1 /*
2  * AT86RF230/RF231 driver
3  *
4  * Copyright (C) 2009-2012 Siemens AG
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * Written by:
16  * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
17  * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
18  * Alexander Aring <aar@pengutronix.de>
19  */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/hrtimer.h>
23 #include <linux/jiffies.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/gpio.h>
27 #include <linux/delay.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/at86rf230.h>
30 #include <linux/regmap.h>
31 #include <linux/skbuff.h>
32 #include <linux/of_gpio.h>
33 #include <linux/ieee802154.h>
34 
35 #include <net/mac802154.h>
36 #include <net/cfg802154.h>
37 
38 struct at86rf230_local;
39 /* at86rf2xx chip depend data.
40  * All timings are in us.
41  */
42 struct at86rf2xx_chip_data {
43 	u16 t_sleep_cycle;
44 	u16 t_channel_switch;
45 	u16 t_reset_to_off;
46 	u16 t_off_to_aack;
47 	u16 t_off_to_tx_on;
48 	u16 t_frame;
49 	u16 t_p_ack;
50 	int rssi_base_val;
51 
52 	int (*set_channel)(struct at86rf230_local *, u8, u8);
53 	int (*get_desense_steps)(struct at86rf230_local *, s32);
54 };
55 
56 #define AT86RF2XX_MAX_BUF		(127 + 3)
57 /* tx retries to access the TX_ON state
58  * if it's above then force change will be started.
59  *
60  * We assume the max_frame_retries (7) value of 802.15.4 here.
61  */
62 #define AT86RF2XX_MAX_TX_RETRIES	7
63 /* We use the recommended 5 minutes timeout to recalibrate */
64 #define AT86RF2XX_CAL_LOOP_TIMEOUT	(5 * 60 * HZ)
65 
66 struct at86rf230_state_change {
67 	struct at86rf230_local *lp;
68 	int irq;
69 
70 	struct hrtimer timer;
71 	struct spi_message msg;
72 	struct spi_transfer trx;
73 	u8 buf[AT86RF2XX_MAX_BUF];
74 
75 	void (*complete)(void *context);
76 	u8 from_state;
77 	u8 to_state;
78 
79 	bool irq_enable;
80 };
81 
82 struct at86rf230_local {
83 	struct spi_device *spi;
84 
85 	struct ieee802154_hw *hw;
86 	struct at86rf2xx_chip_data *data;
87 	struct regmap *regmap;
88 	int slp_tr;
89 
90 	struct completion state_complete;
91 	struct at86rf230_state_change state;
92 
93 	struct at86rf230_state_change irq;
94 
95 	bool tx_aret;
96 	unsigned long cal_timeout;
97 	s8 max_frame_retries;
98 	bool is_tx;
99 	bool is_tx_from_off;
100 	u8 tx_retry;
101 	struct sk_buff *tx_skb;
102 	struct at86rf230_state_change tx;
103 };
104 
105 #define RG_TRX_STATUS	(0x01)
106 #define SR_TRX_STATUS		0x01, 0x1f, 0
107 #define SR_RESERVED_01_3	0x01, 0x20, 5
108 #define SR_CCA_STATUS		0x01, 0x40, 6
109 #define SR_CCA_DONE		0x01, 0x80, 7
110 #define RG_TRX_STATE	(0x02)
111 #define SR_TRX_CMD		0x02, 0x1f, 0
112 #define SR_TRAC_STATUS		0x02, 0xe0, 5
113 #define RG_TRX_CTRL_0	(0x03)
114 #define SR_CLKM_CTRL		0x03, 0x07, 0
115 #define SR_CLKM_SHA_SEL		0x03, 0x08, 3
116 #define SR_PAD_IO_CLKM		0x03, 0x30, 4
117 #define SR_PAD_IO		0x03, 0xc0, 6
118 #define RG_TRX_CTRL_1	(0x04)
119 #define SR_IRQ_POLARITY		0x04, 0x01, 0
120 #define SR_IRQ_MASK_MODE	0x04, 0x02, 1
121 #define SR_SPI_CMD_MODE		0x04, 0x0c, 2
122 #define SR_RX_BL_CTRL		0x04, 0x10, 4
123 #define SR_TX_AUTO_CRC_ON	0x04, 0x20, 5
124 #define SR_IRQ_2_EXT_EN		0x04, 0x40, 6
125 #define SR_PA_EXT_EN		0x04, 0x80, 7
126 #define RG_PHY_TX_PWR	(0x05)
127 #define SR_TX_PWR		0x05, 0x0f, 0
128 #define SR_PA_LT		0x05, 0x30, 4
129 #define SR_PA_BUF_LT		0x05, 0xc0, 6
130 #define RG_PHY_RSSI	(0x06)
131 #define SR_RSSI			0x06, 0x1f, 0
132 #define SR_RND_VALUE		0x06, 0x60, 5
133 #define SR_RX_CRC_VALID		0x06, 0x80, 7
134 #define RG_PHY_ED_LEVEL	(0x07)
135 #define SR_ED_LEVEL		0x07, 0xff, 0
136 #define RG_PHY_CC_CCA	(0x08)
137 #define SR_CHANNEL		0x08, 0x1f, 0
138 #define SR_CCA_MODE		0x08, 0x60, 5
139 #define SR_CCA_REQUEST		0x08, 0x80, 7
140 #define RG_CCA_THRES	(0x09)
141 #define SR_CCA_ED_THRES		0x09, 0x0f, 0
142 #define SR_RESERVED_09_1	0x09, 0xf0, 4
143 #define RG_RX_CTRL	(0x0a)
144 #define SR_PDT_THRES		0x0a, 0x0f, 0
145 #define SR_RESERVED_0a_1	0x0a, 0xf0, 4
146 #define RG_SFD_VALUE	(0x0b)
147 #define SR_SFD_VALUE		0x0b, 0xff, 0
148 #define RG_TRX_CTRL_2	(0x0c)
149 #define SR_OQPSK_DATA_RATE	0x0c, 0x03, 0
150 #define SR_SUB_MODE		0x0c, 0x04, 2
151 #define SR_BPSK_QPSK		0x0c, 0x08, 3
152 #define SR_OQPSK_SUB1_RC_EN	0x0c, 0x10, 4
153 #define SR_RESERVED_0c_5	0x0c, 0x60, 5
154 #define SR_RX_SAFE_MODE		0x0c, 0x80, 7
155 #define RG_ANT_DIV	(0x0d)
156 #define SR_ANT_CTRL		0x0d, 0x03, 0
157 #define SR_ANT_EXT_SW_EN	0x0d, 0x04, 2
158 #define SR_ANT_DIV_EN		0x0d, 0x08, 3
159 #define SR_RESERVED_0d_2	0x0d, 0x70, 4
160 #define SR_ANT_SEL		0x0d, 0x80, 7
161 #define RG_IRQ_MASK	(0x0e)
162 #define SR_IRQ_MASK		0x0e, 0xff, 0
163 #define RG_IRQ_STATUS	(0x0f)
164 #define SR_IRQ_0_PLL_LOCK	0x0f, 0x01, 0
165 #define SR_IRQ_1_PLL_UNLOCK	0x0f, 0x02, 1
166 #define SR_IRQ_2_RX_START	0x0f, 0x04, 2
167 #define SR_IRQ_3_TRX_END	0x0f, 0x08, 3
168 #define SR_IRQ_4_CCA_ED_DONE	0x0f, 0x10, 4
169 #define SR_IRQ_5_AMI		0x0f, 0x20, 5
170 #define SR_IRQ_6_TRX_UR		0x0f, 0x40, 6
171 #define SR_IRQ_7_BAT_LOW	0x0f, 0x80, 7
172 #define RG_VREG_CTRL	(0x10)
173 #define SR_RESERVED_10_6	0x10, 0x03, 0
174 #define SR_DVDD_OK		0x10, 0x04, 2
175 #define SR_DVREG_EXT		0x10, 0x08, 3
176 #define SR_RESERVED_10_3	0x10, 0x30, 4
177 #define SR_AVDD_OK		0x10, 0x40, 6
178 #define SR_AVREG_EXT		0x10, 0x80, 7
179 #define RG_BATMON	(0x11)
180 #define SR_BATMON_VTH		0x11, 0x0f, 0
181 #define SR_BATMON_HR		0x11, 0x10, 4
182 #define SR_BATMON_OK		0x11, 0x20, 5
183 #define SR_RESERVED_11_1	0x11, 0xc0, 6
184 #define RG_XOSC_CTRL	(0x12)
185 #define SR_XTAL_TRIM		0x12, 0x0f, 0
186 #define SR_XTAL_MODE		0x12, 0xf0, 4
187 #define RG_RX_SYN	(0x15)
188 #define SR_RX_PDT_LEVEL		0x15, 0x0f, 0
189 #define SR_RESERVED_15_2	0x15, 0x70, 4
190 #define SR_RX_PDT_DIS		0x15, 0x80, 7
191 #define RG_XAH_CTRL_1	(0x17)
192 #define SR_RESERVED_17_8	0x17, 0x01, 0
193 #define SR_AACK_PROM_MODE	0x17, 0x02, 1
194 #define SR_AACK_ACK_TIME	0x17, 0x04, 2
195 #define SR_RESERVED_17_5	0x17, 0x08, 3
196 #define SR_AACK_UPLD_RES_FT	0x17, 0x10, 4
197 #define SR_AACK_FLTR_RES_FT	0x17, 0x20, 5
198 #define SR_CSMA_LBT_MODE	0x17, 0x40, 6
199 #define SR_RESERVED_17_1	0x17, 0x80, 7
200 #define RG_FTN_CTRL	(0x18)
201 #define SR_RESERVED_18_2	0x18, 0x7f, 0
202 #define SR_FTN_START		0x18, 0x80, 7
203 #define RG_PLL_CF	(0x1a)
204 #define SR_RESERVED_1a_2	0x1a, 0x7f, 0
205 #define SR_PLL_CF_START		0x1a, 0x80, 7
206 #define RG_PLL_DCU	(0x1b)
207 #define SR_RESERVED_1b_3	0x1b, 0x3f, 0
208 #define SR_RESERVED_1b_2	0x1b, 0x40, 6
209 #define SR_PLL_DCU_START	0x1b, 0x80, 7
210 #define RG_PART_NUM	(0x1c)
211 #define SR_PART_NUM		0x1c, 0xff, 0
212 #define RG_VERSION_NUM	(0x1d)
213 #define SR_VERSION_NUM		0x1d, 0xff, 0
214 #define RG_MAN_ID_0	(0x1e)
215 #define SR_MAN_ID_0		0x1e, 0xff, 0
216 #define RG_MAN_ID_1	(0x1f)
217 #define SR_MAN_ID_1		0x1f, 0xff, 0
218 #define RG_SHORT_ADDR_0	(0x20)
219 #define SR_SHORT_ADDR_0		0x20, 0xff, 0
220 #define RG_SHORT_ADDR_1	(0x21)
221 #define SR_SHORT_ADDR_1		0x21, 0xff, 0
222 #define RG_PAN_ID_0	(0x22)
223 #define SR_PAN_ID_0		0x22, 0xff, 0
224 #define RG_PAN_ID_1	(0x23)
225 #define SR_PAN_ID_1		0x23, 0xff, 0
226 #define RG_IEEE_ADDR_0	(0x24)
227 #define SR_IEEE_ADDR_0		0x24, 0xff, 0
228 #define RG_IEEE_ADDR_1	(0x25)
229 #define SR_IEEE_ADDR_1		0x25, 0xff, 0
230 #define RG_IEEE_ADDR_2	(0x26)
231 #define SR_IEEE_ADDR_2		0x26, 0xff, 0
232 #define RG_IEEE_ADDR_3	(0x27)
233 #define SR_IEEE_ADDR_3		0x27, 0xff, 0
234 #define RG_IEEE_ADDR_4	(0x28)
235 #define SR_IEEE_ADDR_4		0x28, 0xff, 0
236 #define RG_IEEE_ADDR_5	(0x29)
237 #define SR_IEEE_ADDR_5		0x29, 0xff, 0
238 #define RG_IEEE_ADDR_6	(0x2a)
239 #define SR_IEEE_ADDR_6		0x2a, 0xff, 0
240 #define RG_IEEE_ADDR_7	(0x2b)
241 #define SR_IEEE_ADDR_7		0x2b, 0xff, 0
242 #define RG_XAH_CTRL_0	(0x2c)
243 #define SR_SLOTTED_OPERATION	0x2c, 0x01, 0
244 #define SR_MAX_CSMA_RETRIES	0x2c, 0x0e, 1
245 #define SR_MAX_FRAME_RETRIES	0x2c, 0xf0, 4
246 #define RG_CSMA_SEED_0	(0x2d)
247 #define SR_CSMA_SEED_0		0x2d, 0xff, 0
248 #define RG_CSMA_SEED_1	(0x2e)
249 #define SR_CSMA_SEED_1		0x2e, 0x07, 0
250 #define SR_AACK_I_AM_COORD	0x2e, 0x08, 3
251 #define SR_AACK_DIS_ACK		0x2e, 0x10, 4
252 #define SR_AACK_SET_PD		0x2e, 0x20, 5
253 #define SR_AACK_FVN_MODE	0x2e, 0xc0, 6
254 #define RG_CSMA_BE	(0x2f)
255 #define SR_MIN_BE		0x2f, 0x0f, 0
256 #define SR_MAX_BE		0x2f, 0xf0, 4
257 
258 #define CMD_REG		0x80
259 #define CMD_REG_MASK	0x3f
260 #define CMD_WRITE	0x40
261 #define CMD_FB		0x20
262 
263 #define IRQ_BAT_LOW	(1 << 7)
264 #define IRQ_TRX_UR	(1 << 6)
265 #define IRQ_AMI		(1 << 5)
266 #define IRQ_CCA_ED	(1 << 4)
267 #define IRQ_TRX_END	(1 << 3)
268 #define IRQ_RX_START	(1 << 2)
269 #define IRQ_PLL_UNL	(1 << 1)
270 #define IRQ_PLL_LOCK	(1 << 0)
271 
272 #define IRQ_ACTIVE_HIGH	0
273 #define IRQ_ACTIVE_LOW	1
274 
275 #define STATE_P_ON		0x00	/* BUSY */
276 #define STATE_BUSY_RX		0x01
277 #define STATE_BUSY_TX		0x02
278 #define STATE_FORCE_TRX_OFF	0x03
279 #define STATE_FORCE_TX_ON	0x04	/* IDLE */
280 /* 0x05 */				/* INVALID_PARAMETER */
281 #define STATE_RX_ON		0x06
282 /* 0x07 */				/* SUCCESS */
283 #define STATE_TRX_OFF		0x08
284 #define STATE_TX_ON		0x09
285 /* 0x0a - 0x0e */			/* 0x0a - UNSUPPORTED_ATTRIBUTE */
286 #define STATE_SLEEP		0x0F
287 #define STATE_PREP_DEEP_SLEEP	0x10
288 #define STATE_BUSY_RX_AACK	0x11
289 #define STATE_BUSY_TX_ARET	0x12
290 #define STATE_RX_AACK_ON	0x16
291 #define STATE_TX_ARET_ON	0x19
292 #define STATE_RX_ON_NOCLK	0x1C
293 #define STATE_RX_AACK_ON_NOCLK	0x1D
294 #define STATE_BUSY_RX_AACK_NOCLK 0x1E
295 #define STATE_TRANSITION_IN_PROGRESS 0x1F
296 
297 #define TRX_STATE_MASK		(0x1F)
298 
299 #define AT86RF2XX_NUMREGS 0x3F
300 
301 static void
302 at86rf230_async_state_change(struct at86rf230_local *lp,
303 			     struct at86rf230_state_change *ctx,
304 			     const u8 state, void (*complete)(void *context),
305 			     const bool irq_enable);
306 
307 static inline int
308 __at86rf230_write(struct at86rf230_local *lp,
309 		  unsigned int addr, unsigned int data)
310 {
311 	return regmap_write(lp->regmap, addr, data);
312 }
313 
314 static inline int
315 __at86rf230_read(struct at86rf230_local *lp,
316 		 unsigned int addr, unsigned int *data)
317 {
318 	return regmap_read(lp->regmap, addr, data);
319 }
320 
321 static inline int
322 at86rf230_read_subreg(struct at86rf230_local *lp,
323 		      unsigned int addr, unsigned int mask,
324 		      unsigned int shift, unsigned int *data)
325 {
326 	int rc;
327 
328 	rc = __at86rf230_read(lp, addr, data);
329 	if (!rc)
330 		*data = (*data & mask) >> shift;
331 
332 	return rc;
333 }
334 
335 static inline int
336 at86rf230_write_subreg(struct at86rf230_local *lp,
337 		       unsigned int addr, unsigned int mask,
338 		       unsigned int shift, unsigned int data)
339 {
340 	return regmap_update_bits(lp->regmap, addr, mask, data << shift);
341 }
342 
343 static inline void
344 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
345 {
346 	gpio_set_value(lp->slp_tr, 1);
347 	udelay(1);
348 	gpio_set_value(lp->slp_tr, 0);
349 }
350 
351 static bool
352 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
353 {
354 	switch (reg) {
355 	case RG_TRX_STATE:
356 	case RG_TRX_CTRL_0:
357 	case RG_TRX_CTRL_1:
358 	case RG_PHY_TX_PWR:
359 	case RG_PHY_ED_LEVEL:
360 	case RG_PHY_CC_CCA:
361 	case RG_CCA_THRES:
362 	case RG_RX_CTRL:
363 	case RG_SFD_VALUE:
364 	case RG_TRX_CTRL_2:
365 	case RG_ANT_DIV:
366 	case RG_IRQ_MASK:
367 	case RG_VREG_CTRL:
368 	case RG_BATMON:
369 	case RG_XOSC_CTRL:
370 	case RG_RX_SYN:
371 	case RG_XAH_CTRL_1:
372 	case RG_FTN_CTRL:
373 	case RG_PLL_CF:
374 	case RG_PLL_DCU:
375 	case RG_SHORT_ADDR_0:
376 	case RG_SHORT_ADDR_1:
377 	case RG_PAN_ID_0:
378 	case RG_PAN_ID_1:
379 	case RG_IEEE_ADDR_0:
380 	case RG_IEEE_ADDR_1:
381 	case RG_IEEE_ADDR_2:
382 	case RG_IEEE_ADDR_3:
383 	case RG_IEEE_ADDR_4:
384 	case RG_IEEE_ADDR_5:
385 	case RG_IEEE_ADDR_6:
386 	case RG_IEEE_ADDR_7:
387 	case RG_XAH_CTRL_0:
388 	case RG_CSMA_SEED_0:
389 	case RG_CSMA_SEED_1:
390 	case RG_CSMA_BE:
391 		return true;
392 	default:
393 		return false;
394 	}
395 }
396 
397 static bool
398 at86rf230_reg_readable(struct device *dev, unsigned int reg)
399 {
400 	bool rc;
401 
402 	/* all writeable are also readable */
403 	rc = at86rf230_reg_writeable(dev, reg);
404 	if (rc)
405 		return rc;
406 
407 	/* readonly regs */
408 	switch (reg) {
409 	case RG_TRX_STATUS:
410 	case RG_PHY_RSSI:
411 	case RG_IRQ_STATUS:
412 	case RG_PART_NUM:
413 	case RG_VERSION_NUM:
414 	case RG_MAN_ID_1:
415 	case RG_MAN_ID_0:
416 		return true;
417 	default:
418 		return false;
419 	}
420 }
421 
422 static bool
423 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
424 {
425 	/* can be changed during runtime */
426 	switch (reg) {
427 	case RG_TRX_STATUS:
428 	case RG_TRX_STATE:
429 	case RG_PHY_RSSI:
430 	case RG_PHY_ED_LEVEL:
431 	case RG_IRQ_STATUS:
432 	case RG_VREG_CTRL:
433 	case RG_PLL_CF:
434 	case RG_PLL_DCU:
435 		return true;
436 	default:
437 		return false;
438 	}
439 }
440 
441 static bool
442 at86rf230_reg_precious(struct device *dev, unsigned int reg)
443 {
444 	/* don't clear irq line on read */
445 	switch (reg) {
446 	case RG_IRQ_STATUS:
447 		return true;
448 	default:
449 		return false;
450 	}
451 }
452 
453 static const struct regmap_config at86rf230_regmap_spi_config = {
454 	.reg_bits = 8,
455 	.val_bits = 8,
456 	.write_flag_mask = CMD_REG | CMD_WRITE,
457 	.read_flag_mask = CMD_REG,
458 	.cache_type = REGCACHE_RBTREE,
459 	.max_register = AT86RF2XX_NUMREGS,
460 	.writeable_reg = at86rf230_reg_writeable,
461 	.readable_reg = at86rf230_reg_readable,
462 	.volatile_reg = at86rf230_reg_volatile,
463 	.precious_reg = at86rf230_reg_precious,
464 };
465 
466 static void
467 at86rf230_async_error_recover(void *context)
468 {
469 	struct at86rf230_state_change *ctx = context;
470 	struct at86rf230_local *lp = ctx->lp;
471 
472 	lp->is_tx = 0;
473 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false);
474 	ieee802154_wake_queue(lp->hw);
475 }
476 
477 static inline void
478 at86rf230_async_error(struct at86rf230_local *lp,
479 		      struct at86rf230_state_change *ctx, int rc)
480 {
481 	dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
482 
483 	at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
484 				     at86rf230_async_error_recover, false);
485 }
486 
487 /* Generic function to get some register value in async mode */
488 static void
489 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
490 			 struct at86rf230_state_change *ctx,
491 			 void (*complete)(void *context),
492 			 const bool irq_enable)
493 {
494 	int rc;
495 
496 	u8 *tx_buf = ctx->buf;
497 
498 	tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
499 	ctx->msg.complete = complete;
500 	ctx->irq_enable = irq_enable;
501 	rc = spi_async(lp->spi, &ctx->msg);
502 	if (rc) {
503 		if (irq_enable)
504 			enable_irq(ctx->irq);
505 
506 		at86rf230_async_error(lp, ctx, rc);
507 	}
508 }
509 
510 static inline u8 at86rf230_state_to_force(u8 state)
511 {
512 	if (state == STATE_TX_ON)
513 		return STATE_FORCE_TX_ON;
514 	else
515 		return STATE_FORCE_TRX_OFF;
516 }
517 
518 static void
519 at86rf230_async_state_assert(void *context)
520 {
521 	struct at86rf230_state_change *ctx = context;
522 	struct at86rf230_local *lp = ctx->lp;
523 	const u8 *buf = ctx->buf;
524 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
525 
526 	/* Assert state change */
527 	if (trx_state != ctx->to_state) {
528 		/* Special handling if transceiver state is in
529 		 * STATE_BUSY_RX_AACK and a SHR was detected.
530 		 */
531 		if  (trx_state == STATE_BUSY_RX_AACK) {
532 			/* Undocumented race condition. If we send a state
533 			 * change to STATE_RX_AACK_ON the transceiver could
534 			 * change his state automatically to STATE_BUSY_RX_AACK
535 			 * if a SHR was detected. This is not an error, but we
536 			 * can't assert this.
537 			 */
538 			if (ctx->to_state == STATE_RX_AACK_ON)
539 				goto done;
540 
541 			/* If we change to STATE_TX_ON without forcing and
542 			 * transceiver state is STATE_BUSY_RX_AACK, we wait
543 			 * 'tFrame + tPAck' receiving time. In this time the
544 			 * PDU should be received. If the transceiver is still
545 			 * in STATE_BUSY_RX_AACK, we run a force state change
546 			 * to STATE_TX_ON. This is a timeout handling, if the
547 			 * transceiver stucks in STATE_BUSY_RX_AACK.
548 			 *
549 			 * Additional we do several retries to try to get into
550 			 * TX_ON state without forcing. If the retries are
551 			 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
552 			 * will do a force change.
553 			 */
554 			if (ctx->to_state == STATE_TX_ON ||
555 			    ctx->to_state == STATE_TRX_OFF) {
556 				u8 state = ctx->to_state;
557 
558 				if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
559 					state = at86rf230_state_to_force(state);
560 				lp->tx_retry++;
561 
562 				at86rf230_async_state_change(lp, ctx, state,
563 							     ctx->complete,
564 							     ctx->irq_enable);
565 				return;
566 			}
567 		}
568 
569 		dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
570 			 ctx->from_state, ctx->to_state, trx_state);
571 	}
572 
573 done:
574 	if (ctx->complete)
575 		ctx->complete(context);
576 }
577 
578 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
579 {
580 	struct at86rf230_state_change *ctx =
581 		container_of(timer, struct at86rf230_state_change, timer);
582 	struct at86rf230_local *lp = ctx->lp;
583 
584 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
585 				 at86rf230_async_state_assert,
586 				 ctx->irq_enable);
587 
588 	return HRTIMER_NORESTART;
589 }
590 
591 /* Do state change timing delay. */
592 static void
593 at86rf230_async_state_delay(void *context)
594 {
595 	struct at86rf230_state_change *ctx = context;
596 	struct at86rf230_local *lp = ctx->lp;
597 	struct at86rf2xx_chip_data *c = lp->data;
598 	bool force = false;
599 	ktime_t tim;
600 
601 	/* The force state changes are will show as normal states in the
602 	 * state status subregister. We change the to_state to the
603 	 * corresponding one and remember if it was a force change, this
604 	 * differs if we do a state change from STATE_BUSY_RX_AACK.
605 	 */
606 	switch (ctx->to_state) {
607 	case STATE_FORCE_TX_ON:
608 		ctx->to_state = STATE_TX_ON;
609 		force = true;
610 		break;
611 	case STATE_FORCE_TRX_OFF:
612 		ctx->to_state = STATE_TRX_OFF;
613 		force = true;
614 		break;
615 	default:
616 		break;
617 	}
618 
619 	switch (ctx->from_state) {
620 	case STATE_TRX_OFF:
621 		switch (ctx->to_state) {
622 		case STATE_RX_AACK_ON:
623 			tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC);
624 			/* state change from TRX_OFF to RX_AACK_ON to do a
625 			 * calibration, we need to reset the timeout for the
626 			 * next one.
627 			 */
628 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
629 			goto change;
630 		case STATE_TX_ARET_ON:
631 		case STATE_TX_ON:
632 			tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC);
633 			/* state change from TRX_OFF to TX_ON or ARET_ON to do
634 			 * a calibration, we need to reset the timeout for the
635 			 * next one.
636 			 */
637 			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
638 			goto change;
639 		default:
640 			break;
641 		}
642 		break;
643 	case STATE_BUSY_RX_AACK:
644 		switch (ctx->to_state) {
645 		case STATE_TRX_OFF:
646 		case STATE_TX_ON:
647 			/* Wait for worst case receiving time if we
648 			 * didn't make a force change from BUSY_RX_AACK
649 			 * to TX_ON or TRX_OFF.
650 			 */
651 			if (!force) {
652 				tim = ktime_set(0, (c->t_frame + c->t_p_ack) *
653 						   NSEC_PER_USEC);
654 				goto change;
655 			}
656 			break;
657 		default:
658 			break;
659 		}
660 		break;
661 	/* Default value, means RESET state */
662 	case STATE_P_ON:
663 		switch (ctx->to_state) {
664 		case STATE_TRX_OFF:
665 			tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC);
666 			goto change;
667 		default:
668 			break;
669 		}
670 		break;
671 	default:
672 		break;
673 	}
674 
675 	/* Default delay is 1us in the most cases */
676 	tim = ktime_set(0, NSEC_PER_USEC);
677 
678 change:
679 	hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
680 }
681 
682 static void
683 at86rf230_async_state_change_start(void *context)
684 {
685 	struct at86rf230_state_change *ctx = context;
686 	struct at86rf230_local *lp = ctx->lp;
687 	u8 *buf = ctx->buf;
688 	const u8 trx_state = buf[1] & TRX_STATE_MASK;
689 	int rc;
690 
691 	/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
692 	if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
693 		udelay(1);
694 		at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
695 					 at86rf230_async_state_change_start,
696 					 ctx->irq_enable);
697 		return;
698 	}
699 
700 	/* Check if we already are in the state which we change in */
701 	if (trx_state == ctx->to_state) {
702 		if (ctx->complete)
703 			ctx->complete(context);
704 		return;
705 	}
706 
707 	/* Set current state to the context of state change */
708 	ctx->from_state = trx_state;
709 
710 	/* Going into the next step for a state change which do a timing
711 	 * relevant delay.
712 	 */
713 	buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
714 	buf[1] = ctx->to_state;
715 	ctx->msg.complete = at86rf230_async_state_delay;
716 	rc = spi_async(lp->spi, &ctx->msg);
717 	if (rc) {
718 		if (ctx->irq_enable)
719 			enable_irq(ctx->irq);
720 
721 		at86rf230_async_error(lp, ctx, rc);
722 	}
723 }
724 
725 static void
726 at86rf230_async_state_change(struct at86rf230_local *lp,
727 			     struct at86rf230_state_change *ctx,
728 			     const u8 state, void (*complete)(void *context),
729 			     const bool irq_enable)
730 {
731 	/* Initialization for the state change context */
732 	ctx->to_state = state;
733 	ctx->complete = complete;
734 	ctx->irq_enable = irq_enable;
735 	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
736 				 at86rf230_async_state_change_start,
737 				 irq_enable);
738 }
739 
740 static void
741 at86rf230_sync_state_change_complete(void *context)
742 {
743 	struct at86rf230_state_change *ctx = context;
744 	struct at86rf230_local *lp = ctx->lp;
745 
746 	complete(&lp->state_complete);
747 }
748 
749 /* This function do a sync framework above the async state change.
750  * Some callbacks of the IEEE 802.15.4 driver interface need to be
751  * handled synchronously.
752  */
753 static int
754 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
755 {
756 	unsigned long rc;
757 
758 	at86rf230_async_state_change(lp, &lp->state, state,
759 				     at86rf230_sync_state_change_complete,
760 				     false);
761 
762 	rc = wait_for_completion_timeout(&lp->state_complete,
763 					 msecs_to_jiffies(100));
764 	if (!rc) {
765 		at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
766 		return -ETIMEDOUT;
767 	}
768 
769 	return 0;
770 }
771 
772 static void
773 at86rf230_tx_complete(void *context)
774 {
775 	struct at86rf230_state_change *ctx = context;
776 	struct at86rf230_local *lp = ctx->lp;
777 
778 	enable_irq(ctx->irq);
779 
780 	ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret);
781 }
782 
783 static void
784 at86rf230_tx_on(void *context)
785 {
786 	struct at86rf230_state_change *ctx = context;
787 	struct at86rf230_local *lp = ctx->lp;
788 
789 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
790 				     at86rf230_tx_complete, true);
791 }
792 
793 static void
794 at86rf230_tx_trac_check(void *context)
795 {
796 	struct at86rf230_state_change *ctx = context;
797 	struct at86rf230_local *lp = ctx->lp;
798 	const u8 *buf = ctx->buf;
799 	const u8 trac = (buf[1] & 0xe0) >> 5;
800 
801 	/* If trac status is different than zero we need to do a state change
802 	 * to STATE_FORCE_TRX_OFF then STATE_RX_AACK_ON to recover the
803 	 * transceiver.
804 	 */
805 	if (trac)
806 		at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
807 					     at86rf230_tx_on, true);
808 	else
809 		at86rf230_tx_on(context);
810 }
811 
812 static void
813 at86rf230_tx_trac_status(void *context)
814 {
815 	struct at86rf230_state_change *ctx = context;
816 	struct at86rf230_local *lp = ctx->lp;
817 
818 	at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
819 				 at86rf230_tx_trac_check, true);
820 }
821 
822 static void
823 at86rf230_rx_read_frame_complete(void *context)
824 {
825 	struct at86rf230_state_change *ctx = context;
826 	struct at86rf230_local *lp = ctx->lp;
827 	u8 rx_local_buf[AT86RF2XX_MAX_BUF];
828 	const u8 *buf = ctx->buf;
829 	struct sk_buff *skb;
830 	u8 len, lqi;
831 
832 	len = buf[1];
833 	if (!ieee802154_is_valid_psdu_len(len)) {
834 		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
835 		len = IEEE802154_MTU;
836 	}
837 	lqi = buf[2 + len];
838 
839 	memcpy(rx_local_buf, buf + 2, len);
840 	ctx->trx.len = 2;
841 	enable_irq(ctx->irq);
842 
843 	skb = dev_alloc_skb(IEEE802154_MTU);
844 	if (!skb) {
845 		dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
846 		return;
847 	}
848 
849 	memcpy(skb_put(skb, len), rx_local_buf, len);
850 	ieee802154_rx_irqsafe(lp->hw, skb, lqi);
851 }
852 
853 static void
854 at86rf230_rx_read_frame(void *context)
855 {
856 	struct at86rf230_state_change *ctx = context;
857 	struct at86rf230_local *lp = ctx->lp;
858 	u8 *buf = ctx->buf;
859 	int rc;
860 
861 	buf[0] = CMD_FB;
862 	ctx->trx.len = AT86RF2XX_MAX_BUF;
863 	ctx->msg.complete = at86rf230_rx_read_frame_complete;
864 	rc = spi_async(lp->spi, &ctx->msg);
865 	if (rc) {
866 		ctx->trx.len = 2;
867 		enable_irq(ctx->irq);
868 		at86rf230_async_error(lp, ctx, rc);
869 	}
870 }
871 
872 static void
873 at86rf230_rx_trac_check(void *context)
874 {
875 	/* Possible check on trac status here. This could be useful to make
876 	 * some stats why receive is failed. Not used at the moment, but it's
877 	 * maybe timing relevant. Datasheet doesn't say anything about this.
878 	 * The programming guide say do it so.
879 	 */
880 
881 	at86rf230_rx_read_frame(context);
882 }
883 
884 static void
885 at86rf230_irq_trx_end(struct at86rf230_local *lp)
886 {
887 	if (lp->is_tx) {
888 		lp->is_tx = 0;
889 
890 		if (lp->tx_aret)
891 			at86rf230_async_state_change(lp, &lp->irq,
892 						     STATE_FORCE_TX_ON,
893 						     at86rf230_tx_trac_status,
894 						     true);
895 		else
896 			at86rf230_async_state_change(lp, &lp->irq,
897 						     STATE_RX_AACK_ON,
898 						     at86rf230_tx_complete,
899 						     true);
900 	} else {
901 		at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
902 					 at86rf230_rx_trac_check, true);
903 	}
904 }
905 
906 static void
907 at86rf230_irq_status(void *context)
908 {
909 	struct at86rf230_state_change *ctx = context;
910 	struct at86rf230_local *lp = ctx->lp;
911 	const u8 *buf = ctx->buf;
912 	const u8 irq = buf[1];
913 
914 	if (irq & IRQ_TRX_END) {
915 		at86rf230_irq_trx_end(lp);
916 	} else {
917 		enable_irq(ctx->irq);
918 		dev_err(&lp->spi->dev, "not supported irq %02x received\n",
919 			irq);
920 	}
921 }
922 
923 static irqreturn_t at86rf230_isr(int irq, void *data)
924 {
925 	struct at86rf230_local *lp = data;
926 	struct at86rf230_state_change *ctx = &lp->irq;
927 	u8 *buf = ctx->buf;
928 	int rc;
929 
930 	disable_irq_nosync(irq);
931 
932 	buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
933 	ctx->msg.complete = at86rf230_irq_status;
934 	rc = spi_async(lp->spi, &ctx->msg);
935 	if (rc) {
936 		enable_irq(irq);
937 		at86rf230_async_error(lp, ctx, rc);
938 		return IRQ_NONE;
939 	}
940 
941 	return IRQ_HANDLED;
942 }
943 
944 static void
945 at86rf230_write_frame_complete(void *context)
946 {
947 	struct at86rf230_state_change *ctx = context;
948 	struct at86rf230_local *lp = ctx->lp;
949 	u8 *buf = ctx->buf;
950 	int rc;
951 
952 	ctx->trx.len = 2;
953 
954 	if (gpio_is_valid(lp->slp_tr)) {
955 		at86rf230_slp_tr_rising_edge(lp);
956 	} else {
957 		buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
958 		buf[1] = STATE_BUSY_TX;
959 		ctx->msg.complete = NULL;
960 		rc = spi_async(lp->spi, &ctx->msg);
961 		if (rc)
962 			at86rf230_async_error(lp, ctx, rc);
963 	}
964 }
965 
966 static void
967 at86rf230_write_frame(void *context)
968 {
969 	struct at86rf230_state_change *ctx = context;
970 	struct at86rf230_local *lp = ctx->lp;
971 	struct sk_buff *skb = lp->tx_skb;
972 	u8 *buf = ctx->buf;
973 	int rc;
974 
975 	lp->is_tx = 1;
976 
977 	buf[0] = CMD_FB | CMD_WRITE;
978 	buf[1] = skb->len + 2;
979 	memcpy(buf + 2, skb->data, skb->len);
980 	ctx->trx.len = skb->len + 2;
981 	ctx->msg.complete = at86rf230_write_frame_complete;
982 	rc = spi_async(lp->spi, &ctx->msg);
983 	if (rc) {
984 		ctx->trx.len = 2;
985 		at86rf230_async_error(lp, ctx, rc);
986 	}
987 }
988 
989 static void
990 at86rf230_xmit_tx_on(void *context)
991 {
992 	struct at86rf230_state_change *ctx = context;
993 	struct at86rf230_local *lp = ctx->lp;
994 
995 	at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
996 				     at86rf230_write_frame, false);
997 }
998 
999 static void
1000 at86rf230_xmit_start(void *context)
1001 {
1002 	struct at86rf230_state_change *ctx = context;
1003 	struct at86rf230_local *lp = ctx->lp;
1004 
1005 	/* In ARET mode we need to go into STATE_TX_ARET_ON after we
1006 	 * are in STATE_TX_ON. The pfad differs here, so we change
1007 	 * the complete handler.
1008 	 */
1009 	if (lp->tx_aret) {
1010 		if (lp->is_tx_from_off) {
1011 			lp->is_tx_from_off = false;
1012 			at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
1013 						     at86rf230_xmit_tx_on,
1014 						     false);
1015 		} else {
1016 			at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1017 						     at86rf230_xmit_tx_on,
1018 						     false);
1019 		}
1020 	} else {
1021 		at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1022 					     at86rf230_write_frame, false);
1023 	}
1024 }
1025 
1026 static int
1027 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
1028 {
1029 	struct at86rf230_local *lp = hw->priv;
1030 	struct at86rf230_state_change *ctx = &lp->tx;
1031 
1032 	lp->tx_skb = skb;
1033 	lp->tx_retry = 0;
1034 
1035 	/* After 5 minutes in PLL and the same frequency we run again the
1036 	 * calibration loops which is recommended by at86rf2xx datasheets.
1037 	 *
1038 	 * The calibration is initiate by a state change from TRX_OFF
1039 	 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
1040 	 * function then to start in the next 5 minutes.
1041 	 */
1042 	if (time_is_before_jiffies(lp->cal_timeout)) {
1043 		lp->is_tx_from_off = true;
1044 		at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
1045 					     at86rf230_xmit_start, false);
1046 	} else {
1047 		at86rf230_xmit_start(ctx);
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 static int
1054 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
1055 {
1056 	BUG_ON(!level);
1057 	*level = 0xbe;
1058 	return 0;
1059 }
1060 
1061 static int
1062 at86rf230_start(struct ieee802154_hw *hw)
1063 {
1064 	return at86rf230_sync_state_change(hw->priv, STATE_RX_AACK_ON);
1065 }
1066 
1067 static void
1068 at86rf230_stop(struct ieee802154_hw *hw)
1069 {
1070 	at86rf230_sync_state_change(hw->priv, STATE_FORCE_TRX_OFF);
1071 }
1072 
1073 static int
1074 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1075 {
1076 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1077 }
1078 
1079 static int
1080 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1081 {
1082 	int rc;
1083 
1084 	if (channel == 0)
1085 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1086 	else
1087 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1088 	if (rc < 0)
1089 		return rc;
1090 
1091 	if (page == 0) {
1092 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1093 		lp->data->rssi_base_val = -100;
1094 	} else {
1095 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1096 		lp->data->rssi_base_val = -98;
1097 	}
1098 	if (rc < 0)
1099 		return rc;
1100 
1101 	/* This sets the symbol_duration according frequency on the 212.
1102 	 * TODO move this handling while set channel and page in cfg802154.
1103 	 * We can do that, this timings are according 802.15.4 standard.
1104 	 * If we do that in cfg802154, this is a more generic calculation.
1105 	 *
1106 	 * This should also protected from ifs_timer. Means cancel timer and
1107 	 * init with a new value. For now, this is okay.
1108 	 */
1109 	if (channel == 0) {
1110 		if (page == 0) {
1111 			/* SUB:0 and BPSK:0 -> BPSK-20 */
1112 			lp->hw->phy->symbol_duration = 50;
1113 		} else {
1114 			/* SUB:1 and BPSK:0 -> BPSK-40 */
1115 			lp->hw->phy->symbol_duration = 25;
1116 		}
1117 	} else {
1118 		if (page == 0)
1119 			/* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1120 			lp->hw->phy->symbol_duration = 40;
1121 		else
1122 			/* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1123 			lp->hw->phy->symbol_duration = 16;
1124 	}
1125 
1126 	lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1127 				   lp->hw->phy->symbol_duration;
1128 	lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1129 				   lp->hw->phy->symbol_duration;
1130 
1131 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1132 }
1133 
1134 static int
1135 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1136 {
1137 	struct at86rf230_local *lp = hw->priv;
1138 	int rc;
1139 
1140 	rc = lp->data->set_channel(lp, page, channel);
1141 	/* Wait for PLL */
1142 	usleep_range(lp->data->t_channel_switch,
1143 		     lp->data->t_channel_switch + 10);
1144 
1145 	lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1146 	return rc;
1147 }
1148 
1149 static int
1150 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1151 			   struct ieee802154_hw_addr_filt *filt,
1152 			   unsigned long changed)
1153 {
1154 	struct at86rf230_local *lp = hw->priv;
1155 
1156 	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1157 		u16 addr = le16_to_cpu(filt->short_addr);
1158 
1159 		dev_vdbg(&lp->spi->dev,
1160 			 "at86rf230_set_hw_addr_filt called for saddr\n");
1161 		__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1162 		__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1163 	}
1164 
1165 	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1166 		u16 pan = le16_to_cpu(filt->pan_id);
1167 
1168 		dev_vdbg(&lp->spi->dev,
1169 			 "at86rf230_set_hw_addr_filt called for pan id\n");
1170 		__at86rf230_write(lp, RG_PAN_ID_0, pan);
1171 		__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1172 	}
1173 
1174 	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1175 		u8 i, addr[8];
1176 
1177 		memcpy(addr, &filt->ieee_addr, 8);
1178 		dev_vdbg(&lp->spi->dev,
1179 			 "at86rf230_set_hw_addr_filt called for IEEE addr\n");
1180 		for (i = 0; i < 8; i++)
1181 			__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1182 	}
1183 
1184 	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1185 		dev_vdbg(&lp->spi->dev,
1186 			 "at86rf230_set_hw_addr_filt called for panc change\n");
1187 		if (filt->pan_coord)
1188 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1189 		else
1190 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static int
1197 at86rf230_set_txpower(struct ieee802154_hw *hw, s8 db)
1198 {
1199 	struct at86rf230_local *lp = hw->priv;
1200 
1201 	/* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five
1202 	 * bits decrease power in 1dB steps. 0x60 represents extra PA gain of
1203 	 * 0dB.
1204 	 * thus, supported values for db range from -26 to 5, for 31dB of
1205 	 * reduction to 0dB of reduction.
1206 	 */
1207 	if (db > 5 || db < -26)
1208 		return -EINVAL;
1209 
1210 	db = -(db - 5);
1211 
1212 	return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db);
1213 }
1214 
1215 static int
1216 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1217 {
1218 	struct at86rf230_local *lp = hw->priv;
1219 
1220 	return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1221 }
1222 
1223 static int
1224 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1225 		       const struct wpan_phy_cca *cca)
1226 {
1227 	struct at86rf230_local *lp = hw->priv;
1228 	u8 val;
1229 
1230 	/* mapping 802.15.4 to driver spec */
1231 	switch (cca->mode) {
1232 	case NL802154_CCA_ENERGY:
1233 		val = 1;
1234 		break;
1235 	case NL802154_CCA_CARRIER:
1236 		val = 2;
1237 		break;
1238 	case NL802154_CCA_ENERGY_CARRIER:
1239 		switch (cca->opt) {
1240 		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1241 			val = 3;
1242 			break;
1243 		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1244 			val = 0;
1245 			break;
1246 		default:
1247 			return -EINVAL;
1248 		}
1249 		break;
1250 	default:
1251 		return -EINVAL;
1252 	}
1253 
1254 	return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1255 }
1256 
1257 static int
1258 at86rf212_get_desens_steps(struct at86rf230_local *lp, s32 level)
1259 {
1260 	return (level - lp->data->rssi_base_val) * 100 / 207;
1261 }
1262 
1263 static int
1264 at86rf23x_get_desens_steps(struct at86rf230_local *lp, s32 level)
1265 {
1266 	return (level - lp->data->rssi_base_val) / 2;
1267 }
1268 
1269 static int
1270 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 level)
1271 {
1272 	struct at86rf230_local *lp = hw->priv;
1273 
1274 	if (level < lp->data->rssi_base_val || level > 30)
1275 		return -EINVAL;
1276 
1277 	return at86rf230_write_subreg(lp, SR_CCA_ED_THRES,
1278 				      lp->data->get_desense_steps(lp, level));
1279 }
1280 
1281 static int
1282 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1283 			  u8 retries)
1284 {
1285 	struct at86rf230_local *lp = hw->priv;
1286 	int rc;
1287 
1288 	rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1289 	if (rc)
1290 		return rc;
1291 
1292 	rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1293 	if (rc)
1294 		return rc;
1295 
1296 	return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1297 }
1298 
1299 static int
1300 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1301 {
1302 	struct at86rf230_local *lp = hw->priv;
1303 	int rc = 0;
1304 
1305 	lp->tx_aret = retries >= 0;
1306 	lp->max_frame_retries = retries;
1307 
1308 	if (retries >= 0)
1309 		rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1310 
1311 	return rc;
1312 }
1313 
1314 static int
1315 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1316 {
1317 	struct at86rf230_local *lp = hw->priv;
1318 	int rc;
1319 
1320 	if (on) {
1321 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1322 		if (rc < 0)
1323 			return rc;
1324 
1325 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1326 		if (rc < 0)
1327 			return rc;
1328 	} else {
1329 		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1330 		if (rc < 0)
1331 			return rc;
1332 
1333 		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1334 		if (rc < 0)
1335 			return rc;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static const struct ieee802154_ops at86rf230_ops = {
1342 	.owner = THIS_MODULE,
1343 	.xmit_async = at86rf230_xmit,
1344 	.ed = at86rf230_ed,
1345 	.set_channel = at86rf230_channel,
1346 	.start = at86rf230_start,
1347 	.stop = at86rf230_stop,
1348 	.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1349 	.set_txpower = at86rf230_set_txpower,
1350 	.set_lbt = at86rf230_set_lbt,
1351 	.set_cca_mode = at86rf230_set_cca_mode,
1352 	.set_cca_ed_level = at86rf230_set_cca_ed_level,
1353 	.set_csma_params = at86rf230_set_csma_params,
1354 	.set_frame_retries = at86rf230_set_frame_retries,
1355 	.set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1356 };
1357 
1358 static struct at86rf2xx_chip_data at86rf233_data = {
1359 	.t_sleep_cycle = 330,
1360 	.t_channel_switch = 11,
1361 	.t_reset_to_off = 26,
1362 	.t_off_to_aack = 80,
1363 	.t_off_to_tx_on = 80,
1364 	.t_frame = 4096,
1365 	.t_p_ack = 545,
1366 	.rssi_base_val = -91,
1367 	.set_channel = at86rf23x_set_channel,
1368 	.get_desense_steps = at86rf23x_get_desens_steps
1369 };
1370 
1371 static struct at86rf2xx_chip_data at86rf231_data = {
1372 	.t_sleep_cycle = 330,
1373 	.t_channel_switch = 24,
1374 	.t_reset_to_off = 37,
1375 	.t_off_to_aack = 110,
1376 	.t_off_to_tx_on = 110,
1377 	.t_frame = 4096,
1378 	.t_p_ack = 545,
1379 	.rssi_base_val = -91,
1380 	.set_channel = at86rf23x_set_channel,
1381 	.get_desense_steps = at86rf23x_get_desens_steps
1382 };
1383 
1384 static struct at86rf2xx_chip_data at86rf212_data = {
1385 	.t_sleep_cycle = 330,
1386 	.t_channel_switch = 11,
1387 	.t_reset_to_off = 26,
1388 	.t_off_to_aack = 200,
1389 	.t_off_to_tx_on = 200,
1390 	.t_frame = 4096,
1391 	.t_p_ack = 545,
1392 	.rssi_base_val = -100,
1393 	.set_channel = at86rf212_set_channel,
1394 	.get_desense_steps = at86rf212_get_desens_steps
1395 };
1396 
1397 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1398 {
1399 	int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1400 	unsigned int dvdd;
1401 	u8 csma_seed[2];
1402 
1403 	rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1404 	if (rc)
1405 		return rc;
1406 
1407 	irq_type = irq_get_trigger_type(lp->spi->irq);
1408 	if (irq_type == IRQ_TYPE_EDGE_RISING ||
1409 	    irq_type == IRQ_TYPE_EDGE_FALLING)
1410 		dev_warn(&lp->spi->dev,
1411 			 "Using edge triggered irq's are not recommended!\n");
1412 	if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1413 	    irq_type == IRQ_TYPE_LEVEL_LOW)
1414 		irq_pol = IRQ_ACTIVE_LOW;
1415 
1416 	rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1417 	if (rc)
1418 		return rc;
1419 
1420 	rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1421 	if (rc)
1422 		return rc;
1423 
1424 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1425 	if (rc)
1426 		return rc;
1427 
1428 	/* reset values differs in at86rf231 and at86rf233 */
1429 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1430 	if (rc)
1431 		return rc;
1432 
1433 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1434 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1435 	if (rc)
1436 		return rc;
1437 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1438 	if (rc)
1439 		return rc;
1440 
1441 	/* CLKM changes are applied immediately */
1442 	rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1443 	if (rc)
1444 		return rc;
1445 
1446 	/* Turn CLKM Off */
1447 	rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1448 	if (rc)
1449 		return rc;
1450 	/* Wait the next SLEEP cycle */
1451 	usleep_range(lp->data->t_sleep_cycle,
1452 		     lp->data->t_sleep_cycle + 100);
1453 
1454 	/* xtal_trim value is calculated by:
1455 	 * CL = 0.5 * (CX + CTRIM + CPAR)
1456 	 *
1457 	 * whereas:
1458 	 * CL = capacitor of used crystal
1459 	 * CX = connected capacitors at xtal pins
1460 	 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1461 	 *	  but this is different on each board setup. You need to fine
1462 	 *	  tuning this value via CTRIM.
1463 	 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1464 	 *	   0 pF upto 4.5 pF.
1465 	 *
1466 	 * Examples:
1467 	 * atben transceiver:
1468 	 *
1469 	 * CL = 8 pF
1470 	 * CX = 12 pF
1471 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1472 	 * CTRIM = 0.9 pF
1473 	 *
1474 	 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1475 	 *
1476 	 * xtal_trim = 0x3
1477 	 *
1478 	 * openlabs transceiver:
1479 	 *
1480 	 * CL = 16 pF
1481 	 * CX = 22 pF
1482 	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1483 	 * CTRIM = 4.5 pF
1484 	 *
1485 	 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1486 	 *
1487 	 * xtal_trim = 0xf
1488 	 */
1489 	rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1490 	if (rc)
1491 		return rc;
1492 
1493 	rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1494 	if (rc)
1495 		return rc;
1496 	if (!dvdd) {
1497 		dev_err(&lp->spi->dev, "DVDD error\n");
1498 		return -EINVAL;
1499 	}
1500 
1501 	/* Force setting slotted operation bit to 0. Sometimes the atben
1502 	 * sets this bit and I don't know why. We set this always force
1503 	 * to zero while probing.
1504 	 */
1505 	return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1506 }
1507 
1508 static int
1509 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1510 		    u8 *xtal_trim)
1511 {
1512 	struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1513 	int ret;
1514 
1515 	if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1516 		if (!pdata)
1517 			return -ENOENT;
1518 
1519 		*rstn = pdata->rstn;
1520 		*slp_tr = pdata->slp_tr;
1521 		*xtal_trim = pdata->xtal_trim;
1522 		return 0;
1523 	}
1524 
1525 	*rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1526 	*slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1527 	ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1528 	if (ret < 0 && ret != -EINVAL)
1529 		return ret;
1530 
1531 	return 0;
1532 }
1533 
1534 static int
1535 at86rf230_detect_device(struct at86rf230_local *lp)
1536 {
1537 	unsigned int part, version, val;
1538 	u16 man_id = 0;
1539 	const char *chip;
1540 	int rc;
1541 
1542 	rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1543 	if (rc)
1544 		return rc;
1545 	man_id |= val;
1546 
1547 	rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1548 	if (rc)
1549 		return rc;
1550 	man_id |= (val << 8);
1551 
1552 	rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1553 	if (rc)
1554 		return rc;
1555 
1556 	rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1557 	if (rc)
1558 		return rc;
1559 
1560 	if (man_id != 0x001f) {
1561 		dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1562 			man_id >> 8, man_id & 0xFF);
1563 		return -EINVAL;
1564 	}
1565 
1566 	lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AACK |
1567 			IEEE802154_HW_TXPOWER | IEEE802154_HW_ARET |
1568 			IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS;
1569 
1570 	lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1571 
1572 	switch (part) {
1573 	case 2:
1574 		chip = "at86rf230";
1575 		rc = -ENOTSUPP;
1576 		break;
1577 	case 3:
1578 		chip = "at86rf231";
1579 		lp->data = &at86rf231_data;
1580 		lp->hw->phy->channels_supported[0] = 0x7FFF800;
1581 		lp->hw->phy->current_channel = 11;
1582 		lp->hw->phy->symbol_duration = 16;
1583 		break;
1584 	case 7:
1585 		chip = "at86rf212";
1586 		lp->data = &at86rf212_data;
1587 		lp->hw->flags |= IEEE802154_HW_LBT;
1588 		lp->hw->phy->channels_supported[0] = 0x00007FF;
1589 		lp->hw->phy->channels_supported[2] = 0x00007FF;
1590 		lp->hw->phy->current_channel = 5;
1591 		lp->hw->phy->symbol_duration = 25;
1592 		break;
1593 	case 11:
1594 		chip = "at86rf233";
1595 		lp->data = &at86rf233_data;
1596 		lp->hw->phy->channels_supported[0] = 0x7FFF800;
1597 		lp->hw->phy->current_channel = 13;
1598 		lp->hw->phy->symbol_duration = 16;
1599 		break;
1600 	default:
1601 		chip = "unknown";
1602 		rc = -ENOTSUPP;
1603 		break;
1604 	}
1605 
1606 	dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1607 
1608 	return rc;
1609 }
1610 
1611 static void
1612 at86rf230_setup_spi_messages(struct at86rf230_local *lp)
1613 {
1614 	lp->state.lp = lp;
1615 	lp->state.irq = lp->spi->irq;
1616 	spi_message_init(&lp->state.msg);
1617 	lp->state.msg.context = &lp->state;
1618 	lp->state.trx.len = 2;
1619 	lp->state.trx.tx_buf = lp->state.buf;
1620 	lp->state.trx.rx_buf = lp->state.buf;
1621 	spi_message_add_tail(&lp->state.trx, &lp->state.msg);
1622 	hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1623 	lp->state.timer.function = at86rf230_async_state_timer;
1624 
1625 	lp->irq.lp = lp;
1626 	lp->irq.irq = lp->spi->irq;
1627 	spi_message_init(&lp->irq.msg);
1628 	lp->irq.msg.context = &lp->irq;
1629 	lp->irq.trx.len = 2;
1630 	lp->irq.trx.tx_buf = lp->irq.buf;
1631 	lp->irq.trx.rx_buf = lp->irq.buf;
1632 	spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
1633 	hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1634 	lp->irq.timer.function = at86rf230_async_state_timer;
1635 
1636 	lp->tx.lp = lp;
1637 	lp->tx.irq = lp->spi->irq;
1638 	spi_message_init(&lp->tx.msg);
1639 	lp->tx.msg.context = &lp->tx;
1640 	lp->tx.trx.len = 2;
1641 	lp->tx.trx.tx_buf = lp->tx.buf;
1642 	lp->tx.trx.rx_buf = lp->tx.buf;
1643 	spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
1644 	hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1645 	lp->tx.timer.function = at86rf230_async_state_timer;
1646 }
1647 
1648 static int at86rf230_probe(struct spi_device *spi)
1649 {
1650 	struct ieee802154_hw *hw;
1651 	struct at86rf230_local *lp;
1652 	unsigned int status;
1653 	int rc, irq_type, rstn, slp_tr;
1654 	u8 xtal_trim = 0;
1655 
1656 	if (!spi->irq) {
1657 		dev_err(&spi->dev, "no IRQ specified\n");
1658 		return -EINVAL;
1659 	}
1660 
1661 	rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1662 	if (rc < 0) {
1663 		dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1664 		return rc;
1665 	}
1666 
1667 	if (gpio_is_valid(rstn)) {
1668 		rc = devm_gpio_request_one(&spi->dev, rstn,
1669 					   GPIOF_OUT_INIT_HIGH, "rstn");
1670 		if (rc)
1671 			return rc;
1672 	}
1673 
1674 	if (gpio_is_valid(slp_tr)) {
1675 		rc = devm_gpio_request_one(&spi->dev, slp_tr,
1676 					   GPIOF_OUT_INIT_LOW, "slp_tr");
1677 		if (rc)
1678 			return rc;
1679 	}
1680 
1681 	/* Reset */
1682 	if (gpio_is_valid(rstn)) {
1683 		udelay(1);
1684 		gpio_set_value(rstn, 0);
1685 		udelay(1);
1686 		gpio_set_value(rstn, 1);
1687 		usleep_range(120, 240);
1688 	}
1689 
1690 	hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1691 	if (!hw)
1692 		return -ENOMEM;
1693 
1694 	lp = hw->priv;
1695 	lp->hw = hw;
1696 	lp->spi = spi;
1697 	lp->slp_tr = slp_tr;
1698 	hw->parent = &spi->dev;
1699 	hw->vif_data_size = sizeof(*lp);
1700 	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1701 
1702 	lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1703 	if (IS_ERR(lp->regmap)) {
1704 		rc = PTR_ERR(lp->regmap);
1705 		dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1706 			rc);
1707 		goto free_dev;
1708 	}
1709 
1710 	at86rf230_setup_spi_messages(lp);
1711 
1712 	rc = at86rf230_detect_device(lp);
1713 	if (rc < 0)
1714 		goto free_dev;
1715 
1716 	init_completion(&lp->state_complete);
1717 
1718 	spi_set_drvdata(spi, lp);
1719 
1720 	rc = at86rf230_hw_init(lp, xtal_trim);
1721 	if (rc)
1722 		goto free_dev;
1723 
1724 	/* Read irq status register to reset irq line */
1725 	rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1726 	if (rc)
1727 		goto free_dev;
1728 
1729 	irq_type = irq_get_trigger_type(spi->irq);
1730 	if (!irq_type)
1731 		irq_type = IRQF_TRIGGER_RISING;
1732 
1733 	rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1734 			      IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1735 	if (rc)
1736 		goto free_dev;
1737 
1738 	rc = ieee802154_register_hw(lp->hw);
1739 	if (rc)
1740 		goto free_dev;
1741 
1742 	return rc;
1743 
1744 free_dev:
1745 	ieee802154_free_hw(lp->hw);
1746 
1747 	return rc;
1748 }
1749 
1750 static int at86rf230_remove(struct spi_device *spi)
1751 {
1752 	struct at86rf230_local *lp = spi_get_drvdata(spi);
1753 
1754 	/* mask all at86rf230 irq's */
1755 	at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1756 	ieee802154_unregister_hw(lp->hw);
1757 	ieee802154_free_hw(lp->hw);
1758 	dev_dbg(&spi->dev, "unregistered at86rf230\n");
1759 
1760 	return 0;
1761 }
1762 
1763 static const struct of_device_id at86rf230_of_match[] = {
1764 	{ .compatible = "atmel,at86rf230", },
1765 	{ .compatible = "atmel,at86rf231", },
1766 	{ .compatible = "atmel,at86rf233", },
1767 	{ .compatible = "atmel,at86rf212", },
1768 	{ },
1769 };
1770 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1771 
1772 static const struct spi_device_id at86rf230_device_id[] = {
1773 	{ .name = "at86rf230", },
1774 	{ .name = "at86rf231", },
1775 	{ .name = "at86rf233", },
1776 	{ .name = "at86rf212", },
1777 	{ },
1778 };
1779 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1780 
1781 static struct spi_driver at86rf230_driver = {
1782 	.id_table = at86rf230_device_id,
1783 	.driver = {
1784 		.of_match_table = of_match_ptr(at86rf230_of_match),
1785 		.name	= "at86rf230",
1786 		.owner	= THIS_MODULE,
1787 	},
1788 	.probe      = at86rf230_probe,
1789 	.remove     = at86rf230_remove,
1790 };
1791 
1792 module_spi_driver(at86rf230_driver);
1793 
1794 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1795 MODULE_LICENSE("GPL v2");
1796