xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision fb960bd2)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
38 
39 #include <net/arp.h>
40 #include <net/route.h>
41 #include <net/sock.h>
42 #include <net/pkt_sched.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 
46 #include "hyperv_net.h"
47 
48 #define RING_SIZE_MIN		64
49 #define NETVSC_MIN_TX_SECTIONS	10
50 #define NETVSC_DEFAULT_TX	192	/* ~1M */
51 #define NETVSC_MIN_RX_SECTIONS	10	/* ~64K */
52 #define NETVSC_DEFAULT_RX	10485   /* Max ~16M */
53 
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56 
57 static int ring_size = 128;
58 module_param(ring_size, int, S_IRUGO);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 
61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
64 				NETIF_MSG_TX_ERR;
65 
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69 
70 static void netvsc_set_multicast_list(struct net_device *net)
71 {
72 	struct net_device_context *net_device_ctx = netdev_priv(net);
73 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
74 
75 	rndis_filter_update(nvdev);
76 }
77 
78 static int netvsc_open(struct net_device *net)
79 {
80 	struct net_device_context *ndev_ctx = netdev_priv(net);
81 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
82 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
83 	struct rndis_device *rdev;
84 	int ret = 0;
85 
86 	netif_carrier_off(net);
87 
88 	/* Open up the device */
89 	ret = rndis_filter_open(nvdev);
90 	if (ret != 0) {
91 		netdev_err(net, "unable to open device (ret %d).\n", ret);
92 		return ret;
93 	}
94 
95 	netif_tx_wake_all_queues(net);
96 
97 	rdev = nvdev->extension;
98 
99 	if (!rdev->link_state)
100 		netif_carrier_on(net);
101 
102 	if (vf_netdev) {
103 		/* Setting synthetic device up transparently sets
104 		 * slave as up. If open fails, then slave will be
105 		 * still be offline (and not used).
106 		 */
107 		ret = dev_open(vf_netdev);
108 		if (ret)
109 			netdev_warn(net,
110 				    "unable to open slave: %s: %d\n",
111 				    vf_netdev->name, ret);
112 	}
113 	return 0;
114 }
115 
116 static int netvsc_close(struct net_device *net)
117 {
118 	struct net_device_context *net_device_ctx = netdev_priv(net);
119 	struct net_device *vf_netdev
120 		= rtnl_dereference(net_device_ctx->vf_netdev);
121 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
122 	int ret = 0;
123 	u32 aread, i, msec = 10, retry = 0, retry_max = 20;
124 	struct vmbus_channel *chn;
125 
126 	netif_tx_disable(net);
127 
128 	/* No need to close rndis filter if it is removed already */
129 	if (!nvdev)
130 		goto out;
131 
132 	ret = rndis_filter_close(nvdev);
133 	if (ret != 0) {
134 		netdev_err(net, "unable to close device (ret %d).\n", ret);
135 		return ret;
136 	}
137 
138 	/* Ensure pending bytes in ring are read */
139 	while (true) {
140 		aread = 0;
141 		for (i = 0; i < nvdev->num_chn; i++) {
142 			chn = nvdev->chan_table[i].channel;
143 			if (!chn)
144 				continue;
145 
146 			aread = hv_get_bytes_to_read(&chn->inbound);
147 			if (aread)
148 				break;
149 
150 			aread = hv_get_bytes_to_read(&chn->outbound);
151 			if (aread)
152 				break;
153 		}
154 
155 		retry++;
156 		if (retry > retry_max || aread == 0)
157 			break;
158 
159 		msleep(msec);
160 
161 		if (msec < 1000)
162 			msec *= 2;
163 	}
164 
165 	if (aread) {
166 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
167 		ret = -ETIMEDOUT;
168 	}
169 
170 out:
171 	if (vf_netdev)
172 		dev_close(vf_netdev);
173 
174 	return ret;
175 }
176 
177 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
178 			   int pkt_type)
179 {
180 	struct rndis_packet *rndis_pkt;
181 	struct rndis_per_packet_info *ppi;
182 
183 	rndis_pkt = &msg->msg.pkt;
184 	rndis_pkt->data_offset += ppi_size;
185 
186 	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
187 		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
188 
189 	ppi->size = ppi_size;
190 	ppi->type = pkt_type;
191 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
192 
193 	rndis_pkt->per_pkt_info_len += ppi_size;
194 
195 	return ppi;
196 }
197 
198 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
199  * packets. We can use ethtool to change UDP hash level when necessary.
200  */
201 static inline u32 netvsc_get_hash(
202 	struct sk_buff *skb,
203 	const struct net_device_context *ndc)
204 {
205 	struct flow_keys flow;
206 	u32 hash, pkt_proto = 0;
207 	static u32 hashrnd __read_mostly;
208 
209 	net_get_random_once(&hashrnd, sizeof(hashrnd));
210 
211 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
212 		return 0;
213 
214 	switch (flow.basic.ip_proto) {
215 	case IPPROTO_TCP:
216 		if (flow.basic.n_proto == htons(ETH_P_IP))
217 			pkt_proto = HV_TCP4_L4HASH;
218 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
219 			pkt_proto = HV_TCP6_L4HASH;
220 
221 		break;
222 
223 	case IPPROTO_UDP:
224 		if (flow.basic.n_proto == htons(ETH_P_IP))
225 			pkt_proto = HV_UDP4_L4HASH;
226 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
227 			pkt_proto = HV_UDP6_L4HASH;
228 
229 		break;
230 	}
231 
232 	if (pkt_proto & ndc->l4_hash) {
233 		return skb_get_hash(skb);
234 	} else {
235 		if (flow.basic.n_proto == htons(ETH_P_IP))
236 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
237 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
238 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
239 		else
240 			hash = 0;
241 
242 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
243 	}
244 
245 	return hash;
246 }
247 
248 static inline int netvsc_get_tx_queue(struct net_device *ndev,
249 				      struct sk_buff *skb, int old_idx)
250 {
251 	const struct net_device_context *ndc = netdev_priv(ndev);
252 	struct sock *sk = skb->sk;
253 	int q_idx;
254 
255 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
256 			      (VRSS_SEND_TAB_SIZE - 1)];
257 
258 	/* If queue index changed record the new value */
259 	if (q_idx != old_idx &&
260 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
261 		sk_tx_queue_set(sk, q_idx);
262 
263 	return q_idx;
264 }
265 
266 /*
267  * Select queue for transmit.
268  *
269  * If a valid queue has already been assigned, then use that.
270  * Otherwise compute tx queue based on hash and the send table.
271  *
272  * This is basically similar to default (__netdev_pick_tx) with the added step
273  * of using the host send_table when no other queue has been assigned.
274  *
275  * TODO support XPS - but get_xps_queue not exported
276  */
277 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
278 {
279 	int q_idx = sk_tx_queue_get(skb->sk);
280 
281 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
282 		/* If forwarding a packet, we use the recorded queue when
283 		 * available for better cache locality.
284 		 */
285 		if (skb_rx_queue_recorded(skb))
286 			q_idx = skb_get_rx_queue(skb);
287 		else
288 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
289 	}
290 
291 	return q_idx;
292 }
293 
294 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
295 			       void *accel_priv,
296 			       select_queue_fallback_t fallback)
297 {
298 	struct net_device_context *ndc = netdev_priv(ndev);
299 	struct net_device *vf_netdev;
300 	u16 txq;
301 
302 	rcu_read_lock();
303 	vf_netdev = rcu_dereference(ndc->vf_netdev);
304 	if (vf_netdev) {
305 		txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
306 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
307 	} else {
308 		txq = netvsc_pick_tx(ndev, skb);
309 	}
310 	rcu_read_unlock();
311 
312 	while (unlikely(txq >= ndev->real_num_tx_queues))
313 		txq -= ndev->real_num_tx_queues;
314 
315 	return txq;
316 }
317 
318 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
319 		       struct hv_page_buffer *pb)
320 {
321 	int j = 0;
322 
323 	/* Deal with compund pages by ignoring unused part
324 	 * of the page.
325 	 */
326 	page += (offset >> PAGE_SHIFT);
327 	offset &= ~PAGE_MASK;
328 
329 	while (len > 0) {
330 		unsigned long bytes;
331 
332 		bytes = PAGE_SIZE - offset;
333 		if (bytes > len)
334 			bytes = len;
335 		pb[j].pfn = page_to_pfn(page);
336 		pb[j].offset = offset;
337 		pb[j].len = bytes;
338 
339 		offset += bytes;
340 		len -= bytes;
341 
342 		if (offset == PAGE_SIZE && len) {
343 			page++;
344 			offset = 0;
345 			j++;
346 		}
347 	}
348 
349 	return j + 1;
350 }
351 
352 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
353 			   struct hv_netvsc_packet *packet,
354 			   struct hv_page_buffer *pb)
355 {
356 	u32 slots_used = 0;
357 	char *data = skb->data;
358 	int frags = skb_shinfo(skb)->nr_frags;
359 	int i;
360 
361 	/* The packet is laid out thus:
362 	 * 1. hdr: RNDIS header and PPI
363 	 * 2. skb linear data
364 	 * 3. skb fragment data
365 	 */
366 	slots_used += fill_pg_buf(virt_to_page(hdr),
367 				  offset_in_page(hdr),
368 				  len, &pb[slots_used]);
369 
370 	packet->rmsg_size = len;
371 	packet->rmsg_pgcnt = slots_used;
372 
373 	slots_used += fill_pg_buf(virt_to_page(data),
374 				offset_in_page(data),
375 				skb_headlen(skb), &pb[slots_used]);
376 
377 	for (i = 0; i < frags; i++) {
378 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
379 
380 		slots_used += fill_pg_buf(skb_frag_page(frag),
381 					frag->page_offset,
382 					skb_frag_size(frag), &pb[slots_used]);
383 	}
384 	return slots_used;
385 }
386 
387 static int count_skb_frag_slots(struct sk_buff *skb)
388 {
389 	int i, frags = skb_shinfo(skb)->nr_frags;
390 	int pages = 0;
391 
392 	for (i = 0; i < frags; i++) {
393 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
394 		unsigned long size = skb_frag_size(frag);
395 		unsigned long offset = frag->page_offset;
396 
397 		/* Skip unused frames from start of page */
398 		offset &= ~PAGE_MASK;
399 		pages += PFN_UP(offset + size);
400 	}
401 	return pages;
402 }
403 
404 static int netvsc_get_slots(struct sk_buff *skb)
405 {
406 	char *data = skb->data;
407 	unsigned int offset = offset_in_page(data);
408 	unsigned int len = skb_headlen(skb);
409 	int slots;
410 	int frag_slots;
411 
412 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
413 	frag_slots = count_skb_frag_slots(skb);
414 	return slots + frag_slots;
415 }
416 
417 static u32 net_checksum_info(struct sk_buff *skb)
418 {
419 	if (skb->protocol == htons(ETH_P_IP)) {
420 		struct iphdr *ip = ip_hdr(skb);
421 
422 		if (ip->protocol == IPPROTO_TCP)
423 			return TRANSPORT_INFO_IPV4_TCP;
424 		else if (ip->protocol == IPPROTO_UDP)
425 			return TRANSPORT_INFO_IPV4_UDP;
426 	} else {
427 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
428 
429 		if (ip6->nexthdr == IPPROTO_TCP)
430 			return TRANSPORT_INFO_IPV6_TCP;
431 		else if (ip6->nexthdr == IPPROTO_UDP)
432 			return TRANSPORT_INFO_IPV6_UDP;
433 	}
434 
435 	return TRANSPORT_INFO_NOT_IP;
436 }
437 
438 /* Send skb on the slave VF device. */
439 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
440 			  struct sk_buff *skb)
441 {
442 	struct net_device_context *ndev_ctx = netdev_priv(net);
443 	unsigned int len = skb->len;
444 	int rc;
445 
446 	skb->dev = vf_netdev;
447 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
448 
449 	rc = dev_queue_xmit(skb);
450 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
451 		struct netvsc_vf_pcpu_stats *pcpu_stats
452 			= this_cpu_ptr(ndev_ctx->vf_stats);
453 
454 		u64_stats_update_begin(&pcpu_stats->syncp);
455 		pcpu_stats->tx_packets++;
456 		pcpu_stats->tx_bytes += len;
457 		u64_stats_update_end(&pcpu_stats->syncp);
458 	} else {
459 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
460 	}
461 
462 	return rc;
463 }
464 
465 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
466 {
467 	struct net_device_context *net_device_ctx = netdev_priv(net);
468 	struct hv_netvsc_packet *packet = NULL;
469 	int ret;
470 	unsigned int num_data_pgs;
471 	struct rndis_message *rndis_msg;
472 	struct rndis_packet *rndis_pkt;
473 	struct net_device *vf_netdev;
474 	u32 rndis_msg_size;
475 	struct rndis_per_packet_info *ppi;
476 	u32 hash;
477 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
478 
479 	/* if VF is present and up then redirect packets
480 	 * already called with rcu_read_lock_bh
481 	 */
482 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
483 	if (vf_netdev && netif_running(vf_netdev) &&
484 	    !netpoll_tx_running(net))
485 		return netvsc_vf_xmit(net, vf_netdev, skb);
486 
487 	/* We will atmost need two pages to describe the rndis
488 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
489 	 * of pages in a single packet. If skb is scattered around
490 	 * more pages we try linearizing it.
491 	 */
492 
493 	num_data_pgs = netvsc_get_slots(skb) + 2;
494 
495 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
496 		++net_device_ctx->eth_stats.tx_scattered;
497 
498 		if (skb_linearize(skb))
499 			goto no_memory;
500 
501 		num_data_pgs = netvsc_get_slots(skb) + 2;
502 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
503 			++net_device_ctx->eth_stats.tx_too_big;
504 			goto drop;
505 		}
506 	}
507 
508 	/*
509 	 * Place the rndis header in the skb head room and
510 	 * the skb->cb will be used for hv_netvsc_packet
511 	 * structure.
512 	 */
513 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
514 	if (ret)
515 		goto no_memory;
516 
517 	/* Use the skb control buffer for building up the packet */
518 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
519 			FIELD_SIZEOF(struct sk_buff, cb));
520 	packet = (struct hv_netvsc_packet *)skb->cb;
521 
522 	packet->q_idx = skb_get_queue_mapping(skb);
523 
524 	packet->total_data_buflen = skb->len;
525 	packet->total_bytes = skb->len;
526 	packet->total_packets = 1;
527 
528 	rndis_msg = (struct rndis_message *)skb->head;
529 
530 	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
531 
532 	/* Add the rndis header */
533 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
534 	rndis_msg->msg_len = packet->total_data_buflen;
535 	rndis_pkt = &rndis_msg->msg.pkt;
536 	rndis_pkt->data_offset = sizeof(struct rndis_packet);
537 	rndis_pkt->data_len = packet->total_data_buflen;
538 	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
539 
540 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
541 
542 	hash = skb_get_hash_raw(skb);
543 	if (hash != 0 && net->real_num_tx_queues > 1) {
544 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
545 		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
546 				    NBL_HASH_VALUE);
547 		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
548 	}
549 
550 	if (skb_vlan_tag_present(skb)) {
551 		struct ndis_pkt_8021q_info *vlan;
552 
553 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
554 		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
555 				    IEEE_8021Q_INFO);
556 
557 		vlan = (void *)ppi + ppi->ppi_offset;
558 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
559 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
560 				VLAN_PRIO_SHIFT;
561 	}
562 
563 	if (skb_is_gso(skb)) {
564 		struct ndis_tcp_lso_info *lso_info;
565 
566 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
567 		ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
568 				    TCP_LARGESEND_PKTINFO);
569 
570 		lso_info = (void *)ppi + ppi->ppi_offset;
571 
572 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
573 		if (skb->protocol == htons(ETH_P_IP)) {
574 			lso_info->lso_v2_transmit.ip_version =
575 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
576 			ip_hdr(skb)->tot_len = 0;
577 			ip_hdr(skb)->check = 0;
578 			tcp_hdr(skb)->check =
579 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
580 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
581 		} else {
582 			lso_info->lso_v2_transmit.ip_version =
583 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
584 			ipv6_hdr(skb)->payload_len = 0;
585 			tcp_hdr(skb)->check =
586 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
587 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
588 		}
589 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
590 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
591 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
592 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
593 			struct ndis_tcp_ip_checksum_info *csum_info;
594 
595 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
596 			ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
597 					    TCPIP_CHKSUM_PKTINFO);
598 
599 			csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
600 									 ppi->ppi_offset);
601 
602 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
603 
604 			if (skb->protocol == htons(ETH_P_IP)) {
605 				csum_info->transmit.is_ipv4 = 1;
606 
607 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
608 					csum_info->transmit.tcp_checksum = 1;
609 				else
610 					csum_info->transmit.udp_checksum = 1;
611 			} else {
612 				csum_info->transmit.is_ipv6 = 1;
613 
614 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
615 					csum_info->transmit.tcp_checksum = 1;
616 				else
617 					csum_info->transmit.udp_checksum = 1;
618 			}
619 		} else {
620 			/* Can't do offload of this type of checksum */
621 			if (skb_checksum_help(skb))
622 				goto drop;
623 		}
624 	}
625 
626 	/* Start filling in the page buffers with the rndis hdr */
627 	rndis_msg->msg_len += rndis_msg_size;
628 	packet->total_data_buflen = rndis_msg->msg_len;
629 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
630 					       skb, packet, pb);
631 
632 	/* timestamp packet in software */
633 	skb_tx_timestamp(skb);
634 
635 	ret = netvsc_send(net_device_ctx, packet, rndis_msg, pb, skb);
636 	if (likely(ret == 0))
637 		return NETDEV_TX_OK;
638 
639 	if (ret == -EAGAIN) {
640 		++net_device_ctx->eth_stats.tx_busy;
641 		return NETDEV_TX_BUSY;
642 	}
643 
644 	if (ret == -ENOSPC)
645 		++net_device_ctx->eth_stats.tx_no_space;
646 
647 drop:
648 	dev_kfree_skb_any(skb);
649 	net->stats.tx_dropped++;
650 
651 	return NETDEV_TX_OK;
652 
653 no_memory:
654 	++net_device_ctx->eth_stats.tx_no_memory;
655 	goto drop;
656 }
657 
658 /*
659  * netvsc_linkstatus_callback - Link up/down notification
660  */
661 void netvsc_linkstatus_callback(struct hv_device *device_obj,
662 				struct rndis_message *resp)
663 {
664 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
665 	struct net_device *net;
666 	struct net_device_context *ndev_ctx;
667 	struct netvsc_reconfig *event;
668 	unsigned long flags;
669 
670 	net = hv_get_drvdata(device_obj);
671 
672 	if (!net)
673 		return;
674 
675 	ndev_ctx = netdev_priv(net);
676 
677 	/* Update the physical link speed when changing to another vSwitch */
678 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
679 		u32 speed;
680 
681 		speed = *(u32 *)((void *)indicate
682 				 + indicate->status_buf_offset) / 10000;
683 		ndev_ctx->speed = speed;
684 		return;
685 	}
686 
687 	/* Handle these link change statuses below */
688 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
689 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
690 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
691 		return;
692 
693 	if (net->reg_state != NETREG_REGISTERED)
694 		return;
695 
696 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
697 	if (!event)
698 		return;
699 	event->event = indicate->status;
700 
701 	spin_lock_irqsave(&ndev_ctx->lock, flags);
702 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
703 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
704 
705 	schedule_delayed_work(&ndev_ctx->dwork, 0);
706 }
707 
708 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
709 					     struct napi_struct *napi,
710 					     const struct ndis_tcp_ip_checksum_info *csum_info,
711 					     const struct ndis_pkt_8021q_info *vlan,
712 					     void *data, u32 buflen)
713 {
714 	struct sk_buff *skb;
715 
716 	skb = napi_alloc_skb(napi, buflen);
717 	if (!skb)
718 		return skb;
719 
720 	/*
721 	 * Copy to skb. This copy is needed here since the memory pointed by
722 	 * hv_netvsc_packet cannot be deallocated
723 	 */
724 	skb_put_data(skb, data, buflen);
725 
726 	skb->protocol = eth_type_trans(skb, net);
727 
728 	/* skb is already created with CHECKSUM_NONE */
729 	skb_checksum_none_assert(skb);
730 
731 	/*
732 	 * In Linux, the IP checksum is always checked.
733 	 * Do L4 checksum offload if enabled and present.
734 	 */
735 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
736 		if (csum_info->receive.tcp_checksum_succeeded ||
737 		    csum_info->receive.udp_checksum_succeeded)
738 			skb->ip_summed = CHECKSUM_UNNECESSARY;
739 	}
740 
741 	if (vlan) {
742 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
743 
744 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
745 				       vlan_tci);
746 	}
747 
748 	return skb;
749 }
750 
751 /*
752  * netvsc_recv_callback -  Callback when we receive a packet from the
753  * "wire" on the specified device.
754  */
755 int netvsc_recv_callback(struct net_device *net,
756 			 struct vmbus_channel *channel,
757 			 void  *data, u32 len,
758 			 const struct ndis_tcp_ip_checksum_info *csum_info,
759 			 const struct ndis_pkt_8021q_info *vlan)
760 {
761 	struct net_device_context *net_device_ctx = netdev_priv(net);
762 	struct netvsc_device *net_device;
763 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
764 	struct netvsc_channel *nvchan;
765 	struct sk_buff *skb;
766 	struct netvsc_stats *rx_stats;
767 
768 	if (net->reg_state != NETREG_REGISTERED)
769 		return NVSP_STAT_FAIL;
770 
771 	rcu_read_lock();
772 	net_device = rcu_dereference(net_device_ctx->nvdev);
773 	if (unlikely(!net_device))
774 		goto drop;
775 
776 	nvchan = &net_device->chan_table[q_idx];
777 
778 	/* Allocate a skb - TODO direct I/O to pages? */
779 	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
780 				    csum_info, vlan, data, len);
781 	if (unlikely(!skb)) {
782 drop:
783 		++net->stats.rx_dropped;
784 		rcu_read_unlock();
785 		return NVSP_STAT_FAIL;
786 	}
787 
788 	skb_record_rx_queue(skb, q_idx);
789 
790 	/*
791 	 * Even if injecting the packet, record the statistics
792 	 * on the synthetic device because modifying the VF device
793 	 * statistics will not work correctly.
794 	 */
795 	rx_stats = &nvchan->rx_stats;
796 	u64_stats_update_begin(&rx_stats->syncp);
797 	rx_stats->packets++;
798 	rx_stats->bytes += len;
799 
800 	if (skb->pkt_type == PACKET_BROADCAST)
801 		++rx_stats->broadcast;
802 	else if (skb->pkt_type == PACKET_MULTICAST)
803 		++rx_stats->multicast;
804 	u64_stats_update_end(&rx_stats->syncp);
805 
806 	napi_gro_receive(&nvchan->napi, skb);
807 	rcu_read_unlock();
808 
809 	return 0;
810 }
811 
812 static void netvsc_get_drvinfo(struct net_device *net,
813 			       struct ethtool_drvinfo *info)
814 {
815 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
816 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
817 }
818 
819 static void netvsc_get_channels(struct net_device *net,
820 				struct ethtool_channels *channel)
821 {
822 	struct net_device_context *net_device_ctx = netdev_priv(net);
823 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
824 
825 	if (nvdev) {
826 		channel->max_combined	= nvdev->max_chn;
827 		channel->combined_count = nvdev->num_chn;
828 	}
829 }
830 
831 static int netvsc_set_channels(struct net_device *net,
832 			       struct ethtool_channels *channels)
833 {
834 	struct net_device_context *net_device_ctx = netdev_priv(net);
835 	struct hv_device *dev = net_device_ctx->device_ctx;
836 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
837 	unsigned int orig, count = channels->combined_count;
838 	struct netvsc_device_info device_info;
839 	bool was_opened;
840 	int ret = 0;
841 
842 	/* We do not support separate count for rx, tx, or other */
843 	if (count == 0 ||
844 	    channels->rx_count || channels->tx_count || channels->other_count)
845 		return -EINVAL;
846 
847 	if (!nvdev || nvdev->destroy)
848 		return -ENODEV;
849 
850 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
851 		return -EINVAL;
852 
853 	if (count > nvdev->max_chn)
854 		return -EINVAL;
855 
856 	orig = nvdev->num_chn;
857 	was_opened = rndis_filter_opened(nvdev);
858 	if (was_opened)
859 		rndis_filter_close(nvdev);
860 
861 	memset(&device_info, 0, sizeof(device_info));
862 	device_info.num_chn = count;
863 	device_info.ring_size = ring_size;
864 	device_info.send_sections = nvdev->send_section_cnt;
865 	device_info.send_section_size = nvdev->send_section_size;
866 	device_info.recv_sections = nvdev->recv_section_cnt;
867 	device_info.recv_section_size = nvdev->recv_section_size;
868 
869 	rndis_filter_device_remove(dev, nvdev);
870 
871 	nvdev = rndis_filter_device_add(dev, &device_info);
872 	if (IS_ERR(nvdev)) {
873 		ret = PTR_ERR(nvdev);
874 		device_info.num_chn = orig;
875 		nvdev = rndis_filter_device_add(dev, &device_info);
876 
877 		if (IS_ERR(nvdev)) {
878 			netdev_err(net, "restoring channel setting failed: %ld\n",
879 				   PTR_ERR(nvdev));
880 			return ret;
881 		}
882 	}
883 
884 	if (was_opened)
885 		rndis_filter_open(nvdev);
886 
887 	/* We may have missed link change notifications */
888 	net_device_ctx->last_reconfig = 0;
889 	schedule_delayed_work(&net_device_ctx->dwork, 0);
890 
891 	return ret;
892 }
893 
894 static bool
895 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
896 {
897 	struct ethtool_link_ksettings diff1 = *cmd;
898 	struct ethtool_link_ksettings diff2 = {};
899 
900 	diff1.base.speed = 0;
901 	diff1.base.duplex = 0;
902 	/* advertising and cmd are usually set */
903 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
904 	diff1.base.cmd = 0;
905 	/* We set port to PORT_OTHER */
906 	diff2.base.port = PORT_OTHER;
907 
908 	return !memcmp(&diff1, &diff2, sizeof(diff1));
909 }
910 
911 static void netvsc_init_settings(struct net_device *dev)
912 {
913 	struct net_device_context *ndc = netdev_priv(dev);
914 
915 	ndc->l4_hash = HV_DEFAULT_L4HASH;
916 
917 	ndc->speed = SPEED_UNKNOWN;
918 	ndc->duplex = DUPLEX_FULL;
919 }
920 
921 static int netvsc_get_link_ksettings(struct net_device *dev,
922 				     struct ethtool_link_ksettings *cmd)
923 {
924 	struct net_device_context *ndc = netdev_priv(dev);
925 
926 	cmd->base.speed = ndc->speed;
927 	cmd->base.duplex = ndc->duplex;
928 	cmd->base.port = PORT_OTHER;
929 
930 	return 0;
931 }
932 
933 static int netvsc_set_link_ksettings(struct net_device *dev,
934 				     const struct ethtool_link_ksettings *cmd)
935 {
936 	struct net_device_context *ndc = netdev_priv(dev);
937 	u32 speed;
938 
939 	speed = cmd->base.speed;
940 	if (!ethtool_validate_speed(speed) ||
941 	    !ethtool_validate_duplex(cmd->base.duplex) ||
942 	    !netvsc_validate_ethtool_ss_cmd(cmd))
943 		return -EINVAL;
944 
945 	ndc->speed = speed;
946 	ndc->duplex = cmd->base.duplex;
947 
948 	return 0;
949 }
950 
951 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
952 {
953 	struct net_device_context *ndevctx = netdev_priv(ndev);
954 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
955 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
956 	struct hv_device *hdev = ndevctx->device_ctx;
957 	int orig_mtu = ndev->mtu;
958 	struct netvsc_device_info device_info;
959 	bool was_opened;
960 	int ret = 0;
961 
962 	if (!nvdev || nvdev->destroy)
963 		return -ENODEV;
964 
965 	/* Change MTU of underlying VF netdev first. */
966 	if (vf_netdev) {
967 		ret = dev_set_mtu(vf_netdev, mtu);
968 		if (ret)
969 			return ret;
970 	}
971 
972 	netif_device_detach(ndev);
973 	was_opened = rndis_filter_opened(nvdev);
974 	if (was_opened)
975 		rndis_filter_close(nvdev);
976 
977 	memset(&device_info, 0, sizeof(device_info));
978 	device_info.ring_size = ring_size;
979 	device_info.num_chn = nvdev->num_chn;
980 	device_info.send_sections = nvdev->send_section_cnt;
981 	device_info.send_section_size = nvdev->send_section_size;
982 	device_info.recv_sections = nvdev->recv_section_cnt;
983 	device_info.recv_section_size = nvdev->recv_section_size;
984 
985 	rndis_filter_device_remove(hdev, nvdev);
986 
987 	ndev->mtu = mtu;
988 
989 	nvdev = rndis_filter_device_add(hdev, &device_info);
990 	if (IS_ERR(nvdev)) {
991 		ret = PTR_ERR(nvdev);
992 
993 		/* Attempt rollback to original MTU */
994 		ndev->mtu = orig_mtu;
995 		nvdev = rndis_filter_device_add(hdev, &device_info);
996 
997 		if (vf_netdev)
998 			dev_set_mtu(vf_netdev, orig_mtu);
999 
1000 		if (IS_ERR(nvdev)) {
1001 			netdev_err(ndev, "restoring mtu failed: %ld\n",
1002 				   PTR_ERR(nvdev));
1003 			return ret;
1004 		}
1005 	}
1006 
1007 	if (was_opened)
1008 		rndis_filter_open(nvdev);
1009 
1010 	netif_device_attach(ndev);
1011 
1012 	/* We may have missed link change notifications */
1013 	schedule_delayed_work(&ndevctx->dwork, 0);
1014 
1015 	return ret;
1016 }
1017 
1018 static void netvsc_get_vf_stats(struct net_device *net,
1019 				struct netvsc_vf_pcpu_stats *tot)
1020 {
1021 	struct net_device_context *ndev_ctx = netdev_priv(net);
1022 	int i;
1023 
1024 	memset(tot, 0, sizeof(*tot));
1025 
1026 	for_each_possible_cpu(i) {
1027 		const struct netvsc_vf_pcpu_stats *stats
1028 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1029 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1030 		unsigned int start;
1031 
1032 		do {
1033 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1034 			rx_packets = stats->rx_packets;
1035 			tx_packets = stats->tx_packets;
1036 			rx_bytes = stats->rx_bytes;
1037 			tx_bytes = stats->tx_bytes;
1038 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1039 
1040 		tot->rx_packets += rx_packets;
1041 		tot->tx_packets += tx_packets;
1042 		tot->rx_bytes   += rx_bytes;
1043 		tot->tx_bytes   += tx_bytes;
1044 		tot->tx_dropped += stats->tx_dropped;
1045 	}
1046 }
1047 
1048 static void netvsc_get_stats64(struct net_device *net,
1049 			       struct rtnl_link_stats64 *t)
1050 {
1051 	struct net_device_context *ndev_ctx = netdev_priv(net);
1052 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1053 	struct netvsc_vf_pcpu_stats vf_tot;
1054 	int i;
1055 
1056 	if (!nvdev)
1057 		return;
1058 
1059 	netdev_stats_to_stats64(t, &net->stats);
1060 
1061 	netvsc_get_vf_stats(net, &vf_tot);
1062 	t->rx_packets += vf_tot.rx_packets;
1063 	t->tx_packets += vf_tot.tx_packets;
1064 	t->rx_bytes   += vf_tot.rx_bytes;
1065 	t->tx_bytes   += vf_tot.tx_bytes;
1066 	t->tx_dropped += vf_tot.tx_dropped;
1067 
1068 	for (i = 0; i < nvdev->num_chn; i++) {
1069 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1070 		const struct netvsc_stats *stats;
1071 		u64 packets, bytes, multicast;
1072 		unsigned int start;
1073 
1074 		stats = &nvchan->tx_stats;
1075 		do {
1076 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1077 			packets = stats->packets;
1078 			bytes = stats->bytes;
1079 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1080 
1081 		t->tx_bytes	+= bytes;
1082 		t->tx_packets	+= packets;
1083 
1084 		stats = &nvchan->rx_stats;
1085 		do {
1086 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1087 			packets = stats->packets;
1088 			bytes = stats->bytes;
1089 			multicast = stats->multicast + stats->broadcast;
1090 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1091 
1092 		t->rx_bytes	+= bytes;
1093 		t->rx_packets	+= packets;
1094 		t->multicast	+= multicast;
1095 	}
1096 }
1097 
1098 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1099 {
1100 	struct net_device_context *ndc = netdev_priv(ndev);
1101 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1102 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1103 	struct sockaddr *addr = p;
1104 	int err;
1105 
1106 	err = eth_prepare_mac_addr_change(ndev, p);
1107 	if (err)
1108 		return err;
1109 
1110 	if (!nvdev)
1111 		return -ENODEV;
1112 
1113 	if (vf_netdev) {
1114 		err = dev_set_mac_address(vf_netdev, addr);
1115 		if (err)
1116 			return err;
1117 	}
1118 
1119 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1120 	if (!err) {
1121 		eth_commit_mac_addr_change(ndev, p);
1122 	} else if (vf_netdev) {
1123 		/* rollback change on VF */
1124 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1125 		dev_set_mac_address(vf_netdev, addr);
1126 	}
1127 
1128 	return err;
1129 }
1130 
1131 static const struct {
1132 	char name[ETH_GSTRING_LEN];
1133 	u16 offset;
1134 } netvsc_stats[] = {
1135 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1136 	{ "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1137 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1138 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1139 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1140 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1141 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1142 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1143 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1144 }, vf_stats[] = {
1145 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1146 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1147 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1148 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1149 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1150 };
1151 
1152 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1153 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1154 
1155 /* 4 statistics per queue (rx/tx packets/bytes) */
1156 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1157 
1158 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1159 {
1160 	struct net_device_context *ndc = netdev_priv(dev);
1161 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162 
1163 	if (!nvdev)
1164 		return -ENODEV;
1165 
1166 	switch (string_set) {
1167 	case ETH_SS_STATS:
1168 		return NETVSC_GLOBAL_STATS_LEN
1169 			+ NETVSC_VF_STATS_LEN
1170 			+ NETVSC_QUEUE_STATS_LEN(nvdev);
1171 	default:
1172 		return -EINVAL;
1173 	}
1174 }
1175 
1176 static void netvsc_get_ethtool_stats(struct net_device *dev,
1177 				     struct ethtool_stats *stats, u64 *data)
1178 {
1179 	struct net_device_context *ndc = netdev_priv(dev);
1180 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1181 	const void *nds = &ndc->eth_stats;
1182 	const struct netvsc_stats *qstats;
1183 	struct netvsc_vf_pcpu_stats sum;
1184 	unsigned int start;
1185 	u64 packets, bytes;
1186 	int i, j;
1187 
1188 	if (!nvdev)
1189 		return;
1190 
1191 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1192 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1193 
1194 	netvsc_get_vf_stats(dev, &sum);
1195 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1196 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1197 
1198 	for (j = 0; j < nvdev->num_chn; j++) {
1199 		qstats = &nvdev->chan_table[j].tx_stats;
1200 
1201 		do {
1202 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1203 			packets = qstats->packets;
1204 			bytes = qstats->bytes;
1205 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1206 		data[i++] = packets;
1207 		data[i++] = bytes;
1208 
1209 		qstats = &nvdev->chan_table[j].rx_stats;
1210 		do {
1211 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1212 			packets = qstats->packets;
1213 			bytes = qstats->bytes;
1214 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1215 		data[i++] = packets;
1216 		data[i++] = bytes;
1217 	}
1218 }
1219 
1220 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1221 {
1222 	struct net_device_context *ndc = netdev_priv(dev);
1223 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1224 	u8 *p = data;
1225 	int i;
1226 
1227 	if (!nvdev)
1228 		return;
1229 
1230 	switch (stringset) {
1231 	case ETH_SS_STATS:
1232 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1233 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1234 			p += ETH_GSTRING_LEN;
1235 		}
1236 
1237 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1238 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1239 			p += ETH_GSTRING_LEN;
1240 		}
1241 
1242 		for (i = 0; i < nvdev->num_chn; i++) {
1243 			sprintf(p, "tx_queue_%u_packets", i);
1244 			p += ETH_GSTRING_LEN;
1245 			sprintf(p, "tx_queue_%u_bytes", i);
1246 			p += ETH_GSTRING_LEN;
1247 			sprintf(p, "rx_queue_%u_packets", i);
1248 			p += ETH_GSTRING_LEN;
1249 			sprintf(p, "rx_queue_%u_bytes", i);
1250 			p += ETH_GSTRING_LEN;
1251 		}
1252 
1253 		break;
1254 	}
1255 }
1256 
1257 static int
1258 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1259 			 struct ethtool_rxnfc *info)
1260 {
1261 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1262 
1263 	info->data = RXH_IP_SRC | RXH_IP_DST;
1264 
1265 	switch (info->flow_type) {
1266 	case TCP_V4_FLOW:
1267 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1268 			info->data |= l4_flag;
1269 
1270 		break;
1271 
1272 	case TCP_V6_FLOW:
1273 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1274 			info->data |= l4_flag;
1275 
1276 		break;
1277 
1278 	case UDP_V4_FLOW:
1279 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1280 			info->data |= l4_flag;
1281 
1282 		break;
1283 
1284 	case UDP_V6_FLOW:
1285 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1286 			info->data |= l4_flag;
1287 
1288 		break;
1289 
1290 	case IPV4_FLOW:
1291 	case IPV6_FLOW:
1292 		break;
1293 	default:
1294 		info->data = 0;
1295 		break;
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 static int
1302 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1303 		 u32 *rules)
1304 {
1305 	struct net_device_context *ndc = netdev_priv(dev);
1306 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1307 
1308 	if (!nvdev)
1309 		return -ENODEV;
1310 
1311 	switch (info->cmd) {
1312 	case ETHTOOL_GRXRINGS:
1313 		info->data = nvdev->num_chn;
1314 		return 0;
1315 
1316 	case ETHTOOL_GRXFH:
1317 		return netvsc_get_rss_hash_opts(ndc, info);
1318 	}
1319 	return -EOPNOTSUPP;
1320 }
1321 
1322 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1323 				    struct ethtool_rxnfc *info)
1324 {
1325 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1326 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1327 		switch (info->flow_type) {
1328 		case TCP_V4_FLOW:
1329 			ndc->l4_hash |= HV_TCP4_L4HASH;
1330 			break;
1331 
1332 		case TCP_V6_FLOW:
1333 			ndc->l4_hash |= HV_TCP6_L4HASH;
1334 			break;
1335 
1336 		case UDP_V4_FLOW:
1337 			ndc->l4_hash |= HV_UDP4_L4HASH;
1338 			break;
1339 
1340 		case UDP_V6_FLOW:
1341 			ndc->l4_hash |= HV_UDP6_L4HASH;
1342 			break;
1343 
1344 		default:
1345 			return -EOPNOTSUPP;
1346 		}
1347 
1348 		return 0;
1349 	}
1350 
1351 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1352 		switch (info->flow_type) {
1353 		case TCP_V4_FLOW:
1354 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1355 			break;
1356 
1357 		case TCP_V6_FLOW:
1358 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1359 			break;
1360 
1361 		case UDP_V4_FLOW:
1362 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1363 			break;
1364 
1365 		case UDP_V6_FLOW:
1366 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1367 			break;
1368 
1369 		default:
1370 			return -EOPNOTSUPP;
1371 		}
1372 
1373 		return 0;
1374 	}
1375 
1376 	return -EOPNOTSUPP;
1377 }
1378 
1379 static int
1380 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1381 {
1382 	struct net_device_context *ndc = netdev_priv(ndev);
1383 
1384 	if (info->cmd == ETHTOOL_SRXFH)
1385 		return netvsc_set_rss_hash_opts(ndc, info);
1386 
1387 	return -EOPNOTSUPP;
1388 }
1389 
1390 #ifdef CONFIG_NET_POLL_CONTROLLER
1391 static void netvsc_poll_controller(struct net_device *dev)
1392 {
1393 	struct net_device_context *ndc = netdev_priv(dev);
1394 	struct netvsc_device *ndev;
1395 	int i;
1396 
1397 	rcu_read_lock();
1398 	ndev = rcu_dereference(ndc->nvdev);
1399 	if (ndev) {
1400 		for (i = 0; i < ndev->num_chn; i++) {
1401 			struct netvsc_channel *nvchan = &ndev->chan_table[i];
1402 
1403 			napi_schedule(&nvchan->napi);
1404 		}
1405 	}
1406 	rcu_read_unlock();
1407 }
1408 #endif
1409 
1410 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1411 {
1412 	return NETVSC_HASH_KEYLEN;
1413 }
1414 
1415 static u32 netvsc_rss_indir_size(struct net_device *dev)
1416 {
1417 	return ITAB_NUM;
1418 }
1419 
1420 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1421 			   u8 *hfunc)
1422 {
1423 	struct net_device_context *ndc = netdev_priv(dev);
1424 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1425 	struct rndis_device *rndis_dev;
1426 	int i;
1427 
1428 	if (!ndev)
1429 		return -ENODEV;
1430 
1431 	if (hfunc)
1432 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1433 
1434 	rndis_dev = ndev->extension;
1435 	if (indir) {
1436 		for (i = 0; i < ITAB_NUM; i++)
1437 			indir[i] = rndis_dev->rx_table[i];
1438 	}
1439 
1440 	if (key)
1441 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1442 
1443 	return 0;
1444 }
1445 
1446 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1447 			   const u8 *key, const u8 hfunc)
1448 {
1449 	struct net_device_context *ndc = netdev_priv(dev);
1450 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1451 	struct rndis_device *rndis_dev;
1452 	int i;
1453 
1454 	if (!ndev)
1455 		return -ENODEV;
1456 
1457 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1458 		return -EOPNOTSUPP;
1459 
1460 	rndis_dev = ndev->extension;
1461 	if (indir) {
1462 		for (i = 0; i < ITAB_NUM; i++)
1463 			if (indir[i] >= ndev->num_chn)
1464 				return -EINVAL;
1465 
1466 		for (i = 0; i < ITAB_NUM; i++)
1467 			rndis_dev->rx_table[i] = indir[i];
1468 	}
1469 
1470 	if (!key) {
1471 		if (!indir)
1472 			return 0;
1473 
1474 		key = rndis_dev->rss_key;
1475 	}
1476 
1477 	return rndis_filter_set_rss_param(rndis_dev, key);
1478 }
1479 
1480 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1481  * It does have pre-allocated receive area which is divided into sections.
1482  */
1483 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1484 				   struct ethtool_ringparam *ring)
1485 {
1486 	u32 max_buf_size;
1487 
1488 	ring->rx_pending = nvdev->recv_section_cnt;
1489 	ring->tx_pending = nvdev->send_section_cnt;
1490 
1491 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1492 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1493 	else
1494 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1495 
1496 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1497 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1498 		/ nvdev->send_section_size;
1499 }
1500 
1501 static void netvsc_get_ringparam(struct net_device *ndev,
1502 				 struct ethtool_ringparam *ring)
1503 {
1504 	struct net_device_context *ndevctx = netdev_priv(ndev);
1505 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1506 
1507 	if (!nvdev)
1508 		return;
1509 
1510 	__netvsc_get_ringparam(nvdev, ring);
1511 }
1512 
1513 static int netvsc_set_ringparam(struct net_device *ndev,
1514 				struct ethtool_ringparam *ring)
1515 {
1516 	struct net_device_context *ndevctx = netdev_priv(ndev);
1517 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1518 	struct hv_device *hdev = ndevctx->device_ctx;
1519 	struct netvsc_device_info device_info;
1520 	struct ethtool_ringparam orig;
1521 	u32 new_tx, new_rx;
1522 	bool was_opened;
1523 	int ret = 0;
1524 
1525 	if (!nvdev || nvdev->destroy)
1526 		return -ENODEV;
1527 
1528 	memset(&orig, 0, sizeof(orig));
1529 	__netvsc_get_ringparam(nvdev, &orig);
1530 
1531 	new_tx = clamp_t(u32, ring->tx_pending,
1532 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1533 	new_rx = clamp_t(u32, ring->rx_pending,
1534 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1535 
1536 	if (new_tx == orig.tx_pending &&
1537 	    new_rx == orig.rx_pending)
1538 		return 0;	 /* no change */
1539 
1540 	memset(&device_info, 0, sizeof(device_info));
1541 	device_info.num_chn = nvdev->num_chn;
1542 	device_info.ring_size = ring_size;
1543 	device_info.send_sections = new_tx;
1544 	device_info.send_section_size = nvdev->send_section_size;
1545 	device_info.recv_sections = new_rx;
1546 	device_info.recv_section_size = nvdev->recv_section_size;
1547 
1548 	netif_device_detach(ndev);
1549 	was_opened = rndis_filter_opened(nvdev);
1550 	if (was_opened)
1551 		rndis_filter_close(nvdev);
1552 
1553 	rndis_filter_device_remove(hdev, nvdev);
1554 
1555 	nvdev = rndis_filter_device_add(hdev, &device_info);
1556 	if (IS_ERR(nvdev)) {
1557 		ret = PTR_ERR(nvdev);
1558 
1559 		device_info.send_sections = orig.tx_pending;
1560 		device_info.recv_sections = orig.rx_pending;
1561 		nvdev = rndis_filter_device_add(hdev, &device_info);
1562 		if (IS_ERR(nvdev)) {
1563 			netdev_err(ndev, "restoring ringparam failed: %ld\n",
1564 				   PTR_ERR(nvdev));
1565 			return ret;
1566 		}
1567 	}
1568 
1569 	if (was_opened)
1570 		rndis_filter_open(nvdev);
1571 	netif_device_attach(ndev);
1572 
1573 	/* We may have missed link change notifications */
1574 	ndevctx->last_reconfig = 0;
1575 	schedule_delayed_work(&ndevctx->dwork, 0);
1576 
1577 	return ret;
1578 }
1579 
1580 static const struct ethtool_ops ethtool_ops = {
1581 	.get_drvinfo	= netvsc_get_drvinfo,
1582 	.get_link	= ethtool_op_get_link,
1583 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1584 	.get_sset_count = netvsc_get_sset_count,
1585 	.get_strings	= netvsc_get_strings,
1586 	.get_channels   = netvsc_get_channels,
1587 	.set_channels   = netvsc_set_channels,
1588 	.get_ts_info	= ethtool_op_get_ts_info,
1589 	.get_rxnfc	= netvsc_get_rxnfc,
1590 	.set_rxnfc	= netvsc_set_rxnfc,
1591 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1592 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1593 	.get_rxfh	= netvsc_get_rxfh,
1594 	.set_rxfh	= netvsc_set_rxfh,
1595 	.get_link_ksettings = netvsc_get_link_ksettings,
1596 	.set_link_ksettings = netvsc_set_link_ksettings,
1597 	.get_ringparam	= netvsc_get_ringparam,
1598 	.set_ringparam	= netvsc_set_ringparam,
1599 };
1600 
1601 static const struct net_device_ops device_ops = {
1602 	.ndo_open =			netvsc_open,
1603 	.ndo_stop =			netvsc_close,
1604 	.ndo_start_xmit =		netvsc_start_xmit,
1605 	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1606 	.ndo_change_mtu =		netvsc_change_mtu,
1607 	.ndo_validate_addr =		eth_validate_addr,
1608 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1609 	.ndo_select_queue =		netvsc_select_queue,
1610 	.ndo_get_stats64 =		netvsc_get_stats64,
1611 #ifdef CONFIG_NET_POLL_CONTROLLER
1612 	.ndo_poll_controller =		netvsc_poll_controller,
1613 #endif
1614 };
1615 
1616 /*
1617  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1618  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1619  * present send GARP packet to network peers with netif_notify_peers().
1620  */
1621 static void netvsc_link_change(struct work_struct *w)
1622 {
1623 	struct net_device_context *ndev_ctx =
1624 		container_of(w, struct net_device_context, dwork.work);
1625 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1626 	struct net_device *net = hv_get_drvdata(device_obj);
1627 	struct netvsc_device *net_device;
1628 	struct rndis_device *rdev;
1629 	struct netvsc_reconfig *event = NULL;
1630 	bool notify = false, reschedule = false;
1631 	unsigned long flags, next_reconfig, delay;
1632 
1633 	/* if changes are happening, comeback later */
1634 	if (!rtnl_trylock()) {
1635 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1636 		return;
1637 	}
1638 
1639 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1640 	if (!net_device)
1641 		goto out_unlock;
1642 
1643 	rdev = net_device->extension;
1644 
1645 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1646 	if (time_is_after_jiffies(next_reconfig)) {
1647 		/* link_watch only sends one notification with current state
1648 		 * per second, avoid doing reconfig more frequently. Handle
1649 		 * wrap around.
1650 		 */
1651 		delay = next_reconfig - jiffies;
1652 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1653 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1654 		goto out_unlock;
1655 	}
1656 	ndev_ctx->last_reconfig = jiffies;
1657 
1658 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1659 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1660 		event = list_first_entry(&ndev_ctx->reconfig_events,
1661 					 struct netvsc_reconfig, list);
1662 		list_del(&event->list);
1663 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1664 	}
1665 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1666 
1667 	if (!event)
1668 		goto out_unlock;
1669 
1670 	switch (event->event) {
1671 		/* Only the following events are possible due to the check in
1672 		 * netvsc_linkstatus_callback()
1673 		 */
1674 	case RNDIS_STATUS_MEDIA_CONNECT:
1675 		if (rdev->link_state) {
1676 			rdev->link_state = false;
1677 			netif_carrier_on(net);
1678 			netif_tx_wake_all_queues(net);
1679 		} else {
1680 			notify = true;
1681 		}
1682 		kfree(event);
1683 		break;
1684 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1685 		if (!rdev->link_state) {
1686 			rdev->link_state = true;
1687 			netif_carrier_off(net);
1688 			netif_tx_stop_all_queues(net);
1689 		}
1690 		kfree(event);
1691 		break;
1692 	case RNDIS_STATUS_NETWORK_CHANGE:
1693 		/* Only makes sense if carrier is present */
1694 		if (!rdev->link_state) {
1695 			rdev->link_state = true;
1696 			netif_carrier_off(net);
1697 			netif_tx_stop_all_queues(net);
1698 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1699 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1700 			list_add(&event->list, &ndev_ctx->reconfig_events);
1701 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1702 			reschedule = true;
1703 		}
1704 		break;
1705 	}
1706 
1707 	rtnl_unlock();
1708 
1709 	if (notify)
1710 		netdev_notify_peers(net);
1711 
1712 	/* link_watch only sends one notification with current state per
1713 	 * second, handle next reconfig event in 2 seconds.
1714 	 */
1715 	if (reschedule)
1716 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1717 
1718 	return;
1719 
1720 out_unlock:
1721 	rtnl_unlock();
1722 }
1723 
1724 static struct net_device *get_netvsc_bymac(const u8 *mac)
1725 {
1726 	struct net_device *dev;
1727 
1728 	ASSERT_RTNL();
1729 
1730 	for_each_netdev(&init_net, dev) {
1731 		if (dev->netdev_ops != &device_ops)
1732 			continue;	/* not a netvsc device */
1733 
1734 		if (ether_addr_equal(mac, dev->perm_addr))
1735 			return dev;
1736 	}
1737 
1738 	return NULL;
1739 }
1740 
1741 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1742 {
1743 	struct net_device *dev;
1744 
1745 	ASSERT_RTNL();
1746 
1747 	for_each_netdev(&init_net, dev) {
1748 		struct net_device_context *net_device_ctx;
1749 
1750 		if (dev->netdev_ops != &device_ops)
1751 			continue;	/* not a netvsc device */
1752 
1753 		net_device_ctx = netdev_priv(dev);
1754 		if (!rtnl_dereference(net_device_ctx->nvdev))
1755 			continue;	/* device is removed */
1756 
1757 		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1758 			return dev;	/* a match */
1759 	}
1760 
1761 	return NULL;
1762 }
1763 
1764 /* Called when VF is injecting data into network stack.
1765  * Change the associated network device from VF to netvsc.
1766  * note: already called with rcu_read_lock
1767  */
1768 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1769 {
1770 	struct sk_buff *skb = *pskb;
1771 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1772 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1773 	struct netvsc_vf_pcpu_stats *pcpu_stats
1774 		 = this_cpu_ptr(ndev_ctx->vf_stats);
1775 
1776 	skb->dev = ndev;
1777 
1778 	u64_stats_update_begin(&pcpu_stats->syncp);
1779 	pcpu_stats->rx_packets++;
1780 	pcpu_stats->rx_bytes += skb->len;
1781 	u64_stats_update_end(&pcpu_stats->syncp);
1782 
1783 	return RX_HANDLER_ANOTHER;
1784 }
1785 
1786 static int netvsc_vf_join(struct net_device *vf_netdev,
1787 			  struct net_device *ndev)
1788 {
1789 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1790 	int ret;
1791 
1792 	ret = netdev_rx_handler_register(vf_netdev,
1793 					 netvsc_vf_handle_frame, ndev);
1794 	if (ret != 0) {
1795 		netdev_err(vf_netdev,
1796 			   "can not register netvsc VF receive handler (err = %d)\n",
1797 			   ret);
1798 		goto rx_handler_failed;
1799 	}
1800 
1801 	ret = netdev_upper_dev_link(vf_netdev, ndev, NULL);
1802 	if (ret != 0) {
1803 		netdev_err(vf_netdev,
1804 			   "can not set master device %s (err = %d)\n",
1805 			   ndev->name, ret);
1806 		goto upper_link_failed;
1807 	}
1808 
1809 	/* set slave flag before open to prevent IPv6 addrconf */
1810 	vf_netdev->flags |= IFF_SLAVE;
1811 
1812 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1813 
1814 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1815 
1816 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1817 	return 0;
1818 
1819 upper_link_failed:
1820 	netdev_rx_handler_unregister(vf_netdev);
1821 rx_handler_failed:
1822 	return ret;
1823 }
1824 
1825 static void __netvsc_vf_setup(struct net_device *ndev,
1826 			      struct net_device *vf_netdev)
1827 {
1828 	int ret;
1829 
1830 	/* Align MTU of VF with master */
1831 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
1832 	if (ret)
1833 		netdev_warn(vf_netdev,
1834 			    "unable to change mtu to %u\n", ndev->mtu);
1835 
1836 	if (netif_running(ndev)) {
1837 		ret = dev_open(vf_netdev);
1838 		if (ret)
1839 			netdev_warn(vf_netdev,
1840 				    "unable to open: %d\n", ret);
1841 	}
1842 }
1843 
1844 /* Setup VF as slave of the synthetic device.
1845  * Runs in workqueue to avoid recursion in netlink callbacks.
1846  */
1847 static void netvsc_vf_setup(struct work_struct *w)
1848 {
1849 	struct net_device_context *ndev_ctx
1850 		= container_of(w, struct net_device_context, vf_takeover.work);
1851 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1852 	struct net_device *vf_netdev;
1853 
1854 	if (!rtnl_trylock()) {
1855 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1856 		return;
1857 	}
1858 
1859 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1860 	if (vf_netdev)
1861 		__netvsc_vf_setup(ndev, vf_netdev);
1862 
1863 	rtnl_unlock();
1864 }
1865 
1866 static int netvsc_register_vf(struct net_device *vf_netdev)
1867 {
1868 	struct net_device *ndev;
1869 	struct net_device_context *net_device_ctx;
1870 	struct netvsc_device *netvsc_dev;
1871 
1872 	if (vf_netdev->addr_len != ETH_ALEN)
1873 		return NOTIFY_DONE;
1874 
1875 	/*
1876 	 * We will use the MAC address to locate the synthetic interface to
1877 	 * associate with the VF interface. If we don't find a matching
1878 	 * synthetic interface, move on.
1879 	 */
1880 	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1881 	if (!ndev)
1882 		return NOTIFY_DONE;
1883 
1884 	net_device_ctx = netdev_priv(ndev);
1885 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1886 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1887 		return NOTIFY_DONE;
1888 
1889 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
1890 		return NOTIFY_DONE;
1891 
1892 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1893 
1894 	dev_hold(vf_netdev);
1895 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1896 	return NOTIFY_OK;
1897 }
1898 
1899 /* VF up/down change detected, schedule to change data path */
1900 static int netvsc_vf_changed(struct net_device *vf_netdev)
1901 {
1902 	struct net_device_context *net_device_ctx;
1903 	struct netvsc_device *netvsc_dev;
1904 	struct net_device *ndev;
1905 	bool vf_is_up = netif_running(vf_netdev);
1906 
1907 	ndev = get_netvsc_byref(vf_netdev);
1908 	if (!ndev)
1909 		return NOTIFY_DONE;
1910 
1911 	net_device_ctx = netdev_priv(ndev);
1912 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1913 	if (!netvsc_dev)
1914 		return NOTIFY_DONE;
1915 
1916 	netvsc_switch_datapath(ndev, vf_is_up);
1917 	netdev_info(ndev, "Data path switched %s VF: %s\n",
1918 		    vf_is_up ? "to" : "from", vf_netdev->name);
1919 
1920 	return NOTIFY_OK;
1921 }
1922 
1923 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1924 {
1925 	struct net_device *ndev;
1926 	struct net_device_context *net_device_ctx;
1927 
1928 	ndev = get_netvsc_byref(vf_netdev);
1929 	if (!ndev)
1930 		return NOTIFY_DONE;
1931 
1932 	net_device_ctx = netdev_priv(ndev);
1933 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1934 
1935 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1936 
1937 	netdev_rx_handler_unregister(vf_netdev);
1938 	netdev_upper_dev_unlink(vf_netdev, ndev);
1939 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1940 	dev_put(vf_netdev);
1941 
1942 	return NOTIFY_OK;
1943 }
1944 
1945 static int netvsc_probe(struct hv_device *dev,
1946 			const struct hv_vmbus_device_id *dev_id)
1947 {
1948 	struct net_device *net = NULL;
1949 	struct net_device_context *net_device_ctx;
1950 	struct netvsc_device_info device_info;
1951 	struct netvsc_device *nvdev;
1952 	int ret = -ENOMEM;
1953 
1954 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1955 				VRSS_CHANNEL_MAX);
1956 	if (!net)
1957 		goto no_net;
1958 
1959 	netif_carrier_off(net);
1960 
1961 	netvsc_init_settings(net);
1962 
1963 	net_device_ctx = netdev_priv(net);
1964 	net_device_ctx->device_ctx = dev;
1965 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1966 	if (netif_msg_probe(net_device_ctx))
1967 		netdev_dbg(net, "netvsc msg_enable: %d\n",
1968 			   net_device_ctx->msg_enable);
1969 
1970 	hv_set_drvdata(dev, net);
1971 
1972 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1973 
1974 	spin_lock_init(&net_device_ctx->lock);
1975 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1976 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
1977 
1978 	net_device_ctx->vf_stats
1979 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
1980 	if (!net_device_ctx->vf_stats)
1981 		goto no_stats;
1982 
1983 	net->netdev_ops = &device_ops;
1984 	net->ethtool_ops = &ethtool_ops;
1985 	SET_NETDEV_DEV(net, &dev->device);
1986 
1987 	/* We always need headroom for rndis header */
1988 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
1989 
1990 	/* Initialize the number of queues to be 1, we may change it if more
1991 	 * channels are offered later.
1992 	 */
1993 	netif_set_real_num_tx_queues(net, 1);
1994 	netif_set_real_num_rx_queues(net, 1);
1995 
1996 	/* Notify the netvsc driver of the new device */
1997 	memset(&device_info, 0, sizeof(device_info));
1998 	device_info.ring_size = ring_size;
1999 	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2000 	device_info.send_sections = NETVSC_DEFAULT_TX;
2001 	device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2002 	device_info.recv_sections = NETVSC_DEFAULT_RX;
2003 	device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2004 
2005 	nvdev = rndis_filter_device_add(dev, &device_info);
2006 	if (IS_ERR(nvdev)) {
2007 		ret = PTR_ERR(nvdev);
2008 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2009 		goto rndis_failed;
2010 	}
2011 
2012 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2013 
2014 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2015 	net->features = net->hw_features |
2016 		NETIF_F_HIGHDMA | NETIF_F_SG |
2017 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2018 	net->vlan_features = net->features;
2019 
2020 	netdev_lockdep_set_classes(net);
2021 
2022 	/* MTU range: 68 - 1500 or 65521 */
2023 	net->min_mtu = NETVSC_MTU_MIN;
2024 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2025 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2026 	else
2027 		net->max_mtu = ETH_DATA_LEN;
2028 
2029 	ret = register_netdev(net);
2030 	if (ret != 0) {
2031 		pr_err("Unable to register netdev.\n");
2032 		goto register_failed;
2033 	}
2034 
2035 	return ret;
2036 
2037 register_failed:
2038 	rndis_filter_device_remove(dev, nvdev);
2039 rndis_failed:
2040 	free_percpu(net_device_ctx->vf_stats);
2041 no_stats:
2042 	hv_set_drvdata(dev, NULL);
2043 	free_netdev(net);
2044 no_net:
2045 	return ret;
2046 }
2047 
2048 static int netvsc_remove(struct hv_device *dev)
2049 {
2050 	struct net_device_context *ndev_ctx;
2051 	struct net_device *vf_netdev;
2052 	struct net_device *net;
2053 
2054 	net = hv_get_drvdata(dev);
2055 	if (net == NULL) {
2056 		dev_err(&dev->device, "No net device to remove\n");
2057 		return 0;
2058 	}
2059 
2060 	ndev_ctx = netdev_priv(net);
2061 
2062 	netif_device_detach(net);
2063 
2064 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2065 
2066 	/*
2067 	 * Call to the vsc driver to let it know that the device is being
2068 	 * removed. Also blocks mtu and channel changes.
2069 	 */
2070 	rtnl_lock();
2071 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2072 	if (vf_netdev)
2073 		netvsc_unregister_vf(vf_netdev);
2074 
2075 	unregister_netdevice(net);
2076 
2077 	rndis_filter_device_remove(dev,
2078 				   rtnl_dereference(ndev_ctx->nvdev));
2079 	rtnl_unlock();
2080 
2081 	hv_set_drvdata(dev, NULL);
2082 
2083 	free_percpu(ndev_ctx->vf_stats);
2084 	free_netdev(net);
2085 	return 0;
2086 }
2087 
2088 static const struct hv_vmbus_device_id id_table[] = {
2089 	/* Network guid */
2090 	{ HV_NIC_GUID, },
2091 	{ },
2092 };
2093 
2094 MODULE_DEVICE_TABLE(vmbus, id_table);
2095 
2096 /* The one and only one */
2097 static struct  hv_driver netvsc_drv = {
2098 	.name = KBUILD_MODNAME,
2099 	.id_table = id_table,
2100 	.probe = netvsc_probe,
2101 	.remove = netvsc_remove,
2102 };
2103 
2104 /*
2105  * On Hyper-V, every VF interface is matched with a corresponding
2106  * synthetic interface. The synthetic interface is presented first
2107  * to the guest. When the corresponding VF instance is registered,
2108  * we will take care of switching the data path.
2109  */
2110 static int netvsc_netdev_event(struct notifier_block *this,
2111 			       unsigned long event, void *ptr)
2112 {
2113 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2114 
2115 	/* Skip our own events */
2116 	if (event_dev->netdev_ops == &device_ops)
2117 		return NOTIFY_DONE;
2118 
2119 	/* Avoid non-Ethernet type devices */
2120 	if (event_dev->type != ARPHRD_ETHER)
2121 		return NOTIFY_DONE;
2122 
2123 	/* Avoid Vlan dev with same MAC registering as VF */
2124 	if (is_vlan_dev(event_dev))
2125 		return NOTIFY_DONE;
2126 
2127 	/* Avoid Bonding master dev with same MAC registering as VF */
2128 	if ((event_dev->priv_flags & IFF_BONDING) &&
2129 	    (event_dev->flags & IFF_MASTER))
2130 		return NOTIFY_DONE;
2131 
2132 	switch (event) {
2133 	case NETDEV_REGISTER:
2134 		return netvsc_register_vf(event_dev);
2135 	case NETDEV_UNREGISTER:
2136 		return netvsc_unregister_vf(event_dev);
2137 	case NETDEV_UP:
2138 	case NETDEV_DOWN:
2139 		return netvsc_vf_changed(event_dev);
2140 	default:
2141 		return NOTIFY_DONE;
2142 	}
2143 }
2144 
2145 static struct notifier_block netvsc_netdev_notifier = {
2146 	.notifier_call = netvsc_netdev_event,
2147 };
2148 
2149 static void __exit netvsc_drv_exit(void)
2150 {
2151 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2152 	vmbus_driver_unregister(&netvsc_drv);
2153 }
2154 
2155 static int __init netvsc_drv_init(void)
2156 {
2157 	int ret;
2158 
2159 	if (ring_size < RING_SIZE_MIN) {
2160 		ring_size = RING_SIZE_MIN;
2161 		pr_info("Increased ring_size to %d (min allowed)\n",
2162 			ring_size);
2163 	}
2164 	ret = vmbus_driver_register(&netvsc_drv);
2165 
2166 	if (ret)
2167 		return ret;
2168 
2169 	register_netdevice_notifier(&netvsc_netdev_notifier);
2170 	return 0;
2171 }
2172 
2173 MODULE_LICENSE("GPL");
2174 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2175 
2176 module_init(netvsc_drv_init);
2177 module_exit(netvsc_drv_exit);
2178