_id >> 8, man_id & 0xFF); 1536 return -EINVAL; 1537 } 1538 1539 lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | 1540 IEEE802154_HW_CSMA_PARAMS | 1541 IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT | 1542 IEEE802154_HW_PROMISCUOUS; 1543 1544 lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER | 1545 WPAN_PHY_FLAG_CCA_ED_LEVEL | 1546 WPAN_PHY_FLAG_CCA_MODE; 1547 1548 lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) | 1549 BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER); 1550 lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) | 1551 BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR); 1552 1553 lp->hw->phy->supported.cca_ed_levels = at86rf23x_ed_levels; 1554 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf23x_ed_levels); 1555 1556 lp->hw->phy->cca.mode = NL802154_CCA_ENERGY; 1557 1558 switch (part) { 1559 case 2: 1560 chip = "at86rf230"; 1561 rc = -ENOTSUPP; 1562 goto not_supp; 1563 case 3: 1564 chip = "at86rf231"; 1565 lp->data = &at86rf231_data; 1566 lp->hw->phy->supported.channels[0] = 0x7FFF800; 1567 lp->hw->phy->current_channel = 11; 1568 lp->hw->phy->symbol_duration = 16; 1569 lp->hw->phy->supported.tx_powers = at86rf231_powers; 1570 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers); 1571 break; 1572 case 7: 1573 chip = "at86rf212"; 1574 lp->data = &at86rf212_data; 1575 lp->hw->flags |= IEEE802154_HW_LBT; 1576 lp->hw->phy->supported.channels[0] = 0x00007FF; 1577 lp->hw->phy->supported.channels[2] = 0x00007FF; 1578 lp->hw->phy->current_channel = 5; 1579 lp->hw->phy->symbol_duration = 25; 1580 lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH; 1581 lp->hw->phy->supported.tx_powers = at86rf212_powers; 1582 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers); 1583 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; 1584 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); 1585 break; 1586 case 11: 1587 chip = "at86rf233"; 1588 lp->data = &at86rf233_data; 1589 lp->hw->phy->supported.channels[0] = 0x7FFF800; 1590 lp->hw->phy->current_channel = 13; 1591 lp->hw->phy->symbol_duration = 16; 1592 lp->hw->phy->supported.tx_powers = at86rf233_powers; 1593 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers); 1594 break; 1595 default: 1596 chip = "unknown"; 1597 rc = -ENOTSUPP; 1598 goto not_supp; 1599 } 1600 1601 lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7]; 1602 lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0]; 1603 1604 not_supp: 1605 dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version); 1606 1607 return rc; 1608 } 1609 1610 static void 1611 at86rf230_setup_spi_messages(struct at86rf230_local *lp) 1612 { 1613 lp->state.lp = lp; 1614 lp->state.irq = lp->spi->irq; 1615 spi_message_init(&lp->state.msg); 1616 lp->state.msg.context = &lp->state; 1617 lp->state.trx.len = 2; 1618 lp->state.trx.tx_buf = lp->state.buf; 1619 lp->state.trx.rx_buf = lp->state.buf; 1620 spi_message_add_tail(&lp->state.trx, &lp->state.msg); 1621 hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1622 lp->state.timer.function = at86rf230_async_state_timer; 1623 1624 lp->irq.lp = lp; 1625 lp->irq.irq = lp->spi->irq; 1626 spi_message_init(&lp->irq.msg); 1627 lp->irq.msg.context = &lp->irq; 1628 lp->irq.trx.len = 2; 1629 lp->irq.trx.tx_buf = lp->irq.buf; 1630 lp->irq.trx.rx_buf = lp->irq.buf; 1631 spi_message_add_tail(&lp->irq.trx, &lp->irq.msg); 1632 hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1633 lp->irq.timer.function = at86rf230_async_state_timer; 1634 1635 lp->tx.lp = lp; 1636 lp->tx.irq = lp->spi->irq; 1637 spi_message_init(&lp->tx.msg); 1638 lp->tx.msg.context = &lp->tx; 1639 lp->tx.trx.len = 2; 1640 lp->tx.trx.tx_buf = lp->tx.buf; 1641 lp->tx.trx.rx_buf = lp->tx.buf; 1642 spi_message_add_tail(&lp->tx.trx, &lp->tx.msg); 1643 hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1644 lp->tx.timer.function = at86rf230_async_state_timer; 1645 } 1646 1647 static int at86rf230_probe(struct spi_device *spi) 1648 { 1649 struct ieee802154_hw *hw; 1650 struct at86rf230_local *lp; 1651 unsigned int status; 1652 int rc, irq_type, rstn, slp_tr; 1653 u8 xtal_trim = 0; 1654 1655 if (!spi->irq) { 1656 dev_err(&spi->dev, "no IRQ specified\n"); 1657 return -EINVAL; 1658 } 1659 1660 rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim); 1661 if (rc < 0) { 1662 dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc); 1663 return rc; 1664 } 1665 1666 if (gpio_is_valid(rstn)) { 1667 rc = devm_gpio_request_one(&spi->dev, rstn, 1668 GPIOF_OUT_INIT_HIGH, "rstn"); 1669 if (rc) 1670 return rc; 1671 } 1672 1673 if (gpio_is_valid(slp_tr)) { 1674 rc = devm_gpio_request_one(&spi->dev, slp_tr, 1675 GPIOF_OUT_INIT_LOW, "slp_tr"); 1676 if (rc) 1677 return rc; 1678 } 1679 1680 /* Reset */ 1681 if (gpio_is_valid(rstn)) { 1682 udelay(1); 1683 gpio_set_value(rstn, 0); 1684 udelay(1); 1685 gpio_set_value(rstn, 1); 1686 usleep_range(120, 240); 1687 } 1688 1689 hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops); 1690 if (!hw) 1691 return -ENOMEM; 1692 1693 lp = hw->priv; 1694 lp->hw = hw; 1695 lp->spi = spi; 1696 lp->slp_tr = slp_tr; 1697 hw->parent = &spi->dev; 1698 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); 1699 1700 lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config); 1701 if (IS_ERR(lp->regmap)) { 1702 rc = PTR_ERR(lp->regmap); 1703 dev_err(&spi->dev, "Failed to allocate register map: %d\n", 1704 rc); 1705 goto free_dev; 1706 } 1707 1708 at86rf230_setup_spi_messages(lp); 1709 1710 rc = at86rf230_detect_device(lp); 1711 if (rc < 0) 1712 goto free_dev; 1713 1714 init_completion(&lp->state_complete); 1715 1716 spi_set_drvdata(spi, lp); 1717 1718 rc = at86rf230_hw_init(lp, xtal_trim); 1719 if (rc) 1720 goto free_dev; 1721 1722 /* Read irq status register to reset irq line */ 1723 rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status); 1724 if (rc) 1725 goto free_dev; 1726 1727 irq_type = irq_get_trigger_type(spi->irq); 1728 if (!irq_type) 1729 irq_type = IRQF_TRIGGER_HIGH; 1730 1731 rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr, 1732 IRQF_SHARED | irq_type, dev_name(&spi->dev), lp); 1733 if (rc) 1734 goto free_dev; 1735 1736 /* disable_irq by default and wait for starting hardware */ 1737 disable_irq(spi->irq); 1738 1739 /* going into sleep by default */ 1740 at86rf230_sleep(lp); 1741 1742 rc = ieee802154_register_hw(lp->hw); 1743 if (rc) 1744 goto free_dev; 1745 1746 return rc; 1747 1748 free_dev: 1749 ieee802154_free_hw(lp->hw); 1750 1751 return rc; 1752 } 1753 1754 static int at86rf230_remove(struct spi_device *spi) 1755 { 1756 struct at86rf230_local *lp = spi_get_drvdata(spi); 1757 1758 /* mask all at86rf230 irq's */ 1759 at86rf230_write_subreg(lp, SR_IRQ_MASK, 0); 1760 ieee802154_unregister_hw(lp->hw); 1761 ieee802154_free_hw(lp->hw); 1762 dev_dbg(&spi->dev, "unregistered at86rf230\n"); 1763 1764 return 0; 1765 } 1766 1767 static const struct of_device_id at86rf230_of_match[] = { 1768 { .compatible = "atmel,at86rf230", }, 1769 { .compatible = "atmel,at86rf231", }, 1770 { .compatible = "atmel,at86rf233", }, 1771 { .compatible = "atmel,at86rf212", }, 1772 { }, 1773 }; 1774 MODULE_DEVICE_TABLE(of, at86rf230_of_match); 1775 1776 static const struct spi_device_id at86rf230_device_id[] = { 1777 { .name = "at86rf230", }, 1778 { .name = "at86rf231", }, 1779 { .name = "at86rf233", }, 1780 { .name = "at86rf212", }, 1781 { }, 1782 }; 1783 MODULE_DEVICE_TABLE(spi, at86rf230_device_id); 1784 1785 static struct spi_driver at86rf230_driver = { 1786 .id_table = at86rf230_device_id, 1787 .driver = { 1788 .of_match_table = of_match_ptr(at86rf230_of_match), 1789 .name = "at86rf230", 1790 .owner = THIS_MODULE, 1791 }, 1792 .probe = at86rf230_probe, 1793 .remove = at86rf230_remove, 1794 }; 1795 1796 module_spi_driver(at86rf230_driver); 1797 1798 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver"); 1799 MODULE_LICENSE("GPL v2"); 1800