1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AT86RF230/RF231 driver 4 * 5 * Copyright (C) 2009-2012 Siemens AG 6 * 7 * Written by: 8 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> 9 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> 10 * Alexander Aring <aar@pengutronix.de> 11 */ 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/hrtimer.h> 15 #include <linux/jiffies.h> 16 #include <linux/interrupt.h> 17 #include <linux/irq.h> 18 #include <linux/gpio.h> 19 #include <linux/delay.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spi/at86rf230.h> 22 #include <linux/regmap.h> 23 #include <linux/skbuff.h> 24 #include <linux/of_gpio.h> 25 #include <linux/ieee802154.h> 26 #include <linux/debugfs.h> 27 28 #include <net/mac802154.h> 29 #include <net/cfg802154.h> 30 31 #include "at86rf230.h" 32 33 struct at86rf230_local; 34 /* at86rf2xx chip depend data. 35 * All timings are in us. 36 */ 37 struct at86rf2xx_chip_data { 38 u16 t_sleep_cycle; 39 u16 t_channel_switch; 40 u16 t_reset_to_off; 41 u16 t_off_to_aack; 42 u16 t_off_to_tx_on; 43 u16 t_off_to_sleep; 44 u16 t_sleep_to_off; 45 u16 t_frame; 46 u16 t_p_ack; 47 int rssi_base_val; 48 49 int (*set_channel)(struct at86rf230_local *, u8, u8); 50 int (*set_txpower)(struct at86rf230_local *, s32); 51 }; 52 53 #define AT86RF2XX_MAX_BUF (127 + 3) 54 /* tx retries to access the TX_ON state 55 * if it's above then force change will be started. 56 * 57 * We assume the max_frame_retries (7) value of 802.15.4 here. 58 */ 59 #define AT86RF2XX_MAX_TX_RETRIES 7 60 /* We use the recommended 5 minutes timeout to recalibrate */ 61 #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ) 62 63 struct at86rf230_state_change { 64 struct at86rf230_local *lp; 65 int irq; 66 67 struct hrtimer timer; 68 struct spi_message msg; 69 struct spi_transfer trx; 70 u8 buf[AT86RF2XX_MAX_BUF]; 71 72 void (*complete)(void *context); 73 u8 from_state; 74 u8 to_state; 75 76 bool free; 77 }; 78 79 struct at86rf230_trac { 80 u64 success; 81 u64 success_data_pending; 82 u64 success_wait_for_ack; 83 u64 channel_access_failure; 84 u64 no_ack; 85 u64 invalid; 86 }; 87 88 struct at86rf230_local { 89 struct spi_device *spi; 90 91 struct ieee802154_hw *hw; 92 struct at86rf2xx_chip_data *data; 93 struct regmap *regmap; 94 int slp_tr; 95 bool sleep; 96 97 struct completion state_complete; 98 struct at86rf230_state_change state; 99 100 unsigned long cal_timeout; 101 bool is_tx; 102 bool is_tx_from_off; 103 u8 tx_retry; 104 struct sk_buff *tx_skb; 105 struct at86rf230_state_change tx; 106 107 struct at86rf230_trac trac; 108 }; 109 110 #define AT86RF2XX_NUMREGS 0x3F 111 112 static void 113 at86rf230_async_state_change(struct at86rf230_local *lp, 114 struct at86rf230_state_change *ctx, 115 const u8 state, void (*complete)(void *context)); 116 117 static inline void 118 at86rf230_sleep(struct at86rf230_local *lp) 119 { 120 if (gpio_is_valid(lp->slp_tr)) { 121 gpio_set_value(lp->slp_tr, 1); 122 usleep_range(lp->data->t_off_to_sleep, 123 lp->data->t_off_to_sleep + 10); 124 lp->sleep = true; 125 } 126 } 127 128 static inline void 129 at86rf230_awake(struct at86rf230_local *lp) 130 { 131 if (gpio_is_valid(lp->slp_tr)) { 132 gpio_set_value(lp->slp_tr, 0); 133 usleep_range(lp->data->t_sleep_to_off, 134 lp->data->t_sleep_to_off + 100); 135 lp->sleep = false; 136 } 137 } 138 139 static inline int 140 __at86rf230_write(struct at86rf230_local *lp, 141 unsigned int addr, unsigned int data) 142 { 143 bool sleep = lp->sleep; 144 int ret; 145 146 /* awake for register setting if sleep */ 147 if (sleep) 148 at86rf230_awake(lp); 149 150 ret = regmap_write(lp->regmap, addr, data); 151 152 /* sleep again if was sleeping */ 153 if (sleep) 154 at86rf230_sleep(lp); 155 156 return ret; 157 } 158 159 static inline int 160 __at86rf230_read(struct at86rf230_local *lp, 161 unsigned int addr, unsigned int *data) 162 { 163 bool sleep = lp->sleep; 164 int ret; 165 166 /* awake for register setting if sleep */ 167 if (sleep) 168 at86rf230_awake(lp); 169 170 ret = regmap_read(lp->regmap, addr, data); 171 172 /* sleep again if was sleeping */ 173 if (sleep) 174 at86rf230_sleep(lp); 175 176 return ret; 177 } 178 179 static inline int 180 at86rf230_read_subreg(struct at86rf230_local *lp, 181 unsigned int addr, unsigned int mask, 182 unsigned int shift, unsigned int *data) 183 { 184 int rc; 185 186 rc = __at86rf230_read(lp, addr, data); 187 if (!rc) 188 *data = (*data & mask) >> shift; 189 190 return rc; 191 } 192 193 static inline int 194 at86rf230_write_subreg(struct at86rf230_local *lp, 195 unsigned int addr, unsigned int mask, 196 unsigned int shift, unsigned int data) 197 { 198 bool sleep = lp->sleep; 199 int ret; 200 201 /* awake for register setting if sleep */ 202 if (sleep) 203 at86rf230_awake(lp); 204 205 ret = regmap_update_bits(lp->regmap, addr, mask, data << shift); 206 207 /* sleep again if was sleeping */ 208 if (sleep) 209 at86rf230_sleep(lp); 210 211 return ret; 212 } 213 214 static inline void 215 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp) 216 { 217 gpio_set_value(lp->slp_tr, 1); 218 udelay(1); 219 gpio_set_value(lp->slp_tr, 0); 220 } 221 222 static bool 223 at86rf230_reg_writeable(struct device *dev, unsigned int reg) 224 { 225 switch (reg) { 226 case RG_TRX_STATE: 227 case RG_TRX_CTRL_0: 228 case RG_TRX_CTRL_1: 229 case RG_PHY_TX_PWR: 230 case RG_PHY_ED_LEVEL: 231 case RG_PHY_CC_CCA: 232 case RG_CCA_THRES: 233 case RG_RX_CTRL: 234 case RG_SFD_VALUE: 235 case RG_TRX_CTRL_2: 236 case RG_ANT_DIV: 237 case RG_IRQ_MASK: 238 case RG_VREG_CTRL: 239 case RG_BATMON: 240 case RG_XOSC_CTRL: 241 case RG_RX_SYN: 242 case RG_XAH_CTRL_1: 243 case RG_FTN_CTRL: 244 case RG_PLL_CF: 245 case RG_PLL_DCU: 246 case RG_SHORT_ADDR_0: 247 case RG_SHORT_ADDR_1: 248 case RG_PAN_ID_0: 249 case RG_PAN_ID_1: 250 case RG_IEEE_ADDR_0: 251 case RG_IEEE_ADDR_1: 252 case RG_IEEE_ADDR_2: 253 case RG_IEEE_ADDR_3: 254 case RG_IEEE_ADDR_4: 255 case RG_IEEE_ADDR_5: 256 case RG_IEEE_ADDR_6: 257 case RG_IEEE_ADDR_7: 258 case RG_XAH_CTRL_0: 259 case RG_CSMA_SEED_0: 260 case RG_CSMA_SEED_1: 261 case RG_CSMA_BE: 262 return true; 263 default: 264 return false; 265 } 266 } 267 268 static bool 269 at86rf230_reg_readable(struct device *dev, unsigned int reg) 270 { 271 bool rc; 272 273 /* all writeable are also readable */ 274 rc = at86rf230_reg_writeable(dev, reg); 275 if (rc) 276 return rc; 277 278 /* readonly regs */ 279 switch (reg) { 280 case RG_TRX_STATUS: 281 case RG_PHY_RSSI: 282 case RG_IRQ_STATUS: 283 case RG_PART_NUM: 284 case RG_VERSION_NUM: 285 case RG_MAN_ID_1: 286 case RG_MAN_ID_0: 287 return true; 288 default: 289 return false; 290 } 291 } 292 293 static bool 294 at86rf230_reg_volatile(struct device *dev, unsigned int reg) 295 { 296 /* can be changed during runtime */ 297 switch (reg) { 298 case RG_TRX_STATUS: 299 case RG_TRX_STATE: 300 case RG_PHY_RSSI: 301 case RG_PHY_ED_LEVEL: 302 case RG_IRQ_STATUS: 303 case RG_VREG_CTRL: 304 case RG_PLL_CF: 305 case RG_PLL_DCU: 306 return true; 307 default: 308 return false; 309 } 310 } 311 312 static bool 313 at86rf230_reg_precious(struct device *dev, unsigned int reg) 314 { 315 /* don't clear irq line on read */ 316 switch (reg) { 317 case RG_IRQ_STATUS: 318 return true; 319 default: 320 return false; 321 } 322 } 323 324 static const struct regmap_config at86rf230_regmap_spi_config = { 325 .reg_bits = 8, 326 .val_bits = 8, 327 .write_flag_mask = CMD_REG | CMD_WRITE, 328 .read_flag_mask = CMD_REG, 329 .cache_type = REGCACHE_RBTREE, 330 .max_register = AT86RF2XX_NUMREGS, 331 .writeable_reg = at86rf230_reg_writeable, 332 .readable_reg = at86rf230_reg_readable, 333 .volatile_reg = at86rf230_reg_volatile, 334 .precious_reg = at86rf230_reg_precious, 335 }; 336 337 static void 338 at86rf230_async_error_recover_complete(void *context) 339 { 340 struct at86rf230_state_change *ctx = context; 341 struct at86rf230_local *lp = ctx->lp; 342 343 if (ctx->free) 344 kfree(ctx); 345 346 ieee802154_wake_queue(lp->hw); 347 } 348 349 static void 350 at86rf230_async_error_recover(void *context) 351 { 352 struct at86rf230_state_change *ctx = context; 353 struct at86rf230_local *lp = ctx->lp; 354 355 lp->is_tx = 0; 356 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, 357 at86rf230_async_error_recover_complete); 358 } 359 360 static inline void 361 at86rf230_async_error(struct at86rf230_local *lp, 362 struct at86rf230_state_change *ctx, int rc) 363 { 364 dev_err(&lp->spi->dev, "spi_async error %d\n", rc); 365 366 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF, 367 at86rf230_async_error_recover); 368 } 369 370 /* Generic function to get some register value in async mode */ 371 static void 372 at86rf230_async_read_reg(struct at86rf230_local *lp, u8 reg, 373 struct at86rf230_state_change *ctx, 374 void (*complete)(void *context)) 375 { 376 int rc; 377 378 u8 *tx_buf = ctx->buf; 379 380 tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG; 381 ctx->msg.complete = complete; 382 rc = spi_async(lp->spi, &ctx->msg); 383 if (rc) 384 at86rf230_async_error(lp, ctx, rc); 385 } 386 387 static void 388 at86rf230_async_write_reg(struct at86rf230_local *lp, u8 reg, u8 val, 389 struct at86rf230_state_change *ctx, 390 void (*complete)(void *context)) 391 { 392 int rc; 393 394 ctx->buf[0] = (reg & CMD_REG_MASK) | CMD_REG | CMD_WRITE; 395 ctx->buf[1] = val; 396 ctx->msg.complete = complete; 397 rc = spi_async(lp->spi, &ctx->msg); 398 if (rc) 399 at86rf230_async_error(lp, ctx, rc); 400 } 401 402 static void 403 at86rf230_async_state_assert(void *context) 404 { 405 struct at86rf230_state_change *ctx = context; 406 struct at86rf230_local *lp = ctx->lp; 407 const u8 *buf = ctx->buf; 408 const u8 trx_state = buf[1] & TRX_STATE_MASK; 409 410 /* Assert state change */ 411 if (trx_state != ctx->to_state) { 412 /* Special handling if transceiver state is in 413 * STATE_BUSY_RX_AACK and a SHR was detected. 414 */ 415 if (trx_state == STATE_BUSY_RX_AACK) { 416 /* Undocumented race condition. If we send a state 417 * change to STATE_RX_AACK_ON the transceiver could 418 * change his state automatically to STATE_BUSY_RX_AACK 419 * if a SHR was detected. This is not an error, but we 420 * can't assert this. 421 */ 422 if (ctx->to_state == STATE_RX_AACK_ON) 423 goto done; 424 425 /* If we change to STATE_TX_ON without forcing and 426 * transceiver state is STATE_BUSY_RX_AACK, we wait 427 * 'tFrame + tPAck' receiving time. In this time the 428 * PDU should be received. If the transceiver is still 429 * in STATE_BUSY_RX_AACK, we run a force state change 430 * to STATE_TX_ON. This is a timeout handling, if the 431 * transceiver stucks in STATE_BUSY_RX_AACK. 432 * 433 * Additional we do several retries to try to get into 434 * TX_ON state without forcing. If the retries are 435 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we 436 * will do a force change. 437 */ 438 if (ctx->to_state == STATE_TX_ON || 439 ctx->to_state == STATE_TRX_OFF) { 440 u8 state = ctx->to_state; 441 442 if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES) 443 state = STATE_FORCE_TRX_OFF; 444 lp->tx_retry++; 445 446 at86rf230_async_state_change(lp, ctx, state, 447 ctx->complete); 448 return; 449 } 450 } 451 452 dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n", 453 ctx->from_state, ctx->to_state, trx_state); 454 } 455 456 done: 457 if (ctx->complete) 458 ctx->complete(context); 459 } 460 461 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer) 462 { 463 struct at86rf230_state_change *ctx = 464 container_of(timer, struct at86rf230_state_change, timer); 465 struct at86rf230_local *lp = ctx->lp; 466 467 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 468 at86rf230_async_state_assert); 469 470 return HRTIMER_NORESTART; 471 } 472 473 /* Do state change timing delay. */ 474 static void 475 at86rf230_async_state_delay(void *context) 476 { 477 struct at86rf230_state_change *ctx = context; 478 struct at86rf230_local *lp = ctx->lp; 479 struct at86rf2xx_chip_data *c = lp->data; 480 bool force = false; 481 ktime_t tim; 482 483 /* The force state changes are will show as normal states in the 484 * state status subregister. We change the to_state to the 485 * corresponding one and remember if it was a force change, this 486 * differs if we do a state change from STATE_BUSY_RX_AACK. 487 */ 488 switch (ctx->to_state) { 489 case STATE_FORCE_TX_ON: 490 ctx->to_state = STATE_TX_ON; 491 force = true; 492 break; 493 case STATE_FORCE_TRX_OFF: 494 ctx->to_state = STATE_TRX_OFF; 495 force = true; 496 break; 497 default: 498 break; 499 } 500 501 switch (ctx->from_state) { 502 case STATE_TRX_OFF: 503 switch (ctx->to_state) { 504 case STATE_RX_AACK_ON: 505 tim = c->t_off_to_aack * NSEC_PER_USEC; 506 /* state change from TRX_OFF to RX_AACK_ON to do a 507 * calibration, we need to reset the timeout for the 508 * next one. 509 */ 510 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 511 goto change; 512 case STATE_TX_ARET_ON: 513 case STATE_TX_ON: 514 tim = c->t_off_to_tx_on * NSEC_PER_USEC; 515 /* state change from TRX_OFF to TX_ON or ARET_ON to do 516 * a calibration, we need to reset the timeout for the 517 * next one. 518 */ 519 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 520 goto change; 521 default: 522 break; 523 } 524 break; 525 case STATE_BUSY_RX_AACK: 526 switch (ctx->to_state) { 527 case STATE_TRX_OFF: 528 case STATE_TX_ON: 529 /* Wait for worst case receiving time if we 530 * didn't make a force change from BUSY_RX_AACK 531 * to TX_ON or TRX_OFF. 532 */ 533 if (!force) { 534 tim = (c->t_frame + c->t_p_ack) * NSEC_PER_USEC; 535 goto change; 536 } 537 break; 538 default: 539 break; 540 } 541 break; 542 /* Default value, means RESET state */ 543 case STATE_P_ON: 544 switch (ctx->to_state) { 545 case STATE_TRX_OFF: 546 tim = c->t_reset_to_off * NSEC_PER_USEC; 547 goto change; 548 default: 549 break; 550 } 551 break; 552 default: 553 break; 554 } 555 556 /* Default delay is 1us in the most cases */ 557 udelay(1); 558 at86rf230_async_state_timer(&ctx->timer); 559 return; 560 561 change: 562 hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL); 563 } 564 565 static void 566 at86rf230_async_state_change_start(void *context) 567 { 568 struct at86rf230_state_change *ctx = context; 569 struct at86rf230_local *lp = ctx->lp; 570 u8 *buf = ctx->buf; 571 const u8 trx_state = buf[1] & TRX_STATE_MASK; 572 573 /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */ 574 if (trx_state == STATE_TRANSITION_IN_PROGRESS) { 575 udelay(1); 576 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 577 at86rf230_async_state_change_start); 578 return; 579 } 580 581 /* Check if we already are in the state which we change in */ 582 if (trx_state == ctx->to_state) { 583 if (ctx->complete) 584 ctx->complete(context); 585 return; 586 } 587 588 /* Set current state to the context of state change */ 589 ctx->from_state = trx_state; 590 591 /* Going into the next step for a state change which do a timing 592 * relevant delay. 593 */ 594 at86rf230_async_write_reg(lp, RG_TRX_STATE, ctx->to_state, ctx, 595 at86rf230_async_state_delay); 596 } 597 598 static void 599 at86rf230_async_state_change(struct at86rf230_local *lp, 600 struct at86rf230_state_change *ctx, 601 const u8 state, void (*complete)(void *context)) 602 { 603 /* Initialization for the state change context */ 604 ctx->to_state = state; 605 ctx->complete = complete; 606 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 607 at86rf230_async_state_change_start); 608 } 609 610 static void 611 at86rf230_sync_state_change_complete(void *context) 612 { 613 struct at86rf230_state_change *ctx = context; 614 struct at86rf230_local *lp = ctx->lp; 615 616 complete(&lp->state_complete); 617 } 618 619 /* This function do a sync framework above the async state change. 620 * Some callbacks of the IEEE 802.15.4 driver interface need to be 621 * handled synchronously. 622 */ 623 static int 624 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state) 625 { 626 unsigned long rc; 627 628 at86rf230_async_state_change(lp, &lp->state, state, 629 at86rf230_sync_state_change_complete); 630 631 rc = wait_for_completion_timeout(&lp->state_complete, 632 msecs_to_jiffies(100)); 633 if (!rc) { 634 at86rf230_async_error(lp, &lp->state, -ETIMEDOUT); 635 return -ETIMEDOUT; 636 } 637 638 return 0; 639 } 640 641 static void 642 at86rf230_tx_complete(void *context) 643 { 644 struct at86rf230_state_change *ctx = context; 645 struct at86rf230_local *lp = ctx->lp; 646 647 ieee802154_xmit_complete(lp->hw, lp->tx_skb, false); 648 kfree(ctx); 649 } 650 651 static void 652 at86rf230_tx_on(void *context) 653 { 654 struct at86rf230_state_change *ctx = context; 655 struct at86rf230_local *lp = ctx->lp; 656 657 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, 658 at86rf230_tx_complete); 659 } 660 661 static void 662 at86rf230_tx_trac_check(void *context) 663 { 664 struct at86rf230_state_change *ctx = context; 665 struct at86rf230_local *lp = ctx->lp; 666 667 if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) { 668 u8 trac = TRAC_MASK(ctx->buf[1]); 669 670 switch (trac) { 671 case TRAC_SUCCESS: 672 lp->trac.success++; 673 break; 674 case TRAC_SUCCESS_DATA_PENDING: 675 lp->trac.success_data_pending++; 676 break; 677 case TRAC_CHANNEL_ACCESS_FAILURE: 678 lp->trac.channel_access_failure++; 679 break; 680 case TRAC_NO_ACK: 681 lp->trac.no_ack++; 682 break; 683 case TRAC_INVALID: 684 lp->trac.invalid++; 685 break; 686 default: 687 WARN_ONCE(1, "received tx trac status %d\n", trac); 688 break; 689 } 690 } 691 692 at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on); 693 } 694 695 static void 696 at86rf230_rx_read_frame_complete(void *context) 697 { 698 struct at86rf230_state_change *ctx = context; 699 struct at86rf230_local *lp = ctx->lp; 700 const u8 *buf = ctx->buf; 701 struct sk_buff *skb; 702 u8 len, lqi; 703 704 len = buf[1]; 705 if (!ieee802154_is_valid_psdu_len(len)) { 706 dev_vdbg(&lp->spi->dev, "corrupted frame received\n"); 707 len = IEEE802154_MTU; 708 } 709 lqi = buf[2 + len]; 710 711 skb = dev_alloc_skb(IEEE802154_MTU); 712 if (!skb) { 713 dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n"); 714 kfree(ctx); 715 return; 716 } 717 718 skb_put_data(skb, buf + 2, len); 719 ieee802154_rx_irqsafe(lp->hw, skb, lqi); 720 kfree(ctx); 721 } 722 723 static void 724 at86rf230_rx_trac_check(void *context) 725 { 726 struct at86rf230_state_change *ctx = context; 727 struct at86rf230_local *lp = ctx->lp; 728 u8 *buf = ctx->buf; 729 int rc; 730 731 if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) { 732 u8 trac = TRAC_MASK(buf[1]); 733 734 switch (trac) { 735 case TRAC_SUCCESS: 736 lp->trac.success++; 737 break; 738 case TRAC_SUCCESS_WAIT_FOR_ACK: 739 lp->trac.success_wait_for_ack++; 740 break; 741 case TRAC_INVALID: 742 lp->trac.invalid++; 743 break; 744 default: 745 WARN_ONCE(1, "received rx trac status %d\n", trac); 746 break; 747 } 748 } 749 750 buf[0] = CMD_FB; 751 ctx->trx.len = AT86RF2XX_MAX_BUF; 752 ctx->msg.complete = at86rf230_rx_read_frame_complete; 753 rc = spi_async(lp->spi, &ctx->msg); 754 if (rc) { 755 ctx->trx.len = 2; 756 at86rf230_async_error(lp, ctx, rc); 757 } 758 } 759 760 static void 761 at86rf230_irq_trx_end(void *context) 762 { 763 struct at86rf230_state_change *ctx = context; 764 struct at86rf230_local *lp = ctx->lp; 765 766 if (lp->is_tx) { 767 lp->is_tx = 0; 768 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx, 769 at86rf230_tx_trac_check); 770 } else { 771 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx, 772 at86rf230_rx_trac_check); 773 } 774 } 775 776 static void 777 at86rf230_irq_status(void *context) 778 { 779 struct at86rf230_state_change *ctx = context; 780 struct at86rf230_local *lp = ctx->lp; 781 const u8 *buf = ctx->buf; 782 u8 irq = buf[1]; 783 784 enable_irq(lp->spi->irq); 785 786 if (irq & IRQ_TRX_END) { 787 at86rf230_irq_trx_end(ctx); 788 } else { 789 dev_err(&lp->spi->dev, "not supported irq %02x received\n", 790 irq); 791 kfree(ctx); 792 } 793 } 794 795 static void 796 at86rf230_setup_spi_messages(struct at86rf230_local *lp, 797 struct at86rf230_state_change *state) 798 { 799 state->lp = lp; 800 state->irq = lp->spi->irq; 801 spi_message_init(&state->msg); 802 state->msg.context = state; 803 state->trx.len = 2; 804 state->trx.tx_buf = state->buf; 805 state->trx.rx_buf = state->buf; 806 spi_message_add_tail(&state->trx, &state->msg); 807 hrtimer_init(&state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 808 state->timer.function = at86rf230_async_state_timer; 809 } 810 811 static irqreturn_t at86rf230_isr(int irq, void *data) 812 { 813 struct at86rf230_local *lp = data; 814 struct at86rf230_state_change *ctx; 815 int rc; 816 817 disable_irq_nosync(irq); 818 819 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 820 if (!ctx) { 821 enable_irq(irq); 822 return IRQ_NONE; 823 } 824 825 at86rf230_setup_spi_messages(lp, ctx); 826 /* tell on error handling to free ctx */ 827 ctx->free = true; 828 829 ctx->buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG; 830 ctx->msg.complete = at86rf230_irq_status; 831 rc = spi_async(lp->spi, &ctx->msg); 832 if (rc) { 833 at86rf230_async_error(lp, ctx, rc); 834 enable_irq(irq); 835 return IRQ_NONE; 836 } 837 838 return IRQ_HANDLED; 839 } 840 841 static void 842 at86rf230_write_frame_complete(void *context) 843 { 844 struct at86rf230_state_change *ctx = context; 845 struct at86rf230_local *lp = ctx->lp; 846 847 ctx->trx.len = 2; 848 849 if (gpio_is_valid(lp->slp_tr)) 850 at86rf230_slp_tr_rising_edge(lp); 851 else 852 at86rf230_async_write_reg(lp, RG_TRX_STATE, STATE_BUSY_TX, ctx, 853 NULL); 854 } 855 856 static void 857 at86rf230_write_frame(void *context) 858 { 859 struct at86rf230_state_change *ctx = context; 860 struct at86rf230_local *lp = ctx->lp; 861 struct sk_buff *skb = lp->tx_skb; 862 u8 *buf = ctx->buf; 863 int rc; 864 865 lp->is_tx = 1; 866 867 buf[0] = CMD_FB | CMD_WRITE; 868 buf[1] = skb->len + 2; 869 memcpy(buf + 2, skb->data, skb->len); 870 ctx->trx.len = skb->len + 2; 871 ctx->msg.complete = at86rf230_write_frame_complete; 872 rc = spi_async(lp->spi, &ctx->msg); 873 if (rc) { 874 ctx->trx.len = 2; 875 at86rf230_async_error(lp, ctx, rc); 876 } 877 } 878 879 static void 880 at86rf230_xmit_tx_on(void *context) 881 { 882 struct at86rf230_state_change *ctx = context; 883 struct at86rf230_local *lp = ctx->lp; 884 885 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, 886 at86rf230_write_frame); 887 } 888 889 static void 890 at86rf230_xmit_start(void *context) 891 { 892 struct at86rf230_state_change *ctx = context; 893 struct at86rf230_local *lp = ctx->lp; 894 895 /* check if we change from off state */ 896 if (lp->is_tx_from_off) 897 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, 898 at86rf230_write_frame); 899 else 900 at86rf230_async_state_change(lp, ctx, STATE_TX_ON, 901 at86rf230_xmit_tx_on); 902 } 903 904 static int 905 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) 906 { 907 struct at86rf230_local *lp = hw->priv; 908 struct at86rf230_state_change *ctx = &lp->tx; 909 910 lp->tx_skb = skb; 911 lp->tx_retry = 0; 912 913 /* After 5 minutes in PLL and the same frequency we run again the 914 * calibration loops which is recommended by at86rf2xx datasheets. 915 * 916 * The calibration is initiate by a state change from TRX_OFF 917 * to TX_ON, the lp->cal_timeout should be reinit by state_delay 918 * function then to start in the next 5 minutes. 919 */ 920 if (time_is_before_jiffies(lp->cal_timeout)) { 921 lp->is_tx_from_off = true; 922 at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF, 923 at86rf230_xmit_start); 924 } else { 925 lp->is_tx_from_off = false; 926 at86rf230_xmit_start(ctx); 927 } 928 929 return 0; 930 } 931 932 static int 933 at86rf230_ed(struct ieee802154_hw *hw, u8 *level) 934 { 935 WARN_ON(!level); 936 *level = 0xbe; 937 return 0; 938 } 939 940 static int 941 at86rf230_start(struct ieee802154_hw *hw) 942 { 943 struct at86rf230_local *lp = hw->priv; 944 945 /* reset trac stats on start */ 946 if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) 947 memset(&lp->trac, 0, sizeof(struct at86rf230_trac)); 948 949 at86rf230_awake(lp); 950 enable_irq(lp->spi->irq); 951 952 return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON); 953 } 954 955 static void 956 at86rf230_stop(struct ieee802154_hw *hw) 957 { 958 struct at86rf230_local *lp = hw->priv; 959 u8 csma_seed[2]; 960 961 at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); 962 963 disable_irq(lp->spi->irq); 964 965 /* It's recommended to set random new csma_seeds before sleep state. 966 * Makes only sense in the stop callback, not doing this inside of 967 * at86rf230_sleep, this is also used when we don't transmit afterwards 968 * when calling start callback again. 969 */ 970 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); 971 at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); 972 at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); 973 974 at86rf230_sleep(lp); 975 } 976 977 static int 978 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) 979 { 980 return at86rf230_write_subreg(lp, SR_CHANNEL, channel); 981 } 982 983 #define AT86RF2XX_MAX_ED_LEVELS 0xF 984 static const s32 at86rf233_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = { 985 -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600, 986 -7400, -7200, -7000, -6800, -6600, -6400, 987 }; 988 989 static const s32 at86rf231_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = { 990 -9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300, 991 -7100, -6900, -6700, -6500, -6300, -6100, 992 }; 993 994 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = { 995 -10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, 996 -8000, -7800, -7600, -7400, -7200, -7000, 997 }; 998 999 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = { 1000 -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, 1001 -7800, -7600, -7400, -7200, -7000, -6800, 1002 }; 1003 1004 static inline int 1005 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val) 1006 { 1007 unsigned int cca_ed_thres; 1008 int rc; 1009 1010 rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres); 1011 if (rc < 0) 1012 return rc; 1013 1014 switch (rssi_base_val) { 1015 case -98: 1016 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98; 1017 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98); 1018 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres]; 1019 break; 1020 case -100: 1021 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; 1022 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); 1023 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres]; 1024 break; 1025 default: 1026 WARN_ON(1); 1027 } 1028 1029 return 0; 1030 } 1031 1032 static int 1033 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) 1034 { 1035 int rc; 1036 1037 if (channel == 0) 1038 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0); 1039 else 1040 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1); 1041 if (rc < 0) 1042 return rc; 1043 1044 if (page == 0) { 1045 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0); 1046 lp->data->rssi_base_val = -100; 1047 } else { 1048 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1); 1049 lp->data->rssi_base_val = -98; 1050 } 1051 if (rc < 0) 1052 return rc; 1053 1054 rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val); 1055 if (rc < 0) 1056 return rc; 1057 1058 /* This sets the symbol_duration according frequency on the 212. 1059 * TODO move this handling while set channel and page in cfg802154. 1060 * We can do that, this timings are according 802.15.4 standard. 1061 * If we do that in cfg802154, this is a more generic calculation. 1062 * 1063 * This should also protected from ifs_timer. Means cancel timer and 1064 * init with a new value. For now, this is okay. 1065 */ 1066 if (channel == 0) { 1067 if (page == 0) { 1068 /* SUB:0 and BPSK:0 -> BPSK-20 */ 1069 lp->hw->phy->symbol_duration = 50; 1070 } else { 1071 /* SUB:1 and BPSK:0 -> BPSK-40 */ 1072 lp->hw->phy->symbol_duration = 25; 1073 } 1074 } else { 1075 if (page == 0) 1076 /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */ 1077 lp->hw->phy->symbol_duration = 40; 1078 else 1079 /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */ 1080 lp->hw->phy->symbol_duration = 16; 1081 } 1082 1083 lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD * 1084 lp->hw->phy->symbol_duration; 1085 lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD * 1086 lp->hw->phy->symbol_duration; 1087 1088 return at86rf230_write_subreg(lp, SR_CHANNEL, channel); 1089 } 1090 1091 static int 1092 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel) 1093 { 1094 struct at86rf230_local *lp = hw->priv; 1095 int rc; 1096 1097 rc = lp->data->set_channel(lp, page, channel); 1098 /* Wait for PLL */ 1099 usleep_range(lp->data->t_channel_switch, 1100 lp->data->t_channel_switch + 10); 1101 1102 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 1103 return rc; 1104 } 1105 1106 static int 1107 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw, 1108 struct ieee802154_hw_addr_filt *filt, 1109 unsigned long changed) 1110 { 1111 struct at86rf230_local *lp = hw->priv; 1112 1113 if (changed & IEEE802154_AFILT_SADDR_CHANGED) { 1114 u16 addr = le16_to_cpu(filt->short_addr); 1115 1116 dev_vdbg(&lp->spi->dev, "%s called for saddr\n", __func__); 1117 __at86rf230_write(lp, RG_SHORT_ADDR_0, addr); 1118 __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8); 1119 } 1120 1121 if (changed & IEEE802154_AFILT_PANID_CHANGED) { 1122 u16 pan = le16_to_cpu(filt->pan_id); 1123 1124 dev_vdbg(&lp->spi->dev, "%s called for pan id\n", __func__); 1125 __at86rf230_write(lp, RG_PAN_ID_0, pan); 1126 __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8); 1127 } 1128 1129 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { 1130 u8 i, addr[8]; 1131 1132 memcpy(addr, &filt->ieee_addr, 8); 1133 dev_vdbg(&lp->spi->dev, "%s called for IEEE addr\n", __func__); 1134 for (i = 0; i < 8; i++) 1135 __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]); 1136 } 1137 1138 if (changed & IEEE802154_AFILT_PANC_CHANGED) { 1139 dev_vdbg(&lp->spi->dev, "%s called for panc change\n", __func__); 1140 if (filt->pan_coord) 1141 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1); 1142 else 1143 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0); 1144 } 1145 1146 return 0; 1147 } 1148 1149 #define AT86RF23X_MAX_TX_POWERS 0xF 1150 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 1151 400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600, 1152 -800, -1200, -1700, 1153 }; 1154 1155 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 1156 300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700, 1157 -900, -1200, -1700, 1158 }; 1159 1160 #define AT86RF212_MAX_TX_POWERS 0x1F 1161 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = { 1162 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700, 1163 -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700, 1164 -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600, 1165 }; 1166 1167 static int 1168 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm) 1169 { 1170 u32 i; 1171 1172 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { 1173 if (lp->hw->phy->supported.tx_powers[i] == mbm) 1174 return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i); 1175 } 1176 1177 return -EINVAL; 1178 } 1179 1180 static int 1181 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm) 1182 { 1183 u32 i; 1184 1185 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { 1186 if (lp->hw->phy->supported.tx_powers[i] == mbm) 1187 return at86rf230_write_subreg(lp, SR_TX_PWR_212, i); 1188 } 1189 1190 return -EINVAL; 1191 } 1192 1193 static int 1194 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm) 1195 { 1196 struct at86rf230_local *lp = hw->priv; 1197 1198 return lp->data->set_txpower(lp, mbm); 1199 } 1200 1201 static int 1202 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on) 1203 { 1204 struct at86rf230_local *lp = hw->priv; 1205 1206 return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on); 1207 } 1208 1209 static int 1210 at86rf230_set_cca_mode(struct ieee802154_hw *hw, 1211 const struct wpan_phy_cca *cca) 1212 { 1213 struct at86rf230_local *lp = hw->priv; 1214 u8 val; 1215 1216 /* mapping 802.15.4 to driver spec */ 1217 switch (cca->mode) { 1218 case NL802154_CCA_ENERGY: 1219 val = 1; 1220 break; 1221 case NL802154_CCA_CARRIER: 1222 val = 2; 1223 break; 1224 case NL802154_CCA_ENERGY_CARRIER: 1225 switch (cca->opt) { 1226 case NL802154_CCA_OPT_ENERGY_CARRIER_AND: 1227 val = 3; 1228 break; 1229 case NL802154_CCA_OPT_ENERGY_CARRIER_OR: 1230 val = 0; 1231 break; 1232 default: 1233 return -EINVAL; 1234 } 1235 break; 1236 default: 1237 return -EINVAL; 1238 } 1239 1240 return at86rf230_write_subreg(lp, SR_CCA_MODE, val); 1241 } 1242 1243 static int 1244 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm) 1245 { 1246 struct at86rf230_local *lp = hw->priv; 1247 u32 i; 1248 1249 for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) { 1250 if (hw->phy->supported.cca_ed_levels[i] == mbm) 1251 return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i); 1252 } 1253 1254 return -EINVAL; 1255 } 1256 1257 static int 1258 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, 1259 u8 retries) 1260 { 1261 struct at86rf230_local *lp = hw->priv; 1262 int rc; 1263 1264 rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be); 1265 if (rc) 1266 return rc; 1267 1268 rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be); 1269 if (rc) 1270 return rc; 1271 1272 return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries); 1273 } 1274 1275 static int 1276 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries) 1277 { 1278 struct at86rf230_local *lp = hw->priv; 1279 1280 return at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries); 1281 } 1282 1283 static int 1284 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) 1285 { 1286 struct at86rf230_local *lp = hw->priv; 1287 int rc; 1288 1289 if (on) { 1290 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1); 1291 if (rc < 0) 1292 return rc; 1293 1294 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1); 1295 if (rc < 0) 1296 return rc; 1297 } else { 1298 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0); 1299 if (rc < 0) 1300 return rc; 1301 1302 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0); 1303 if (rc < 0) 1304 return rc; 1305 } 1306 1307 return 0; 1308 } 1309 1310 static const struct ieee802154_ops at86rf230_ops = { 1311 .owner = THIS_MODULE, 1312 .xmit_async = at86rf230_xmit, 1313 .ed = at86rf230_ed, 1314 .set_channel = at86rf230_channel, 1315 .start = at86rf230_start, 1316 .stop = at86rf230_stop, 1317 .set_hw_addr_filt = at86rf230_set_hw_addr_filt, 1318 .set_txpower = at86rf230_set_txpower, 1319 .set_lbt = at86rf230_set_lbt, 1320 .set_cca_mode = at86rf230_set_cca_mode, 1321 .set_cca_ed_level = at86rf230_set_cca_ed_level, 1322 .set_csma_params = at86rf230_set_csma_params, 1323 .set_frame_retries = at86rf230_set_frame_retries, 1324 .set_promiscuous_mode = at86rf230_set_promiscuous_mode, 1325 }; 1326 1327 static struct at86rf2xx_chip_data at86rf233_data = { 1328 .t_sleep_cycle = 330, 1329 .t_channel_switch = 11, 1330 .t_reset_to_off = 26, 1331 .t_off_to_aack = 80, 1332 .t_off_to_tx_on = 80, 1333 .t_off_to_sleep = 35, 1334 .t_sleep_to_off = 1000, 1335 .t_frame = 4096, 1336 .t_p_ack = 545, 1337 .rssi_base_val = -94, 1338 .set_channel = at86rf23x_set_channel, 1339 .set_txpower = at86rf23x_set_txpower, 1340 }; 1341 1342 static struct at86rf2xx_chip_data at86rf231_data = { 1343 .t_sleep_cycle = 330, 1344 .t_channel_switch = 24, 1345 .t_reset_to_off = 37, 1346 .t_off_to_aack = 110, 1347 .t_off_to_tx_on = 110, 1348 .t_off_to_sleep = 35, 1349 .t_sleep_to_off = 1000, 1350 .t_frame = 4096, 1351 .t_p_ack = 545, 1352 .rssi_base_val = -91, 1353 .set_channel = at86rf23x_set_channel, 1354 .set_txpower = at86rf23x_set_txpower, 1355 }; 1356 1357 static struct at86rf2xx_chip_data at86rf212_data = { 1358 .t_sleep_cycle = 330, 1359 .t_channel_switch = 11, 1360 .t_reset_to_off = 26, 1361 .t_off_to_aack = 200, 1362 .t_off_to_tx_on = 200, 1363 .t_off_to_sleep = 35, 1364 .t_sleep_to_off = 1000, 1365 .t_frame = 4096, 1366 .t_p_ack = 545, 1367 .rssi_base_val = -100, 1368 .set_channel = at86rf212_set_channel, 1369 .set_txpower = at86rf212_set_txpower, 1370 }; 1371 1372 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim) 1373 { 1374 int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH; 1375 unsigned int dvdd; 1376 u8 csma_seed[2]; 1377 1378 rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); 1379 if (rc) 1380 return rc; 1381 1382 irq_type = irq_get_trigger_type(lp->spi->irq); 1383 if (irq_type == IRQ_TYPE_EDGE_FALLING || 1384 irq_type == IRQ_TYPE_LEVEL_LOW) 1385 irq_pol = IRQ_ACTIVE_LOW; 1386 1387 rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol); 1388 if (rc) 1389 return rc; 1390 1391 rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1); 1392 if (rc) 1393 return rc; 1394 1395 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END); 1396 if (rc) 1397 return rc; 1398 1399 /* reset values differs in at86rf231 and at86rf233 */ 1400 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0); 1401 if (rc) 1402 return rc; 1403 1404 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); 1405 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); 1406 if (rc) 1407 return rc; 1408 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); 1409 if (rc) 1410 return rc; 1411 1412 /* CLKM changes are applied immediately */ 1413 rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00); 1414 if (rc) 1415 return rc; 1416 1417 /* Turn CLKM Off */ 1418 rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00); 1419 if (rc) 1420 return rc; 1421 /* Wait the next SLEEP cycle */ 1422 usleep_range(lp->data->t_sleep_cycle, 1423 lp->data->t_sleep_cycle + 100); 1424 1425 /* xtal_trim value is calculated by: 1426 * CL = 0.5 * (CX + CTRIM + CPAR) 1427 * 1428 * whereas: 1429 * CL = capacitor of used crystal 1430 * CX = connected capacitors at xtal pins 1431 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF, 1432 * but this is different on each board setup. You need to fine 1433 * tuning this value via CTRIM. 1434 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is 1435 * 0 pF upto 4.5 pF. 1436 * 1437 * Examples: 1438 * atben transceiver: 1439 * 1440 * CL = 8 pF 1441 * CX = 12 pF 1442 * CPAR = 3 pF (We assume the magic constant from datasheet) 1443 * CTRIM = 0.9 pF 1444 * 1445 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF 1446 * 1447 * xtal_trim = 0x3 1448 * 1449 * openlabs transceiver: 1450 * 1451 * CL = 16 pF 1452 * CX = 22 pF 1453 * CPAR = 3 pF (We assume the magic constant from datasheet) 1454 * CTRIM = 4.5 pF 1455 * 1456 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF 1457 * 1458 * xtal_trim = 0xf 1459 */ 1460 rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim); 1461 if (rc) 1462 return rc; 1463 1464 rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd); 1465 if (rc) 1466 return rc; 1467 if (!dvdd) { 1468 dev_err(&lp->spi->dev, "DVDD error\n"); 1469 return -EINVAL; 1470 } 1471 1472 /* Force setting slotted operation bit to 0. Sometimes the atben 1473 * sets this bit and I don't know why. We set this always force 1474 * to zero while probing. 1475 */ 1476 return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0); 1477 } 1478 1479 static int 1480 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr, 1481 u8 *xtal_trim) 1482 { 1483 struct at86rf230_platform_data *pdata = spi->dev.platform_data; 1484 int ret; 1485 1486 if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) { 1487 if (!pdata) 1488 return -ENOENT; 1489 1490 *rstn = pdata->rstn; 1491 *slp_tr = pdata->slp_tr; 1492 *xtal_trim = pdata->xtal_trim; 1493 return 0; 1494 } 1495 1496 *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0); 1497 *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0); 1498 ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim); 1499 if (ret < 0 && ret != -EINVAL) 1500 return ret; 1501 1502 return 0; 1503 } 1504 1505 static int 1506 at86rf230_detect_device(struct at86rf230_local *lp) 1507 { 1508 unsigned int part, version, val; 1509 u16 man_id = 0; 1510 const char *chip; 1511 int rc; 1512 1513 rc = __at86rf230_read(lp, RG_MAN_ID_0, &val); 1514 if (rc) 1515 return rc; 1516 man_id |= val; 1517 1518 rc = __at86rf230_read(lp, RG_MAN_ID_1, &val); 1519 if (rc) 1520 return rc; 1521 man_id |= (val << 8); 1522 1523 rc = __at86rf230_read(lp, RG_PART_NUM, &part); 1524 if (rc) 1525 return rc; 1526 1527 rc = __at86rf230_read(lp, RG_VERSION_NUM, &version); 1528 if (rc) 1529 return rc; 1530 1531 if (man_id != 0x001f) { 1532 dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n", 1533 man_id >> 8, man_id & 0xFF); 1534 return -EINVAL; 1535 } 1536 1537 lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | 1538 IEEE802154_HW_CSMA_PARAMS | 1539 IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT | 1540 IEEE802154_HW_PROMISCUOUS; 1541 1542 lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER | 1543 WPAN_PHY_FLAG_CCA_ED_LEVEL | 1544 WPAN_PHY_FLAG_CCA_MODE; 1545 1546 lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) | 1547 BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER); 1548 lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) | 1549 BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR); 1550 1551 lp->hw->phy->cca.mode = NL802154_CCA_ENERGY; 1552 1553 switch (part) { 1554 case 2: 1555 chip = "at86rf230"; 1556 rc = -ENOTSUPP; 1557 goto not_supp; 1558 case 3: 1559 chip = "at86rf231"; 1560 lp->data = &at86rf231_data; 1561 lp->hw->phy->supported.channels[0] = 0x7FFF800; 1562 lp->hw->phy->current_channel = 11; 1563 lp->hw->phy->symbol_duration = 16; 1564 lp->hw->phy->supported.tx_powers = at86rf231_powers; 1565 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers); 1566 lp->hw->phy->supported.cca_ed_levels = at86rf231_ed_levels; 1567 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf231_ed_levels); 1568 break; 1569 case 7: 1570 chip = "at86rf212"; 1571 lp->data = &at86rf212_data; 1572 lp->hw->flags |= IEEE802154_HW_LBT; 1573 lp->hw->phy->supported.channels[0] = 0x00007FF; 1574 lp->hw->phy->supported.channels[2] = 0x00007FF; 1575 lp->hw->phy->current_channel = 5; 1576 lp->hw->phy->symbol_duration = 25; 1577 lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH; 1578 lp->hw->phy->supported.tx_powers = at86rf212_powers; 1579 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers); 1580 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; 1581 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); 1582 break; 1583 case 11: 1584 chip = "at86rf233"; 1585 lp->data = &at86rf233_data; 1586 lp->hw->phy->supported.channels[0] = 0x7FFF800; 1587 lp->hw->phy->current_channel = 13; 1588 lp->hw->phy->symbol_duration = 16; 1589 lp->hw->phy->supported.tx_powers = at86rf233_powers; 1590 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers); 1591 lp->hw->phy->supported.cca_ed_levels = at86rf233_ed_levels; 1592 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf233_ed_levels); 1593 break; 1594 default: 1595 chip = "unknown"; 1596 rc = -ENOTSUPP; 1597 goto not_supp; 1598 } 1599 1600 lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7]; 1601 lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0]; 1602 1603 not_supp: 1604 dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version); 1605 1606 return rc; 1607 } 1608 1609 #ifdef CONFIG_IEEE802154_AT86RF230_DEBUGFS 1610 static struct dentry *at86rf230_debugfs_root; 1611 1612 static int at86rf230_stats_show(struct seq_file *file, void *offset) 1613 { 1614 struct at86rf230_local *lp = file->private; 1615 1616 seq_printf(file, "SUCCESS:\t\t%8llu\n", lp->trac.success); 1617 seq_printf(file, "SUCCESS_DATA_PENDING:\t%8llu\n", 1618 lp->trac.success_data_pending); 1619 seq_printf(file, "SUCCESS_WAIT_FOR_ACK:\t%8llu\n", 1620 lp->trac.success_wait_for_ack); 1621 seq_printf(file, "CHANNEL_ACCESS_FAILURE:\t%8llu\n", 1622 lp->trac.channel_access_failure); 1623 seq_printf(file, "NO_ACK:\t\t\t%8llu\n", lp->trac.no_ack); 1624 seq_printf(file, "INVALID:\t\t%8llu\n", lp->trac.invalid); 1625 return 0; 1626 } 1627 DEFINE_SHOW_ATTRIBUTE(at86rf230_stats); 1628 1629 static int at86rf230_debugfs_init(struct at86rf230_local *lp) 1630 { 1631 char debugfs_dir_name[DNAME_INLINE_LEN + 1] = "at86rf230-"; 1632 struct dentry *stats; 1633 1634 strncat(debugfs_dir_name, dev_name(&lp->spi->dev), DNAME_INLINE_LEN); 1635 1636 at86rf230_debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL); 1637 if (!at86rf230_debugfs_root) 1638 return -ENOMEM; 1639 1640 stats = debugfs_create_file("trac_stats", 0444, 1641 at86rf230_debugfs_root, lp, 1642 &at86rf230_stats_fops); 1643 if (!stats) 1644 return -ENOMEM; 1645 1646 return 0; 1647 } 1648 1649 static void at86rf230_debugfs_remove(void) 1650 { 1651 debugfs_remove_recursive(at86rf230_debugfs_root); 1652 } 1653 #else 1654 static int at86rf230_debugfs_init(struct at86rf230_local *lp) { return 0; } 1655 static void at86rf230_debugfs_remove(void) { } 1656 #endif 1657 1658 static int at86rf230_probe(struct spi_device *spi) 1659 { 1660 struct ieee802154_hw *hw; 1661 struct at86rf230_local *lp; 1662 unsigned int status; 1663 int rc, irq_type, rstn, slp_tr; 1664 u8 xtal_trim = 0; 1665 1666 if (!spi->irq) { 1667 dev_err(&spi->dev, "no IRQ specified\n"); 1668 return -EINVAL; 1669 } 1670 1671 rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim); 1672 if (rc < 0) { 1673 dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc); 1674 return rc; 1675 } 1676 1677 if (gpio_is_valid(rstn)) { 1678 rc = devm_gpio_request_one(&spi->dev, rstn, 1679 GPIOF_OUT_INIT_HIGH, "rstn"); 1680 if (rc) 1681 return rc; 1682 } 1683 1684 if (gpio_is_valid(slp_tr)) { 1685 rc = devm_gpio_request_one(&spi->dev, slp_tr, 1686 GPIOF_OUT_INIT_LOW, "slp_tr"); 1687 if (rc) 1688 return rc; 1689 } 1690 1691 /* Reset */ 1692 if (gpio_is_valid(rstn)) { 1693 udelay(1); 1694 gpio_set_value_cansleep(rstn, 0); 1695 udelay(1); 1696 gpio_set_value_cansleep(rstn, 1); 1697 usleep_range(120, 240); 1698 } 1699 1700 hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops); 1701 if (!hw) 1702 return -ENOMEM; 1703 1704 lp = hw->priv; 1705 lp->hw = hw; 1706 lp->spi = spi; 1707 lp->slp_tr = slp_tr; 1708 hw->parent = &spi->dev; 1709 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); 1710 1711 lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config); 1712 if (IS_ERR(lp->regmap)) { 1713 rc = PTR_ERR(lp->regmap); 1714 dev_err(&spi->dev, "Failed to allocate register map: %d\n", 1715 rc); 1716 goto free_dev; 1717 } 1718 1719 at86rf230_setup_spi_messages(lp, &lp->state); 1720 at86rf230_setup_spi_messages(lp, &lp->tx); 1721 1722 rc = at86rf230_detect_device(lp); 1723 if (rc < 0) 1724 goto free_dev; 1725 1726 init_completion(&lp->state_complete); 1727 1728 spi_set_drvdata(spi, lp); 1729 1730 rc = at86rf230_hw_init(lp, xtal_trim); 1731 if (rc) 1732 goto free_dev; 1733 1734 /* Read irq status register to reset irq line */ 1735 rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status); 1736 if (rc) 1737 goto free_dev; 1738 1739 irq_type = irq_get_trigger_type(spi->irq); 1740 if (!irq_type) 1741 irq_type = IRQF_TRIGGER_HIGH; 1742 1743 rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr, 1744 IRQF_SHARED | irq_type, dev_name(&spi->dev), lp); 1745 if (rc) 1746 goto free_dev; 1747 1748 /* disable_irq by default and wait for starting hardware */ 1749 disable_irq(spi->irq); 1750 1751 /* going into sleep by default */ 1752 at86rf230_sleep(lp); 1753 1754 rc = at86rf230_debugfs_init(lp); 1755 if (rc) 1756 goto free_dev; 1757 1758 rc = ieee802154_register_hw(lp->hw); 1759 if (rc) 1760 goto free_debugfs; 1761 1762 return rc; 1763 1764 free_debugfs: 1765 at86rf230_debugfs_remove(); 1766 free_dev: 1767 ieee802154_free_hw(lp->hw); 1768 1769 return rc; 1770 } 1771 1772 static int at86rf230_remove(struct spi_device *spi) 1773 { 1774 struct at86rf230_local *lp = spi_get_drvdata(spi); 1775 1776 /* mask all at86rf230 irq's */ 1777 at86rf230_write_subreg(lp, SR_IRQ_MASK, 0); 1778 ieee802154_unregister_hw(lp->hw); 1779 ieee802154_free_hw(lp->hw); 1780 at86rf230_debugfs_remove(); 1781 dev_dbg(&spi->dev, "unregistered at86rf230\n"); 1782 1783 return 0; 1784 } 1785 1786 static const struct of_device_id at86rf230_of_match[] = { 1787 { .compatible = "atmel,at86rf230", }, 1788 { .compatible = "atmel,at86rf231", }, 1789 { .compatible = "atmel,at86rf233", }, 1790 { .compatible = "atmel,at86rf212", }, 1791 { }, 1792 }; 1793 MODULE_DEVICE_TABLE(of, at86rf230_of_match); 1794 1795 static const struct spi_device_id at86rf230_device_id[] = { 1796 { .name = "at86rf230", }, 1797 { .name = "at86rf231", }, 1798 { .name = "at86rf233", }, 1799 { .name = "at86rf212", }, 1800 { }, 1801 }; 1802 MODULE_DEVICE_TABLE(spi, at86rf230_device_id); 1803 1804 static struct spi_driver at86rf230_driver = { 1805 .id_table = at86rf230_device_id, 1806 .driver = { 1807 .of_match_table = of_match_ptr(at86rf230_of_match), 1808 .name = "at86rf230", 1809 }, 1810 .probe = at86rf230_probe, 1811 .remove = at86rf230_remove, 1812 }; 1813 1814 module_spi_driver(at86rf230_driver); 1815 1816 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver"); 1817 MODULE_LICENSE("GPL v2"); 1818