xref: /openbmc/linux/drivers/net/ieee802154/at86rf230.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * AT86RF230/RF231 driver
3  *
4  * Copyright (C) 2009-2012 Siemens AG
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * Written by:
16  * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
17  * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
18  * Alexander Aring <aar@pengutronix.de>
19  */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/hrtimer.h>
23 #include <linux/jiffies.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/gpio.h>
27 #include <linux/delay.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/at86rf230.h>
30 #include <linux/regmap.h>
31 #include <linux/skbuff.h>
32 #include <linux/of_gpio.h>
33 #include <linux/ieee802154.h>
34 
35 #include <net/mac802154.h>
36 #include <net/cfg802154.h>
37 
38 #include "at86rf230.h"
39 
40 struct at86rf230_local;
41 /* at86rf2xx chip depend data.
42  * All timings are in us.
43  */
44 struct at86rf2xx_chip_data {
45 	u16 t_sleep_cycle;
46 	u16 t_channel_switch;
47 	u16 t_reset_to_off;
48 	u16 t_off_to_aack;
49 	u16 t_off_to_tx_on;
50 	u16 t_off_to_sleep;
51 	u16 t_sleep_to_off;
52 	u16 t_frame;
53 	u16 t_p_ack;
54 	int rssi_base_val;
55 
56 	int (*set_channel)(struct at86rf230_local *, u8, u8);
57 	int (*set_txpower)(struct at86rf230_local *, s32);
58 };
59 
60 #define AT86RF2XX_MAX_BUF		(127 + 3)
61 /* tx retries to access the TX_ON state
62  * if it's above then force change will be started.
63  *
64  * We assume the max_frame_retries (7) value of 802.15.4 here.
65  */
66 #define AT86RF2XX_MAX_TX_RETRIES	7
67 /* We use the recommended 5 minutes timeout to recalibrate */
68 #define AT86RF2XX_CAL_LOOP_TIMEOUT	(5 * 60 * HZ)
69 
70 struct at86rf230_state_change {
71 	struct at86rf230_local *lp;
72 	int irq;
73 
74 	struct hrtimer timer;
75 	struct spi_message msg;
76 	struct spi_transfer trx;
77 	u8 buf[AT86RF2XX_MAX_BUF];
78 
79 	void (*complete)(void *context);
80 	u8 from_state;
81 	u8 to_state;
82 
83 	bool irq_enable;
84 };
85 
86 struct at86rf230_local {
87 	struct spi_device *spi;
88 
89 	struct ieee802154_hw *hw;
90 	struct at86rf2xx_chip_data *data;
91 	struct regmap *regmap;
92 	int slp_tr;
93 	bool sleep;
94 
95 	struct completion state_complete;
96 	struct at86rf230_state_change state;
97 
98 	struct at86rf230_state_change irq;
99 
100 	bool tx_aret;
101 	unsigned long cal_timeout;
102 	s8 max_frame_retries;
103 	bool is_tx;
104 	bool is_tx_from_off;
105 	u8 tx_retry;
106 	struct sk_buff *tx_skb;
107 	struct at86rf230_state_change tx;
108 };
109 
110 #define AT86RF2XX_NUMREGS 0x3F
111 
112 static void
113 at86rf230_async_state_change(struct at86rf230_local *lp,
114 			     struct at86rf230_state_change *ctx,
115 			     const u8 state, void (*complete)(void *context),
116 			     const bool irq_enable);
117 
118 static inline void
119 at86rf230_sleep(struct at86rf230_local *lp)
120 {
121 	if (gpio_is_valid(lp->slp_tr)) {
122 		gpio_set_value(lp->slp_tr, 1);
123 		usleep_range(lp->data->t_off_to_sleep,
124 			     lp->data->t_off_to_sleep + 10);
125 		lp->sleep = true;
126 	}
127 }
128 
129 static inline void
130 at86rf230_awake(struct at86rf230_local *lp)
131 {
132 	if (gpio_is_valid(lp->slp_tr)) {
133 		gpio_set_value(lp->slp_tr, 0);
134 		usleep_range(lp->data->t_sleep_to_off,
135 			     lp->data->t_sleep_to_off + 100);
136 		lp->sleep = false;
137 	}
138 }
139 
140 static inline int
141 __at86rf230_write(struct at86rf230_local *lp,
142 		  unsigned int addr, unsigned int data)
143 {
144 	bool sleep = lp->sleep;
145 	int ret;
146 
147 	/* awake for register setting if sleep */
148 	if (sleep)
149 		at86rf230_awake(lp);
150 
151 	ret = regmap_write(lp->regmap, addr, data);
152 
153 	/* sleep again if was sleeping */
154 	if (sleep)
155 		at86rf230_sleep(lp);
156 
157 	return ret;
158 }
159 
160 static inline int
161 __at86rf230_read(struct at86rf230_local *lp,
162 		 unsigned int addr, unsigned int *data)
163 {
164 	bool sleep = lp->sleep;
165 	int ret;
166 
167 	/* awake for register setting if sleep */
168 	if (sleep)
169 		at86rf230_awake(lp);
170 
171 	ret = regmap_read(lp->regmap, addr, data);
172 
173 	/* sleep again if was sleeping */
174 	if (sleep)
175 		at86rf230_sleep(lp);
176 
177 	return ret;
178 }
179 
180 static inline int
181 at86rf230_read_subreg(struct at86rf230_local *lp,
182 		      unsigned int addr, unsigned int mask,
183 		      unsigned int shift, unsigned int *data)
184 {
185 	int rc;
186 
187 	rc = __at86rf230_read(lp, addr, data);
188 	if (!rc)
189 		*data = (*data & mask) >> shift;
190 
191 	return rc;
192 }
193 
194 static inline int
195 at86rf230_write_subreg(struct at86rf230_local *lp,
196 		       unsigned int addr, unsigned int mask,
197 		       unsigned int shift, unsigned int data)
198 {
199 	bool sleep = lp->sleep;
200 	int ret;
201 
202 	/* awake for register setting if sleep */
203 	if (sleep)
204 		at86rf230_awake(lp);
205 
206 	ret = regmap_update_bits(lp->regmap, addr, mask, data << shift);
207 
208 	/* sleep again if was sleeping */
209 	if (sleep)
210 		at86rf230_sleep(lp);
211 
212 	return ret;
213 }
214 
215 static inline void
216 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
217 {
218 	gpio_set_value(lp->slp_tr, 1);
219 	udelay(1);
220 	gpio_set_value(lp->slp_tr, 0);
221 }
222 
223 static bool
224 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
225 {
226 	switch (reg) {
227 	case RG_TRX_STATE:
228 	case RG_TRX_CTRL_0:
229 	case RG_TRX_CTRL_1:
230 	case RG_PHY_TX_PWR:
231 	case RG_PHY_ED_LEVEL:
232 	case RG_PHY_CC_CCA:
233 	case RG_CCA_THRES:
234 	case RG_RX_CTRL:
235 	case RG_SFD_VALUE:
236 	case RG_TRX_CTRL_2:
237 	case RG_ANT_DIV:
238 	case RG_IRQ_MASK:
239 	case RG_VREG_CTRL:
240 	case RG_BATMON:
241 	case RG_XOSC_CTRL:
242 	case RG_RX_SYN:
243 	case RG_XAH_CTRL_1:
244 	case RG_FTN_CTRL:
245 	case RG_PLL_CF:
246 	case RG_PLL_DCU:
247 	case RG_SHORT_ADDR_0:
248 	case RG_SHORT_ADDR_1:
249 	case RG_PAN_ID_0:
250 	case RG_PAN_ID_1:
251 	case RG_IEEE_ADDR_0:
252 	case RG_IEEE_ADDR_1:
253 	case RG_IEEE_ADDR_2:
254 	case RG_IEEE_ADDR_3:
255 	case RG_IEEE_ADDR_4:
256 	case RG_IEEE_ADDR_5:
257 	case RG_IEEE_ADDR_6:
258 	case RG_IEEE_ADDR_7:
259 	case RG_XAH_CTRL_0:
260 	case RG_CSMA_SEED_0:
261 	case RG_CSMA_SEED_1:
262 	case RG_CSMA_BE:
263 		return true;
264 	default:
265 		return false;
266 	}
267 }
268 
269 static bool
270 at86rf230_reg_readable(struct device *dev, unsigned int reg)
271 {
272 	bool rc;
273 
274 	/* all writeable are also readable */
275 	rc = at86rf230_reg_writeable(dev, reg);
276 	if (rc)
277 		return rc;
278 
279 	/* readonly regs */
280 	switch (reg) {
281 	case RG_TRX_STATUS:
282 	case RG_PHY_RSSI:
283 	case RG_IRQ_STATUS:
284 	case RG_PART_NUM:
285 	case RG_VERSION_NUM:
286 	case RG_MAN_ID_1:
287 	case RG_MAN_ID_0:
288 		return true;
289 	default:
290 		return false;
291 	}
292 }
293 
294 static bool
295 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
296 {
297 	/* can be changed during runtime */
298 	switch (reg) {
299 	case RG_TRX_STATUS:
300 	case RG_TRX_STATE:
301 	case RG_PHY_RSSI:
302 	case RG_PHY_ED_LEVEL:
303 	case RG_IRQ_STATUS:
304 	case RG_VREG_CTRL:
305 	case RG_PLL_CF:
306 	case RG_PLL_DCU:
307 		return true;
308 	default:
309 		return false;
310 	}
311 }
312 
313 static bool
314 at86rf230_reg_precious(struct device *dev, unsigned int reg)
315 {
316 	/* don't clear irq line on read */
317 	switch (reg) {
318 	case RG_IRQ_STATUS:
319 		return true;
320 	default:
321 		return false;
322 	}
323 }
324 
325 static const struct regmap_config at86rf230_regmap_spi_config = {
326 	.reg_bits = 8,
327 	.val_bits = 8,
328 	.write_flag_mask = CMD_REG | CMD_WRITE,
329 	.read_flag_mask = CMD_REG,
330 	.cache_type = REGCACHE_RBTREE,
331 	.max_register = AT86RF2XX_NUMREGS,
332 	.writeable_reg = at86rf230_reg_writeable,
333 	.readable_reg = at86rf230_reg_readable,
334 	.volatile_reg = at86rf230_reg_volatile,
335 	.precious_reg = at86rf230_reg_precious,
336 };
337 
338 static void
339 at86rf230_async_error_recover(void *context)
340 {
341 	struct at86rf230_state_change *ctx = context;
342 	struct at86rf230_local *lp = ctx->lp;
343 
344 	lp->is_tx = 0;
345 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false);
346 	ieee802154_wake_queue(lp->hw);
347 }
348 
349 static inline void
350 at86rf230_async_error(struct at86rf230_local *lp,
351 		      struct at86rf230_state_change *ctx, int rc)
352 {
353 	dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
354 
355 	at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
356 				     at86rf230_async_error_recover, false);
357 }
358 
359 /* Generic function to get some register value in async mode */
360 static void
361 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
362 			 struct at86rf230_state_change *ctx,
363 			 void (*complete)(void *context),
364 			 const bool irq_enable)
365 {
366 	int rc;
367 
368 	u8 *tx_buf = ctx->buf;
369 
370 	tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
371 	ctx->msg.complete = complete;
372 	ctx->irq_enable = irq_enable;
373 	rc = spi_async(lp->spi, &ctx->msg);
374 	if (rc) {
375 		if (irq_enable)
376 			enable_irq(ctx->irq);
377 
378 		at86rf230_async_error(lp, ctx, rc);
379 	}
380 }
381 
382 static inline u8 at86rf230_state_to_force(u8 state)
383 {
384 	if (state == STATE_TX_ON)
385 		return STATE_FORCE_TX_ON;
386 	else
387 		return STATE_FORCE_TRX_OFF;
388 }
389 
390 static void
391 at86rf230_async_state_assert(void *context)
392 {
393 	struct at86rf230_state_change *ctx = context;
394 	struct at86rf230_local *lp = ctx->lp;
395 	const u8 *buf = ctx->buf;
396 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
397 
398 	/* Assert state change */
399 	if (trx_state != ctx->to_state) {
400 		/* Special handling if transceiver state is in
401 		 * STATE_BUSY_RX_AACK and a SHR was detected.
402 		 */
403 		if  (trx_state == STATE_BUSY_RX_AACK) {
404 			/* Undocumented race condition. If we send a state
405 			 * change to STATE_RX_AACK_ON the transceiver could
406 			 * change his state automatically to STATE_BUSY_RX_AACK
407 			 * if a SHR was detected. This is not an error, but we
408 			 * can't assert this.
409 			 */
410 			if (ctx->to_state == STATE_RX_AACK_ON)
411 				goto done;
412 
413 			/* If we change to STATE_TX_ON without forcing and
414 			 * transceiver state is STATE_BUSY_RX_AACK, we wait
415 			 * 'tFrame + tPAck' receiving time. In this time the
416 			 * PDU should be received. If the transceiver is still
417 			 * in STATE_BUSY_RX_AACK, we run a force state change
418 			 * to STATE_TX_ON. This is a timeout handling, if the
419 			 * transceiver stucks in STATE_BUSY_RX_AACK.
420 			 *
421 			 * Additional we do several retries to try to get into
422 			 * TX_ON state without forcing. If the retries are
423 			 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
424 			 * will do a force change.
425 			 */
426 			if (ctx->to_state == STATE_TX_ON ||
427 			    ctx->to_state == STATE_TRX_OFF) {
428 				u8 state = ctx->to_state;
429 
430 				if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
431 					state = at86rf230_state_to_force(state);
432 				lp->tx_retry++;
433 
434 				at86rf230_async_state_change(lp, ctx, state,
435 							     ctx->complete,
436 							     ctx->irq_enable);
437 				return;
438 			}
439 		}
440 
441 		dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
442 			 ctx->from_state, ctx->to_state, trx_state);
443 	}
444 
445 done:
446 	if (ctx->complete)
447 		ctx->complete(context);
448 }
449 
450 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
451 {
452 	struct at86rf230_state_change *ctx =
453 		container_of(timer, struct at86rf230_state_change, timer);
454 	struct at86rf230_local *lp = ctx->lp;
455 
456 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
457 				 at86rf230_async_state_assert,
458 				 ctx->irq_enable);
459 
460 	return HRTIMER_NORESTART;
461 }
462 
463 /* Do state change timing delay. */
464 static void
465 at86rf230_async_state_delay(void *context)
466 {
467 	struct at86rf230_state_change *ctx = context;
468 	struct at86rf230_local *lp = ctx->lp;
469 	struct at86rf2xx_chip_data *c = lp->data;
470 	bool force = false;
471 	ktime_t tim;
472 
473 	/* The force state changes are will show as normal states in the
474 	 * state status subregister. We change the to_state to the
475 	 * corresponding one and remember if it was a force change, this
476 	 * differs if we do a state change from STATE_BUSY_RX_AACK.
477 	 */
478 	switch (ctx->to_state) {
479 	case STATE_FORCE_TX_ON:
480 		ctx->to_state = STATE_TX_ON;
481 		force = true;
482 		break;
483 	case STATE_FORCE_TRX_OFF:
484 		ctx->to_state = STATE_TRX_OFF;
485 		force = true;
486 		break;
487 	default:
488 		break;
489 	}
490 
491 	switch (ctx->from_state) {
492 	case STATE_TRX_OFF:
493 		switch (ctx->to_state) {
494 		case STATE_RX_AACK_ON:
495 			tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC);
496 			/* state change from TRX_OFF to RX_AACK_ON to do a
497 			 * calibration, we need to reset the timeout for the
498 			 * next one.
499 			 */
500 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
501 			goto change;
502 		case STATE_TX_ARET_ON:
503 		case STATE_TX_ON:
504 			tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC);
505 			/* state change from TRX_OFF to TX_ON or ARET_ON to do
506 			 * a calibration, we need to reset the timeout for the
507 			 * next one.
508 			 */
509 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
510 			goto change;
511 		default:
512 			break;
513 		}
514 		break;
515 	case STATE_BUSY_RX_AACK:
516 		switch (ctx->to_state) {
517 		case STATE_TRX_OFF:
518 		case STATE_TX_ON:
519 			/* Wait for worst case receiving time if we
520 			 * didn't make a force change from BUSY_RX_AACK
521 			 * to TX_ON or TRX_OFF.
522 			 */
523 			if (!force) {
524 				tim = ktime_set(0, (c->t_frame + c->t_p_ack) *
525 						   NSEC_PER_USEC);
526 				goto change;
527 			}
528 			break;
529 		default:
530 			break;
531 		}
532 		break;
533 	/* Default value, means RESET state */
534 	case STATE_P_ON:
535 		switch (ctx->to_state) {
536 		case STATE_TRX_OFF:
537 			tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC);
538 			goto change;
539 		default:
540 			break;
541 		}
542 		break;
543 	default:
544 		break;
545 	}
546 
547 	/* Default delay is 1us in the most cases */
548 	udelay(1);
549 	at86rf230_async_state_timer(&ctx->timer);
550 	return;
551 
552 change:
553 	hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
554 }
555 
556 static void
557 at86rf230_async_state_change_start(void *context)
558 {
559 	struct at86rf230_state_change *ctx = context;
560 	struct at86rf230_local *lp = ctx->lp;
561 	u8 *buf = ctx->buf;
562 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
563 	int rc;
564 
565 	/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
566 	if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
567 		udelay(1);
568 		at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
569 					 at86rf230_async_state_change_start,
570 					 ctx->irq_enable);
571 		return;
572 	}
573 
574 	/* Check if we already are in the state which we change in */
575 	if (trx_state == ctx->to_state) {
576 		if (ctx->complete)
577 			ctx->complete(context);
578 		return;
579 	}
580 
581 	/* Set current state to the context of state change */
582 	ctx->from_state = trx_state;
583 
584 	/* Going into the next step for a state change which do a timing
585 	 * relevant delay.
586 	 */
587 	buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
588 	buf[1] = ctx->to_state;
589 	ctx->msg.complete = at86rf230_async_state_delay;
590 	rc = spi_async(lp->spi, &ctx->msg);
591 	if (rc) {
592 		if (ctx->irq_enable)
593 			enable_irq(ctx->irq);
594 
595 		at86rf230_async_error(lp, ctx, rc);
596 	}
597 }
598 
599 static void
600 at86rf230_async_state_change(struct at86rf230_local *lp,
601 			     struct at86rf230_state_change *ctx,
602 			     const u8 state, void (*complete)(void *context),
603 			     const bool irq_enable)
604 {
605 	/* Initialization for the state change context */
606 	ctx->to_state = state;
607 	ctx->complete = complete;
608 	ctx->irq_enable = irq_enable;
609 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
610 				 at86rf230_async_state_change_start,
611 				 irq_enable);
612 }
613 
614 static void
615 at86rf230_sync_state_change_complete(void *context)
616 {
617 	struct at86rf230_state_change *ctx = context;
618 	struct at86rf230_local *lp = ctx->lp;
619 
620 	complete(&lp->state_complete);
621 }
622 
623 /* This function do a sync framework above the async state change.
624  * Some callbacks of the IEEE 802.15.4 driver interface need to be
625  * handled synchronously.
626  */
627 static int
628 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
629 {
630 	unsigned long rc;
631 
632 	at86rf230_async_state_change(lp, &lp->state, state,
633 				     at86rf230_sync_state_change_complete,
634 				     false);
635 
636 	rc = wait_for_completion_timeout(&lp->state_complete,
637 					 msecs_to_jiffies(100));
638 	if (!rc) {
639 		at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
640 		return -ETIMEDOUT;
641 	}
642 
643 	return 0;
644 }
645 
646 static void
647 at86rf230_tx_complete(void *context)
648 {
649 	struct at86rf230_state_change *ctx = context;
650 	struct at86rf230_local *lp = ctx->lp;
651 
652 	enable_irq(ctx->irq);
653 
654 	ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret);
655 }
656 
657 static void
658 at86rf230_tx_on(void *context)
659 {
660 	struct at86rf230_state_change *ctx = context;
661 	struct at86rf230_local *lp = ctx->lp;
662 
663 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
664 				     at86rf230_tx_complete, true);
665 }
666 
667 static void
668 at86rf230_tx_trac_check(void *context)
669 {
670 	struct at86rf230_state_change *ctx = context;
671 	struct at86rf230_local *lp = ctx->lp;
672 	const u8 *buf = ctx->buf;
673 	const u8 trac = (buf[1] & 0xe0) >> 5;
674 
675 	/* If trac status is different than zero we need to do a state change
676 	 * to STATE_FORCE_TRX_OFF then STATE_RX_AACK_ON to recover the
677 	 * transceiver.
678 	 */
679 	if (trac)
680 		at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
681 					     at86rf230_tx_on, true);
682 	else
683 		at86rf230_tx_on(context);
684 }
685 
686 static void
687 at86rf230_tx_trac_status(void *context)
688 {
689 	struct at86rf230_state_change *ctx = context;
690 	struct at86rf230_local *lp = ctx->lp;
691 
692 	at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
693 				 at86rf230_tx_trac_check, true);
694 }
695 
696 static void
697 at86rf230_rx_read_frame_complete(void *context)
698 {
699 	struct at86rf230_state_change *ctx = context;
700 	struct at86rf230_local *lp = ctx->lp;
701 	u8 rx_local_buf[AT86RF2XX_MAX_BUF];
702 	const u8 *buf = ctx->buf;
703 	struct sk_buff *skb;
704 	u8 len, lqi;
705 
706 	len = buf[1];
707 	if (!ieee802154_is_valid_psdu_len(len)) {
708 		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
709 		len = IEEE802154_MTU;
710 	}
711 	lqi = buf[2 + len];
712 
713 	memcpy(rx_local_buf, buf + 2, len);
714 	ctx->trx.len = 2;
715 	enable_irq(ctx->irq);
716 
717 	skb = dev_alloc_skb(IEEE802154_MTU);
718 	if (!skb) {
719 		dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
720 		return;
721 	}
722 
723 	memcpy(skb_put(skb, len), rx_local_buf, len);
724 	ieee802154_rx_irqsafe(lp->hw, skb, lqi);
725 }
726 
727 static void
728 at86rf230_rx_read_frame(void *context)
729 {
730 	struct at86rf230_state_change *ctx = context;
731 	struct at86rf230_local *lp = ctx->lp;
732 	u8 *buf = ctx->buf;
733 	int rc;
734 
735 	buf[0] = CMD_FB;
736 	ctx->trx.len = AT86RF2XX_MAX_BUF;
737 	ctx->msg.complete = at86rf230_rx_read_frame_complete;
738 	rc = spi_async(lp->spi, &ctx->msg);
739 	if (rc) {
740 		ctx->trx.len = 2;
741 		enable_irq(ctx->irq);
742 		at86rf230_async_error(lp, ctx, rc);
743 	}
744 }
745 
746 static void
747 at86rf230_rx_trac_check(void *context)
748 {
749 	/* Possible check on trac status here. This could be useful to make
750 	 * some stats why receive is failed. Not used at the moment, but it's
751 	 * maybe timing relevant. Datasheet doesn't say anything about this.
752 	 * The programming guide say do it so.
753 	 */
754 
755 	at86rf230_rx_read_frame(context);
756 }
757 
758 static void
759 at86rf230_irq_trx_end(struct at86rf230_local *lp)
760 {
761 	if (lp->is_tx) {
762 		lp->is_tx = 0;
763 
764 		if (lp->tx_aret)
765 			at86rf230_async_state_change(lp, &lp->irq,
766 						     STATE_FORCE_TX_ON,
767 						     at86rf230_tx_trac_status,
768 						     true);
769 		else
770 			at86rf230_async_state_change(lp, &lp->irq,
771 						     STATE_RX_AACK_ON,
772 						     at86rf230_tx_complete,
773 						     true);
774 	} else {
775 		at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
776 					 at86rf230_rx_trac_check, true);
777 	}
778 }
779 
780 static void
781 at86rf230_irq_status(void *context)
782 {
783 	struct at86rf230_state_change *ctx = context;
784 	struct at86rf230_local *lp = ctx->lp;
785 	const u8 *buf = ctx->buf;
786 	const u8 irq = buf[1];
787 
788 	if (irq & IRQ_TRX_END) {
789 		at86rf230_irq_trx_end(lp);
790 	} else {
791 		enable_irq(ctx->irq);
792 		dev_err(&lp->spi->dev, "not supported irq %02x received\n",
793 			irq);
794 	}
795 }
796 
797 static irqreturn_t at86rf230_isr(int irq, void *data)
798 {
799 	struct at86rf230_local *lp = data;
800 	struct at86rf230_state_change *ctx = &lp->irq;
801 	u8 *buf = ctx->buf;
802 	int rc;
803 
804 	disable_irq_nosync(irq);
805 
806 	buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
807 	ctx->msg.complete = at86rf230_irq_status;
808 	rc = spi_async(lp->spi, &ctx->msg);
809 	if (rc) {
810 		enable_irq(irq);
811 		at86rf230_async_error(lp, ctx, rc);
812 		return IRQ_NONE;
813 	}
814 
815 	return IRQ_HANDLED;
816 }
817 
818 static void
819 at86rf230_write_frame_complete(void *context)
820 {
821 	struct at86rf230_state_change *ctx = context;
822 	struct at86rf230_local *lp = ctx->lp;
823 	u8 *buf = ctx->buf;
824 	int rc;
825 
826 	ctx->trx.len = 2;
827 
828 	if (gpio_is_valid(lp->slp_tr)) {
829 		at86rf230_slp_tr_rising_edge(lp);
830 	} else {
831 		buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
832 		buf[1] = STATE_BUSY_TX;
833 		ctx->msg.complete = NULL;
834 		rc = spi_async(lp->spi, &ctx->msg);
835 		if (rc)
836 			at86rf230_async_error(lp, ctx, rc);
837 	}
838 }
839 
840 static void
841 at86rf230_write_frame(void *context)
842 {
843 	struct at86rf230_state_change *ctx = context;
844 	struct at86rf230_local *lp = ctx->lp;
845 	struct sk_buff *skb = lp->tx_skb;
846 	u8 *buf = ctx->buf;
847 	int rc;
848 
849 	lp->is_tx = 1;
850 
851 	buf[0] = CMD_FB | CMD_WRITE;
852 	buf[1] = skb->len + 2;
853 	memcpy(buf + 2, skb->data, skb->len);
854 	ctx->trx.len = skb->len + 2;
855 	ctx->msg.complete = at86rf230_write_frame_complete;
856 	rc = spi_async(lp->spi, &ctx->msg);
857 	if (rc) {
858 		ctx->trx.len = 2;
859 		at86rf230_async_error(lp, ctx, rc);
860 	}
861 }
862 
863 static void
864 at86rf230_xmit_tx_on(void *context)
865 {
866 	struct at86rf230_state_change *ctx = context;
867 	struct at86rf230_local *lp = ctx->lp;
868 
869 	at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
870 				     at86rf230_write_frame, false);
871 }
872 
873 static void
874 at86rf230_xmit_start(void *context)
875 {
876 	struct at86rf230_state_change *ctx = context;
877 	struct at86rf230_local *lp = ctx->lp;
878 
879 	/* In ARET mode we need to go into STATE_TX_ARET_ON after we
880 	 * are in STATE_TX_ON. The pfad differs here, so we change
881 	 * the complete handler.
882 	 */
883 	if (lp->tx_aret) {
884 		if (lp->is_tx_from_off) {
885 			lp->is_tx_from_off = false;
886 			at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
887 						     at86rf230_write_frame,
888 						     false);
889 		} else {
890 			at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
891 						     at86rf230_xmit_tx_on,
892 						     false);
893 		}
894 	} else {
895 		at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
896 					     at86rf230_write_frame, false);
897 	}
898 }
899 
900 static int
901 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
902 {
903 	struct at86rf230_local *lp = hw->priv;
904 	struct at86rf230_state_change *ctx = &lp->tx;
905 
906 	lp->tx_skb = skb;
907 	lp->tx_retry = 0;
908 
909 	/* After 5 minutes in PLL and the same frequency we run again the
910 	 * calibration loops which is recommended by at86rf2xx datasheets.
911 	 *
912 	 * The calibration is initiate by a state change from TRX_OFF
913 	 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
914 	 * function then to start in the next 5 minutes.
915 	 */
916 	if (time_is_before_jiffies(lp->cal_timeout)) {
917 		lp->is_tx_from_off = true;
918 		at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
919 					     at86rf230_xmit_start, false);
920 	} else {
921 		at86rf230_xmit_start(ctx);
922 	}
923 
924 	return 0;
925 }
926 
927 static int
928 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
929 {
930 	BUG_ON(!level);
931 	*level = 0xbe;
932 	return 0;
933 }
934 
935 static int
936 at86rf230_start(struct ieee802154_hw *hw)
937 {
938 	struct at86rf230_local *lp = hw->priv;
939 
940 	at86rf230_awake(lp);
941 	enable_irq(lp->spi->irq);
942 
943 	return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON);
944 }
945 
946 static void
947 at86rf230_stop(struct ieee802154_hw *hw)
948 {
949 	struct at86rf230_local *lp = hw->priv;
950 	u8 csma_seed[2];
951 
952 	at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
953 
954 	disable_irq(lp->spi->irq);
955 
956 	/* It's recommended to set random new csma_seeds before sleep state.
957 	 * Makes only sense in the stop callback, not doing this inside of
958 	 * at86rf230_sleep, this is also used when we don't transmit afterwards
959 	 * when calling start callback again.
960 	 */
961 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
962 	at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
963 	at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
964 
965 	at86rf230_sleep(lp);
966 }
967 
968 static int
969 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
970 {
971 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
972 }
973 
974 #define AT86RF2XX_MAX_ED_LEVELS 0xF
975 static const s32 at86rf23x_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
976 	-9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300,
977 	-7100, -6900, -6700, -6500, -6300, -6100,
978 };
979 
980 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = {
981 	-10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200,
982 	-8000, -7800, -7600, -7400, -7200, -7000,
983 };
984 
985 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = {
986 	-9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000,
987 	-7800, -7600, -7400, -7200, -7000, -6800,
988 };
989 
990 static inline int
991 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val)
992 {
993 	unsigned int cca_ed_thres;
994 	int rc;
995 
996 	rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres);
997 	if (rc < 0)
998 		return rc;
999 
1000 	switch (rssi_base_val) {
1001 	case -98:
1002 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98;
1003 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98);
1004 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres];
1005 		break;
1006 	case -100:
1007 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1008 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1009 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres];
1010 		break;
1011 	default:
1012 		WARN_ON(1);
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 static int
1019 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1020 {
1021 	int rc;
1022 
1023 	if (channel == 0)
1024 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1025 	else
1026 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1027 	if (rc < 0)
1028 		return rc;
1029 
1030 	if (page == 0) {
1031 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1032 		lp->data->rssi_base_val = -100;
1033 	} else {
1034 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1035 		lp->data->rssi_base_val = -98;
1036 	}
1037 	if (rc < 0)
1038 		return rc;
1039 
1040 	rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val);
1041 	if (rc < 0)
1042 		return rc;
1043 
1044 	/* This sets the symbol_duration according frequency on the 212.
1045 	 * TODO move this handling while set channel and page in cfg802154.
1046 	 * We can do that, this timings are according 802.15.4 standard.
1047 	 * If we do that in cfg802154, this is a more generic calculation.
1048 	 *
1049 	 * This should also protected from ifs_timer. Means cancel timer and
1050 	 * init with a new value. For now, this is okay.
1051 	 */
1052 	if (channel == 0) {
1053 		if (page == 0) {
1054 			/* SUB:0 and BPSK:0 -> BPSK-20 */
1055 			lp->hw->phy->symbol_duration = 50;
1056 		} else {
1057 			/* SUB:1 and BPSK:0 -> BPSK-40 */
1058 			lp->hw->phy->symbol_duration = 25;
1059 		}
1060 	} else {
1061 		if (page == 0)
1062 			/* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1063 			lp->hw->phy->symbol_duration = 40;
1064 		else
1065 			/* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1066 			lp->hw->phy->symbol_duration = 16;
1067 	}
1068 
1069 	lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1070 				   lp->hw->phy->symbol_duration;
1071 	lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1072 				   lp->hw->phy->symbol_duration;
1073 
1074 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1075 }
1076 
1077 static int
1078 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1079 {
1080 	struct at86rf230_local *lp = hw->priv;
1081 	int rc;
1082 
1083 	rc = lp->data->set_channel(lp, page, channel);
1084 	/* Wait for PLL */
1085 	usleep_range(lp->data->t_channel_switch,
1086 		     lp->data->t_channel_switch + 10);
1087 
1088 	lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1089 	return rc;
1090 }
1091 
1092 static int
1093 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1094 			   struct ieee802154_hw_addr_filt *filt,
1095 			   unsigned long changed)
1096 {
1097 	struct at86rf230_local *lp = hw->priv;
1098 
1099 	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1100 		u16 addr = le16_to_cpu(filt->short_addr);
1101 
1102 		dev_vdbg(&lp->spi->dev,
1103 			 "at86rf230_set_hw_addr_filt called for saddr\n");
1104 		__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1105 		__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1106 	}
1107 
1108 	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1109 		u16 pan = le16_to_cpu(filt->pan_id);
1110 
1111 		dev_vdbg(&lp->spi->dev,
1112 			 "at86rf230_set_hw_addr_filt called for pan id\n");
1113 		__at86rf230_write(lp, RG_PAN_ID_0, pan);
1114 		__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1115 	}
1116 
1117 	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1118 		u8 i, addr[8];
1119 
1120 		memcpy(addr, &filt->ieee_addr, 8);
1121 		dev_vdbg(&lp->spi->dev,
1122 			 "at86rf230_set_hw_addr_filt called for IEEE addr\n");
1123 		for (i = 0; i < 8; i++)
1124 			__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1125 	}
1126 
1127 	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1128 		dev_vdbg(&lp->spi->dev,
1129 			 "at86rf230_set_hw_addr_filt called for panc change\n");
1130 		if (filt->pan_coord)
1131 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1132 		else
1133 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 #define AT86RF23X_MAX_TX_POWERS 0xF
1140 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1141 	400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600,
1142 	-800, -1200, -1700,
1143 };
1144 
1145 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1146 	300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700,
1147 	-900, -1200, -1700,
1148 };
1149 
1150 #define AT86RF212_MAX_TX_POWERS 0x1F
1151 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = {
1152 	500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
1153 	-800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
1154 	-1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
1155 };
1156 
1157 static int
1158 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm)
1159 {
1160 	u32 i;
1161 
1162 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1163 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1164 			return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i);
1165 	}
1166 
1167 	return -EINVAL;
1168 }
1169 
1170 static int
1171 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm)
1172 {
1173 	u32 i;
1174 
1175 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1176 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1177 			return at86rf230_write_subreg(lp, SR_TX_PWR_212, i);
1178 	}
1179 
1180 	return -EINVAL;
1181 }
1182 
1183 static int
1184 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm)
1185 {
1186 	struct at86rf230_local *lp = hw->priv;
1187 
1188 	return lp->data->set_txpower(lp, mbm);
1189 }
1190 
1191 static int
1192 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1193 {
1194 	struct at86rf230_local *lp = hw->priv;
1195 
1196 	return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1197 }
1198 
1199 static int
1200 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1201 		       const struct wpan_phy_cca *cca)
1202 {
1203 	struct at86rf230_local *lp = hw->priv;
1204 	u8 val;
1205 
1206 	/* mapping 802.15.4 to driver spec */
1207 	switch (cca->mode) {
1208 	case NL802154_CCA_ENERGY:
1209 		val = 1;
1210 		break;
1211 	case NL802154_CCA_CARRIER:
1212 		val = 2;
1213 		break;
1214 	case NL802154_CCA_ENERGY_CARRIER:
1215 		switch (cca->opt) {
1216 		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1217 			val = 3;
1218 			break;
1219 		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1220 			val = 0;
1221 			break;
1222 		default:
1223 			return -EINVAL;
1224 		}
1225 		break;
1226 	default:
1227 		return -EINVAL;
1228 	}
1229 
1230 	return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1231 }
1232 
1233 
1234 static int
1235 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
1236 {
1237 	struct at86rf230_local *lp = hw->priv;
1238 	u32 i;
1239 
1240 	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
1241 		if (hw->phy->supported.cca_ed_levels[i] == mbm)
1242 			return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i);
1243 	}
1244 
1245 	return -EINVAL;
1246 }
1247 
1248 static int
1249 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1250 			  u8 retries)
1251 {
1252 	struct at86rf230_local *lp = hw->priv;
1253 	int rc;
1254 
1255 	rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1256 	if (rc)
1257 		return rc;
1258 
1259 	rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1260 	if (rc)
1261 		return rc;
1262 
1263 	return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1264 }
1265 
1266 static int
1267 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1268 {
1269 	struct at86rf230_local *lp = hw->priv;
1270 	int rc = 0;
1271 
1272 	lp->tx_aret = retries >= 0;
1273 	lp->max_frame_retries = retries;
1274 
1275 	if (retries >= 0)
1276 		rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1277 
1278 	return rc;
1279 }
1280 
1281 static int
1282 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1283 {
1284 	struct at86rf230_local *lp = hw->priv;
1285 	int rc;
1286 
1287 	if (on) {
1288 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1289 		if (rc < 0)
1290 			return rc;
1291 
1292 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1293 		if (rc < 0)
1294 			return rc;
1295 	} else {
1296 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1297 		if (rc < 0)
1298 			return rc;
1299 
1300 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1301 		if (rc < 0)
1302 			return rc;
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 static const struct ieee802154_ops at86rf230_ops = {
1309 	.owner = THIS_MODULE,
1310 	.xmit_async = at86rf230_xmit,
1311 	.ed = at86rf230_ed,
1312 	.set_channel = at86rf230_channel,
1313 	.start = at86rf230_start,
1314 	.stop = at86rf230_stop,
1315 	.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1316 	.set_txpower = at86rf230_set_txpower,
1317 	.set_lbt = at86rf230_set_lbt,
1318 	.set_cca_mode = at86rf230_set_cca_mode,
1319 	.set_cca_ed_level = at86rf230_set_cca_ed_level,
1320 	.set_csma_params = at86rf230_set_csma_params,
1321 	.set_frame_retries = at86rf230_set_frame_retries,
1322 	.set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1323 };
1324 
1325 static struct at86rf2xx_chip_data at86rf233_data = {
1326 	.t_sleep_cycle = 330,
1327 	.t_channel_switch = 11,
1328 	.t_reset_to_off = 26,
1329 	.t_off_to_aack = 80,
1330 	.t_off_to_tx_on = 80,
1331 	.t_off_to_sleep = 35,
1332 	.t_sleep_to_off = 210,
1333 	.t_frame = 4096,
1334 	.t_p_ack = 545,
1335 	.rssi_base_val = -91,
1336 	.set_channel = at86rf23x_set_channel,
1337 	.set_txpower = at86rf23x_set_txpower,
1338 };
1339 
1340 static struct at86rf2xx_chip_data at86rf231_data = {
1341 	.t_sleep_cycle = 330,
1342 	.t_channel_switch = 24,
1343 	.t_reset_to_off = 37,
1344 	.t_off_to_aack = 110,
1345 	.t_off_to_tx_on = 110,
1346 	.t_off_to_sleep = 35,
1347 	.t_sleep_to_off = 380,
1348 	.t_frame = 4096,
1349 	.t_p_ack = 545,
1350 	.rssi_base_val = -91,
1351 	.set_channel = at86rf23x_set_channel,
1352 	.set_txpower = at86rf23x_set_txpower,
1353 };
1354 
1355 static struct at86rf2xx_chip_data at86rf212_data = {
1356 	.t_sleep_cycle = 330,
1357 	.t_channel_switch = 11,
1358 	.t_reset_to_off = 26,
1359 	.t_off_to_aack = 200,
1360 	.t_off_to_tx_on = 200,
1361 	.t_off_to_sleep = 35,
1362 	.t_sleep_to_off = 380,
1363 	.t_frame = 4096,
1364 	.t_p_ack = 545,
1365 	.rssi_base_val = -100,
1366 	.set_channel = at86rf212_set_channel,
1367 	.set_txpower = at86rf212_set_txpower,
1368 };
1369 
1370 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1371 {
1372 	int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1373 	unsigned int dvdd;
1374 	u8 csma_seed[2];
1375 
1376 	rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1377 	if (rc)
1378 		return rc;
1379 
1380 	irq_type = irq_get_trigger_type(lp->spi->irq);
1381 	if (irq_type == IRQ_TYPE_EDGE_RISING ||
1382 	    irq_type == IRQ_TYPE_EDGE_FALLING)
1383 		dev_warn(&lp->spi->dev,
1384 			 "Using edge triggered irq's are not recommended!\n");
1385 	if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1386 	    irq_type == IRQ_TYPE_LEVEL_LOW)
1387 		irq_pol = IRQ_ACTIVE_LOW;
1388 
1389 	rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1390 	if (rc)
1391 		return rc;
1392 
1393 	rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1394 	if (rc)
1395 		return rc;
1396 
1397 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1398 	if (rc)
1399 		return rc;
1400 
1401 	/* reset values differs in at86rf231 and at86rf233 */
1402 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1403 	if (rc)
1404 		return rc;
1405 
1406 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1407 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1408 	if (rc)
1409 		return rc;
1410 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1411 	if (rc)
1412 		return rc;
1413 
1414 	/* CLKM changes are applied immediately */
1415 	rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1416 	if (rc)
1417 		return rc;
1418 
1419 	/* Turn CLKM Off */
1420 	rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1421 	if (rc)
1422 		return rc;
1423 	/* Wait the next SLEEP cycle */
1424 	usleep_range(lp->data->t_sleep_cycle,
1425 		     lp->data->t_sleep_cycle + 100);
1426 
1427 	/* xtal_trim value is calculated by:
1428 	 * CL = 0.5 * (CX + CTRIM + CPAR)
1429 	 *
1430 	 * whereas:
1431 	 * CL = capacitor of used crystal
1432 	 * CX = connected capacitors at xtal pins
1433 	 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1434 	 *	  but this is different on each board setup. You need to fine
1435 	 *	  tuning this value via CTRIM.
1436 	 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1437 	 *	   0 pF upto 4.5 pF.
1438 	 *
1439 	 * Examples:
1440 	 * atben transceiver:
1441 	 *
1442 	 * CL = 8 pF
1443 	 * CX = 12 pF
1444 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1445 	 * CTRIM = 0.9 pF
1446 	 *
1447 	 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1448 	 *
1449 	 * xtal_trim = 0x3
1450 	 *
1451 	 * openlabs transceiver:
1452 	 *
1453 	 * CL = 16 pF
1454 	 * CX = 22 pF
1455 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1456 	 * CTRIM = 4.5 pF
1457 	 *
1458 	 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1459 	 *
1460 	 * xtal_trim = 0xf
1461 	 */
1462 	rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1463 	if (rc)
1464 		return rc;
1465 
1466 	rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1467 	if (rc)
1468 		return rc;
1469 	if (!dvdd) {
1470 		dev_err(&lp->spi->dev, "DVDD error\n");
1471 		return -EINVAL;
1472 	}
1473 
1474 	/* Force setting slotted operation bit to 0. Sometimes the atben
1475 	 * sets this bit and I don't know why. We set this always force
1476 	 * to zero while probing.
1477 	 */
1478 	return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1479 }
1480 
1481 static int
1482 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1483 		    u8 *xtal_trim)
1484 {
1485 	struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1486 	int ret;
1487 
1488 	if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1489 		if (!pdata)
1490 			return -ENOENT;
1491 
1492 		*rstn = pdata->rstn;
1493 		*slp_tr = pdata->slp_tr;
1494 		*xtal_trim = pdata->xtal_trim;
1495 		return 0;
1496 	}
1497 
1498 	*rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1499 	*slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1500 	ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1501 	if (ret < 0 && ret != -EINVAL)
1502 		return ret;
1503 
1504 	return 0;
1505 }
1506 
1507 static int
1508 at86rf230_detect_device(struct at86rf230_local *lp)
1509 {
1510 	unsigned int part, version, val;
1511 	u16 man_id = 0;
1512 	const char *chip;
1513 	int rc;
1514 
1515 	rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1516 	if (rc)
1517 		return rc;
1518 	man_id |= val;
1519 
1520 	rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1521 	if (rc)
1522 		return rc;
1523 	man_id |= (val << 8);
1524 
1525 	rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1526 	if (rc)
1527 		return rc;
1528 
1529 	rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1530 	if (rc)
1531 		return rc;
1532 
1533 	if (man_id != 0x001f) {
1534 		dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1535 			man_id >> 8, man_id & 0xFF);
1536 		return -EINVAL;
1537 	}
1538 
1539 	lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
1540 			IEEE802154_HW_CSMA_PARAMS |
1541 			IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
1542 			IEEE802154_HW_PROMISCUOUS;
1543 
1544 	lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
1545 			     WPAN_PHY_FLAG_CCA_ED_LEVEL |
1546 			     WPAN_PHY_FLAG_CCA_MODE;
1547 
1548 	lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1549 		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
1550 	lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
1551 		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
1552 
1553 	lp->hw->phy->supported.cca_ed_levels = at86rf23x_ed_levels;
1554 	lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf23x_ed_levels);
1555 
1556 	lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1557 
1558 	switch (part) {
1559 	case 2:
1560 		chip = "at86rf230";
1561 		rc = -ENOTSUPP;
1562 		goto not_supp;
1563 	case 3:
1564 		chip = "at86rf231";
1565 		lp->data = &at86rf231_data;
1566 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1567 		lp->hw->phy->current_channel = 11;
1568 		lp->hw->phy->symbol_duration = 16;
1569 		lp->hw->phy->supported.tx_powers = at86rf231_powers;
1570 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers);
1571 		break;
1572 	case 7:
1573 		chip = "at86rf212";
1574 		lp->data = &at86rf212_data;
1575 		lp->hw->flags |= IEEE802154_HW_LBT;
1576 		lp->hw->phy->supported.channels[0] = 0x00007FF;
1577 		lp->hw->phy->supported.channels[2] = 0x00007FF;
1578 		lp->hw->phy->current_channel = 5;
1579 		lp->hw->phy->symbol_duration = 25;
1580 		lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH;
1581 		lp->hw->phy->supported.tx_powers = at86rf212_powers;
1582 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers);
1583 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1584 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1585 		break;
1586 	case 11:
1587 		chip = "at86rf233";
1588 		lp->data = &at86rf233_data;
1589 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1590 		lp->hw->phy->current_channel = 13;
1591 		lp->hw->phy->symbol_duration = 16;
1592 		lp->hw->phy->supported.tx_powers = at86rf233_powers;
1593 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers);
1594 		break;
1595 	default:
1596 		chip = "unknown";
1597 		rc = -ENOTSUPP;
1598 		goto not_supp;
1599 	}
1600 
1601 	lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7];
1602 	lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0];
1603 
1604 not_supp:
1605 	dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1606 
1607 	return rc;
1608 }
1609 
1610 static void
1611 at86rf230_setup_spi_messages(struct at86rf230_local *lp)
1612 {
1613 	lp->state.lp = lp;
1614 	lp->state.irq = lp->spi->irq;
1615 	spi_message_init(&lp->state.msg);
1616 	lp->state.msg.context = &lp->state;
1617 	lp->state.trx.len = 2;
1618 	lp->state.trx.tx_buf = lp->state.buf;
1619 	lp->state.trx.rx_buf = lp->state.buf;
1620 	spi_message_add_tail(&lp->state.trx, &lp->state.msg);
1621 	hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1622 	lp->state.timer.function = at86rf230_async_state_timer;
1623 
1624 	lp->irq.lp = lp;
1625 	lp->irq.irq = lp->spi->irq;
1626 	spi_message_init(&lp->irq.msg);
1627 	lp->irq.msg.context = &lp->irq;
1628 	lp->irq.trx.len = 2;
1629 	lp->irq.trx.tx_buf = lp->irq.buf;
1630 	lp->irq.trx.rx_buf = lp->irq.buf;
1631 	spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
1632 	hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1633 	lp->irq.timer.function = at86rf230_async_state_timer;
1634 
1635 	lp->tx.lp = lp;
1636 	lp->tx.irq = lp->spi->irq;
1637 	spi_message_init(&lp->tx.msg);
1638 	lp->tx.msg.context = &lp->tx;
1639 	lp->tx.trx.len = 2;
1640 	lp->tx.trx.tx_buf = lp->tx.buf;
1641 	lp->tx.trx.rx_buf = lp->tx.buf;
1642 	spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
1643 	hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1644 	lp->tx.timer.function = at86rf230_async_state_timer;
1645 }
1646 
1647 static int at86rf230_probe(struct spi_device *spi)
1648 {
1649 	struct ieee802154_hw *hw;
1650 	struct at86rf230_local *lp;
1651 	unsigned int status;
1652 	int rc, irq_type, rstn, slp_tr;
1653 	u8 xtal_trim = 0;
1654 
1655 	if (!spi->irq) {
1656 		dev_err(&spi->dev, "no IRQ specified\n");
1657 		return -EINVAL;
1658 	}
1659 
1660 	rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1661 	if (rc < 0) {
1662 		dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1663 		return rc;
1664 	}
1665 
1666 	if (gpio_is_valid(rstn)) {
1667 		rc = devm_gpio_request_one(&spi->dev, rstn,
1668 					   GPIOF_OUT_INIT_HIGH, "rstn");
1669 		if (rc)
1670 			return rc;
1671 	}
1672 
1673 	if (gpio_is_valid(slp_tr)) {
1674 		rc = devm_gpio_request_one(&spi->dev, slp_tr,
1675 					   GPIOF_OUT_INIT_LOW, "slp_tr");
1676 		if (rc)
1677 			return rc;
1678 	}
1679 
1680 	/* Reset */
1681 	if (gpio_is_valid(rstn)) {
1682 		udelay(1);
1683 		gpio_set_value(rstn, 0);
1684 		udelay(1);
1685 		gpio_set_value(rstn, 1);
1686 		usleep_range(120, 240);
1687 	}
1688 
1689 	hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1690 	if (!hw)
1691 		return -ENOMEM;
1692 
1693 	lp = hw->priv;
1694 	lp->hw = hw;
1695 	lp->spi = spi;
1696 	lp->slp_tr = slp_tr;
1697 	hw->parent = &spi->dev;
1698 	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1699 
1700 	lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1701 	if (IS_ERR(lp->regmap)) {
1702 		rc = PTR_ERR(lp->regmap);
1703 		dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1704 			rc);
1705 		goto free_dev;
1706 	}
1707 
1708 	at86rf230_setup_spi_messages(lp);
1709 
1710 	rc = at86rf230_detect_device(lp);
1711 	if (rc < 0)
1712 		goto free_dev;
1713 
1714 	init_completion(&lp->state_complete);
1715 
1716 	spi_set_drvdata(spi, lp);
1717 
1718 	rc = at86rf230_hw_init(lp, xtal_trim);
1719 	if (rc)
1720 		goto free_dev;
1721 
1722 	/* Read irq status register to reset irq line */
1723 	rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1724 	if (rc)
1725 		goto free_dev;
1726 
1727 	irq_type = irq_get_trigger_type(spi->irq);
1728 	if (!irq_type)
1729 		irq_type = IRQF_TRIGGER_HIGH;
1730 
1731 	rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1732 			      IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1733 	if (rc)
1734 		goto free_dev;
1735 
1736 	/* disable_irq by default and wait for starting hardware */
1737 	disable_irq(spi->irq);
1738 
1739 	/* going into sleep by default */
1740 	at86rf230_sleep(lp);
1741 
1742 	rc = ieee802154_register_hw(lp->hw);
1743 	if (rc)
1744 		goto free_dev;
1745 
1746 	return rc;
1747 
1748 free_dev:
1749 	ieee802154_free_hw(lp->hw);
1750 
1751 	return rc;
1752 }
1753 
1754 static int at86rf230_remove(struct spi_device *spi)
1755 {
1756 	struct at86rf230_local *lp = spi_get_drvdata(spi);
1757 
1758 	/* mask all at86rf230 irq's */
1759 	at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1760 	ieee802154_unregister_hw(lp->hw);
1761 	ieee802154_free_hw(lp->hw);
1762 	dev_dbg(&spi->dev, "unregistered at86rf230\n");
1763 
1764 	return 0;
1765 }
1766 
1767 static const struct of_device_id at86rf230_of_match[] = {
1768 	{ .compatible = "atmel,at86rf230", },
1769 	{ .compatible = "atmel,at86rf231", },
1770 	{ .compatible = "atmel,at86rf233", },
1771 	{ .compatible = "atmel,at86rf212", },
1772 	{ },
1773 };
1774 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1775 
1776 static const struct spi_device_id at86rf230_device_id[] = {
1777 	{ .name = "at86rf230", },
1778 	{ .name = "at86rf231", },
1779 	{ .name = "at86rf233", },
1780 	{ .name = "at86rf212", },
1781 	{ },
1782 };
1783 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1784 
1785 static struct spi_driver at86rf230_driver = {
1786 	.id_table = at86rf230_device_id,
1787 	.driver = {
1788 		.of_match_table = of_match_ptr(at86rf230_of_match),
1789 		.name	= "at86rf230",
1790 		.owner	= THIS_MODULE,
1791 	},
1792 	.probe      = at86rf230_probe,
1793 	.remove     = at86rf230_remove,
1794 };
1795 
1796 module_spi_driver(at86rf230_driver);
1797 
1798 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1799 MODULE_LICENSE("GPL v2");
1800