1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AT86RF230/RF231 driver 4 * 5 * Copyright (C) 2009-2012 Siemens AG 6 * 7 * Written by: 8 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> 9 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> 10 * Alexander Aring <aar@pengutronix.de> 11 */ 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/hrtimer.h> 15 #include <linux/jiffies.h> 16 #include <linux/interrupt.h> 17 #include <linux/irq.h> 18 #include <linux/gpio.h> 19 #include <linux/delay.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spi/at86rf230.h> 22 #include <linux/regmap.h> 23 #include <linux/skbuff.h> 24 #include <linux/of_gpio.h> 25 #include <linux/ieee802154.h> 26 27 #include <net/mac802154.h> 28 #include <net/cfg802154.h> 29 30 #include "at86rf230.h" 31 32 struct at86rf230_local; 33 /* at86rf2xx chip depend data. 34 * All timings are in us. 35 */ 36 struct at86rf2xx_chip_data { 37 u16 t_sleep_cycle; 38 u16 t_channel_switch; 39 u16 t_reset_to_off; 40 u16 t_off_to_aack; 41 u16 t_off_to_tx_on; 42 u16 t_off_to_sleep; 43 u16 t_sleep_to_off; 44 u16 t_frame; 45 u16 t_p_ack; 46 int rssi_base_val; 47 48 int (*set_channel)(struct at86rf230_local *, u8, u8); 49 int (*set_txpower)(struct at86rf230_local *, s32); 50 }; 51 52 #define AT86RF2XX_MAX_BUF (127 + 3) 53 /* tx retries to access the TX_ON state 54 * if it's above then force change will be started. 55 * 56 * We assume the max_frame_retries (7) value of 802.15.4 here. 57 */ 58 #define AT86RF2XX_MAX_TX_RETRIES 7 59 /* We use the recommended 5 minutes timeout to recalibrate */ 60 #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ) 61 62 struct at86rf230_state_change { 63 struct at86rf230_local *lp; 64 int irq; 65 66 struct hrtimer timer; 67 struct spi_message msg; 68 struct spi_transfer trx; 69 u8 buf[AT86RF2XX_MAX_BUF]; 70 71 void (*complete)(void *context); 72 u8 from_state; 73 u8 to_state; 74 int trac; 75 76 bool free; 77 }; 78 79 struct at86rf230_local { 80 struct spi_device *spi; 81 82 struct ieee802154_hw *hw; 83 struct at86rf2xx_chip_data *data; 84 struct regmap *regmap; 85 int slp_tr; 86 bool sleep; 87 88 struct completion state_complete; 89 struct at86rf230_state_change state; 90 91 unsigned long cal_timeout; 92 bool is_tx; 93 bool is_tx_from_off; 94 bool was_tx; 95 u8 tx_retry; 96 struct sk_buff *tx_skb; 97 struct at86rf230_state_change tx; 98 }; 99 100 #define AT86RF2XX_NUMREGS 0x3F 101 102 static void 103 at86rf230_async_state_change(struct at86rf230_local *lp, 104 struct at86rf230_state_change *ctx, 105 const u8 state, void (*complete)(void *context)); 106 107 static inline void 108 at86rf230_sleep(struct at86rf230_local *lp) 109 { 110 if (gpio_is_valid(lp->slp_tr)) { 111 gpio_set_value(lp->slp_tr, 1); 112 usleep_range(lp->data->t_off_to_sleep, 113 lp->data->t_off_to_sleep + 10); 114 lp->sleep = true; 115 } 116 } 117 118 static inline void 119 at86rf230_awake(struct at86rf230_local *lp) 120 { 121 if (gpio_is_valid(lp->slp_tr)) { 122 gpio_set_value(lp->slp_tr, 0); 123 usleep_range(lp->data->t_sleep_to_off, 124 lp->data->t_sleep_to_off + 100); 125 lp->sleep = false; 126 } 127 } 128 129 static inline int 130 __at86rf230_write(struct at86rf230_local *lp, 131 unsigned int addr, unsigned int data) 132 { 133 bool sleep = lp->sleep; 134 int ret; 135 136 /* awake for register setting if sleep */ 137 if (sleep) 138 at86rf230_awake(lp); 139 140 ret = regmap_write(lp->regmap, addr, data); 141 142 /* sleep again if was sleeping */ 143 if (sleep) 144 at86rf230_sleep(lp); 145 146 return ret; 147 } 148 149 static inline int 150 __at86rf230_read(struct at86rf230_local *lp, 151 unsigned int addr, unsigned int *data) 152 { 153 bool sleep = lp->sleep; 154 int ret; 155 156 /* awake for register setting if sleep */ 157 if (sleep) 158 at86rf230_awake(lp); 159 160 ret = regmap_read(lp->regmap, addr, data); 161 162 /* sleep again if was sleeping */ 163 if (sleep) 164 at86rf230_sleep(lp); 165 166 return ret; 167 } 168 169 static inline int 170 at86rf230_read_subreg(struct at86rf230_local *lp, 171 unsigned int addr, unsigned int mask, 172 unsigned int shift, unsigned int *data) 173 { 174 int rc; 175 176 rc = __at86rf230_read(lp, addr, data); 177 if (!rc) 178 *data = (*data & mask) >> shift; 179 180 return rc; 181 } 182 183 static inline int 184 at86rf230_write_subreg(struct at86rf230_local *lp, 185 unsigned int addr, unsigned int mask, 186 unsigned int shift, unsigned int data) 187 { 188 bool sleep = lp->sleep; 189 int ret; 190 191 /* awake for register setting if sleep */ 192 if (sleep) 193 at86rf230_awake(lp); 194 195 ret = regmap_update_bits(lp->regmap, addr, mask, data << shift); 196 197 /* sleep again if was sleeping */ 198 if (sleep) 199 at86rf230_sleep(lp); 200 201 return ret; 202 } 203 204 static inline void 205 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp) 206 { 207 gpio_set_value(lp->slp_tr, 1); 208 udelay(1); 209 gpio_set_value(lp->slp_tr, 0); 210 } 211 212 static bool 213 at86rf230_reg_writeable(struct device *dev, unsigned int reg) 214 { 215 switch (reg) { 216 case RG_TRX_STATE: 217 case RG_TRX_CTRL_0: 218 case RG_TRX_CTRL_1: 219 case RG_PHY_TX_PWR: 220 case RG_PHY_ED_LEVEL: 221 case RG_PHY_CC_CCA: 222 case RG_CCA_THRES: 223 case RG_RX_CTRL: 224 case RG_SFD_VALUE: 225 case RG_TRX_CTRL_2: 226 case RG_ANT_DIV: 227 case RG_IRQ_MASK: 228 case RG_VREG_CTRL: 229 case RG_BATMON: 230 case RG_XOSC_CTRL: 231 case RG_RX_SYN: 232 case RG_XAH_CTRL_1: 233 case RG_FTN_CTRL: 234 case RG_PLL_CF: 235 case RG_PLL_DCU: 236 case RG_SHORT_ADDR_0: 237 case RG_SHORT_ADDR_1: 238 case RG_PAN_ID_0: 239 case RG_PAN_ID_1: 240 case RG_IEEE_ADDR_0: 241 case RG_IEEE_ADDR_1: 242 case RG_IEEE_ADDR_2: 243 case RG_IEEE_ADDR_3: 244 case RG_IEEE_ADDR_4: 245 case RG_IEEE_ADDR_5: 246 case RG_IEEE_ADDR_6: 247 case RG_IEEE_ADDR_7: 248 case RG_XAH_CTRL_0: 249 case RG_CSMA_SEED_0: 250 case RG_CSMA_SEED_1: 251 case RG_CSMA_BE: 252 return true; 253 default: 254 return false; 255 } 256 } 257 258 static bool 259 at86rf230_reg_readable(struct device *dev, unsigned int reg) 260 { 261 bool rc; 262 263 /* all writeable are also readable */ 264 rc = at86rf230_reg_writeable(dev, reg); 265 if (rc) 266 return rc; 267 268 /* readonly regs */ 269 switch (reg) { 270 case RG_TRX_STATUS: 271 case RG_PHY_RSSI: 272 case RG_IRQ_STATUS: 273 case RG_PART_NUM: 274 case RG_VERSION_NUM: 275 case RG_MAN_ID_1: 276 case RG_MAN_ID_0: 277 return true; 278 default: 279 return false; 280 } 281 } 282 283 static bool 284 at86rf230_reg_volatile(struct device *dev, unsigned int reg) 285 { 286 /* can be changed during runtime */ 287 switch (reg) { 288 case RG_TRX_STATUS: 289 case RG_TRX_STATE: 290 case RG_PHY_RSSI: 291 case RG_PHY_ED_LEVEL: 292 case RG_IRQ_STATUS: 293 case RG_VREG_CTRL: 294 case RG_PLL_CF: 295 case RG_PLL_DCU: 296 return true; 297 default: 298 return false; 299 } 300 } 301 302 static bool 303 at86rf230_reg_precious(struct device *dev, unsigned int reg) 304 { 305 /* don't clear irq line on read */ 306 switch (reg) { 307 case RG_IRQ_STATUS: 308 return true; 309 default: 310 return false; 311 } 312 } 313 314 static const struct regmap_config at86rf230_regmap_spi_config = { 315 .reg_bits = 8, 316 .val_bits = 8, 317 .write_flag_mask = CMD_REG | CMD_WRITE, 318 .read_flag_mask = CMD_REG, 319 .cache_type = REGCACHE_RBTREE, 320 .max_register = AT86RF2XX_NUMREGS, 321 .writeable_reg = at86rf230_reg_writeable, 322 .readable_reg = at86rf230_reg_readable, 323 .volatile_reg = at86rf230_reg_volatile, 324 .precious_reg = at86rf230_reg_precious, 325 }; 326 327 static void 328 at86rf230_async_error_recover_complete(void *context) 329 { 330 struct at86rf230_state_change *ctx = context; 331 struct at86rf230_local *lp = ctx->lp; 332 333 if (ctx->free) 334 kfree(ctx); 335 336 if (lp->was_tx) { 337 lp->was_tx = 0; 338 ieee802154_xmit_hw_error(lp->hw, lp->tx_skb); 339 } 340 } 341 342 static void 343 at86rf230_async_error_recover(void *context) 344 { 345 struct at86rf230_state_change *ctx = context; 346 struct at86rf230_local *lp = ctx->lp; 347 348 if (lp->is_tx) { 349 lp->was_tx = 1; 350 lp->is_tx = 0; 351 } 352 353 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, 354 at86rf230_async_error_recover_complete); 355 } 356 357 static inline void 358 at86rf230_async_error(struct at86rf230_local *lp, 359 struct at86rf230_state_change *ctx, int rc) 360 { 361 dev_err(&lp->spi->dev, "spi_async error %d\n", rc); 362 363 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF, 364 at86rf230_async_error_recover); 365 } 366 367 /* Generic function to get some register value in async mode */ 368 static void 369 at86rf230_async_read_reg(struct at86rf230_local *lp, u8 reg, 370 struct at86rf230_state_change *ctx, 371 void (*complete)(void *context)) 372 { 373 int rc; 374 375 u8 *tx_buf = ctx->buf; 376 377 tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG; 378 ctx->msg.complete = complete; 379 rc = spi_async(lp->spi, &ctx->msg); 380 if (rc) 381 at86rf230_async_error(lp, ctx, rc); 382 } 383 384 static void 385 at86rf230_async_write_reg(struct at86rf230_local *lp, u8 reg, u8 val, 386 struct at86rf230_state_change *ctx, 387 void (*complete)(void *context)) 388 { 389 int rc; 390 391 ctx->buf[0] = (reg & CMD_REG_MASK) | CMD_REG | CMD_WRITE; 392 ctx->buf[1] = val; 393 ctx->msg.complete = complete; 394 rc = spi_async(lp->spi, &ctx->msg); 395 if (rc) 396 at86rf230_async_error(lp, ctx, rc); 397 } 398 399 static void 400 at86rf230_async_state_assert(void *context) 401 { 402 struct at86rf230_state_change *ctx = context; 403 struct at86rf230_local *lp = ctx->lp; 404 const u8 *buf = ctx->buf; 405 const u8 trx_state = buf[1] & TRX_STATE_MASK; 406 407 /* Assert state change */ 408 if (trx_state != ctx->to_state) { 409 /* Special handling if transceiver state is in 410 * STATE_BUSY_RX_AACK and a SHR was detected. 411 */ 412 if (trx_state == STATE_BUSY_RX_AACK) { 413 /* Undocumented race condition. If we send a state 414 * change to STATE_RX_AACK_ON the transceiver could 415 * change his state automatically to STATE_BUSY_RX_AACK 416 * if a SHR was detected. This is not an error, but we 417 * can't assert this. 418 */ 419 if (ctx->to_state == STATE_RX_AACK_ON) 420 goto done; 421 422 /* If we change to STATE_TX_ON without forcing and 423 * transceiver state is STATE_BUSY_RX_AACK, we wait 424 * 'tFrame + tPAck' receiving time. In this time the 425 * PDU should be received. If the transceiver is still 426 * in STATE_BUSY_RX_AACK, we run a force state change 427 * to STATE_TX_ON. This is a timeout handling, if the 428 * transceiver stucks in STATE_BUSY_RX_AACK. 429 * 430 * Additional we do several retries to try to get into 431 * TX_ON state without forcing. If the retries are 432 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we 433 * will do a force change. 434 */ 435 if (ctx->to_state == STATE_TX_ON || 436 ctx->to_state == STATE_TRX_OFF) { 437 u8 state = ctx->to_state; 438 439 if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES) 440 state = STATE_FORCE_TRX_OFF; 441 lp->tx_retry++; 442 443 at86rf230_async_state_change(lp, ctx, state, 444 ctx->complete); 445 return; 446 } 447 } 448 449 dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n", 450 ctx->from_state, ctx->to_state, trx_state); 451 } 452 453 done: 454 if (ctx->complete) 455 ctx->complete(context); 456 } 457 458 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer) 459 { 460 struct at86rf230_state_change *ctx = 461 container_of(timer, struct at86rf230_state_change, timer); 462 struct at86rf230_local *lp = ctx->lp; 463 464 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 465 at86rf230_async_state_assert); 466 467 return HRTIMER_NORESTART; 468 } 469 470 /* Do state change timing delay. */ 471 static void 472 at86rf230_async_state_delay(void *context) 473 { 474 struct at86rf230_state_change *ctx = context; 475 struct at86rf230_local *lp = ctx->lp; 476 struct at86rf2xx_chip_data *c = lp->data; 477 bool force = false; 478 ktime_t tim; 479 480 /* The force state changes are will show as normal states in the 481 * state status subregister. We change the to_state to the 482 * corresponding one and remember if it was a force change, this 483 * differs if we do a state change from STATE_BUSY_RX_AACK. 484 */ 485 switch (ctx->to_state) { 486 case STATE_FORCE_TX_ON: 487 ctx->to_state = STATE_TX_ON; 488 force = true; 489 break; 490 case STATE_FORCE_TRX_OFF: 491 ctx->to_state = STATE_TRX_OFF; 492 force = true; 493 break; 494 default: 495 break; 496 } 497 498 switch (ctx->from_state) { 499 case STATE_TRX_OFF: 500 switch (ctx->to_state) { 501 case STATE_RX_AACK_ON: 502 tim = c->t_off_to_aack * NSEC_PER_USEC; 503 /* state change from TRX_OFF to RX_AACK_ON to do a 504 * calibration, we need to reset the timeout for the 505 * next one. 506 */ 507 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 508 goto change; 509 case STATE_TX_ARET_ON: 510 case STATE_TX_ON: 511 tim = c->t_off_to_tx_on * NSEC_PER_USEC; 512 /* state change from TRX_OFF to TX_ON or ARET_ON to do 513 * a calibration, we need to reset the timeout for the 514 * next one. 515 */ 516 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 517 goto change; 518 default: 519 break; 520 } 521 break; 522 case STATE_BUSY_RX_AACK: 523 switch (ctx->to_state) { 524 case STATE_TRX_OFF: 525 case STATE_TX_ON: 526 /* Wait for worst case receiving time if we 527 * didn't make a force change from BUSY_RX_AACK 528 * to TX_ON or TRX_OFF. 529 */ 530 if (!force) { 531 tim = (c->t_frame + c->t_p_ack) * NSEC_PER_USEC; 532 goto change; 533 } 534 break; 535 default: 536 break; 537 } 538 break; 539 /* Default value, means RESET state */ 540 case STATE_P_ON: 541 switch (ctx->to_state) { 542 case STATE_TRX_OFF: 543 tim = c->t_reset_to_off * NSEC_PER_USEC; 544 goto change; 545 default: 546 break; 547 } 548 break; 549 default: 550 break; 551 } 552 553 /* Default delay is 1us in the most cases */ 554 udelay(1); 555 at86rf230_async_state_timer(&ctx->timer); 556 return; 557 558 change: 559 hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL); 560 } 561 562 static void 563 at86rf230_async_state_change_start(void *context) 564 { 565 struct at86rf230_state_change *ctx = context; 566 struct at86rf230_local *lp = ctx->lp; 567 u8 *buf = ctx->buf; 568 const u8 trx_state = buf[1] & TRX_STATE_MASK; 569 570 /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */ 571 if (trx_state == STATE_TRANSITION_IN_PROGRESS) { 572 udelay(1); 573 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 574 at86rf230_async_state_change_start); 575 return; 576 } 577 578 /* Check if we already are in the state which we change in */ 579 if (trx_state == ctx->to_state) { 580 if (ctx->complete) 581 ctx->complete(context); 582 return; 583 } 584 585 /* Set current state to the context of state change */ 586 ctx->from_state = trx_state; 587 588 /* Going into the next step for a state change which do a timing 589 * relevant delay. 590 */ 591 at86rf230_async_write_reg(lp, RG_TRX_STATE, ctx->to_state, ctx, 592 at86rf230_async_state_delay); 593 } 594 595 static void 596 at86rf230_async_state_change(struct at86rf230_local *lp, 597 struct at86rf230_state_change *ctx, 598 const u8 state, void (*complete)(void *context)) 599 { 600 /* Initialization for the state change context */ 601 ctx->to_state = state; 602 ctx->complete = complete; 603 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, 604 at86rf230_async_state_change_start); 605 } 606 607 static void 608 at86rf230_sync_state_change_complete(void *context) 609 { 610 struct at86rf230_state_change *ctx = context; 611 struct at86rf230_local *lp = ctx->lp; 612 613 complete(&lp->state_complete); 614 } 615 616 /* This function do a sync framework above the async state change. 617 * Some callbacks of the IEEE 802.15.4 driver interface need to be 618 * handled synchronously. 619 */ 620 static int 621 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state) 622 { 623 unsigned long rc; 624 625 at86rf230_async_state_change(lp, &lp->state, state, 626 at86rf230_sync_state_change_complete); 627 628 rc = wait_for_completion_timeout(&lp->state_complete, 629 msecs_to_jiffies(100)); 630 if (!rc) { 631 at86rf230_async_error(lp, &lp->state, -ETIMEDOUT); 632 return -ETIMEDOUT; 633 } 634 635 return 0; 636 } 637 638 static void 639 at86rf230_tx_complete(void *context) 640 { 641 struct at86rf230_state_change *ctx = context; 642 struct at86rf230_local *lp = ctx->lp; 643 644 if (ctx->trac == IEEE802154_SUCCESS) 645 ieee802154_xmit_complete(lp->hw, lp->tx_skb, false); 646 else 647 ieee802154_xmit_error(lp->hw, lp->tx_skb, ctx->trac); 648 649 kfree(ctx); 650 } 651 652 static void 653 at86rf230_tx_on(void *context) 654 { 655 struct at86rf230_state_change *ctx = context; 656 struct at86rf230_local *lp = ctx->lp; 657 658 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, 659 at86rf230_tx_complete); 660 } 661 662 static void 663 at86rf230_tx_trac_check(void *context) 664 { 665 struct at86rf230_state_change *ctx = context; 666 struct at86rf230_local *lp = ctx->lp; 667 u8 trac = TRAC_MASK(ctx->buf[1]); 668 669 switch (trac) { 670 case TRAC_SUCCESS: 671 case TRAC_SUCCESS_DATA_PENDING: 672 ctx->trac = IEEE802154_SUCCESS; 673 break; 674 case TRAC_CHANNEL_ACCESS_FAILURE: 675 ctx->trac = IEEE802154_CHANNEL_ACCESS_FAILURE; 676 break; 677 case TRAC_NO_ACK: 678 ctx->trac = IEEE802154_NO_ACK; 679 break; 680 default: 681 ctx->trac = IEEE802154_SYSTEM_ERROR; 682 } 683 684 at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on); 685 } 686 687 static void 688 at86rf230_rx_read_frame_complete(void *context) 689 { 690 struct at86rf230_state_change *ctx = context; 691 struct at86rf230_local *lp = ctx->lp; 692 const u8 *buf = ctx->buf; 693 struct sk_buff *skb; 694 u8 len, lqi; 695 696 len = buf[1]; 697 if (!ieee802154_is_valid_psdu_len(len)) { 698 dev_vdbg(&lp->spi->dev, "corrupted frame received\n"); 699 len = IEEE802154_MTU; 700 } 701 lqi = buf[2 + len]; 702 703 skb = dev_alloc_skb(IEEE802154_MTU); 704 if (!skb) { 705 dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n"); 706 kfree(ctx); 707 return; 708 } 709 710 skb_put_data(skb, buf + 2, len); 711 ieee802154_rx_irqsafe(lp->hw, skb, lqi); 712 kfree(ctx); 713 } 714 715 static void 716 at86rf230_rx_trac_check(void *context) 717 { 718 struct at86rf230_state_change *ctx = context; 719 struct at86rf230_local *lp = ctx->lp; 720 u8 *buf = ctx->buf; 721 int rc; 722 723 buf[0] = CMD_FB; 724 ctx->trx.len = AT86RF2XX_MAX_BUF; 725 ctx->msg.complete = at86rf230_rx_read_frame_complete; 726 rc = spi_async(lp->spi, &ctx->msg); 727 if (rc) { 728 ctx->trx.len = 2; 729 at86rf230_async_error(lp, ctx, rc); 730 } 731 } 732 733 static void 734 at86rf230_irq_trx_end(void *context) 735 { 736 struct at86rf230_state_change *ctx = context; 737 struct at86rf230_local *lp = ctx->lp; 738 739 if (lp->is_tx) { 740 lp->is_tx = 0; 741 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx, 742 at86rf230_tx_trac_check); 743 } else { 744 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx, 745 at86rf230_rx_trac_check); 746 } 747 } 748 749 static void 750 at86rf230_irq_status(void *context) 751 { 752 struct at86rf230_state_change *ctx = context; 753 struct at86rf230_local *lp = ctx->lp; 754 const u8 *buf = ctx->buf; 755 u8 irq = buf[1]; 756 757 enable_irq(lp->spi->irq); 758 759 if (irq & IRQ_TRX_END) { 760 at86rf230_irq_trx_end(ctx); 761 } else { 762 dev_err(&lp->spi->dev, "not supported irq %02x received\n", 763 irq); 764 kfree(ctx); 765 } 766 } 767 768 static void 769 at86rf230_setup_spi_messages(struct at86rf230_local *lp, 770 struct at86rf230_state_change *state) 771 { 772 state->lp = lp; 773 state->irq = lp->spi->irq; 774 spi_message_init(&state->msg); 775 state->msg.context = state; 776 state->trx.len = 2; 777 state->trx.tx_buf = state->buf; 778 state->trx.rx_buf = state->buf; 779 spi_message_add_tail(&state->trx, &state->msg); 780 hrtimer_init(&state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 781 state->timer.function = at86rf230_async_state_timer; 782 } 783 784 static irqreturn_t at86rf230_isr(int irq, void *data) 785 { 786 struct at86rf230_local *lp = data; 787 struct at86rf230_state_change *ctx; 788 int rc; 789 790 disable_irq_nosync(irq); 791 792 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); 793 if (!ctx) { 794 enable_irq(irq); 795 return IRQ_NONE; 796 } 797 798 at86rf230_setup_spi_messages(lp, ctx); 799 /* tell on error handling to free ctx */ 800 ctx->free = true; 801 802 ctx->buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG; 803 ctx->msg.complete = at86rf230_irq_status; 804 rc = spi_async(lp->spi, &ctx->msg); 805 if (rc) { 806 at86rf230_async_error(lp, ctx, rc); 807 enable_irq(irq); 808 return IRQ_NONE; 809 } 810 811 return IRQ_HANDLED; 812 } 813 814 static void 815 at86rf230_write_frame_complete(void *context) 816 { 817 struct at86rf230_state_change *ctx = context; 818 struct at86rf230_local *lp = ctx->lp; 819 820 ctx->trx.len = 2; 821 822 if (gpio_is_valid(lp->slp_tr)) 823 at86rf230_slp_tr_rising_edge(lp); 824 else 825 at86rf230_async_write_reg(lp, RG_TRX_STATE, STATE_BUSY_TX, ctx, 826 NULL); 827 } 828 829 static void 830 at86rf230_write_frame(void *context) 831 { 832 struct at86rf230_state_change *ctx = context; 833 struct at86rf230_local *lp = ctx->lp; 834 struct sk_buff *skb = lp->tx_skb; 835 u8 *buf = ctx->buf; 836 int rc; 837 838 lp->is_tx = 1; 839 840 buf[0] = CMD_FB | CMD_WRITE; 841 buf[1] = skb->len + 2; 842 memcpy(buf + 2, skb->data, skb->len); 843 ctx->trx.len = skb->len + 2; 844 ctx->msg.complete = at86rf230_write_frame_complete; 845 rc = spi_async(lp->spi, &ctx->msg); 846 if (rc) { 847 ctx->trx.len = 2; 848 at86rf230_async_error(lp, ctx, rc); 849 } 850 } 851 852 static void 853 at86rf230_xmit_tx_on(void *context) 854 { 855 struct at86rf230_state_change *ctx = context; 856 struct at86rf230_local *lp = ctx->lp; 857 858 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, 859 at86rf230_write_frame); 860 } 861 862 static void 863 at86rf230_xmit_start(void *context) 864 { 865 struct at86rf230_state_change *ctx = context; 866 struct at86rf230_local *lp = ctx->lp; 867 868 /* check if we change from off state */ 869 if (lp->is_tx_from_off) 870 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, 871 at86rf230_write_frame); 872 else 873 at86rf230_async_state_change(lp, ctx, STATE_TX_ON, 874 at86rf230_xmit_tx_on); 875 } 876 877 static int 878 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) 879 { 880 struct at86rf230_local *lp = hw->priv; 881 struct at86rf230_state_change *ctx = &lp->tx; 882 883 lp->tx_skb = skb; 884 lp->tx_retry = 0; 885 886 /* After 5 minutes in PLL and the same frequency we run again the 887 * calibration loops which is recommended by at86rf2xx datasheets. 888 * 889 * The calibration is initiate by a state change from TRX_OFF 890 * to TX_ON, the lp->cal_timeout should be reinit by state_delay 891 * function then to start in the next 5 minutes. 892 */ 893 if (time_is_before_jiffies(lp->cal_timeout)) { 894 lp->is_tx_from_off = true; 895 at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF, 896 at86rf230_xmit_start); 897 } else { 898 lp->is_tx_from_off = false; 899 at86rf230_xmit_start(ctx); 900 } 901 902 return 0; 903 } 904 905 static int 906 at86rf230_ed(struct ieee802154_hw *hw, u8 *level) 907 { 908 WARN_ON(!level); 909 *level = 0xbe; 910 return 0; 911 } 912 913 static int 914 at86rf230_start(struct ieee802154_hw *hw) 915 { 916 struct at86rf230_local *lp = hw->priv; 917 918 at86rf230_awake(lp); 919 enable_irq(lp->spi->irq); 920 921 return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON); 922 } 923 924 static void 925 at86rf230_stop(struct ieee802154_hw *hw) 926 { 927 struct at86rf230_local *lp = hw->priv; 928 u8 csma_seed[2]; 929 930 at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); 931 932 disable_irq(lp->spi->irq); 933 934 /* It's recommended to set random new csma_seeds before sleep state. 935 * Makes only sense in the stop callback, not doing this inside of 936 * at86rf230_sleep, this is also used when we don't transmit afterwards 937 * when calling start callback again. 938 */ 939 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); 940 at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); 941 at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); 942 943 at86rf230_sleep(lp); 944 } 945 946 static int 947 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) 948 { 949 return at86rf230_write_subreg(lp, SR_CHANNEL, channel); 950 } 951 952 #define AT86RF2XX_MAX_ED_LEVELS 0xF 953 static const s32 at86rf233_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = { 954 -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600, 955 -7400, -7200, -7000, -6800, -6600, -6400, 956 }; 957 958 static const s32 at86rf231_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = { 959 -9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300, 960 -7100, -6900, -6700, -6500, -6300, -6100, 961 }; 962 963 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = { 964 -10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, 965 -8000, -7800, -7600, -7400, -7200, -7000, 966 }; 967 968 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = { 969 -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, 970 -7800, -7600, -7400, -7200, -7000, -6800, 971 }; 972 973 static inline int 974 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val) 975 { 976 unsigned int cca_ed_thres; 977 int rc; 978 979 rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres); 980 if (rc < 0) 981 return rc; 982 983 switch (rssi_base_val) { 984 case -98: 985 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98; 986 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98); 987 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres]; 988 break; 989 case -100: 990 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; 991 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); 992 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres]; 993 break; 994 default: 995 WARN_ON(1); 996 } 997 998 return 0; 999 } 1000 1001 static int 1002 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) 1003 { 1004 int rc; 1005 1006 if (channel == 0) 1007 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0); 1008 else 1009 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1); 1010 if (rc < 0) 1011 return rc; 1012 1013 if (page == 0) { 1014 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0); 1015 lp->data->rssi_base_val = -100; 1016 } else { 1017 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1); 1018 lp->data->rssi_base_val = -98; 1019 } 1020 if (rc < 0) 1021 return rc; 1022 1023 rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val); 1024 if (rc < 0) 1025 return rc; 1026 1027 return at86rf230_write_subreg(lp, SR_CHANNEL, channel); 1028 } 1029 1030 static int 1031 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel) 1032 { 1033 struct at86rf230_local *lp = hw->priv; 1034 int rc; 1035 1036 rc = lp->data->set_channel(lp, page, channel); 1037 /* Wait for PLL */ 1038 usleep_range(lp->data->t_channel_switch, 1039 lp->data->t_channel_switch + 10); 1040 1041 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; 1042 return rc; 1043 } 1044 1045 static int 1046 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw, 1047 struct ieee802154_hw_addr_filt *filt, 1048 unsigned long changed) 1049 { 1050 struct at86rf230_local *lp = hw->priv; 1051 1052 if (changed & IEEE802154_AFILT_SADDR_CHANGED) { 1053 u16 addr = le16_to_cpu(filt->short_addr); 1054 1055 dev_vdbg(&lp->spi->dev, "%s called for saddr\n", __func__); 1056 __at86rf230_write(lp, RG_SHORT_ADDR_0, addr); 1057 __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8); 1058 } 1059 1060 if (changed & IEEE802154_AFILT_PANID_CHANGED) { 1061 u16 pan = le16_to_cpu(filt->pan_id); 1062 1063 dev_vdbg(&lp->spi->dev, "%s called for pan id\n", __func__); 1064 __at86rf230_write(lp, RG_PAN_ID_0, pan); 1065 __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8); 1066 } 1067 1068 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { 1069 u8 i, addr[8]; 1070 1071 memcpy(addr, &filt->ieee_addr, 8); 1072 dev_vdbg(&lp->spi->dev, "%s called for IEEE addr\n", __func__); 1073 for (i = 0; i < 8; i++) 1074 __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]); 1075 } 1076 1077 if (changed & IEEE802154_AFILT_PANC_CHANGED) { 1078 dev_vdbg(&lp->spi->dev, "%s called for panc change\n", __func__); 1079 if (filt->pan_coord) 1080 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1); 1081 else 1082 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0); 1083 } 1084 1085 return 0; 1086 } 1087 1088 #define AT86RF23X_MAX_TX_POWERS 0xF 1089 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 1090 400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600, 1091 -800, -1200, -1700, 1092 }; 1093 1094 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 1095 300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700, 1096 -900, -1200, -1700, 1097 }; 1098 1099 #define AT86RF212_MAX_TX_POWERS 0x1F 1100 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = { 1101 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700, 1102 -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700, 1103 -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600, 1104 }; 1105 1106 static int 1107 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm) 1108 { 1109 u32 i; 1110 1111 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { 1112 if (lp->hw->phy->supported.tx_powers[i] == mbm) 1113 return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i); 1114 } 1115 1116 return -EINVAL; 1117 } 1118 1119 static int 1120 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm) 1121 { 1122 u32 i; 1123 1124 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { 1125 if (lp->hw->phy->supported.tx_powers[i] == mbm) 1126 return at86rf230_write_subreg(lp, SR_TX_PWR_212, i); 1127 } 1128 1129 return -EINVAL; 1130 } 1131 1132 static int 1133 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm) 1134 { 1135 struct at86rf230_local *lp = hw->priv; 1136 1137 return lp->data->set_txpower(lp, mbm); 1138 } 1139 1140 static int 1141 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on) 1142 { 1143 struct at86rf230_local *lp = hw->priv; 1144 1145 return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on); 1146 } 1147 1148 static int 1149 at86rf230_set_cca_mode(struct ieee802154_hw *hw, 1150 const struct wpan_phy_cca *cca) 1151 { 1152 struct at86rf230_local *lp = hw->priv; 1153 u8 val; 1154 1155 /* mapping 802.15.4 to driver spec */ 1156 switch (cca->mode) { 1157 case NL802154_CCA_ENERGY: 1158 val = 1; 1159 break; 1160 case NL802154_CCA_CARRIER: 1161 val = 2; 1162 break; 1163 case NL802154_CCA_ENERGY_CARRIER: 1164 switch (cca->opt) { 1165 case NL802154_CCA_OPT_ENERGY_CARRIER_AND: 1166 val = 3; 1167 break; 1168 case NL802154_CCA_OPT_ENERGY_CARRIER_OR: 1169 val = 0; 1170 break; 1171 default: 1172 return -EINVAL; 1173 } 1174 break; 1175 default: 1176 return -EINVAL; 1177 } 1178 1179 return at86rf230_write_subreg(lp, SR_CCA_MODE, val); 1180 } 1181 1182 static int 1183 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm) 1184 { 1185 struct at86rf230_local *lp = hw->priv; 1186 u32 i; 1187 1188 for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) { 1189 if (hw->phy->supported.cca_ed_levels[i] == mbm) 1190 return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i); 1191 } 1192 1193 return -EINVAL; 1194 } 1195 1196 static int 1197 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, 1198 u8 retries) 1199 { 1200 struct at86rf230_local *lp = hw->priv; 1201 int rc; 1202 1203 rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be); 1204 if (rc) 1205 return rc; 1206 1207 rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be); 1208 if (rc) 1209 return rc; 1210 1211 return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries); 1212 } 1213 1214 static int 1215 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries) 1216 { 1217 struct at86rf230_local *lp = hw->priv; 1218 1219 return at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries); 1220 } 1221 1222 static int 1223 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) 1224 { 1225 struct at86rf230_local *lp = hw->priv; 1226 int rc; 1227 1228 if (on) { 1229 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1); 1230 if (rc < 0) 1231 return rc; 1232 1233 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1); 1234 if (rc < 0) 1235 return rc; 1236 } else { 1237 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0); 1238 if (rc < 0) 1239 return rc; 1240 1241 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0); 1242 if (rc < 0) 1243 return rc; 1244 } 1245 1246 return 0; 1247 } 1248 1249 static const struct ieee802154_ops at86rf230_ops = { 1250 .owner = THIS_MODULE, 1251 .xmit_async = at86rf230_xmit, 1252 .ed = at86rf230_ed, 1253 .set_channel = at86rf230_channel, 1254 .start = at86rf230_start, 1255 .stop = at86rf230_stop, 1256 .set_hw_addr_filt = at86rf230_set_hw_addr_filt, 1257 .set_txpower = at86rf230_set_txpower, 1258 .set_lbt = at86rf230_set_lbt, 1259 .set_cca_mode = at86rf230_set_cca_mode, 1260 .set_cca_ed_level = at86rf230_set_cca_ed_level, 1261 .set_csma_params = at86rf230_set_csma_params, 1262 .set_frame_retries = at86rf230_set_frame_retries, 1263 .set_promiscuous_mode = at86rf230_set_promiscuous_mode, 1264 }; 1265 1266 static struct at86rf2xx_chip_data at86rf233_data = { 1267 .t_sleep_cycle = 330, 1268 .t_channel_switch = 11, 1269 .t_reset_to_off = 26, 1270 .t_off_to_aack = 80, 1271 .t_off_to_tx_on = 80, 1272 .t_off_to_sleep = 35, 1273 .t_sleep_to_off = 1000, 1274 .t_frame = 4096, 1275 .t_p_ack = 545, 1276 .rssi_base_val = -94, 1277 .set_channel = at86rf23x_set_channel, 1278 .set_txpower = at86rf23x_set_txpower, 1279 }; 1280 1281 static struct at86rf2xx_chip_data at86rf231_data = { 1282 .t_sleep_cycle = 330, 1283 .t_channel_switch = 24, 1284 .t_reset_to_off = 37, 1285 .t_off_to_aack = 110, 1286 .t_off_to_tx_on = 110, 1287 .t_off_to_sleep = 35, 1288 .t_sleep_to_off = 1000, 1289 .t_frame = 4096, 1290 .t_p_ack = 545, 1291 .rssi_base_val = -91, 1292 .set_channel = at86rf23x_set_channel, 1293 .set_txpower = at86rf23x_set_txpower, 1294 }; 1295 1296 static struct at86rf2xx_chip_data at86rf212_data = { 1297 .t_sleep_cycle = 330, 1298 .t_channel_switch = 11, 1299 .t_reset_to_off = 26, 1300 .t_off_to_aack = 200, 1301 .t_off_to_tx_on = 200, 1302 .t_off_to_sleep = 35, 1303 .t_sleep_to_off = 1000, 1304 .t_frame = 4096, 1305 .t_p_ack = 545, 1306 .rssi_base_val = -100, 1307 .set_channel = at86rf212_set_channel, 1308 .set_txpower = at86rf212_set_txpower, 1309 }; 1310 1311 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim) 1312 { 1313 int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH; 1314 unsigned int dvdd; 1315 u8 csma_seed[2]; 1316 1317 rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); 1318 if (rc) 1319 return rc; 1320 1321 irq_type = irq_get_trigger_type(lp->spi->irq); 1322 if (irq_type == IRQ_TYPE_EDGE_FALLING || 1323 irq_type == IRQ_TYPE_LEVEL_LOW) 1324 irq_pol = IRQ_ACTIVE_LOW; 1325 1326 rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol); 1327 if (rc) 1328 return rc; 1329 1330 rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1); 1331 if (rc) 1332 return rc; 1333 1334 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END); 1335 if (rc) 1336 return rc; 1337 1338 /* reset values differs in at86rf231 and at86rf233 */ 1339 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0); 1340 if (rc) 1341 return rc; 1342 1343 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); 1344 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); 1345 if (rc) 1346 return rc; 1347 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); 1348 if (rc) 1349 return rc; 1350 1351 /* CLKM changes are applied immediately */ 1352 rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00); 1353 if (rc) 1354 return rc; 1355 1356 /* Turn CLKM Off */ 1357 rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00); 1358 if (rc) 1359 return rc; 1360 /* Wait the next SLEEP cycle */ 1361 usleep_range(lp->data->t_sleep_cycle, 1362 lp->data->t_sleep_cycle + 100); 1363 1364 /* xtal_trim value is calculated by: 1365 * CL = 0.5 * (CX + CTRIM + CPAR) 1366 * 1367 * whereas: 1368 * CL = capacitor of used crystal 1369 * CX = connected capacitors at xtal pins 1370 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF, 1371 * but this is different on each board setup. You need to fine 1372 * tuning this value via CTRIM. 1373 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is 1374 * 0 pF upto 4.5 pF. 1375 * 1376 * Examples: 1377 * atben transceiver: 1378 * 1379 * CL = 8 pF 1380 * CX = 12 pF 1381 * CPAR = 3 pF (We assume the magic constant from datasheet) 1382 * CTRIM = 0.9 pF 1383 * 1384 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF 1385 * 1386 * xtal_trim = 0x3 1387 * 1388 * openlabs transceiver: 1389 * 1390 * CL = 16 pF 1391 * CX = 22 pF 1392 * CPAR = 3 pF (We assume the magic constant from datasheet) 1393 * CTRIM = 4.5 pF 1394 * 1395 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF 1396 * 1397 * xtal_trim = 0xf 1398 */ 1399 rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim); 1400 if (rc) 1401 return rc; 1402 1403 rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd); 1404 if (rc) 1405 return rc; 1406 if (!dvdd) { 1407 dev_err(&lp->spi->dev, "DVDD error\n"); 1408 return -EINVAL; 1409 } 1410 1411 /* Force setting slotted operation bit to 0. Sometimes the atben 1412 * sets this bit and I don't know why. We set this always force 1413 * to zero while probing. 1414 */ 1415 return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0); 1416 } 1417 1418 static int 1419 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr, 1420 u8 *xtal_trim) 1421 { 1422 struct at86rf230_platform_data *pdata = spi->dev.platform_data; 1423 int ret; 1424 1425 if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) { 1426 if (!pdata) 1427 return -ENOENT; 1428 1429 *rstn = pdata->rstn; 1430 *slp_tr = pdata->slp_tr; 1431 *xtal_trim = pdata->xtal_trim; 1432 return 0; 1433 } 1434 1435 *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0); 1436 *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0); 1437 ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim); 1438 if (ret < 0 && ret != -EINVAL) 1439 return ret; 1440 1441 return 0; 1442 } 1443 1444 static int 1445 at86rf230_detect_device(struct at86rf230_local *lp) 1446 { 1447 unsigned int part, version, val; 1448 u16 man_id = 0; 1449 const char *chip; 1450 int rc; 1451 1452 rc = __at86rf230_read(lp, RG_MAN_ID_0, &val); 1453 if (rc) 1454 return rc; 1455 man_id |= val; 1456 1457 rc = __at86rf230_read(lp, RG_MAN_ID_1, &val); 1458 if (rc) 1459 return rc; 1460 man_id |= (val << 8); 1461 1462 rc = __at86rf230_read(lp, RG_PART_NUM, &part); 1463 if (rc) 1464 return rc; 1465 1466 rc = __at86rf230_read(lp, RG_VERSION_NUM, &version); 1467 if (rc) 1468 return rc; 1469 1470 if (man_id != 0x001f) { 1471 dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n", 1472 man_id >> 8, man_id & 0xFF); 1473 return -EINVAL; 1474 } 1475 1476 lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | 1477 IEEE802154_HW_CSMA_PARAMS | 1478 IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT | 1479 IEEE802154_HW_PROMISCUOUS; 1480 1481 lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER | 1482 WPAN_PHY_FLAG_CCA_ED_LEVEL | 1483 WPAN_PHY_FLAG_CCA_MODE; 1484 1485 lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) | 1486 BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER); 1487 lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) | 1488 BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR); 1489 1490 lp->hw->phy->cca.mode = NL802154_CCA_ENERGY; 1491 1492 switch (part) { 1493 case 2: 1494 chip = "at86rf230"; 1495 rc = -ENOTSUPP; 1496 goto not_supp; 1497 case 3: 1498 chip = "at86rf231"; 1499 lp->data = &at86rf231_data; 1500 lp->hw->phy->supported.channels[0] = 0x7FFF800; 1501 lp->hw->phy->current_channel = 11; 1502 lp->hw->phy->supported.tx_powers = at86rf231_powers; 1503 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers); 1504 lp->hw->phy->supported.cca_ed_levels = at86rf231_ed_levels; 1505 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf231_ed_levels); 1506 break; 1507 case 7: 1508 chip = "at86rf212"; 1509 lp->data = &at86rf212_data; 1510 lp->hw->flags |= IEEE802154_HW_LBT; 1511 lp->hw->phy->supported.channels[0] = 0x00007FF; 1512 lp->hw->phy->supported.channels[2] = 0x00007FF; 1513 lp->hw->phy->current_channel = 5; 1514 lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH; 1515 lp->hw->phy->supported.tx_powers = at86rf212_powers; 1516 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers); 1517 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; 1518 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); 1519 break; 1520 case 11: 1521 chip = "at86rf233"; 1522 lp->data = &at86rf233_data; 1523 lp->hw->phy->supported.channels[0] = 0x7FFF800; 1524 lp->hw->phy->current_channel = 13; 1525 lp->hw->phy->supported.tx_powers = at86rf233_powers; 1526 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers); 1527 lp->hw->phy->supported.cca_ed_levels = at86rf233_ed_levels; 1528 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf233_ed_levels); 1529 break; 1530 default: 1531 chip = "unknown"; 1532 rc = -ENOTSUPP; 1533 goto not_supp; 1534 } 1535 1536 lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7]; 1537 lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0]; 1538 1539 not_supp: 1540 dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version); 1541 1542 return rc; 1543 } 1544 1545 static int at86rf230_probe(struct spi_device *spi) 1546 { 1547 struct ieee802154_hw *hw; 1548 struct at86rf230_local *lp; 1549 unsigned int status; 1550 int rc, irq_type, rstn, slp_tr; 1551 u8 xtal_trim = 0; 1552 1553 if (!spi->irq) { 1554 dev_err(&spi->dev, "no IRQ specified\n"); 1555 return -EINVAL; 1556 } 1557 1558 rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim); 1559 if (rc < 0) { 1560 dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc); 1561 return rc; 1562 } 1563 1564 if (gpio_is_valid(rstn)) { 1565 rc = devm_gpio_request_one(&spi->dev, rstn, 1566 GPIOF_OUT_INIT_HIGH, "rstn"); 1567 if (rc) 1568 return rc; 1569 } 1570 1571 if (gpio_is_valid(slp_tr)) { 1572 rc = devm_gpio_request_one(&spi->dev, slp_tr, 1573 GPIOF_OUT_INIT_LOW, "slp_tr"); 1574 if (rc) 1575 return rc; 1576 } 1577 1578 /* Reset */ 1579 if (gpio_is_valid(rstn)) { 1580 udelay(1); 1581 gpio_set_value_cansleep(rstn, 0); 1582 udelay(1); 1583 gpio_set_value_cansleep(rstn, 1); 1584 usleep_range(120, 240); 1585 } 1586 1587 hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops); 1588 if (!hw) 1589 return -ENOMEM; 1590 1591 lp = hw->priv; 1592 lp->hw = hw; 1593 lp->spi = spi; 1594 lp->slp_tr = slp_tr; 1595 hw->parent = &spi->dev; 1596 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); 1597 1598 lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config); 1599 if (IS_ERR(lp->regmap)) { 1600 rc = PTR_ERR(lp->regmap); 1601 dev_err(&spi->dev, "Failed to allocate register map: %d\n", 1602 rc); 1603 goto free_dev; 1604 } 1605 1606 at86rf230_setup_spi_messages(lp, &lp->state); 1607 at86rf230_setup_spi_messages(lp, &lp->tx); 1608 1609 rc = at86rf230_detect_device(lp); 1610 if (rc < 0) 1611 goto free_dev; 1612 1613 init_completion(&lp->state_complete); 1614 1615 spi_set_drvdata(spi, lp); 1616 1617 rc = at86rf230_hw_init(lp, xtal_trim); 1618 if (rc) 1619 goto free_dev; 1620 1621 /* Read irq status register to reset irq line */ 1622 rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status); 1623 if (rc) 1624 goto free_dev; 1625 1626 irq_type = irq_get_trigger_type(spi->irq); 1627 if (!irq_type) 1628 irq_type = IRQF_TRIGGER_HIGH; 1629 1630 rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr, 1631 IRQF_SHARED | irq_type, dev_name(&spi->dev), lp); 1632 if (rc) 1633 goto free_dev; 1634 1635 /* disable_irq by default and wait for starting hardware */ 1636 disable_irq(spi->irq); 1637 1638 /* going into sleep by default */ 1639 at86rf230_sleep(lp); 1640 1641 rc = ieee802154_register_hw(lp->hw); 1642 if (rc) 1643 goto free_dev; 1644 1645 return rc; 1646 1647 free_dev: 1648 ieee802154_free_hw(lp->hw); 1649 1650 return rc; 1651 } 1652 1653 static void at86rf230_remove(struct spi_device *spi) 1654 { 1655 struct at86rf230_local *lp = spi_get_drvdata(spi); 1656 1657 /* mask all at86rf230 irq's */ 1658 at86rf230_write_subreg(lp, SR_IRQ_MASK, 0); 1659 ieee802154_unregister_hw(lp->hw); 1660 ieee802154_free_hw(lp->hw); 1661 dev_dbg(&spi->dev, "unregistered at86rf230\n"); 1662 } 1663 1664 static const struct of_device_id at86rf230_of_match[] = { 1665 { .compatible = "atmel,at86rf230", }, 1666 { .compatible = "atmel,at86rf231", }, 1667 { .compatible = "atmel,at86rf233", }, 1668 { .compatible = "atmel,at86rf212", }, 1669 { }, 1670 }; 1671 MODULE_DEVICE_TABLE(of, at86rf230_of_match); 1672 1673 static const struct spi_device_id at86rf230_device_id[] = { 1674 { .name = "at86rf230", }, 1675 { .name = "at86rf231", }, 1676 { .name = "at86rf233", }, 1677 { .name = "at86rf212", }, 1678 { }, 1679 }; 1680 MODULE_DEVICE_TABLE(spi, at86rf230_device_id); 1681 1682 static struct spi_driver at86rf230_driver = { 1683 .id_table = at86rf230_device_id, 1684 .driver = { 1685 .of_match_table = of_match_ptr(at86rf230_of_match), 1686 .name = "at86rf230", 1687 }, 1688 .probe = at86rf230_probe, 1689 .remove = at86rf230_remove, 1690 }; 1691 1692 module_spi_driver(at86rf230_driver); 1693 1694 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver"); 1695 MODULE_LICENSE("GPL v2"); 1696