1 /*
2  * AT86RF230/RF231 driver
3  *
4  * Copyright (C) 2009-2012 Siemens AG
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * Written by:
16  * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
17  * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
18  * Alexander Aring <aar@pengutronix.de>
19  */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/hrtimer.h>
23 #include <linux/jiffies.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/gpio.h>
27 #include <linux/delay.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/at86rf230.h>
30 #include <linux/regmap.h>
31 #include <linux/skbuff.h>
32 #include <linux/of_gpio.h>
33 #include <linux/ieee802154.h>
34 #include <linux/debugfs.h>
35 
36 #include <net/mac802154.h>
37 #include <net/cfg802154.h>
38 
39 #include "at86rf230.h"
40 
41 struct at86rf230_local;
42 /* at86rf2xx chip depend data.
43  * All timings are in us.
44  */
45 struct at86rf2xx_chip_data {
46 	u16 t_sleep_cycle;
47 	u16 t_channel_switch;
48 	u16 t_reset_to_off;
49 	u16 t_off_to_aack;
50 	u16 t_off_to_tx_on;
51 	u16 t_off_to_sleep;
52 	u16 t_sleep_to_off;
53 	u16 t_frame;
54 	u16 t_p_ack;
55 	int rssi_base_val;
56 
57 	int (*set_channel)(struct at86rf230_local *, u8, u8);
58 	int (*set_txpower)(struct at86rf230_local *, s32);
59 };
60 
61 #define AT86RF2XX_MAX_BUF		(127 + 3)
62 /* tx retries to access the TX_ON state
63  * if it's above then force change will be started.
64  *
65  * We assume the max_frame_retries (7) value of 802.15.4 here.
66  */
67 #define AT86RF2XX_MAX_TX_RETRIES	7
68 /* We use the recommended 5 minutes timeout to recalibrate */
69 #define AT86RF2XX_CAL_LOOP_TIMEOUT	(5 * 60 * HZ)
70 
71 struct at86rf230_state_change {
72 	struct at86rf230_local *lp;
73 	int irq;
74 
75 	struct hrtimer timer;
76 	struct spi_message msg;
77 	struct spi_transfer trx;
78 	u8 buf[AT86RF2XX_MAX_BUF];
79 
80 	void (*complete)(void *context);
81 	u8 from_state;
82 	u8 to_state;
83 
84 	bool free;
85 };
86 
87 struct at86rf230_trac {
88 	u64 success;
89 	u64 success_data_pending;
90 	u64 success_wait_for_ack;
91 	u64 channel_access_failure;
92 	u64 no_ack;
93 	u64 invalid;
94 };
95 
96 struct at86rf230_local {
97 	struct spi_device *spi;
98 
99 	struct ieee802154_hw *hw;
100 	struct at86rf2xx_chip_data *data;
101 	struct regmap *regmap;
102 	int slp_tr;
103 	bool sleep;
104 
105 	struct completion state_complete;
106 	struct at86rf230_state_change state;
107 
108 	unsigned long cal_timeout;
109 	bool is_tx;
110 	bool is_tx_from_off;
111 	u8 tx_retry;
112 	struct sk_buff *tx_skb;
113 	struct at86rf230_state_change tx;
114 
115 	struct at86rf230_trac trac;
116 };
117 
118 #define AT86RF2XX_NUMREGS 0x3F
119 
120 static void
121 at86rf230_async_state_change(struct at86rf230_local *lp,
122 			     struct at86rf230_state_change *ctx,
123 			     const u8 state, void (*complete)(void *context));
124 
125 static inline void
126 at86rf230_sleep(struct at86rf230_local *lp)
127 {
128 	if (gpio_is_valid(lp->slp_tr)) {
129 		gpio_set_value(lp->slp_tr, 1);
130 		usleep_range(lp->data->t_off_to_sleep,
131 			     lp->data->t_off_to_sleep + 10);
132 		lp->sleep = true;
133 	}
134 }
135 
136 static inline void
137 at86rf230_awake(struct at86rf230_local *lp)
138 {
139 	if (gpio_is_valid(lp->slp_tr)) {
140 		gpio_set_value(lp->slp_tr, 0);
141 		usleep_range(lp->data->t_sleep_to_off,
142 			     lp->data->t_sleep_to_off + 100);
143 		lp->sleep = false;
144 	}
145 }
146 
147 static inline int
148 __at86rf230_write(struct at86rf230_local *lp,
149 		  unsigned int addr, unsigned int data)
150 {
151 	bool sleep = lp->sleep;
152 	int ret;
153 
154 	/* awake for register setting if sleep */
155 	if (sleep)
156 		at86rf230_awake(lp);
157 
158 	ret = regmap_write(lp->regmap, addr, data);
159 
160 	/* sleep again if was sleeping */
161 	if (sleep)
162 		at86rf230_sleep(lp);
163 
164 	return ret;
165 }
166 
167 static inline int
168 __at86rf230_read(struct at86rf230_local *lp,
169 		 unsigned int addr, unsigned int *data)
170 {
171 	bool sleep = lp->sleep;
172 	int ret;
173 
174 	/* awake for register setting if sleep */
175 	if (sleep)
176 		at86rf230_awake(lp);
177 
178 	ret = regmap_read(lp->regmap, addr, data);
179 
180 	/* sleep again if was sleeping */
181 	if (sleep)
182 		at86rf230_sleep(lp);
183 
184 	return ret;
185 }
186 
187 static inline int
188 at86rf230_read_subreg(struct at86rf230_local *lp,
189 		      unsigned int addr, unsigned int mask,
190 		      unsigned int shift, unsigned int *data)
191 {
192 	int rc;
193 
194 	rc = __at86rf230_read(lp, addr, data);
195 	if (!rc)
196 		*data = (*data & mask) >> shift;
197 
198 	return rc;
199 }
200 
201 static inline int
202 at86rf230_write_subreg(struct at86rf230_local *lp,
203 		       unsigned int addr, unsigned int mask,
204 		       unsigned int shift, unsigned int data)
205 {
206 	bool sleep = lp->sleep;
207 	int ret;
208 
209 	/* awake for register setting if sleep */
210 	if (sleep)
211 		at86rf230_awake(lp);
212 
213 	ret = regmap_update_bits(lp->regmap, addr, mask, data << shift);
214 
215 	/* sleep again if was sleeping */
216 	if (sleep)
217 		at86rf230_sleep(lp);
218 
219 	return ret;
220 }
221 
222 static inline void
223 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
224 {
225 	gpio_set_value(lp->slp_tr, 1);
226 	udelay(1);
227 	gpio_set_value(lp->slp_tr, 0);
228 }
229 
230 static bool
231 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
232 {
233 	switch (reg) {
234 	case RG_TRX_STATE:
235 	case RG_TRX_CTRL_0:
236 	case RG_TRX_CTRL_1:
237 	case RG_PHY_TX_PWR:
238 	case RG_PHY_ED_LEVEL:
239 	case RG_PHY_CC_CCA:
240 	case RG_CCA_THRES:
241 	case RG_RX_CTRL:
242 	case RG_SFD_VALUE:
243 	case RG_TRX_CTRL_2:
244 	case RG_ANT_DIV:
245 	case RG_IRQ_MASK:
246 	case RG_VREG_CTRL:
247 	case RG_BATMON:
248 	case RG_XOSC_CTRL:
249 	case RG_RX_SYN:
250 	case RG_XAH_CTRL_1:
251 	case RG_FTN_CTRL:
252 	case RG_PLL_CF:
253 	case RG_PLL_DCU:
254 	case RG_SHORT_ADDR_0:
255 	case RG_SHORT_ADDR_1:
256 	case RG_PAN_ID_0:
257 	case RG_PAN_ID_1:
258 	case RG_IEEE_ADDR_0:
259 	case RG_IEEE_ADDR_1:
260 	case RG_IEEE_ADDR_2:
261 	case RG_IEEE_ADDR_3:
262 	case RG_IEEE_ADDR_4:
263 	case RG_IEEE_ADDR_5:
264 	case RG_IEEE_ADDR_6:
265 	case RG_IEEE_ADDR_7:
266 	case RG_XAH_CTRL_0:
267 	case RG_CSMA_SEED_0:
268 	case RG_CSMA_SEED_1:
269 	case RG_CSMA_BE:
270 		return true;
271 	default:
272 		return false;
273 	}
274 }
275 
276 static bool
277 at86rf230_reg_readable(struct device *dev, unsigned int reg)
278 {
279 	bool rc;
280 
281 	/* all writeable are also readable */
282 	rc = at86rf230_reg_writeable(dev, reg);
283 	if (rc)
284 		return rc;
285 
286 	/* readonly regs */
287 	switch (reg) {
288 	case RG_TRX_STATUS:
289 	case RG_PHY_RSSI:
290 	case RG_IRQ_STATUS:
291 	case RG_PART_NUM:
292 	case RG_VERSION_NUM:
293 	case RG_MAN_ID_1:
294 	case RG_MAN_ID_0:
295 		return true;
296 	default:
297 		return false;
298 	}
299 }
300 
301 static bool
302 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
303 {
304 	/* can be changed during runtime */
305 	switch (reg) {
306 	case RG_TRX_STATUS:
307 	case RG_TRX_STATE:
308 	case RG_PHY_RSSI:
309 	case RG_PHY_ED_LEVEL:
310 	case RG_IRQ_STATUS:
311 	case RG_VREG_CTRL:
312 	case RG_PLL_CF:
313 	case RG_PLL_DCU:
314 		return true;
315 	default:
316 		return false;
317 	}
318 }
319 
320 static bool
321 at86rf230_reg_precious(struct device *dev, unsigned int reg)
322 {
323 	/* don't clear irq line on read */
324 	switch (reg) {
325 	case RG_IRQ_STATUS:
326 		return true;
327 	default:
328 		return false;
329 	}
330 }
331 
332 static const struct regmap_config at86rf230_regmap_spi_config = {
333 	.reg_bits = 8,
334 	.val_bits = 8,
335 	.write_flag_mask = CMD_REG | CMD_WRITE,
336 	.read_flag_mask = CMD_REG,
337 	.cache_type = REGCACHE_RBTREE,
338 	.max_register = AT86RF2XX_NUMREGS,
339 	.writeable_reg = at86rf230_reg_writeable,
340 	.readable_reg = at86rf230_reg_readable,
341 	.volatile_reg = at86rf230_reg_volatile,
342 	.precious_reg = at86rf230_reg_precious,
343 };
344 
345 static void
346 at86rf230_async_error_recover(void *context)
347 {
348 	struct at86rf230_state_change *ctx = context;
349 	struct at86rf230_local *lp = ctx->lp;
350 
351 	lp->is_tx = 0;
352 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL);
353 	ieee802154_wake_queue(lp->hw);
354 	if (ctx->free)
355 		kfree(ctx);
356 }
357 
358 static inline void
359 at86rf230_async_error(struct at86rf230_local *lp,
360 		      struct at86rf230_state_change *ctx, int rc)
361 {
362 	dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
363 
364 	at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
365 				     at86rf230_async_error_recover);
366 }
367 
368 /* Generic function to get some register value in async mode */
369 static void
370 at86rf230_async_read_reg(struct at86rf230_local *lp, u8 reg,
371 			 struct at86rf230_state_change *ctx,
372 			 void (*complete)(void *context))
373 {
374 	int rc;
375 
376 	u8 *tx_buf = ctx->buf;
377 
378 	tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
379 	ctx->msg.complete = complete;
380 	rc = spi_async(lp->spi, &ctx->msg);
381 	if (rc)
382 		at86rf230_async_error(lp, ctx, rc);
383 }
384 
385 static void
386 at86rf230_async_write_reg(struct at86rf230_local *lp, u8 reg, u8 val,
387 			  struct at86rf230_state_change *ctx,
388 			  void (*complete)(void *context))
389 {
390 	int rc;
391 
392 	ctx->buf[0] = (reg & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
393 	ctx->buf[1] = val;
394 	ctx->msg.complete = complete;
395 	rc = spi_async(lp->spi, &ctx->msg);
396 	if (rc)
397 		at86rf230_async_error(lp, ctx, rc);
398 }
399 
400 static void
401 at86rf230_async_state_assert(void *context)
402 {
403 	struct at86rf230_state_change *ctx = context;
404 	struct at86rf230_local *lp = ctx->lp;
405 	const u8 *buf = ctx->buf;
406 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
407 
408 	/* Assert state change */
409 	if (trx_state != ctx->to_state) {
410 		/* Special handling if transceiver state is in
411 		 * STATE_BUSY_RX_AACK and a SHR was detected.
412 		 */
413 		if  (trx_state == STATE_BUSY_RX_AACK) {
414 			/* Undocumented race condition. If we send a state
415 			 * change to STATE_RX_AACK_ON the transceiver could
416 			 * change his state automatically to STATE_BUSY_RX_AACK
417 			 * if a SHR was detected. This is not an error, but we
418 			 * can't assert this.
419 			 */
420 			if (ctx->to_state == STATE_RX_AACK_ON)
421 				goto done;
422 
423 			/* If we change to STATE_TX_ON without forcing and
424 			 * transceiver state is STATE_BUSY_RX_AACK, we wait
425 			 * 'tFrame + tPAck' receiving time. In this time the
426 			 * PDU should be received. If the transceiver is still
427 			 * in STATE_BUSY_RX_AACK, we run a force state change
428 			 * to STATE_TX_ON. This is a timeout handling, if the
429 			 * transceiver stucks in STATE_BUSY_RX_AACK.
430 			 *
431 			 * Additional we do several retries to try to get into
432 			 * TX_ON state without forcing. If the retries are
433 			 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
434 			 * will do a force change.
435 			 */
436 			if (ctx->to_state == STATE_TX_ON ||
437 			    ctx->to_state == STATE_TRX_OFF) {
438 				u8 state = ctx->to_state;
439 
440 				if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
441 					state = STATE_FORCE_TRX_OFF;
442 				lp->tx_retry++;
443 
444 				at86rf230_async_state_change(lp, ctx, state,
445 							     ctx->complete);
446 				return;
447 			}
448 		}
449 
450 		dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
451 			 ctx->from_state, ctx->to_state, trx_state);
452 	}
453 
454 done:
455 	if (ctx->complete)
456 		ctx->complete(context);
457 }
458 
459 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
460 {
461 	struct at86rf230_state_change *ctx =
462 		container_of(timer, struct at86rf230_state_change, timer);
463 	struct at86rf230_local *lp = ctx->lp;
464 
465 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
466 				 at86rf230_async_state_assert);
467 
468 	return HRTIMER_NORESTART;
469 }
470 
471 /* Do state change timing delay. */
472 static void
473 at86rf230_async_state_delay(void *context)
474 {
475 	struct at86rf230_state_change *ctx = context;
476 	struct at86rf230_local *lp = ctx->lp;
477 	struct at86rf2xx_chip_data *c = lp->data;
478 	bool force = false;
479 	ktime_t tim;
480 
481 	/* The force state changes are will show as normal states in the
482 	 * state status subregister. We change the to_state to the
483 	 * corresponding one and remember if it was a force change, this
484 	 * differs if we do a state change from STATE_BUSY_RX_AACK.
485 	 */
486 	switch (ctx->to_state) {
487 	case STATE_FORCE_TX_ON:
488 		ctx->to_state = STATE_TX_ON;
489 		force = true;
490 		break;
491 	case STATE_FORCE_TRX_OFF:
492 		ctx->to_state = STATE_TRX_OFF;
493 		force = true;
494 		break;
495 	default:
496 		break;
497 	}
498 
499 	switch (ctx->from_state) {
500 	case STATE_TRX_OFF:
501 		switch (ctx->to_state) {
502 		case STATE_RX_AACK_ON:
503 			tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC);
504 			/* state change from TRX_OFF to RX_AACK_ON to do a
505 			 * calibration, we need to reset the timeout for the
506 			 * next one.
507 			 */
508 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
509 			goto change;
510 		case STATE_TX_ARET_ON:
511 		case STATE_TX_ON:
512 			tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC);
513 			/* state change from TRX_OFF to TX_ON or ARET_ON to do
514 			 * a calibration, we need to reset the timeout for the
515 			 * next one.
516 			 */
517 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
518 			goto change;
519 		default:
520 			break;
521 		}
522 		break;
523 	case STATE_BUSY_RX_AACK:
524 		switch (ctx->to_state) {
525 		case STATE_TRX_OFF:
526 		case STATE_TX_ON:
527 			/* Wait for worst case receiving time if we
528 			 * didn't make a force change from BUSY_RX_AACK
529 			 * to TX_ON or TRX_OFF.
530 			 */
531 			if (!force) {
532 				tim = ktime_set(0, (c->t_frame + c->t_p_ack) *
533 						   NSEC_PER_USEC);
534 				goto change;
535 			}
536 			break;
537 		default:
538 			break;
539 		}
540 		break;
541 	/* Default value, means RESET state */
542 	case STATE_P_ON:
543 		switch (ctx->to_state) {
544 		case STATE_TRX_OFF:
545 			tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC);
546 			goto change;
547 		default:
548 			break;
549 		}
550 		break;
551 	default:
552 		break;
553 	}
554 
555 	/* Default delay is 1us in the most cases */
556 	udelay(1);
557 	at86rf230_async_state_timer(&ctx->timer);
558 	return;
559 
560 change:
561 	hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
562 }
563 
564 static void
565 at86rf230_async_state_change_start(void *context)
566 {
567 	struct at86rf230_state_change *ctx = context;
568 	struct at86rf230_local *lp = ctx->lp;
569 	u8 *buf = ctx->buf;
570 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
571 
572 	/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
573 	if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
574 		udelay(1);
575 		at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
576 					 at86rf230_async_state_change_start);
577 		return;
578 	}
579 
580 	/* Check if we already are in the state which we change in */
581 	if (trx_state == ctx->to_state) {
582 		if (ctx->complete)
583 			ctx->complete(context);
584 		return;
585 	}
586 
587 	/* Set current state to the context of state change */
588 	ctx->from_state = trx_state;
589 
590 	/* Going into the next step for a state change which do a timing
591 	 * relevant delay.
592 	 */
593 	at86rf230_async_write_reg(lp, RG_TRX_STATE, ctx->to_state, ctx,
594 				  at86rf230_async_state_delay);
595 }
596 
597 static void
598 at86rf230_async_state_change(struct at86rf230_local *lp,
599 			     struct at86rf230_state_change *ctx,
600 			     const u8 state, void (*complete)(void *context))
601 {
602 	/* Initialization for the state change context */
603 	ctx->to_state = state;
604 	ctx->complete = complete;
605 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
606 				 at86rf230_async_state_change_start);
607 }
608 
609 static void
610 at86rf230_sync_state_change_complete(void *context)
611 {
612 	struct at86rf230_state_change *ctx = context;
613 	struct at86rf230_local *lp = ctx->lp;
614 
615 	complete(&lp->state_complete);
616 }
617 
618 /* This function do a sync framework above the async state change.
619  * Some callbacks of the IEEE 802.15.4 driver interface need to be
620  * handled synchronously.
621  */
622 static int
623 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
624 {
625 	unsigned long rc;
626 
627 	at86rf230_async_state_change(lp, &lp->state, state,
628 				     at86rf230_sync_state_change_complete);
629 
630 	rc = wait_for_completion_timeout(&lp->state_complete,
631 					 msecs_to_jiffies(100));
632 	if (!rc) {
633 		at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
634 		return -ETIMEDOUT;
635 	}
636 
637 	return 0;
638 }
639 
640 static void
641 at86rf230_tx_complete(void *context)
642 {
643 	struct at86rf230_state_change *ctx = context;
644 	struct at86rf230_local *lp = ctx->lp;
645 
646 	ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
647 	kfree(ctx);
648 }
649 
650 static void
651 at86rf230_tx_on(void *context)
652 {
653 	struct at86rf230_state_change *ctx = context;
654 	struct at86rf230_local *lp = ctx->lp;
655 
656 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
657 				     at86rf230_tx_complete);
658 }
659 
660 static void
661 at86rf230_tx_trac_check(void *context)
662 {
663 	struct at86rf230_state_change *ctx = context;
664 	struct at86rf230_local *lp = ctx->lp;
665 
666 	if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) {
667 		u8 trac = TRAC_MASK(ctx->buf[1]);
668 
669 		switch (trac) {
670 		case TRAC_SUCCESS:
671 			lp->trac.success++;
672 			break;
673 		case TRAC_SUCCESS_DATA_PENDING:
674 			lp->trac.success_data_pending++;
675 			break;
676 		case TRAC_CHANNEL_ACCESS_FAILURE:
677 			lp->trac.channel_access_failure++;
678 			break;
679 		case TRAC_NO_ACK:
680 			lp->trac.no_ack++;
681 			break;
682 		case TRAC_INVALID:
683 			lp->trac.invalid++;
684 			break;
685 		default:
686 			WARN_ONCE(1, "received tx trac status %d\n", trac);
687 			break;
688 		}
689 	}
690 
691 	at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on);
692 }
693 
694 static void
695 at86rf230_rx_read_frame_complete(void *context)
696 {
697 	struct at86rf230_state_change *ctx = context;
698 	struct at86rf230_local *lp = ctx->lp;
699 	const u8 *buf = ctx->buf;
700 	struct sk_buff *skb;
701 	u8 len, lqi;
702 
703 	len = buf[1];
704 	if (!ieee802154_is_valid_psdu_len(len)) {
705 		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
706 		len = IEEE802154_MTU;
707 	}
708 	lqi = buf[2 + len];
709 
710 	skb = dev_alloc_skb(IEEE802154_MTU);
711 	if (!skb) {
712 		dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
713 		kfree(ctx);
714 		return;
715 	}
716 
717 	memcpy(skb_put(skb, len), buf + 2, len);
718 	ieee802154_rx_irqsafe(lp->hw, skb, lqi);
719 	kfree(ctx);
720 }
721 
722 static void
723 at86rf230_rx_trac_check(void *context)
724 {
725 	struct at86rf230_state_change *ctx = context;
726 	struct at86rf230_local *lp = ctx->lp;
727 	u8 *buf = ctx->buf;
728 	int rc;
729 
730 	if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) {
731 		u8 trac = TRAC_MASK(buf[1]);
732 
733 		switch (trac) {
734 		case TRAC_SUCCESS:
735 			lp->trac.success++;
736 			break;
737 		case TRAC_SUCCESS_WAIT_FOR_ACK:
738 			lp->trac.success_wait_for_ack++;
739 			break;
740 		case TRAC_INVALID:
741 			lp->trac.invalid++;
742 			break;
743 		default:
744 			WARN_ONCE(1, "received rx trac status %d\n", trac);
745 			break;
746 		}
747 	}
748 
749 	buf[0] = CMD_FB;
750 	ctx->trx.len = AT86RF2XX_MAX_BUF;
751 	ctx->msg.complete = at86rf230_rx_read_frame_complete;
752 	rc = spi_async(lp->spi, &ctx->msg);
753 	if (rc) {
754 		ctx->trx.len = 2;
755 		at86rf230_async_error(lp, ctx, rc);
756 	}
757 }
758 
759 static void
760 at86rf230_irq_trx_end(void *context)
761 {
762 	struct at86rf230_state_change *ctx = context;
763 	struct at86rf230_local *lp = ctx->lp;
764 
765 	if (lp->is_tx) {
766 		lp->is_tx = 0;
767 		at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
768 					 at86rf230_tx_trac_check);
769 	} else {
770 		at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
771 					 at86rf230_rx_trac_check);
772 	}
773 }
774 
775 static void
776 at86rf230_irq_status(void *context)
777 {
778 	struct at86rf230_state_change *ctx = context;
779 	struct at86rf230_local *lp = ctx->lp;
780 	const u8 *buf = ctx->buf;
781 	u8 irq = buf[1];
782 
783 	enable_irq(lp->spi->irq);
784 
785 	if (irq & IRQ_TRX_END) {
786 		at86rf230_irq_trx_end(ctx);
787 	} else {
788 		dev_err(&lp->spi->dev, "not supported irq %02x received\n",
789 			irq);
790 		kfree(ctx);
791 	}
792 }
793 
794 static void
795 at86rf230_setup_spi_messages(struct at86rf230_local *lp,
796 			     struct at86rf230_state_change *state)
797 {
798 	state->lp = lp;
799 	state->irq = lp->spi->irq;
800 	spi_message_init(&state->msg);
801 	state->msg.context = state;
802 	state->trx.len = 2;
803 	state->trx.tx_buf = state->buf;
804 	state->trx.rx_buf = state->buf;
805 	spi_message_add_tail(&state->trx, &state->msg);
806 	hrtimer_init(&state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
807 	state->timer.function = at86rf230_async_state_timer;
808 }
809 
810 static irqreturn_t at86rf230_isr(int irq, void *data)
811 {
812 	struct at86rf230_local *lp = data;
813 	struct at86rf230_state_change *ctx;
814 	int rc;
815 
816 	disable_irq_nosync(irq);
817 
818 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
819 	if (!ctx) {
820 		enable_irq(irq);
821 		return IRQ_NONE;
822 	}
823 
824 	at86rf230_setup_spi_messages(lp, ctx);
825 	/* tell on error handling to free ctx */
826 	ctx->free = true;
827 
828 	ctx->buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
829 	ctx->msg.complete = at86rf230_irq_status;
830 	rc = spi_async(lp->spi, &ctx->msg);
831 	if (rc) {
832 		at86rf230_async_error(lp, ctx, rc);
833 		enable_irq(irq);
834 		return IRQ_NONE;
835 	}
836 
837 	return IRQ_HANDLED;
838 }
839 
840 static void
841 at86rf230_write_frame_complete(void *context)
842 {
843 	struct at86rf230_state_change *ctx = context;
844 	struct at86rf230_local *lp = ctx->lp;
845 
846 	ctx->trx.len = 2;
847 
848 	if (gpio_is_valid(lp->slp_tr))
849 		at86rf230_slp_tr_rising_edge(lp);
850 	else
851 		at86rf230_async_write_reg(lp, RG_TRX_STATE, STATE_BUSY_TX, ctx,
852 					  NULL);
853 }
854 
855 static void
856 at86rf230_write_frame(void *context)
857 {
858 	struct at86rf230_state_change *ctx = context;
859 	struct at86rf230_local *lp = ctx->lp;
860 	struct sk_buff *skb = lp->tx_skb;
861 	u8 *buf = ctx->buf;
862 	int rc;
863 
864 	lp->is_tx = 1;
865 
866 	buf[0] = CMD_FB | CMD_WRITE;
867 	buf[1] = skb->len + 2;
868 	memcpy(buf + 2, skb->data, skb->len);
869 	ctx->trx.len = skb->len + 2;
870 	ctx->msg.complete = at86rf230_write_frame_complete;
871 	rc = spi_async(lp->spi, &ctx->msg);
872 	if (rc) {
873 		ctx->trx.len = 2;
874 		at86rf230_async_error(lp, ctx, rc);
875 	}
876 }
877 
878 static void
879 at86rf230_xmit_tx_on(void *context)
880 {
881 	struct at86rf230_state_change *ctx = context;
882 	struct at86rf230_local *lp = ctx->lp;
883 
884 	at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
885 				     at86rf230_write_frame);
886 }
887 
888 static void
889 at86rf230_xmit_start(void *context)
890 {
891 	struct at86rf230_state_change *ctx = context;
892 	struct at86rf230_local *lp = ctx->lp;
893 
894 	/* check if we change from off state */
895 	if (lp->is_tx_from_off) {
896 		lp->is_tx_from_off = false;
897 		at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
898 					     at86rf230_write_frame);
899 	} else {
900 		at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
901 					     at86rf230_xmit_tx_on);
902 	}
903 }
904 
905 static int
906 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
907 {
908 	struct at86rf230_local *lp = hw->priv;
909 	struct at86rf230_state_change *ctx = &lp->tx;
910 
911 	lp->tx_skb = skb;
912 	lp->tx_retry = 0;
913 
914 	/* After 5 minutes in PLL and the same frequency we run again the
915 	 * calibration loops which is recommended by at86rf2xx datasheets.
916 	 *
917 	 * The calibration is initiate by a state change from TRX_OFF
918 	 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
919 	 * function then to start in the next 5 minutes.
920 	 */
921 	if (time_is_before_jiffies(lp->cal_timeout)) {
922 		lp->is_tx_from_off = true;
923 		at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
924 					     at86rf230_xmit_start);
925 	} else {
926 		at86rf230_xmit_start(ctx);
927 	}
928 
929 	return 0;
930 }
931 
932 static int
933 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
934 {
935 	BUG_ON(!level);
936 	*level = 0xbe;
937 	return 0;
938 }
939 
940 static int
941 at86rf230_start(struct ieee802154_hw *hw)
942 {
943 	struct at86rf230_local *lp = hw->priv;
944 
945 	/* reset trac stats on start */
946 	if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS))
947 		memset(&lp->trac, 0, sizeof(struct at86rf230_trac));
948 
949 	at86rf230_awake(lp);
950 	enable_irq(lp->spi->irq);
951 
952 	return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON);
953 }
954 
955 static void
956 at86rf230_stop(struct ieee802154_hw *hw)
957 {
958 	struct at86rf230_local *lp = hw->priv;
959 	u8 csma_seed[2];
960 
961 	at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
962 
963 	disable_irq(lp->spi->irq);
964 
965 	/* It's recommended to set random new csma_seeds before sleep state.
966 	 * Makes only sense in the stop callback, not doing this inside of
967 	 * at86rf230_sleep, this is also used when we don't transmit afterwards
968 	 * when calling start callback again.
969 	 */
970 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
971 	at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
972 	at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
973 
974 	at86rf230_sleep(lp);
975 }
976 
977 static int
978 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
979 {
980 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
981 }
982 
983 #define AT86RF2XX_MAX_ED_LEVELS 0xF
984 static const s32 at86rf23x_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
985 	-9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300,
986 	-7100, -6900, -6700, -6500, -6300, -6100,
987 };
988 
989 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = {
990 	-10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200,
991 	-8000, -7800, -7600, -7400, -7200, -7000,
992 };
993 
994 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = {
995 	-9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000,
996 	-7800, -7600, -7400, -7200, -7000, -6800,
997 };
998 
999 static inline int
1000 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val)
1001 {
1002 	unsigned int cca_ed_thres;
1003 	int rc;
1004 
1005 	rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres);
1006 	if (rc < 0)
1007 		return rc;
1008 
1009 	switch (rssi_base_val) {
1010 	case -98:
1011 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98;
1012 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98);
1013 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres];
1014 		break;
1015 	case -100:
1016 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1017 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1018 		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres];
1019 		break;
1020 	default:
1021 		WARN_ON(1);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int
1028 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1029 {
1030 	int rc;
1031 
1032 	if (channel == 0)
1033 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1034 	else
1035 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1036 	if (rc < 0)
1037 		return rc;
1038 
1039 	if (page == 0) {
1040 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1041 		lp->data->rssi_base_val = -100;
1042 	} else {
1043 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1044 		lp->data->rssi_base_val = -98;
1045 	}
1046 	if (rc < 0)
1047 		return rc;
1048 
1049 	rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val);
1050 	if (rc < 0)
1051 		return rc;
1052 
1053 	/* This sets the symbol_duration according frequency on the 212.
1054 	 * TODO move this handling while set channel and page in cfg802154.
1055 	 * We can do that, this timings are according 802.15.4 standard.
1056 	 * If we do that in cfg802154, this is a more generic calculation.
1057 	 *
1058 	 * This should also protected from ifs_timer. Means cancel timer and
1059 	 * init with a new value. For now, this is okay.
1060 	 */
1061 	if (channel == 0) {
1062 		if (page == 0) {
1063 			/* SUB:0 and BPSK:0 -> BPSK-20 */
1064 			lp->hw->phy->symbol_duration = 50;
1065 		} else {
1066 			/* SUB:1 and BPSK:0 -> BPSK-40 */
1067 			lp->hw->phy->symbol_duration = 25;
1068 		}
1069 	} else {
1070 		if (page == 0)
1071 			/* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1072 			lp->hw->phy->symbol_duration = 40;
1073 		else
1074 			/* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1075 			lp->hw->phy->symbol_duration = 16;
1076 	}
1077 
1078 	lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1079 				   lp->hw->phy->symbol_duration;
1080 	lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1081 				   lp->hw->phy->symbol_duration;
1082 
1083 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1084 }
1085 
1086 static int
1087 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1088 {
1089 	struct at86rf230_local *lp = hw->priv;
1090 	int rc;
1091 
1092 	rc = lp->data->set_channel(lp, page, channel);
1093 	/* Wait for PLL */
1094 	usleep_range(lp->data->t_channel_switch,
1095 		     lp->data->t_channel_switch + 10);
1096 
1097 	lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1098 	return rc;
1099 }
1100 
1101 static int
1102 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1103 			   struct ieee802154_hw_addr_filt *filt,
1104 			   unsigned long changed)
1105 {
1106 	struct at86rf230_local *lp = hw->priv;
1107 
1108 	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1109 		u16 addr = le16_to_cpu(filt->short_addr);
1110 
1111 		dev_vdbg(&lp->spi->dev,
1112 			 "at86rf230_set_hw_addr_filt called for saddr\n");
1113 		__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1114 		__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1115 	}
1116 
1117 	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1118 		u16 pan = le16_to_cpu(filt->pan_id);
1119 
1120 		dev_vdbg(&lp->spi->dev,
1121 			 "at86rf230_set_hw_addr_filt called for pan id\n");
1122 		__at86rf230_write(lp, RG_PAN_ID_0, pan);
1123 		__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1124 	}
1125 
1126 	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1127 		u8 i, addr[8];
1128 
1129 		memcpy(addr, &filt->ieee_addr, 8);
1130 		dev_vdbg(&lp->spi->dev,
1131 			 "at86rf230_set_hw_addr_filt called for IEEE addr\n");
1132 		for (i = 0; i < 8; i++)
1133 			__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1134 	}
1135 
1136 	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1137 		dev_vdbg(&lp->spi->dev,
1138 			 "at86rf230_set_hw_addr_filt called for panc change\n");
1139 		if (filt->pan_coord)
1140 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1141 		else
1142 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 #define AT86RF23X_MAX_TX_POWERS 0xF
1149 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1150 	400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600,
1151 	-800, -1200, -1700,
1152 };
1153 
1154 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1155 	300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700,
1156 	-900, -1200, -1700,
1157 };
1158 
1159 #define AT86RF212_MAX_TX_POWERS 0x1F
1160 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = {
1161 	500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
1162 	-800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
1163 	-1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
1164 };
1165 
1166 static int
1167 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm)
1168 {
1169 	u32 i;
1170 
1171 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1172 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1173 			return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i);
1174 	}
1175 
1176 	return -EINVAL;
1177 }
1178 
1179 static int
1180 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm)
1181 {
1182 	u32 i;
1183 
1184 	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1185 		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1186 			return at86rf230_write_subreg(lp, SR_TX_PWR_212, i);
1187 	}
1188 
1189 	return -EINVAL;
1190 }
1191 
1192 static int
1193 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm)
1194 {
1195 	struct at86rf230_local *lp = hw->priv;
1196 
1197 	return lp->data->set_txpower(lp, mbm);
1198 }
1199 
1200 static int
1201 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1202 {
1203 	struct at86rf230_local *lp = hw->priv;
1204 
1205 	return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1206 }
1207 
1208 static int
1209 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1210 		       const struct wpan_phy_cca *cca)
1211 {
1212 	struct at86rf230_local *lp = hw->priv;
1213 	u8 val;
1214 
1215 	/* mapping 802.15.4 to driver spec */
1216 	switch (cca->mode) {
1217 	case NL802154_CCA_ENERGY:
1218 		val = 1;
1219 		break;
1220 	case NL802154_CCA_CARRIER:
1221 		val = 2;
1222 		break;
1223 	case NL802154_CCA_ENERGY_CARRIER:
1224 		switch (cca->opt) {
1225 		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1226 			val = 3;
1227 			break;
1228 		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1229 			val = 0;
1230 			break;
1231 		default:
1232 			return -EINVAL;
1233 		}
1234 		break;
1235 	default:
1236 		return -EINVAL;
1237 	}
1238 
1239 	return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1240 }
1241 
1242 
1243 static int
1244 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
1245 {
1246 	struct at86rf230_local *lp = hw->priv;
1247 	u32 i;
1248 
1249 	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
1250 		if (hw->phy->supported.cca_ed_levels[i] == mbm)
1251 			return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i);
1252 	}
1253 
1254 	return -EINVAL;
1255 }
1256 
1257 static int
1258 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1259 			  u8 retries)
1260 {
1261 	struct at86rf230_local *lp = hw->priv;
1262 	int rc;
1263 
1264 	rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1265 	if (rc)
1266 		return rc;
1267 
1268 	rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1269 	if (rc)
1270 		return rc;
1271 
1272 	return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1273 }
1274 
1275 static int
1276 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1277 {
1278 	struct at86rf230_local *lp = hw->priv;
1279 
1280 	return at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1281 }
1282 
1283 static int
1284 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1285 {
1286 	struct at86rf230_local *lp = hw->priv;
1287 	int rc;
1288 
1289 	if (on) {
1290 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1291 		if (rc < 0)
1292 			return rc;
1293 
1294 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1295 		if (rc < 0)
1296 			return rc;
1297 	} else {
1298 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1299 		if (rc < 0)
1300 			return rc;
1301 
1302 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1303 		if (rc < 0)
1304 			return rc;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 static const struct ieee802154_ops at86rf230_ops = {
1311 	.owner = THIS_MODULE,
1312 	.xmit_async = at86rf230_xmit,
1313 	.ed = at86rf230_ed,
1314 	.set_channel = at86rf230_channel,
1315 	.start = at86rf230_start,
1316 	.stop = at86rf230_stop,
1317 	.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1318 	.set_txpower = at86rf230_set_txpower,
1319 	.set_lbt = at86rf230_set_lbt,
1320 	.set_cca_mode = at86rf230_set_cca_mode,
1321 	.set_cca_ed_level = at86rf230_set_cca_ed_level,
1322 	.set_csma_params = at86rf230_set_csma_params,
1323 	.set_frame_retries = at86rf230_set_frame_retries,
1324 	.set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1325 };
1326 
1327 static struct at86rf2xx_chip_data at86rf233_data = {
1328 	.t_sleep_cycle = 330,
1329 	.t_channel_switch = 11,
1330 	.t_reset_to_off = 26,
1331 	.t_off_to_aack = 80,
1332 	.t_off_to_tx_on = 80,
1333 	.t_off_to_sleep = 35,
1334 	.t_sleep_to_off = 210,
1335 	.t_frame = 4096,
1336 	.t_p_ack = 545,
1337 	.rssi_base_val = -91,
1338 	.set_channel = at86rf23x_set_channel,
1339 	.set_txpower = at86rf23x_set_txpower,
1340 };
1341 
1342 static struct at86rf2xx_chip_data at86rf231_data = {
1343 	.t_sleep_cycle = 330,
1344 	.t_channel_switch = 24,
1345 	.t_reset_to_off = 37,
1346 	.t_off_to_aack = 110,
1347 	.t_off_to_tx_on = 110,
1348 	.t_off_to_sleep = 35,
1349 	.t_sleep_to_off = 380,
1350 	.t_frame = 4096,
1351 	.t_p_ack = 545,
1352 	.rssi_base_val = -91,
1353 	.set_channel = at86rf23x_set_channel,
1354 	.set_txpower = at86rf23x_set_txpower,
1355 };
1356 
1357 static struct at86rf2xx_chip_data at86rf212_data = {
1358 	.t_sleep_cycle = 330,
1359 	.t_channel_switch = 11,
1360 	.t_reset_to_off = 26,
1361 	.t_off_to_aack = 200,
1362 	.t_off_to_tx_on = 200,
1363 	.t_off_to_sleep = 35,
1364 	.t_sleep_to_off = 380,
1365 	.t_frame = 4096,
1366 	.t_p_ack = 545,
1367 	.rssi_base_val = -100,
1368 	.set_channel = at86rf212_set_channel,
1369 	.set_txpower = at86rf212_set_txpower,
1370 };
1371 
1372 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1373 {
1374 	int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1375 	unsigned int dvdd;
1376 	u8 csma_seed[2];
1377 
1378 	rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1379 	if (rc)
1380 		return rc;
1381 
1382 	irq_type = irq_get_trigger_type(lp->spi->irq);
1383 	if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1384 	    irq_type == IRQ_TYPE_LEVEL_LOW)
1385 		irq_pol = IRQ_ACTIVE_LOW;
1386 
1387 	rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1388 	if (rc)
1389 		return rc;
1390 
1391 	rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1392 	if (rc)
1393 		return rc;
1394 
1395 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1396 	if (rc)
1397 		return rc;
1398 
1399 	/* reset values differs in at86rf231 and at86rf233 */
1400 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1401 	if (rc)
1402 		return rc;
1403 
1404 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1405 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1406 	if (rc)
1407 		return rc;
1408 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1409 	if (rc)
1410 		return rc;
1411 
1412 	/* CLKM changes are applied immediately */
1413 	rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1414 	if (rc)
1415 		return rc;
1416 
1417 	/* Turn CLKM Off */
1418 	rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1419 	if (rc)
1420 		return rc;
1421 	/* Wait the next SLEEP cycle */
1422 	usleep_range(lp->data->t_sleep_cycle,
1423 		     lp->data->t_sleep_cycle + 100);
1424 
1425 	/* xtal_trim value is calculated by:
1426 	 * CL = 0.5 * (CX + CTRIM + CPAR)
1427 	 *
1428 	 * whereas:
1429 	 * CL = capacitor of used crystal
1430 	 * CX = connected capacitors at xtal pins
1431 	 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1432 	 *	  but this is different on each board setup. You need to fine
1433 	 *	  tuning this value via CTRIM.
1434 	 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1435 	 *	   0 pF upto 4.5 pF.
1436 	 *
1437 	 * Examples:
1438 	 * atben transceiver:
1439 	 *
1440 	 * CL = 8 pF
1441 	 * CX = 12 pF
1442 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1443 	 * CTRIM = 0.9 pF
1444 	 *
1445 	 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1446 	 *
1447 	 * xtal_trim = 0x3
1448 	 *
1449 	 * openlabs transceiver:
1450 	 *
1451 	 * CL = 16 pF
1452 	 * CX = 22 pF
1453 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1454 	 * CTRIM = 4.5 pF
1455 	 *
1456 	 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1457 	 *
1458 	 * xtal_trim = 0xf
1459 	 */
1460 	rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1461 	if (rc)
1462 		return rc;
1463 
1464 	rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1465 	if (rc)
1466 		return rc;
1467 	if (!dvdd) {
1468 		dev_err(&lp->spi->dev, "DVDD error\n");
1469 		return -EINVAL;
1470 	}
1471 
1472 	/* Force setting slotted operation bit to 0. Sometimes the atben
1473 	 * sets this bit and I don't know why. We set this always force
1474 	 * to zero while probing.
1475 	 */
1476 	return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1477 }
1478 
1479 static int
1480 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1481 		    u8 *xtal_trim)
1482 {
1483 	struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1484 	int ret;
1485 
1486 	if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1487 		if (!pdata)
1488 			return -ENOENT;
1489 
1490 		*rstn = pdata->rstn;
1491 		*slp_tr = pdata->slp_tr;
1492 		*xtal_trim = pdata->xtal_trim;
1493 		return 0;
1494 	}
1495 
1496 	*rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1497 	*slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1498 	ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1499 	if (ret < 0 && ret != -EINVAL)
1500 		return ret;
1501 
1502 	return 0;
1503 }
1504 
1505 static int
1506 at86rf230_detect_device(struct at86rf230_local *lp)
1507 {
1508 	unsigned int part, version, val;
1509 	u16 man_id = 0;
1510 	const char *chip;
1511 	int rc;
1512 
1513 	rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1514 	if (rc)
1515 		return rc;
1516 	man_id |= val;
1517 
1518 	rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1519 	if (rc)
1520 		return rc;
1521 	man_id |= (val << 8);
1522 
1523 	rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1524 	if (rc)
1525 		return rc;
1526 
1527 	rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1528 	if (rc)
1529 		return rc;
1530 
1531 	if (man_id != 0x001f) {
1532 		dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1533 			man_id >> 8, man_id & 0xFF);
1534 		return -EINVAL;
1535 	}
1536 
1537 	lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
1538 			IEEE802154_HW_CSMA_PARAMS |
1539 			IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
1540 			IEEE802154_HW_PROMISCUOUS;
1541 
1542 	lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
1543 			     WPAN_PHY_FLAG_CCA_ED_LEVEL |
1544 			     WPAN_PHY_FLAG_CCA_MODE;
1545 
1546 	lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1547 		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
1548 	lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
1549 		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
1550 
1551 	lp->hw->phy->supported.cca_ed_levels = at86rf23x_ed_levels;
1552 	lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf23x_ed_levels);
1553 
1554 	lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1555 
1556 	switch (part) {
1557 	case 2:
1558 		chip = "at86rf230";
1559 		rc = -ENOTSUPP;
1560 		goto not_supp;
1561 	case 3:
1562 		chip = "at86rf231";
1563 		lp->data = &at86rf231_data;
1564 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1565 		lp->hw->phy->current_channel = 11;
1566 		lp->hw->phy->symbol_duration = 16;
1567 		lp->hw->phy->supported.tx_powers = at86rf231_powers;
1568 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers);
1569 		break;
1570 	case 7:
1571 		chip = "at86rf212";
1572 		lp->data = &at86rf212_data;
1573 		lp->hw->flags |= IEEE802154_HW_LBT;
1574 		lp->hw->phy->supported.channels[0] = 0x00007FF;
1575 		lp->hw->phy->supported.channels[2] = 0x00007FF;
1576 		lp->hw->phy->current_channel = 5;
1577 		lp->hw->phy->symbol_duration = 25;
1578 		lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH;
1579 		lp->hw->phy->supported.tx_powers = at86rf212_powers;
1580 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers);
1581 		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1582 		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1583 		break;
1584 	case 11:
1585 		chip = "at86rf233";
1586 		lp->data = &at86rf233_data;
1587 		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1588 		lp->hw->phy->current_channel = 13;
1589 		lp->hw->phy->symbol_duration = 16;
1590 		lp->hw->phy->supported.tx_powers = at86rf233_powers;
1591 		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers);
1592 		break;
1593 	default:
1594 		chip = "unknown";
1595 		rc = -ENOTSUPP;
1596 		goto not_supp;
1597 	}
1598 
1599 	lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7];
1600 	lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0];
1601 
1602 not_supp:
1603 	dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1604 
1605 	return rc;
1606 }
1607 
1608 #ifdef CONFIG_IEEE802154_AT86RF230_DEBUGFS
1609 static struct dentry *at86rf230_debugfs_root;
1610 
1611 static int at86rf230_stats_show(struct seq_file *file, void *offset)
1612 {
1613 	struct at86rf230_local *lp = file->private;
1614 
1615 	seq_printf(file, "SUCCESS:\t\t%8llu\n", lp->trac.success);
1616 	seq_printf(file, "SUCCESS_DATA_PENDING:\t%8llu\n",
1617 		   lp->trac.success_data_pending);
1618 	seq_printf(file, "SUCCESS_WAIT_FOR_ACK:\t%8llu\n",
1619 		   lp->trac.success_wait_for_ack);
1620 	seq_printf(file, "CHANNEL_ACCESS_FAILURE:\t%8llu\n",
1621 		   lp->trac.channel_access_failure);
1622 	seq_printf(file, "NO_ACK:\t\t\t%8llu\n", lp->trac.no_ack);
1623 	seq_printf(file, "INVALID:\t\t%8llu\n", lp->trac.invalid);
1624 	return 0;
1625 }
1626 
1627 static int at86rf230_stats_open(struct inode *inode, struct file *file)
1628 {
1629 	return single_open(file, at86rf230_stats_show, inode->i_private);
1630 }
1631 
1632 static const struct file_operations at86rf230_stats_fops = {
1633 	.open		= at86rf230_stats_open,
1634 	.read		= seq_read,
1635 	.llseek		= seq_lseek,
1636 	.release	= single_release,
1637 };
1638 
1639 static int at86rf230_debugfs_init(struct at86rf230_local *lp)
1640 {
1641 	char debugfs_dir_name[DNAME_INLINE_LEN + 1] = "at86rf230-";
1642 	struct dentry *stats;
1643 
1644 	strncat(debugfs_dir_name, dev_name(&lp->spi->dev), DNAME_INLINE_LEN);
1645 
1646 	at86rf230_debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL);
1647 	if (!at86rf230_debugfs_root)
1648 		return -ENOMEM;
1649 
1650 	stats = debugfs_create_file("trac_stats", S_IRUGO,
1651 				    at86rf230_debugfs_root, lp,
1652 				    &at86rf230_stats_fops);
1653 	if (!stats)
1654 		return -ENOMEM;
1655 
1656 	return 0;
1657 }
1658 
1659 static void at86rf230_debugfs_remove(void)
1660 {
1661 	debugfs_remove_recursive(at86rf230_debugfs_root);
1662 }
1663 #else
1664 static int at86rf230_debugfs_init(struct at86rf230_local *lp) { return 0; }
1665 static void at86rf230_debugfs_remove(void) { }
1666 #endif
1667 
1668 static int at86rf230_probe(struct spi_device *spi)
1669 {
1670 	struct ieee802154_hw *hw;
1671 	struct at86rf230_local *lp;
1672 	unsigned int status;
1673 	int rc, irq_type, rstn, slp_tr;
1674 	u8 xtal_trim = 0;
1675 
1676 	if (!spi->irq) {
1677 		dev_err(&spi->dev, "no IRQ specified\n");
1678 		return -EINVAL;
1679 	}
1680 
1681 	rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1682 	if (rc < 0) {
1683 		dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1684 		return rc;
1685 	}
1686 
1687 	if (gpio_is_valid(rstn)) {
1688 		rc = devm_gpio_request_one(&spi->dev, rstn,
1689 					   GPIOF_OUT_INIT_HIGH, "rstn");
1690 		if (rc)
1691 			return rc;
1692 	}
1693 
1694 	if (gpio_is_valid(slp_tr)) {
1695 		rc = devm_gpio_request_one(&spi->dev, slp_tr,
1696 					   GPIOF_OUT_INIT_LOW, "slp_tr");
1697 		if (rc)
1698 			return rc;
1699 	}
1700 
1701 	/* Reset */
1702 	if (gpio_is_valid(rstn)) {
1703 		udelay(1);
1704 		gpio_set_value(rstn, 0);
1705 		udelay(1);
1706 		gpio_set_value(rstn, 1);
1707 		usleep_range(120, 240);
1708 	}
1709 
1710 	hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1711 	if (!hw)
1712 		return -ENOMEM;
1713 
1714 	lp = hw->priv;
1715 	lp->hw = hw;
1716 	lp->spi = spi;
1717 	lp->slp_tr = slp_tr;
1718 	hw->parent = &spi->dev;
1719 	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1720 
1721 	lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1722 	if (IS_ERR(lp->regmap)) {
1723 		rc = PTR_ERR(lp->regmap);
1724 		dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1725 			rc);
1726 		goto free_dev;
1727 	}
1728 
1729 	at86rf230_setup_spi_messages(lp, &lp->state);
1730 	at86rf230_setup_spi_messages(lp, &lp->tx);
1731 
1732 	rc = at86rf230_detect_device(lp);
1733 	if (rc < 0)
1734 		goto free_dev;
1735 
1736 	init_completion(&lp->state_complete);
1737 
1738 	spi_set_drvdata(spi, lp);
1739 
1740 	rc = at86rf230_hw_init(lp, xtal_trim);
1741 	if (rc)
1742 		goto free_dev;
1743 
1744 	/* Read irq status register to reset irq line */
1745 	rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1746 	if (rc)
1747 		goto free_dev;
1748 
1749 	irq_type = irq_get_trigger_type(spi->irq);
1750 	if (!irq_type)
1751 		irq_type = IRQF_TRIGGER_HIGH;
1752 
1753 	rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1754 			      IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1755 	if (rc)
1756 		goto free_dev;
1757 
1758 	/* disable_irq by default and wait for starting hardware */
1759 	disable_irq(spi->irq);
1760 
1761 	/* going into sleep by default */
1762 	at86rf230_sleep(lp);
1763 
1764 	rc = at86rf230_debugfs_init(lp);
1765 	if (rc)
1766 		goto free_dev;
1767 
1768 	rc = ieee802154_register_hw(lp->hw);
1769 	if (rc)
1770 		goto free_debugfs;
1771 
1772 	return rc;
1773 
1774 free_debugfs:
1775 	at86rf230_debugfs_remove();
1776 free_dev:
1777 	ieee802154_free_hw(lp->hw);
1778 
1779 	return rc;
1780 }
1781 
1782 static int at86rf230_remove(struct spi_device *spi)
1783 {
1784 	struct at86rf230_local *lp = spi_get_drvdata(spi);
1785 
1786 	/* mask all at86rf230 irq's */
1787 	at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1788 	ieee802154_unregister_hw(lp->hw);
1789 	ieee802154_free_hw(lp->hw);
1790 	at86rf230_debugfs_remove();
1791 	dev_dbg(&spi->dev, "unregistered at86rf230\n");
1792 
1793 	return 0;
1794 }
1795 
1796 static const struct of_device_id at86rf230_of_match[] = {
1797 	{ .compatible = "atmel,at86rf230", },
1798 	{ .compatible = "atmel,at86rf231", },
1799 	{ .compatible = "atmel,at86rf233", },
1800 	{ .compatible = "atmel,at86rf212", },
1801 	{ },
1802 };
1803 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1804 
1805 static const struct spi_device_id at86rf230_device_id[] = {
1806 	{ .name = "at86rf230", },
1807 	{ .name = "at86rf231", },
1808 	{ .name = "at86rf233", },
1809 	{ .name = "at86rf212", },
1810 	{ },
1811 };
1812 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1813 
1814 static struct spi_driver at86rf230_driver = {
1815 	.id_table = at86rf230_device_id,
1816 	.driver = {
1817 		.of_match_table = of_match_ptr(at86rf230_of_match),
1818 		.name	= "at86rf230",
1819 	},
1820 	.probe      = at86rf230_probe,
1821 	.remove     = at86rf230_remove,
1822 };
1823 
1824 module_spi_driver(at86rf230_driver);
1825 
1826 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1827 MODULE_LICENSE("GPL v2");
1828