1 /*
2  * AT86RF230/RF231 driver
3  *
4  * Copyright (C) 2009-2012 Siemens AG
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Written by:
20  * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
21  * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
22  * Alexander Aring <aar@pengutronix.de>
23  */
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/gpio.h>
29 #include <linux/delay.h>
30 #include <linux/spinlock.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/at86rf230.h>
33 #include <linux/regmap.h>
34 #include <linux/skbuff.h>
35 #include <linux/of_gpio.h>
36 
37 #include <net/ieee802154.h>
38 #include <net/mac802154.h>
39 #include <net/wpan-phy.h>
40 
41 struct at86rf230_local;
42 /* at86rf2xx chip depend data.
43  * All timings are in us.
44  */
45 struct at86rf2xx_chip_data {
46 	u16 t_sleep_cycle;
47 	u16 t_channel_switch;
48 	u16 t_reset_to_off;
49 	u16 t_off_to_aack;
50 	u16 t_off_to_tx_on;
51 	u16 t_frame;
52 	u16 t_p_ack;
53 	/* short interframe spacing time */
54 	u16 t_sifs;
55 	/* long interframe spacing time */
56 	u16 t_lifs;
57 	/* completion timeout for tx in msecs */
58 	u16 t_tx_timeout;
59 	int rssi_base_val;
60 
61 	int (*set_channel)(struct at86rf230_local *, int, int);
62 	int (*get_desense_steps)(struct at86rf230_local *, s32);
63 };
64 
65 #define AT86RF2XX_MAX_BUF (127 + 3)
66 
67 struct at86rf230_state_change {
68 	struct at86rf230_local *lp;
69 
70 	struct spi_message msg;
71 	struct spi_transfer trx;
72 	u8 buf[AT86RF2XX_MAX_BUF];
73 
74 	void (*complete)(void *context);
75 	u8 from_state;
76 	u8 to_state;
77 };
78 
79 struct at86rf230_local {
80 	struct spi_device *spi;
81 
82 	struct ieee802154_dev *dev;
83 	struct at86rf2xx_chip_data *data;
84 	struct regmap *regmap;
85 
86 	struct completion state_complete;
87 	struct at86rf230_state_change state;
88 
89 	struct at86rf230_state_change irq;
90 
91 	bool tx_aret;
92 	bool is_tx;
93 	/* spinlock for is_tx protection */
94 	spinlock_t lock;
95 	struct completion tx_complete;
96 	struct sk_buff *tx_skb;
97 	struct at86rf230_state_change tx;
98 };
99 
100 #define	RG_TRX_STATUS	(0x01)
101 #define	SR_TRX_STATUS		0x01, 0x1f, 0
102 #define	SR_RESERVED_01_3	0x01, 0x20, 5
103 #define	SR_CCA_STATUS		0x01, 0x40, 6
104 #define	SR_CCA_DONE		0x01, 0x80, 7
105 #define	RG_TRX_STATE	(0x02)
106 #define	SR_TRX_CMD		0x02, 0x1f, 0
107 #define	SR_TRAC_STATUS		0x02, 0xe0, 5
108 #define	RG_TRX_CTRL_0	(0x03)
109 #define	SR_CLKM_CTRL		0x03, 0x07, 0
110 #define	SR_CLKM_SHA_SEL		0x03, 0x08, 3
111 #define	SR_PAD_IO_CLKM		0x03, 0x30, 4
112 #define	SR_PAD_IO		0x03, 0xc0, 6
113 #define	RG_TRX_CTRL_1	(0x04)
114 #define	SR_IRQ_POLARITY		0x04, 0x01, 0
115 #define	SR_IRQ_MASK_MODE	0x04, 0x02, 1
116 #define	SR_SPI_CMD_MODE		0x04, 0x0c, 2
117 #define	SR_RX_BL_CTRL		0x04, 0x10, 4
118 #define	SR_TX_AUTO_CRC_ON	0x04, 0x20, 5
119 #define	SR_IRQ_2_EXT_EN		0x04, 0x40, 6
120 #define	SR_PA_EXT_EN		0x04, 0x80, 7
121 #define	RG_PHY_TX_PWR	(0x05)
122 #define	SR_TX_PWR		0x05, 0x0f, 0
123 #define	SR_PA_LT		0x05, 0x30, 4
124 #define	SR_PA_BUF_LT		0x05, 0xc0, 6
125 #define	RG_PHY_RSSI	(0x06)
126 #define	SR_RSSI			0x06, 0x1f, 0
127 #define	SR_RND_VALUE		0x06, 0x60, 5
128 #define	SR_RX_CRC_VALID		0x06, 0x80, 7
129 #define	RG_PHY_ED_LEVEL	(0x07)
130 #define	SR_ED_LEVEL		0x07, 0xff, 0
131 #define	RG_PHY_CC_CCA	(0x08)
132 #define	SR_CHANNEL		0x08, 0x1f, 0
133 #define	SR_CCA_MODE		0x08, 0x60, 5
134 #define	SR_CCA_REQUEST		0x08, 0x80, 7
135 #define	RG_CCA_THRES	(0x09)
136 #define	SR_CCA_ED_THRES		0x09, 0x0f, 0
137 #define	SR_RESERVED_09_1	0x09, 0xf0, 4
138 #define	RG_RX_CTRL	(0x0a)
139 #define	SR_PDT_THRES		0x0a, 0x0f, 0
140 #define	SR_RESERVED_0a_1	0x0a, 0xf0, 4
141 #define	RG_SFD_VALUE	(0x0b)
142 #define	SR_SFD_VALUE		0x0b, 0xff, 0
143 #define	RG_TRX_CTRL_2	(0x0c)
144 #define	SR_OQPSK_DATA_RATE	0x0c, 0x03, 0
145 #define	SR_SUB_MODE		0x0c, 0x04, 2
146 #define	SR_BPSK_QPSK		0x0c, 0x08, 3
147 #define	SR_OQPSK_SUB1_RC_EN	0x0c, 0x10, 4
148 #define	SR_RESERVED_0c_5	0x0c, 0x60, 5
149 #define	SR_RX_SAFE_MODE		0x0c, 0x80, 7
150 #define	RG_ANT_DIV	(0x0d)
151 #define	SR_ANT_CTRL		0x0d, 0x03, 0
152 #define	SR_ANT_EXT_SW_EN	0x0d, 0x04, 2
153 #define	SR_ANT_DIV_EN		0x0d, 0x08, 3
154 #define	SR_RESERVED_0d_2	0x0d, 0x70, 4
155 #define	SR_ANT_SEL		0x0d, 0x80, 7
156 #define	RG_IRQ_MASK	(0x0e)
157 #define	SR_IRQ_MASK		0x0e, 0xff, 0
158 #define	RG_IRQ_STATUS	(0x0f)
159 #define	SR_IRQ_0_PLL_LOCK	0x0f, 0x01, 0
160 #define	SR_IRQ_1_PLL_UNLOCK	0x0f, 0x02, 1
161 #define	SR_IRQ_2_RX_START	0x0f, 0x04, 2
162 #define	SR_IRQ_3_TRX_END	0x0f, 0x08, 3
163 #define	SR_IRQ_4_CCA_ED_DONE	0x0f, 0x10, 4
164 #define	SR_IRQ_5_AMI		0x0f, 0x20, 5
165 #define	SR_IRQ_6_TRX_UR		0x0f, 0x40, 6
166 #define	SR_IRQ_7_BAT_LOW	0x0f, 0x80, 7
167 #define	RG_VREG_CTRL	(0x10)
168 #define	SR_RESERVED_10_6	0x10, 0x03, 0
169 #define	SR_DVDD_OK		0x10, 0x04, 2
170 #define	SR_DVREG_EXT		0x10, 0x08, 3
171 #define	SR_RESERVED_10_3	0x10, 0x30, 4
172 #define	SR_AVDD_OK		0x10, 0x40, 6
173 #define	SR_AVREG_EXT		0x10, 0x80, 7
174 #define	RG_BATMON	(0x11)
175 #define	SR_BATMON_VTH		0x11, 0x0f, 0
176 #define	SR_BATMON_HR		0x11, 0x10, 4
177 #define	SR_BATMON_OK		0x11, 0x20, 5
178 #define	SR_RESERVED_11_1	0x11, 0xc0, 6
179 #define	RG_XOSC_CTRL	(0x12)
180 #define	SR_XTAL_TRIM		0x12, 0x0f, 0
181 #define	SR_XTAL_MODE		0x12, 0xf0, 4
182 #define	RG_RX_SYN	(0x15)
183 #define	SR_RX_PDT_LEVEL		0x15, 0x0f, 0
184 #define	SR_RESERVED_15_2	0x15, 0x70, 4
185 #define	SR_RX_PDT_DIS		0x15, 0x80, 7
186 #define	RG_XAH_CTRL_1	(0x17)
187 #define	SR_RESERVED_17_8	0x17, 0x01, 0
188 #define	SR_AACK_PROM_MODE	0x17, 0x02, 1
189 #define	SR_AACK_ACK_TIME	0x17, 0x04, 2
190 #define	SR_RESERVED_17_5	0x17, 0x08, 3
191 #define	SR_AACK_UPLD_RES_FT	0x17, 0x10, 4
192 #define	SR_AACK_FLTR_RES_FT	0x17, 0x20, 5
193 #define	SR_CSMA_LBT_MODE	0x17, 0x40, 6
194 #define	SR_RESERVED_17_1	0x17, 0x80, 7
195 #define	RG_FTN_CTRL	(0x18)
196 #define	SR_RESERVED_18_2	0x18, 0x7f, 0
197 #define	SR_FTN_START		0x18, 0x80, 7
198 #define	RG_PLL_CF	(0x1a)
199 #define	SR_RESERVED_1a_2	0x1a, 0x7f, 0
200 #define	SR_PLL_CF_START		0x1a, 0x80, 7
201 #define	RG_PLL_DCU	(0x1b)
202 #define	SR_RESERVED_1b_3	0x1b, 0x3f, 0
203 #define	SR_RESERVED_1b_2	0x1b, 0x40, 6
204 #define	SR_PLL_DCU_START	0x1b, 0x80, 7
205 #define	RG_PART_NUM	(0x1c)
206 #define	SR_PART_NUM		0x1c, 0xff, 0
207 #define	RG_VERSION_NUM	(0x1d)
208 #define	SR_VERSION_NUM		0x1d, 0xff, 0
209 #define	RG_MAN_ID_0	(0x1e)
210 #define	SR_MAN_ID_0		0x1e, 0xff, 0
211 #define	RG_MAN_ID_1	(0x1f)
212 #define	SR_MAN_ID_1		0x1f, 0xff, 0
213 #define	RG_SHORT_ADDR_0	(0x20)
214 #define	SR_SHORT_ADDR_0		0x20, 0xff, 0
215 #define	RG_SHORT_ADDR_1	(0x21)
216 #define	SR_SHORT_ADDR_1		0x21, 0xff, 0
217 #define	RG_PAN_ID_0	(0x22)
218 #define	SR_PAN_ID_0		0x22, 0xff, 0
219 #define	RG_PAN_ID_1	(0x23)
220 #define	SR_PAN_ID_1		0x23, 0xff, 0
221 #define	RG_IEEE_ADDR_0	(0x24)
222 #define	SR_IEEE_ADDR_0		0x24, 0xff, 0
223 #define	RG_IEEE_ADDR_1	(0x25)
224 #define	SR_IEEE_ADDR_1		0x25, 0xff, 0
225 #define	RG_IEEE_ADDR_2	(0x26)
226 #define	SR_IEEE_ADDR_2		0x26, 0xff, 0
227 #define	RG_IEEE_ADDR_3	(0x27)
228 #define	SR_IEEE_ADDR_3		0x27, 0xff, 0
229 #define	RG_IEEE_ADDR_4	(0x28)
230 #define	SR_IEEE_ADDR_4		0x28, 0xff, 0
231 #define	RG_IEEE_ADDR_5	(0x29)
232 #define	SR_IEEE_ADDR_5		0x29, 0xff, 0
233 #define	RG_IEEE_ADDR_6	(0x2a)
234 #define	SR_IEEE_ADDR_6		0x2a, 0xff, 0
235 #define	RG_IEEE_ADDR_7	(0x2b)
236 #define	SR_IEEE_ADDR_7		0x2b, 0xff, 0
237 #define	RG_XAH_CTRL_0	(0x2c)
238 #define	SR_SLOTTED_OPERATION	0x2c, 0x01, 0
239 #define	SR_MAX_CSMA_RETRIES	0x2c, 0x0e, 1
240 #define	SR_MAX_FRAME_RETRIES	0x2c, 0xf0, 4
241 #define	RG_CSMA_SEED_0	(0x2d)
242 #define	SR_CSMA_SEED_0		0x2d, 0xff, 0
243 #define	RG_CSMA_SEED_1	(0x2e)
244 #define	SR_CSMA_SEED_1		0x2e, 0x07, 0
245 #define	SR_AACK_I_AM_COORD	0x2e, 0x08, 3
246 #define	SR_AACK_DIS_ACK		0x2e, 0x10, 4
247 #define	SR_AACK_SET_PD		0x2e, 0x20, 5
248 #define	SR_AACK_FVN_MODE	0x2e, 0xc0, 6
249 #define	RG_CSMA_BE	(0x2f)
250 #define	SR_MIN_BE		0x2f, 0x0f, 0
251 #define	SR_MAX_BE		0x2f, 0xf0, 4
252 
253 #define CMD_REG		0x80
254 #define CMD_REG_MASK	0x3f
255 #define CMD_WRITE	0x40
256 #define CMD_FB		0x20
257 
258 #define IRQ_BAT_LOW	(1 << 7)
259 #define IRQ_TRX_UR	(1 << 6)
260 #define IRQ_AMI		(1 << 5)
261 #define IRQ_CCA_ED	(1 << 4)
262 #define IRQ_TRX_END	(1 << 3)
263 #define IRQ_RX_START	(1 << 2)
264 #define IRQ_PLL_UNL	(1 << 1)
265 #define IRQ_PLL_LOCK	(1 << 0)
266 
267 #define IRQ_ACTIVE_HIGH	0
268 #define IRQ_ACTIVE_LOW	1
269 
270 #define STATE_P_ON		0x00	/* BUSY */
271 #define STATE_BUSY_RX		0x01
272 #define STATE_BUSY_TX		0x02
273 #define STATE_FORCE_TRX_OFF	0x03
274 #define STATE_FORCE_TX_ON	0x04	/* IDLE */
275 /* 0x05 */				/* INVALID_PARAMETER */
276 #define STATE_RX_ON		0x06
277 /* 0x07 */				/* SUCCESS */
278 #define STATE_TRX_OFF		0x08
279 #define STATE_TX_ON		0x09
280 /* 0x0a - 0x0e */			/* 0x0a - UNSUPPORTED_ATTRIBUTE */
281 #define STATE_SLEEP		0x0F
282 #define STATE_PREP_DEEP_SLEEP	0x10
283 #define STATE_BUSY_RX_AACK	0x11
284 #define STATE_BUSY_TX_ARET	0x12
285 #define STATE_RX_AACK_ON	0x16
286 #define STATE_TX_ARET_ON	0x19
287 #define STATE_RX_ON_NOCLK	0x1C
288 #define STATE_RX_AACK_ON_NOCLK	0x1D
289 #define STATE_BUSY_RX_AACK_NOCLK 0x1E
290 #define STATE_TRANSITION_IN_PROGRESS 0x1F
291 
292 #define AT86RF2XX_NUMREGS 0x3F
293 
294 static int
295 at86rf230_async_state_change(struct at86rf230_local *lp,
296 			     struct at86rf230_state_change *ctx,
297 			     const u8 state, void (*complete)(void *context));
298 
299 static inline int
300 __at86rf230_write(struct at86rf230_local *lp,
301 		  unsigned int addr, unsigned int data)
302 {
303 	return regmap_write(lp->regmap, addr, data);
304 }
305 
306 static inline int
307 __at86rf230_read(struct at86rf230_local *lp,
308 		 unsigned int addr, unsigned int *data)
309 {
310 	return regmap_read(lp->regmap, addr, data);
311 }
312 
313 static inline int
314 at86rf230_read_subreg(struct at86rf230_local *lp,
315 		      unsigned int addr, unsigned int mask,
316 		      unsigned int shift, unsigned int *data)
317 {
318 	int rc;
319 
320 	rc = __at86rf230_read(lp, addr, data);
321 	if (rc > 0)
322 		*data = (*data & mask) >> shift;
323 
324 	return rc;
325 }
326 
327 static inline int
328 at86rf230_write_subreg(struct at86rf230_local *lp,
329 		       unsigned int addr, unsigned int mask,
330 		       unsigned int shift, unsigned int data)
331 {
332 	return regmap_update_bits(lp->regmap, addr, mask, data << shift);
333 }
334 
335 static bool
336 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
337 {
338 	switch (reg) {
339 	case RG_TRX_STATE:
340 	case RG_TRX_CTRL_0:
341 	case RG_TRX_CTRL_1:
342 	case RG_PHY_TX_PWR:
343 	case RG_PHY_ED_LEVEL:
344 	case RG_PHY_CC_CCA:
345 	case RG_CCA_THRES:
346 	case RG_RX_CTRL:
347 	case RG_SFD_VALUE:
348 	case RG_TRX_CTRL_2:
349 	case RG_ANT_DIV:
350 	case RG_IRQ_MASK:
351 	case RG_VREG_CTRL:
352 	case RG_BATMON:
353 	case RG_XOSC_CTRL:
354 	case RG_RX_SYN:
355 	case RG_XAH_CTRL_1:
356 	case RG_FTN_CTRL:
357 	case RG_PLL_CF:
358 	case RG_PLL_DCU:
359 	case RG_SHORT_ADDR_0:
360 	case RG_SHORT_ADDR_1:
361 	case RG_PAN_ID_0:
362 	case RG_PAN_ID_1:
363 	case RG_IEEE_ADDR_0:
364 	case RG_IEEE_ADDR_1:
365 	case RG_IEEE_ADDR_2:
366 	case RG_IEEE_ADDR_3:
367 	case RG_IEEE_ADDR_4:
368 	case RG_IEEE_ADDR_5:
369 	case RG_IEEE_ADDR_6:
370 	case RG_IEEE_ADDR_7:
371 	case RG_XAH_CTRL_0:
372 	case RG_CSMA_SEED_0:
373 	case RG_CSMA_SEED_1:
374 	case RG_CSMA_BE:
375 		return true;
376 	default:
377 		return false;
378 	}
379 }
380 
381 static bool
382 at86rf230_reg_readable(struct device *dev, unsigned int reg)
383 {
384 	bool rc;
385 
386 	/* all writeable are also readable */
387 	rc = at86rf230_reg_writeable(dev, reg);
388 	if (rc)
389 		return rc;
390 
391 	/* readonly regs */
392 	switch (reg) {
393 	case RG_TRX_STATUS:
394 	case RG_PHY_RSSI:
395 	case RG_IRQ_STATUS:
396 	case RG_PART_NUM:
397 	case RG_VERSION_NUM:
398 	case RG_MAN_ID_1:
399 	case RG_MAN_ID_0:
400 		return true;
401 	default:
402 		return false;
403 	}
404 }
405 
406 static bool
407 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
408 {
409 	/* can be changed during runtime */
410 	switch (reg) {
411 	case RG_TRX_STATUS:
412 	case RG_TRX_STATE:
413 	case RG_PHY_RSSI:
414 	case RG_PHY_ED_LEVEL:
415 	case RG_IRQ_STATUS:
416 	case RG_VREG_CTRL:
417 		return true;
418 	default:
419 		return false;
420 	}
421 }
422 
423 static bool
424 at86rf230_reg_precious(struct device *dev, unsigned int reg)
425 {
426 	/* don't clear irq line on read */
427 	switch (reg) {
428 	case RG_IRQ_STATUS:
429 		return true;
430 	default:
431 		return false;
432 	}
433 }
434 
435 static struct regmap_config at86rf230_regmap_spi_config = {
436 	.reg_bits = 8,
437 	.val_bits = 8,
438 	.write_flag_mask = CMD_REG | CMD_WRITE,
439 	.read_flag_mask = CMD_REG,
440 	.cache_type = REGCACHE_RBTREE,
441 	.max_register = AT86RF2XX_NUMREGS,
442 	.writeable_reg = at86rf230_reg_writeable,
443 	.readable_reg = at86rf230_reg_readable,
444 	.volatile_reg = at86rf230_reg_volatile,
445 	.precious_reg = at86rf230_reg_precious,
446 };
447 
448 static void
449 at86rf230_async_error_recover(void *context)
450 {
451 	struct at86rf230_state_change *ctx = context;
452 	struct at86rf230_local *lp = ctx->lp;
453 
454 	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL);
455 }
456 
457 static void
458 at86rf230_async_error(struct at86rf230_local *lp,
459 		      struct at86rf230_state_change *ctx, int rc)
460 {
461 	dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
462 
463 	at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
464 				     at86rf230_async_error_recover);
465 }
466 
467 /* Generic function to get some register value in async mode */
468 static int
469 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
470 			 struct at86rf230_state_change *ctx,
471 			 void (*complete)(void *context))
472 {
473 	u8 *tx_buf = ctx->buf;
474 
475 	tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
476 	ctx->trx.len = 2;
477 	ctx->msg.complete = complete;
478 	return spi_async(lp->spi, &ctx->msg);
479 }
480 
481 static void
482 at86rf230_async_state_assert(void *context)
483 {
484 	struct at86rf230_state_change *ctx = context;
485 	struct at86rf230_local *lp = ctx->lp;
486 	const u8 *buf = ctx->buf;
487 	const u8 trx_state = buf[1] & 0x1f;
488 
489 	/* Assert state change */
490 	if (trx_state != ctx->to_state) {
491 		/* Special handling if transceiver state is in
492 		 * STATE_BUSY_RX_AACK and a SHR was detected.
493 		 */
494 		if  (trx_state == STATE_BUSY_RX_AACK) {
495 			/* Undocumented race condition. If we send a state
496 			 * change to STATE_RX_AACK_ON the transceiver could
497 			 * change his state automatically to STATE_BUSY_RX_AACK
498 			 * if a SHR was detected. This is not an error, but we
499 			 * can't assert this.
500 			 */
501 			if (ctx->to_state == STATE_RX_AACK_ON)
502 				goto done;
503 
504 			/* If we change to STATE_TX_ON without forcing and
505 			 * transceiver state is STATE_BUSY_RX_AACK, we wait
506 			 * 'tFrame + tPAck' receiving time. In this time the
507 			 * PDU should be received. If the transceiver is still
508 			 * in STATE_BUSY_RX_AACK, we run a force state change
509 			 * to STATE_TX_ON. This is a timeout handling, if the
510 			 * transceiver stucks in STATE_BUSY_RX_AACK.
511 			 */
512 			if (ctx->to_state == STATE_TX_ON) {
513 				at86rf230_async_state_change(lp, ctx,
514 							     STATE_FORCE_TX_ON,
515 							     ctx->complete);
516 				return;
517 			}
518 		}
519 
520 
521 		dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
522 			 ctx->from_state, ctx->to_state, trx_state);
523 	}
524 
525 done:
526 	if (ctx->complete)
527 		ctx->complete(context);
528 }
529 
530 /* Do state change timing delay. */
531 static void
532 at86rf230_async_state_delay(void *context)
533 {
534 	struct at86rf230_state_change *ctx = context;
535 	struct at86rf230_local *lp = ctx->lp;
536 	struct at86rf2xx_chip_data *c = lp->data;
537 	bool force = false;
538 	int rc;
539 
540 	/* The force state changes are will show as normal states in the
541 	 * state status subregister. We change the to_state to the
542 	 * corresponding one and remember if it was a force change, this
543 	 * differs if we do a state change from STATE_BUSY_RX_AACK.
544 	 */
545 	switch (ctx->to_state) {
546 	case STATE_FORCE_TX_ON:
547 		ctx->to_state = STATE_TX_ON;
548 		force = true;
549 		break;
550 	case STATE_FORCE_TRX_OFF:
551 		ctx->to_state = STATE_TRX_OFF;
552 		force = true;
553 		break;
554 	default:
555 		break;
556 	}
557 
558 	switch (ctx->from_state) {
559 	case STATE_TRX_OFF:
560 		switch (ctx->to_state) {
561 		case STATE_RX_AACK_ON:
562 			usleep_range(c->t_off_to_aack, c->t_off_to_aack + 10);
563 			goto change;
564 		case STATE_TX_ON:
565 			usleep_range(c->t_off_to_tx_on,
566 				     c->t_off_to_tx_on + 10);
567 			goto change;
568 		default:
569 			break;
570 		}
571 		break;
572 	case STATE_BUSY_RX_AACK:
573 		switch (ctx->to_state) {
574 		case STATE_TX_ON:
575 			/* Wait for worst case receiving time if we
576 			 * didn't make a force change from BUSY_RX_AACK
577 			 * to TX_ON.
578 			 */
579 			if (!force) {
580 				usleep_range(c->t_frame + c->t_p_ack,
581 					     c->t_frame + c->t_p_ack + 1000);
582 				goto change;
583 			}
584 			break;
585 		default:
586 			break;
587 		}
588 		break;
589 	/* Default value, means RESET state */
590 	case STATE_P_ON:
591 		switch (ctx->to_state) {
592 		case STATE_TRX_OFF:
593 			usleep_range(c->t_reset_to_off, c->t_reset_to_off + 10);
594 			goto change;
595 		default:
596 			break;
597 		}
598 		break;
599 	default:
600 		break;
601 	}
602 
603 	/* Default delay is 1us in the most cases */
604 	udelay(1);
605 
606 change:
607 	rc = at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
608 				      at86rf230_async_state_assert);
609 	if (rc)
610 		dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
611 }
612 
613 static void
614 at86rf230_async_state_change_start(void *context)
615 {
616 	struct at86rf230_state_change *ctx = context;
617 	struct at86rf230_local *lp = ctx->lp;
618 	u8 *buf = ctx->buf;
619 	const u8 trx_state = buf[1] & 0x1f;
620 	int rc;
621 
622 	/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
623 	if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
624 		udelay(1);
625 		rc = at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
626 					      at86rf230_async_state_change_start);
627 		if (rc)
628 			dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
629 		return;
630 	}
631 
632 	/* Check if we already are in the state which we change in */
633 	if (trx_state == ctx->to_state) {
634 		if (ctx->complete)
635 			ctx->complete(context);
636 		return;
637 	}
638 
639 	/* Set current state to the context of state change */
640 	ctx->from_state = trx_state;
641 
642 	/* Going into the next step for a state change which do a timing
643 	 * relevant delay.
644 	 */
645 	buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
646 	buf[1] = ctx->to_state;
647 	ctx->trx.len = 2;
648 	ctx->msg.complete = at86rf230_async_state_delay;
649 	rc = spi_async(lp->spi, &ctx->msg);
650 	if (rc)
651 		dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
652 }
653 
654 static int
655 at86rf230_async_state_change(struct at86rf230_local *lp,
656 			     struct at86rf230_state_change *ctx,
657 			     const u8 state, void (*complete)(void *context))
658 {
659 	/* Initialization for the state change context */
660 	ctx->to_state = state;
661 	ctx->complete = complete;
662 	return at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
663 					at86rf230_async_state_change_start);
664 }
665 
666 static void
667 at86rf230_sync_state_change_complete(void *context)
668 {
669 	struct at86rf230_state_change *ctx = context;
670 	struct at86rf230_local *lp = ctx->lp;
671 
672 	complete(&lp->state_complete);
673 }
674 
675 /* This function do a sync framework above the async state change.
676  * Some callbacks of the IEEE 802.15.4 driver interface need to be
677  * handled synchronously.
678  */
679 static int
680 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
681 {
682 	int rc;
683 
684 	rc = at86rf230_async_state_change(lp, &lp->state, state,
685 					  at86rf230_sync_state_change_complete);
686 	if (rc) {
687 		at86rf230_async_error(lp, &lp->state, rc);
688 		return rc;
689 	}
690 
691 	rc = wait_for_completion_timeout(&lp->state_complete,
692 					 msecs_to_jiffies(100));
693 	if (!rc)
694 		return -ETIMEDOUT;
695 
696 	return 0;
697 }
698 
699 static void
700 at86rf230_tx_complete(void *context)
701 {
702 	struct at86rf230_state_change *ctx = context;
703 	struct at86rf230_local *lp = ctx->lp;
704 
705 	complete(&lp->tx_complete);
706 }
707 
708 static void
709 at86rf230_tx_on(void *context)
710 {
711 	struct at86rf230_state_change *ctx = context;
712 	struct at86rf230_local *lp = ctx->lp;
713 	int rc;
714 
715 	rc = at86rf230_async_state_change(lp, &lp->irq, STATE_RX_AACK_ON,
716 					  at86rf230_tx_complete);
717 	if (rc)
718 		at86rf230_async_error(lp, ctx, rc);
719 }
720 
721 static void
722 at86rf230_tx_trac_error(void *context)
723 {
724 	struct at86rf230_state_change *ctx = context;
725 	struct at86rf230_local *lp = ctx->lp;
726 	int rc;
727 
728 	rc = at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
729 					  at86rf230_tx_on);
730 	if (rc)
731 		at86rf230_async_error(lp, ctx, rc);
732 }
733 
734 static void
735 at86rf230_tx_trac_check(void *context)
736 {
737 	struct at86rf230_state_change *ctx = context;
738 	struct at86rf230_local *lp = ctx->lp;
739 	const u8 *buf = ctx->buf;
740 	const u8 trac = (buf[1] & 0xe0) >> 5;
741 	int rc;
742 
743 	/* If trac status is different than zero we need to do a state change
744 	 * to STATE_FORCE_TRX_OFF then STATE_TX_ON to recover the transceiver
745 	 * state to TX_ON.
746 	 */
747 	if (trac) {
748 		rc = at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
749 						  at86rf230_tx_trac_error);
750 		if (rc)
751 			at86rf230_async_error(lp, ctx, rc);
752 		return;
753 	}
754 
755 	at86rf230_tx_on(context);
756 }
757 
758 
759 static void
760 at86rf230_tx_trac_status(void *context)
761 {
762 	struct at86rf230_state_change *ctx = context;
763 	struct at86rf230_local *lp = ctx->lp;
764 	int rc;
765 
766 	rc = at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
767 				      at86rf230_tx_trac_check);
768 	if (rc)
769 		at86rf230_async_error(lp, ctx, rc);
770 }
771 
772 static void
773 at86rf230_rx(struct at86rf230_local *lp,
774 	     const u8 *data, u8 len)
775 {
776 	u8 lqi;
777 	struct sk_buff *skb;
778 	u8 rx_local_buf[AT86RF2XX_MAX_BUF];
779 
780 	if (len < 2)
781 		return;
782 
783 	/* read full frame buffer and invalid lqi value to lowest
784 	 * indicator if frame was is in a corrupted state.
785 	 */
786 	if (len > IEEE802154_MTU) {
787 		lqi = 0;
788 		len = IEEE802154_MTU;
789 		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
790 	} else {
791 		lqi = data[len];
792 	}
793 
794 	memcpy(rx_local_buf, data, len);
795 	enable_irq(lp->spi->irq);
796 
797 	skb = alloc_skb(IEEE802154_MTU, GFP_ATOMIC);
798 	if (!skb) {
799 		dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
800 		return;
801 	}
802 
803 	memcpy(skb_put(skb, len), rx_local_buf, len);
804 
805 	/* We do not put CRC into the frame */
806 	skb_trim(skb, len - 2);
807 
808 	ieee802154_rx_irqsafe(lp->dev, skb, lqi);
809 }
810 
811 static void
812 at86rf230_rx_read_frame_complete(void *context)
813 {
814 	struct at86rf230_state_change *ctx = context;
815 	struct at86rf230_local *lp = ctx->lp;
816 	const u8 *buf = lp->irq.buf;
817 	const u8 len = buf[1];
818 
819 	at86rf230_rx(lp, buf + 2, len);
820 }
821 
822 static int
823 at86rf230_rx_read_frame(struct at86rf230_local *lp)
824 {
825 	u8 *buf = lp->irq.buf;
826 
827 	buf[0] = CMD_FB;
828 	lp->irq.trx.len = AT86RF2XX_MAX_BUF;
829 	lp->irq.msg.complete = at86rf230_rx_read_frame_complete;
830 	return spi_async(lp->spi, &lp->irq.msg);
831 }
832 
833 static void
834 at86rf230_rx_trac_check(void *context)
835 {
836 	struct at86rf230_state_change *ctx = context;
837 	struct at86rf230_local *lp = ctx->lp;
838 	int rc;
839 
840 	/* Possible check on trac status here. This could be useful to make
841 	 * some stats why receive is failed. Not used at the moment, but it's
842 	 * maybe timing relevant. Datasheet doesn't say anything about this.
843 	 * The programming guide say do it so.
844 	 */
845 
846 	rc = at86rf230_rx_read_frame(lp);
847 	if (rc) {
848 		enable_irq(lp->spi->irq);
849 		at86rf230_async_error(lp, ctx, rc);
850 	}
851 }
852 
853 static int
854 at86rf230_irq_trx_end(struct at86rf230_local *lp)
855 {
856 	spin_lock(&lp->lock);
857 	if (lp->is_tx) {
858 		lp->is_tx = 0;
859 		spin_unlock(&lp->lock);
860 		enable_irq(lp->spi->irq);
861 
862 		if (lp->tx_aret)
863 			return at86rf230_async_state_change(lp, &lp->irq,
864 							    STATE_FORCE_TX_ON,
865 							    at86rf230_tx_trac_status);
866 		else
867 			return at86rf230_async_state_change(lp, &lp->irq,
868 							    STATE_RX_AACK_ON,
869 							    at86rf230_tx_complete);
870 	} else {
871 		spin_unlock(&lp->lock);
872 		return at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
873 						at86rf230_rx_trac_check);
874 	}
875 }
876 
877 static void
878 at86rf230_irq_status(void *context)
879 {
880 	struct at86rf230_state_change *ctx = context;
881 	struct at86rf230_local *lp = ctx->lp;
882 	const u8 *buf = lp->irq.buf;
883 	const u8 irq = buf[1];
884 	int rc;
885 
886 	if (irq & IRQ_TRX_END) {
887 		rc = at86rf230_irq_trx_end(lp);
888 		if (rc)
889 			at86rf230_async_error(lp, ctx, rc);
890 	} else {
891 		enable_irq(lp->spi->irq);
892 		dev_err(&lp->spi->dev, "not supported irq %02x received\n",
893 			irq);
894 	}
895 }
896 
897 static irqreturn_t at86rf230_isr(int irq, void *data)
898 {
899 	struct at86rf230_local *lp = data;
900 	struct at86rf230_state_change *ctx = &lp->irq;
901 	u8 *buf = ctx->buf;
902 	int rc;
903 
904 	disable_irq_nosync(lp->spi->irq);
905 
906 	buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
907 	ctx->trx.len = 2;
908 	ctx->msg.complete = at86rf230_irq_status;
909 	rc = spi_async(lp->spi, &ctx->msg);
910 	if (rc) {
911 		at86rf230_async_error(lp, ctx, rc);
912 		return IRQ_NONE;
913 	}
914 
915 	return IRQ_HANDLED;
916 }
917 
918 static void
919 at86rf230_write_frame_complete(void *context)
920 {
921 	struct at86rf230_state_change *ctx = context;
922 	struct at86rf230_local *lp = ctx->lp;
923 	u8 *buf = ctx->buf;
924 	int rc;
925 
926 	buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
927 	buf[1] = STATE_BUSY_TX;
928 	ctx->trx.len = 2;
929 	ctx->msg.complete = NULL;
930 	rc = spi_async(lp->spi, &ctx->msg);
931 	if (rc)
932 		at86rf230_async_error(lp, ctx, rc);
933 }
934 
935 static void
936 at86rf230_write_frame(void *context)
937 {
938 	struct at86rf230_state_change *ctx = context;
939 	struct at86rf230_local *lp = ctx->lp;
940 	struct sk_buff *skb = lp->tx_skb;
941 	u8 *buf = lp->tx.buf;
942 	int rc;
943 
944 	spin_lock(&lp->lock);
945 	lp->is_tx = 1;
946 	spin_unlock(&lp->lock);
947 
948 	buf[0] = CMD_FB | CMD_WRITE;
949 	buf[1] = skb->len + 2;
950 	memcpy(buf + 2, skb->data, skb->len);
951 	lp->tx.trx.len = skb->len + 2;
952 	lp->tx.msg.complete = at86rf230_write_frame_complete;
953 	rc = spi_async(lp->spi, &lp->tx.msg);
954 	if (rc)
955 		at86rf230_async_error(lp, ctx, rc);
956 }
957 
958 static void
959 at86rf230_xmit_tx_on(void *context)
960 {
961 	struct at86rf230_state_change *ctx = context;
962 	struct at86rf230_local *lp = ctx->lp;
963 	int rc;
964 
965 	rc = at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
966 					  at86rf230_write_frame);
967 	if (rc)
968 		at86rf230_async_error(lp, ctx, rc);
969 }
970 
971 static int
972 at86rf230_xmit(struct ieee802154_dev *dev, struct sk_buff *skb)
973 {
974 	struct at86rf230_local *lp = dev->priv;
975 	struct at86rf230_state_change *ctx = &lp->tx;
976 
977 	void (*tx_complete)(void *context) = at86rf230_write_frame;
978 	int rc;
979 
980 	lp->tx_skb = skb;
981 
982 	/* In ARET mode we need to go into STATE_TX_ARET_ON after we
983 	 * are in STATE_TX_ON. The pfad differs here, so we change
984 	 * the complete handler.
985 	 */
986 	if (lp->tx_aret)
987 		tx_complete = at86rf230_xmit_tx_on;
988 
989 	rc = at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
990 					  tx_complete);
991 	if (rc) {
992 		at86rf230_async_error(lp, ctx, rc);
993 		return rc;
994 	}
995 	rc = wait_for_completion_interruptible_timeout(&lp->tx_complete,
996 						       msecs_to_jiffies(lp->data->t_tx_timeout));
997 	if (!rc) {
998 		at86rf230_async_error(lp, ctx, rc);
999 		return -ETIMEDOUT;
1000 	}
1001 
1002 	/* Interfame spacing time, which is phy depend.
1003 	 * TODO
1004 	 * Move this handling in MAC 802.15.4 layer.
1005 	 * This is currently a workaround to avoid fragmenation issues.
1006 	 */
1007 	if (skb->len > 18)
1008 		usleep_range(lp->data->t_lifs, lp->data->t_lifs + 10);
1009 	else
1010 		usleep_range(lp->data->t_sifs, lp->data->t_sifs + 10);
1011 
1012 	return 0;
1013 }
1014 
1015 static int
1016 at86rf230_ed(struct ieee802154_dev *dev, u8 *level)
1017 {
1018 	might_sleep();
1019 	BUG_ON(!level);
1020 	*level = 0xbe;
1021 	return 0;
1022 }
1023 
1024 static int
1025 at86rf230_start(struct ieee802154_dev *dev)
1026 {
1027 	return at86rf230_sync_state_change(dev->priv, STATE_RX_AACK_ON);
1028 }
1029 
1030 static void
1031 at86rf230_stop(struct ieee802154_dev *dev)
1032 {
1033 	at86rf230_sync_state_change(dev->priv, STATE_FORCE_TRX_OFF);
1034 }
1035 
1036 static int
1037 at86rf23x_set_channel(struct at86rf230_local *lp, int page, int channel)
1038 {
1039 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1040 }
1041 
1042 static int
1043 at86rf212_set_channel(struct at86rf230_local *lp, int page, int channel)
1044 {
1045 	int rc;
1046 
1047 	if (channel == 0)
1048 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1049 	else
1050 		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1051 	if (rc < 0)
1052 		return rc;
1053 
1054 	if (page == 0) {
1055 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1056 		lp->data->rssi_base_val = -100;
1057 	} else {
1058 		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1059 		lp->data->rssi_base_val = -98;
1060 	}
1061 	if (rc < 0)
1062 		return rc;
1063 
1064 	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1065 }
1066 
1067 static int
1068 at86rf230_channel(struct ieee802154_dev *dev, int page, int channel)
1069 {
1070 	struct at86rf230_local *lp = dev->priv;
1071 	int rc;
1072 
1073 	might_sleep();
1074 
1075 	if (page < 0 || page > 31 ||
1076 	    !(lp->dev->phy->channels_supported[page] & BIT(channel))) {
1077 		WARN_ON(1);
1078 		return -EINVAL;
1079 	}
1080 
1081 	rc = lp->data->set_channel(lp, page, channel);
1082 	if (rc < 0)
1083 		return rc;
1084 
1085 	/* Wait for PLL */
1086 	usleep_range(lp->data->t_channel_switch,
1087 		     lp->data->t_channel_switch + 10);
1088 	dev->phy->current_channel = channel;
1089 	dev->phy->current_page = page;
1090 
1091 	return 0;
1092 }
1093 
1094 static int
1095 at86rf230_set_hw_addr_filt(struct ieee802154_dev *dev,
1096 			   struct ieee802154_hw_addr_filt *filt,
1097 			   unsigned long changed)
1098 {
1099 	struct at86rf230_local *lp = dev->priv;
1100 
1101 	if (changed & IEEE802515_AFILT_SADDR_CHANGED) {
1102 		u16 addr = le16_to_cpu(filt->short_addr);
1103 
1104 		dev_vdbg(&lp->spi->dev,
1105 			"at86rf230_set_hw_addr_filt called for saddr\n");
1106 		__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1107 		__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1108 	}
1109 
1110 	if (changed & IEEE802515_AFILT_PANID_CHANGED) {
1111 		u16 pan = le16_to_cpu(filt->pan_id);
1112 
1113 		dev_vdbg(&lp->spi->dev,
1114 			"at86rf230_set_hw_addr_filt called for pan id\n");
1115 		__at86rf230_write(lp, RG_PAN_ID_0, pan);
1116 		__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1117 	}
1118 
1119 	if (changed & IEEE802515_AFILT_IEEEADDR_CHANGED) {
1120 		u8 i, addr[8];
1121 
1122 		memcpy(addr, &filt->ieee_addr, 8);
1123 		dev_vdbg(&lp->spi->dev,
1124 			"at86rf230_set_hw_addr_filt called for IEEE addr\n");
1125 		for (i = 0; i < 8; i++)
1126 			__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1127 	}
1128 
1129 	if (changed & IEEE802515_AFILT_PANC_CHANGED) {
1130 		dev_vdbg(&lp->spi->dev,
1131 			"at86rf230_set_hw_addr_filt called for panc change\n");
1132 		if (filt->pan_coord)
1133 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1134 		else
1135 			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 static int
1142 at86rf230_set_txpower(struct ieee802154_dev *dev, int db)
1143 {
1144 	struct at86rf230_local *lp = dev->priv;
1145 
1146 	/* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five
1147 	 * bits decrease power in 1dB steps. 0x60 represents extra PA gain of
1148 	 * 0dB.
1149 	 * thus, supported values for db range from -26 to 5, for 31dB of
1150 	 * reduction to 0dB of reduction.
1151 	 */
1152 	if (db > 5 || db < -26)
1153 		return -EINVAL;
1154 
1155 	db = -(db - 5);
1156 
1157 	return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db);
1158 }
1159 
1160 static int
1161 at86rf230_set_lbt(struct ieee802154_dev *dev, bool on)
1162 {
1163 	struct at86rf230_local *lp = dev->priv;
1164 
1165 	return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1166 }
1167 
1168 static int
1169 at86rf230_set_cca_mode(struct ieee802154_dev *dev, u8 mode)
1170 {
1171 	struct at86rf230_local *lp = dev->priv;
1172 
1173 	return at86rf230_write_subreg(lp, SR_CCA_MODE, mode);
1174 }
1175 
1176 static int
1177 at86rf212_get_desens_steps(struct at86rf230_local *lp, s32 level)
1178 {
1179 	return (level - lp->data->rssi_base_val) * 100 / 207;
1180 }
1181 
1182 static int
1183 at86rf23x_get_desens_steps(struct at86rf230_local *lp, s32 level)
1184 {
1185 	return (level - lp->data->rssi_base_val) / 2;
1186 }
1187 
1188 static int
1189 at86rf230_set_cca_ed_level(struct ieee802154_dev *dev, s32 level)
1190 {
1191 	struct at86rf230_local *lp = dev->priv;
1192 
1193 	if (level < lp->data->rssi_base_val || level > 30)
1194 		return -EINVAL;
1195 
1196 	return at86rf230_write_subreg(lp, SR_CCA_ED_THRES,
1197 				      lp->data->get_desense_steps(lp, level));
1198 }
1199 
1200 static int
1201 at86rf230_set_csma_params(struct ieee802154_dev *dev, u8 min_be, u8 max_be,
1202 			  u8 retries)
1203 {
1204 	struct at86rf230_local *lp = dev->priv;
1205 	int rc;
1206 
1207 	if (min_be > max_be || max_be > 8 || retries > 5)
1208 		return -EINVAL;
1209 
1210 	rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1211 	if (rc)
1212 		return rc;
1213 
1214 	rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1215 	if (rc)
1216 		return rc;
1217 
1218 	return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1219 }
1220 
1221 static int
1222 at86rf230_set_frame_retries(struct ieee802154_dev *dev, s8 retries)
1223 {
1224 	struct at86rf230_local *lp = dev->priv;
1225 	int rc = 0;
1226 
1227 	if (retries < -1 || retries > 15)
1228 		return -EINVAL;
1229 
1230 	lp->tx_aret = retries >= 0;
1231 
1232 	if (retries >= 0)
1233 		rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1234 
1235 	return rc;
1236 }
1237 
1238 static struct ieee802154_ops at86rf230_ops = {
1239 	.owner = THIS_MODULE,
1240 	.xmit = at86rf230_xmit,
1241 	.ed = at86rf230_ed,
1242 	.set_channel = at86rf230_channel,
1243 	.start = at86rf230_start,
1244 	.stop = at86rf230_stop,
1245 	.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1246 	.set_txpower = at86rf230_set_txpower,
1247 	.set_lbt = at86rf230_set_lbt,
1248 	.set_cca_mode = at86rf230_set_cca_mode,
1249 	.set_cca_ed_level = at86rf230_set_cca_ed_level,
1250 	.set_csma_params = at86rf230_set_csma_params,
1251 	.set_frame_retries = at86rf230_set_frame_retries,
1252 };
1253 
1254 static struct at86rf2xx_chip_data at86rf233_data = {
1255 	.t_sleep_cycle = 330,
1256 	.t_channel_switch = 11,
1257 	.t_reset_to_off = 26,
1258 	.t_off_to_aack = 80,
1259 	.t_off_to_tx_on = 80,
1260 	.t_frame = 4096,
1261 	.t_p_ack = 545,
1262 	.t_sifs = 192,
1263 	.t_lifs = 480,
1264 	.t_tx_timeout = 2000,
1265 	.rssi_base_val = -91,
1266 	.set_channel = at86rf23x_set_channel,
1267 	.get_desense_steps = at86rf23x_get_desens_steps
1268 };
1269 
1270 static struct at86rf2xx_chip_data at86rf231_data = {
1271 	.t_sleep_cycle = 330,
1272 	.t_channel_switch = 24,
1273 	.t_reset_to_off = 37,
1274 	.t_off_to_aack = 110,
1275 	.t_off_to_tx_on = 110,
1276 	.t_frame = 4096,
1277 	.t_p_ack = 545,
1278 	.t_sifs = 192,
1279 	.t_lifs = 480,
1280 	.t_tx_timeout = 2000,
1281 	.rssi_base_val = -91,
1282 	.set_channel = at86rf23x_set_channel,
1283 	.get_desense_steps = at86rf23x_get_desens_steps
1284 };
1285 
1286 static struct at86rf2xx_chip_data at86rf212_data = {
1287 	.t_sleep_cycle = 330,
1288 	.t_channel_switch = 11,
1289 	.t_reset_to_off = 26,
1290 	.t_off_to_aack = 200,
1291 	.t_off_to_tx_on = 200,
1292 	.t_frame = 4096,
1293 	.t_p_ack = 545,
1294 	.t_sifs = 192,
1295 	.t_lifs = 480,
1296 	.t_tx_timeout = 2000,
1297 	.rssi_base_val = -100,
1298 	.set_channel = at86rf212_set_channel,
1299 	.get_desense_steps = at86rf212_get_desens_steps
1300 };
1301 
1302 static int at86rf230_hw_init(struct at86rf230_local *lp)
1303 {
1304 	int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1305 	unsigned int dvdd;
1306 	u8 csma_seed[2];
1307 
1308 	rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1309 	if (rc)
1310 		return rc;
1311 
1312 	irq_type = irq_get_trigger_type(lp->spi->irq);
1313 	if (irq_type == IRQ_TYPE_EDGE_FALLING)
1314 		irq_pol = IRQ_ACTIVE_LOW;
1315 
1316 	rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1317 	if (rc)
1318 		return rc;
1319 
1320 	rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1321 	if (rc)
1322 		return rc;
1323 
1324 	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1325 	if (rc)
1326 		return rc;
1327 
1328 	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1329 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1330 	if (rc)
1331 		return rc;
1332 	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1333 	if (rc)
1334 		return rc;
1335 
1336 	/* CLKM changes are applied immediately */
1337 	rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1338 	if (rc)
1339 		return rc;
1340 
1341 	/* Turn CLKM Off */
1342 	rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1343 	if (rc)
1344 		return rc;
1345 	/* Wait the next SLEEP cycle */
1346 	usleep_range(lp->data->t_sleep_cycle,
1347 		     lp->data->t_sleep_cycle + 100);
1348 
1349 	rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1350 	if (rc)
1351 		return rc;
1352 	if (!dvdd) {
1353 		dev_err(&lp->spi->dev, "DVDD error\n");
1354 		return -EINVAL;
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 static struct at86rf230_platform_data *
1361 at86rf230_get_pdata(struct spi_device *spi)
1362 {
1363 	struct at86rf230_platform_data *pdata;
1364 
1365 	if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node)
1366 		return spi->dev.platform_data;
1367 
1368 	pdata = devm_kzalloc(&spi->dev, sizeof(*pdata), GFP_KERNEL);
1369 	if (!pdata)
1370 		goto done;
1371 
1372 	pdata->rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1373 	pdata->slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1374 
1375 	spi->dev.platform_data = pdata;
1376 done:
1377 	return pdata;
1378 }
1379 
1380 static int
1381 at86rf230_detect_device(struct at86rf230_local *lp)
1382 {
1383 	unsigned int part, version, val;
1384 	u16 man_id = 0;
1385 	const char *chip;
1386 	int rc;
1387 
1388 	rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1389 	if (rc)
1390 		return rc;
1391 	man_id |= val;
1392 
1393 	rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1394 	if (rc)
1395 		return rc;
1396 	man_id |= (val << 8);
1397 
1398 	rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1399 	if (rc)
1400 		return rc;
1401 
1402 	rc = __at86rf230_read(lp, RG_PART_NUM, &version);
1403 	if (rc)
1404 		return rc;
1405 
1406 	if (man_id != 0x001f) {
1407 		dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1408 			man_id >> 8, man_id & 0xFF);
1409 		return -EINVAL;
1410 	}
1411 
1412 	lp->dev->extra_tx_headroom = 0;
1413 	lp->dev->flags = IEEE802154_HW_OMIT_CKSUM | IEEE802154_HW_AACK |
1414 			 IEEE802154_HW_TXPOWER | IEEE802154_HW_CSMA;
1415 
1416 	switch (part) {
1417 	case 2:
1418 		chip = "at86rf230";
1419 		rc = -ENOTSUPP;
1420 		break;
1421 	case 3:
1422 		chip = "at86rf231";
1423 		lp->data = &at86rf231_data;
1424 		lp->dev->phy->channels_supported[0] = 0x7FFF800;
1425 		break;
1426 	case 7:
1427 		chip = "at86rf212";
1428 		if (version == 1) {
1429 			lp->data = &at86rf212_data;
1430 			lp->dev->flags |= IEEE802154_HW_LBT;
1431 			lp->dev->phy->channels_supported[0] = 0x00007FF;
1432 			lp->dev->phy->channels_supported[2] = 0x00007FF;
1433 		} else {
1434 			rc = -ENOTSUPP;
1435 		}
1436 		break;
1437 	case 11:
1438 		chip = "at86rf233";
1439 		lp->data = &at86rf233_data;
1440 		lp->dev->phy->channels_supported[0] = 0x7FFF800;
1441 		break;
1442 	default:
1443 		chip = "unkown";
1444 		rc = -ENOTSUPP;
1445 		break;
1446 	}
1447 
1448 	dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1449 
1450 	return rc;
1451 }
1452 
1453 static void
1454 at86rf230_setup_spi_messages(struct at86rf230_local *lp)
1455 {
1456 	lp->state.lp = lp;
1457 	spi_message_init(&lp->state.msg);
1458 	lp->state.msg.context = &lp->state;
1459 	lp->state.trx.tx_buf = lp->state.buf;
1460 	lp->state.trx.rx_buf = lp->state.buf;
1461 	spi_message_add_tail(&lp->state.trx, &lp->state.msg);
1462 
1463 	lp->irq.lp = lp;
1464 	spi_message_init(&lp->irq.msg);
1465 	lp->irq.msg.context = &lp->irq;
1466 	lp->irq.trx.tx_buf = lp->irq.buf;
1467 	lp->irq.trx.rx_buf = lp->irq.buf;
1468 	spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
1469 
1470 	lp->tx.lp = lp;
1471 	spi_message_init(&lp->tx.msg);
1472 	lp->tx.msg.context = &lp->tx;
1473 	lp->tx.trx.tx_buf = lp->tx.buf;
1474 	lp->tx.trx.rx_buf = lp->tx.buf;
1475 	spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
1476 }
1477 
1478 static int at86rf230_probe(struct spi_device *spi)
1479 {
1480 	struct at86rf230_platform_data *pdata;
1481 	struct ieee802154_dev *dev;
1482 	struct at86rf230_local *lp;
1483 	unsigned int status;
1484 	int rc, irq_type;
1485 
1486 	if (!spi->irq) {
1487 		dev_err(&spi->dev, "no IRQ specified\n");
1488 		return -EINVAL;
1489 	}
1490 
1491 	pdata = at86rf230_get_pdata(spi);
1492 	if (!pdata) {
1493 		dev_err(&spi->dev, "no platform_data\n");
1494 		return -EINVAL;
1495 	}
1496 
1497 	if (gpio_is_valid(pdata->rstn)) {
1498 		rc = devm_gpio_request_one(&spi->dev, pdata->rstn,
1499 					   GPIOF_OUT_INIT_HIGH, "rstn");
1500 		if (rc)
1501 			return rc;
1502 	}
1503 
1504 	if (gpio_is_valid(pdata->slp_tr)) {
1505 		rc = devm_gpio_request_one(&spi->dev, pdata->slp_tr,
1506 					   GPIOF_OUT_INIT_LOW, "slp_tr");
1507 		if (rc)
1508 			return rc;
1509 	}
1510 
1511 	/* Reset */
1512 	if (gpio_is_valid(pdata->rstn)) {
1513 		udelay(1);
1514 		gpio_set_value(pdata->rstn, 0);
1515 		udelay(1);
1516 		gpio_set_value(pdata->rstn, 1);
1517 		usleep_range(120, 240);
1518 	}
1519 
1520 	dev = ieee802154_alloc_device(sizeof(*lp), &at86rf230_ops);
1521 	if (!dev)
1522 		return -ENOMEM;
1523 
1524 	lp = dev->priv;
1525 	lp->dev = dev;
1526 	lp->spi = spi;
1527 	dev->parent = &spi->dev;
1528 
1529 	lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1530 	if (IS_ERR(lp->regmap)) {
1531 		rc = PTR_ERR(lp->regmap);
1532 		dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1533 			rc);
1534 		goto free_dev;
1535 	}
1536 
1537 	at86rf230_setup_spi_messages(lp);
1538 
1539 	rc = at86rf230_detect_device(lp);
1540 	if (rc < 0)
1541 		goto free_dev;
1542 
1543 	spin_lock_init(&lp->lock);
1544 	init_completion(&lp->tx_complete);
1545 	init_completion(&lp->state_complete);
1546 
1547 	spi_set_drvdata(spi, lp);
1548 
1549 	rc = at86rf230_hw_init(lp);
1550 	if (rc)
1551 		goto free_dev;
1552 
1553 	/* Read irq status register to reset irq line */
1554 	rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1555 	if (rc)
1556 		goto free_dev;
1557 
1558 	irq_type = irq_get_trigger_type(spi->irq);
1559 	if (!irq_type)
1560 		irq_type = IRQF_TRIGGER_RISING;
1561 
1562 	rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1563 			      IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1564 	if (rc)
1565 		goto free_dev;
1566 
1567 	rc = ieee802154_register_device(lp->dev);
1568 	if (rc)
1569 		goto free_dev;
1570 
1571 	return rc;
1572 
1573 free_dev:
1574 	ieee802154_free_device(lp->dev);
1575 
1576 	return rc;
1577 }
1578 
1579 static int at86rf230_remove(struct spi_device *spi)
1580 {
1581 	struct at86rf230_local *lp = spi_get_drvdata(spi);
1582 
1583 	/* mask all at86rf230 irq's */
1584 	at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1585 	ieee802154_unregister_device(lp->dev);
1586 	ieee802154_free_device(lp->dev);
1587 	dev_dbg(&spi->dev, "unregistered at86rf230\n");
1588 
1589 	return 0;
1590 }
1591 
1592 static const struct of_device_id at86rf230_of_match[] = {
1593 	{ .compatible = "atmel,at86rf230", },
1594 	{ .compatible = "atmel,at86rf231", },
1595 	{ .compatible = "atmel,at86rf233", },
1596 	{ .compatible = "atmel,at86rf212", },
1597 	{ },
1598 };
1599 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1600 
1601 static const struct spi_device_id at86rf230_device_id[] = {
1602 	{ .name = "at86rf230", },
1603 	{ .name = "at86rf231", },
1604 	{ .name = "at86rf233", },
1605 	{ .name = "at86rf212", },
1606 	{ },
1607 };
1608 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1609 
1610 static struct spi_driver at86rf230_driver = {
1611 	.id_table = at86rf230_device_id,
1612 	.driver = {
1613 		.of_match_table = of_match_ptr(at86rf230_of_match),
1614 		.name	= "at86rf230",
1615 		.owner	= THIS_MODULE,
1616 	},
1617 	.probe      = at86rf230_probe,
1618 	.remove     = at86rf230_remove,
1619 };
1620 
1621 module_spi_driver(at86rf230_driver);
1622 
1623 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1624 MODULE_LICENSE("GPL v2");
1625