1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/delay.h> 18 #include <linux/netdevice.h> 19 #include <linux/inetdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 #include <linux/if_vlan.h> 24 #include <linux/in.h> 25 #include <linux/slab.h> 26 #include <linux/rtnetlink.h> 27 #include <linux/netpoll.h> 28 29 #include <net/arp.h> 30 #include <net/route.h> 31 #include <net/sock.h> 32 #include <net/pkt_sched.h> 33 #include <net/checksum.h> 34 #include <net/ip6_checksum.h> 35 36 #include "hyperv_net.h" 37 38 #define RING_SIZE_MIN 64 39 #define RETRY_US_LO 5000 40 #define RETRY_US_HI 10000 41 #define RETRY_MAX 2000 /* >10 sec */ 42 43 #define LINKCHANGE_INT (2 * HZ) 44 #define VF_TAKEOVER_INT (HZ / 10) 45 46 static unsigned int ring_size __ro_after_init = 128; 47 module_param(ring_size, uint, 0444); 48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 49 unsigned int netvsc_ring_bytes __ro_after_init; 50 51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 52 NETIF_MSG_LINK | NETIF_MSG_IFUP | 53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 54 NETIF_MSG_TX_ERR; 55 56 static int debug = -1; 57 module_param(debug, int, 0444); 58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 59 60 static LIST_HEAD(netvsc_dev_list); 61 62 static void netvsc_change_rx_flags(struct net_device *net, int change) 63 { 64 struct net_device_context *ndev_ctx = netdev_priv(net); 65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 66 int inc; 67 68 if (!vf_netdev) 69 return; 70 71 if (change & IFF_PROMISC) { 72 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 73 dev_set_promiscuity(vf_netdev, inc); 74 } 75 76 if (change & IFF_ALLMULTI) { 77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 78 dev_set_allmulti(vf_netdev, inc); 79 } 80 } 81 82 static void netvsc_set_rx_mode(struct net_device *net) 83 { 84 struct net_device_context *ndev_ctx = netdev_priv(net); 85 struct net_device *vf_netdev; 86 struct netvsc_device *nvdev; 87 88 rcu_read_lock(); 89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 90 if (vf_netdev) { 91 dev_uc_sync(vf_netdev, net); 92 dev_mc_sync(vf_netdev, net); 93 } 94 95 nvdev = rcu_dereference(ndev_ctx->nvdev); 96 if (nvdev) 97 rndis_filter_update(nvdev); 98 rcu_read_unlock(); 99 } 100 101 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 102 struct net_device *ndev) 103 { 104 nvscdev->tx_disable = false; 105 virt_wmb(); /* ensure queue wake up mechanism is on */ 106 107 netif_tx_wake_all_queues(ndev); 108 } 109 110 static int netvsc_open(struct net_device *net) 111 { 112 struct net_device_context *ndev_ctx = netdev_priv(net); 113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 115 struct rndis_device *rdev; 116 int ret = 0; 117 118 netif_carrier_off(net); 119 120 /* Open up the device */ 121 ret = rndis_filter_open(nvdev); 122 if (ret != 0) { 123 netdev_err(net, "unable to open device (ret %d).\n", ret); 124 return ret; 125 } 126 127 rdev = nvdev->extension; 128 if (!rdev->link_state) { 129 netif_carrier_on(net); 130 netvsc_tx_enable(nvdev, net); 131 } 132 133 if (vf_netdev) { 134 /* Setting synthetic device up transparently sets 135 * slave as up. If open fails, then slave will be 136 * still be offline (and not used). 137 */ 138 ret = dev_open(vf_netdev, NULL); 139 if (ret) 140 netdev_warn(net, 141 "unable to open slave: %s: %d\n", 142 vf_netdev->name, ret); 143 } 144 return 0; 145 } 146 147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 148 { 149 unsigned int retry = 0; 150 int i; 151 152 /* Ensure pending bytes in ring are read */ 153 for (;;) { 154 u32 aread = 0; 155 156 for (i = 0; i < nvdev->num_chn; i++) { 157 struct vmbus_channel *chn 158 = nvdev->chan_table[i].channel; 159 160 if (!chn) 161 continue; 162 163 /* make sure receive not running now */ 164 napi_synchronize(&nvdev->chan_table[i].napi); 165 166 aread = hv_get_bytes_to_read(&chn->inbound); 167 if (aread) 168 break; 169 170 aread = hv_get_bytes_to_read(&chn->outbound); 171 if (aread) 172 break; 173 } 174 175 if (aread == 0) 176 return 0; 177 178 if (++retry > RETRY_MAX) 179 return -ETIMEDOUT; 180 181 usleep_range(RETRY_US_LO, RETRY_US_HI); 182 } 183 } 184 185 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 186 struct net_device *ndev) 187 { 188 if (nvscdev) { 189 nvscdev->tx_disable = true; 190 virt_wmb(); /* ensure txq will not wake up after stop */ 191 } 192 193 netif_tx_disable(ndev); 194 } 195 196 static int netvsc_close(struct net_device *net) 197 { 198 struct net_device_context *net_device_ctx = netdev_priv(net); 199 struct net_device *vf_netdev 200 = rtnl_dereference(net_device_ctx->vf_netdev); 201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 202 int ret; 203 204 netvsc_tx_disable(nvdev, net); 205 206 /* No need to close rndis filter if it is removed already */ 207 if (!nvdev) 208 return 0; 209 210 ret = rndis_filter_close(nvdev); 211 if (ret != 0) { 212 netdev_err(net, "unable to close device (ret %d).\n", ret); 213 return ret; 214 } 215 216 ret = netvsc_wait_until_empty(nvdev); 217 if (ret) 218 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 219 220 if (vf_netdev) 221 dev_close(vf_netdev); 222 223 return ret; 224 } 225 226 static inline void *init_ppi_data(struct rndis_message *msg, 227 u32 ppi_size, u32 pkt_type) 228 { 229 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 230 struct rndis_per_packet_info *ppi; 231 232 rndis_pkt->data_offset += ppi_size; 233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 234 + rndis_pkt->per_pkt_info_len; 235 236 ppi->size = ppi_size; 237 ppi->type = pkt_type; 238 ppi->internal = 0; 239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 240 241 rndis_pkt->per_pkt_info_len += ppi_size; 242 243 return ppi + 1; 244 } 245 246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 247 * packets. We can use ethtool to change UDP hash level when necessary. 248 */ 249 static inline u32 netvsc_get_hash( 250 struct sk_buff *skb, 251 const struct net_device_context *ndc) 252 { 253 struct flow_keys flow; 254 u32 hash, pkt_proto = 0; 255 static u32 hashrnd __read_mostly; 256 257 net_get_random_once(&hashrnd, sizeof(hashrnd)); 258 259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 260 return 0; 261 262 switch (flow.basic.ip_proto) { 263 case IPPROTO_TCP: 264 if (flow.basic.n_proto == htons(ETH_P_IP)) 265 pkt_proto = HV_TCP4_L4HASH; 266 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 267 pkt_proto = HV_TCP6_L4HASH; 268 269 break; 270 271 case IPPROTO_UDP: 272 if (flow.basic.n_proto == htons(ETH_P_IP)) 273 pkt_proto = HV_UDP4_L4HASH; 274 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 275 pkt_proto = HV_UDP6_L4HASH; 276 277 break; 278 } 279 280 if (pkt_proto & ndc->l4_hash) { 281 return skb_get_hash(skb); 282 } else { 283 if (flow.basic.n_proto == htons(ETH_P_IP)) 284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 285 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 287 else 288 hash = 0; 289 290 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 291 } 292 293 return hash; 294 } 295 296 static inline int netvsc_get_tx_queue(struct net_device *ndev, 297 struct sk_buff *skb, int old_idx) 298 { 299 const struct net_device_context *ndc = netdev_priv(ndev); 300 struct sock *sk = skb->sk; 301 int q_idx; 302 303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 304 (VRSS_SEND_TAB_SIZE - 1)]; 305 306 /* If queue index changed record the new value */ 307 if (q_idx != old_idx && 308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 309 sk_tx_queue_set(sk, q_idx); 310 311 return q_idx; 312 } 313 314 /* 315 * Select queue for transmit. 316 * 317 * If a valid queue has already been assigned, then use that. 318 * Otherwise compute tx queue based on hash and the send table. 319 * 320 * This is basically similar to default (netdev_pick_tx) with the added step 321 * of using the host send_table when no other queue has been assigned. 322 * 323 * TODO support XPS - but get_xps_queue not exported 324 */ 325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 326 { 327 int q_idx = sk_tx_queue_get(skb->sk); 328 329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 330 /* If forwarding a packet, we use the recorded queue when 331 * available for better cache locality. 332 */ 333 if (skb_rx_queue_recorded(skb)) 334 q_idx = skb_get_rx_queue(skb); 335 else 336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 337 } 338 339 return q_idx; 340 } 341 342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 343 struct net_device *sb_dev) 344 { 345 struct net_device_context *ndc = netdev_priv(ndev); 346 struct net_device *vf_netdev; 347 u16 txq; 348 349 rcu_read_lock(); 350 vf_netdev = rcu_dereference(ndc->vf_netdev); 351 if (vf_netdev) { 352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 353 354 if (vf_ops->ndo_select_queue) 355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 356 else 357 txq = netdev_pick_tx(vf_netdev, skb, NULL); 358 359 /* Record the queue selected by VF so that it can be 360 * used for common case where VF has more queues than 361 * the synthetic device. 362 */ 363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 364 } else { 365 txq = netvsc_pick_tx(ndev, skb); 366 } 367 rcu_read_unlock(); 368 369 while (unlikely(txq >= ndev->real_num_tx_queues)) 370 txq -= ndev->real_num_tx_queues; 371 372 return txq; 373 } 374 375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 376 struct hv_page_buffer *pb) 377 { 378 int j = 0; 379 380 /* Deal with compound pages by ignoring unused part 381 * of the page. 382 */ 383 page += (offset >> PAGE_SHIFT); 384 offset &= ~PAGE_MASK; 385 386 while (len > 0) { 387 unsigned long bytes; 388 389 bytes = PAGE_SIZE - offset; 390 if (bytes > len) 391 bytes = len; 392 pb[j].pfn = page_to_pfn(page); 393 pb[j].offset = offset; 394 pb[j].len = bytes; 395 396 offset += bytes; 397 len -= bytes; 398 399 if (offset == PAGE_SIZE && len) { 400 page++; 401 offset = 0; 402 j++; 403 } 404 } 405 406 return j + 1; 407 } 408 409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 410 struct hv_netvsc_packet *packet, 411 struct hv_page_buffer *pb) 412 { 413 u32 slots_used = 0; 414 char *data = skb->data; 415 int frags = skb_shinfo(skb)->nr_frags; 416 int i; 417 418 /* The packet is laid out thus: 419 * 1. hdr: RNDIS header and PPI 420 * 2. skb linear data 421 * 3. skb fragment data 422 */ 423 slots_used += fill_pg_buf(virt_to_page(hdr), 424 offset_in_page(hdr), 425 len, &pb[slots_used]); 426 427 packet->rmsg_size = len; 428 packet->rmsg_pgcnt = slots_used; 429 430 slots_used += fill_pg_buf(virt_to_page(data), 431 offset_in_page(data), 432 skb_headlen(skb), &pb[slots_used]); 433 434 for (i = 0; i < frags; i++) { 435 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 436 437 slots_used += fill_pg_buf(skb_frag_page(frag), 438 skb_frag_off(frag), 439 skb_frag_size(frag), &pb[slots_used]); 440 } 441 return slots_used; 442 } 443 444 static int count_skb_frag_slots(struct sk_buff *skb) 445 { 446 int i, frags = skb_shinfo(skb)->nr_frags; 447 int pages = 0; 448 449 for (i = 0; i < frags; i++) { 450 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 451 unsigned long size = skb_frag_size(frag); 452 unsigned long offset = skb_frag_off(frag); 453 454 /* Skip unused frames from start of page */ 455 offset &= ~PAGE_MASK; 456 pages += PFN_UP(offset + size); 457 } 458 return pages; 459 } 460 461 static int netvsc_get_slots(struct sk_buff *skb) 462 { 463 char *data = skb->data; 464 unsigned int offset = offset_in_page(data); 465 unsigned int len = skb_headlen(skb); 466 int slots; 467 int frag_slots; 468 469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 470 frag_slots = count_skb_frag_slots(skb); 471 return slots + frag_slots; 472 } 473 474 static u32 net_checksum_info(struct sk_buff *skb) 475 { 476 if (skb->protocol == htons(ETH_P_IP)) { 477 struct iphdr *ip = ip_hdr(skb); 478 479 if (ip->protocol == IPPROTO_TCP) 480 return TRANSPORT_INFO_IPV4_TCP; 481 else if (ip->protocol == IPPROTO_UDP) 482 return TRANSPORT_INFO_IPV4_UDP; 483 } else { 484 struct ipv6hdr *ip6 = ipv6_hdr(skb); 485 486 if (ip6->nexthdr == IPPROTO_TCP) 487 return TRANSPORT_INFO_IPV6_TCP; 488 else if (ip6->nexthdr == IPPROTO_UDP) 489 return TRANSPORT_INFO_IPV6_UDP; 490 } 491 492 return TRANSPORT_INFO_NOT_IP; 493 } 494 495 /* Send skb on the slave VF device. */ 496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 497 struct sk_buff *skb) 498 { 499 struct net_device_context *ndev_ctx = netdev_priv(net); 500 unsigned int len = skb->len; 501 int rc; 502 503 skb->dev = vf_netdev; 504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 505 506 rc = dev_queue_xmit(skb); 507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 508 struct netvsc_vf_pcpu_stats *pcpu_stats 509 = this_cpu_ptr(ndev_ctx->vf_stats); 510 511 u64_stats_update_begin(&pcpu_stats->syncp); 512 pcpu_stats->tx_packets++; 513 pcpu_stats->tx_bytes += len; 514 u64_stats_update_end(&pcpu_stats->syncp); 515 } else { 516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 517 } 518 519 return rc; 520 } 521 522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 523 { 524 struct net_device_context *net_device_ctx = netdev_priv(net); 525 struct hv_netvsc_packet *packet = NULL; 526 int ret; 527 unsigned int num_data_pgs; 528 struct rndis_message *rndis_msg; 529 struct net_device *vf_netdev; 530 u32 rndis_msg_size; 531 u32 hash; 532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 533 534 /* if VF is present and up then redirect packets 535 * already called with rcu_read_lock_bh 536 */ 537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 538 if (vf_netdev && netif_running(vf_netdev) && 539 !netpoll_tx_running(net)) 540 return netvsc_vf_xmit(net, vf_netdev, skb); 541 542 /* We will atmost need two pages to describe the rndis 543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 544 * of pages in a single packet. If skb is scattered around 545 * more pages we try linearizing it. 546 */ 547 548 num_data_pgs = netvsc_get_slots(skb) + 2; 549 550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 551 ++net_device_ctx->eth_stats.tx_scattered; 552 553 if (skb_linearize(skb)) 554 goto no_memory; 555 556 num_data_pgs = netvsc_get_slots(skb) + 2; 557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 558 ++net_device_ctx->eth_stats.tx_too_big; 559 goto drop; 560 } 561 } 562 563 /* 564 * Place the rndis header in the skb head room and 565 * the skb->cb will be used for hv_netvsc_packet 566 * structure. 567 */ 568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 569 if (ret) 570 goto no_memory; 571 572 /* Use the skb control buffer for building up the packet */ 573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 574 FIELD_SIZEOF(struct sk_buff, cb)); 575 packet = (struct hv_netvsc_packet *)skb->cb; 576 577 packet->q_idx = skb_get_queue_mapping(skb); 578 579 packet->total_data_buflen = skb->len; 580 packet->total_bytes = skb->len; 581 packet->total_packets = 1; 582 583 rndis_msg = (struct rndis_message *)skb->head; 584 585 /* Add the rndis header */ 586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 587 rndis_msg->msg_len = packet->total_data_buflen; 588 589 rndis_msg->msg.pkt = (struct rndis_packet) { 590 .data_offset = sizeof(struct rndis_packet), 591 .data_len = packet->total_data_buflen, 592 .per_pkt_info_offset = sizeof(struct rndis_packet), 593 }; 594 595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 596 597 hash = skb_get_hash_raw(skb); 598 if (hash != 0 && net->real_num_tx_queues > 1) { 599 u32 *hash_info; 600 601 rndis_msg_size += NDIS_HASH_PPI_SIZE; 602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 603 NBL_HASH_VALUE); 604 *hash_info = hash; 605 } 606 607 if (skb_vlan_tag_present(skb)) { 608 struct ndis_pkt_8021q_info *vlan; 609 610 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 612 IEEE_8021Q_INFO); 613 614 vlan->value = 0; 615 vlan->vlanid = skb_vlan_tag_get_id(skb); 616 vlan->cfi = skb_vlan_tag_get_cfi(skb); 617 vlan->pri = skb_vlan_tag_get_prio(skb); 618 } 619 620 if (skb_is_gso(skb)) { 621 struct ndis_tcp_lso_info *lso_info; 622 623 rndis_msg_size += NDIS_LSO_PPI_SIZE; 624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 625 TCP_LARGESEND_PKTINFO); 626 627 lso_info->value = 0; 628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 629 if (skb->protocol == htons(ETH_P_IP)) { 630 lso_info->lso_v2_transmit.ip_version = 631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 632 ip_hdr(skb)->tot_len = 0; 633 ip_hdr(skb)->check = 0; 634 tcp_hdr(skb)->check = 635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 637 } else { 638 lso_info->lso_v2_transmit.ip_version = 639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 640 ipv6_hdr(skb)->payload_len = 0; 641 tcp_hdr(skb)->check = 642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 644 } 645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 649 struct ndis_tcp_ip_checksum_info *csum_info; 650 651 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 653 TCPIP_CHKSUM_PKTINFO); 654 655 csum_info->value = 0; 656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 657 658 if (skb->protocol == htons(ETH_P_IP)) { 659 csum_info->transmit.is_ipv4 = 1; 660 661 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 662 csum_info->transmit.tcp_checksum = 1; 663 else 664 csum_info->transmit.udp_checksum = 1; 665 } else { 666 csum_info->transmit.is_ipv6 = 1; 667 668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 669 csum_info->transmit.tcp_checksum = 1; 670 else 671 csum_info->transmit.udp_checksum = 1; 672 } 673 } else { 674 /* Can't do offload of this type of checksum */ 675 if (skb_checksum_help(skb)) 676 goto drop; 677 } 678 } 679 680 /* Start filling in the page buffers with the rndis hdr */ 681 rndis_msg->msg_len += rndis_msg_size; 682 packet->total_data_buflen = rndis_msg->msg_len; 683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 684 skb, packet, pb); 685 686 /* timestamp packet in software */ 687 skb_tx_timestamp(skb); 688 689 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 690 if (likely(ret == 0)) 691 return NETDEV_TX_OK; 692 693 if (ret == -EAGAIN) { 694 ++net_device_ctx->eth_stats.tx_busy; 695 return NETDEV_TX_BUSY; 696 } 697 698 if (ret == -ENOSPC) 699 ++net_device_ctx->eth_stats.tx_no_space; 700 701 drop: 702 dev_kfree_skb_any(skb); 703 net->stats.tx_dropped++; 704 705 return NETDEV_TX_OK; 706 707 no_memory: 708 ++net_device_ctx->eth_stats.tx_no_memory; 709 goto drop; 710 } 711 712 /* 713 * netvsc_linkstatus_callback - Link up/down notification 714 */ 715 void netvsc_linkstatus_callback(struct net_device *net, 716 struct rndis_message *resp) 717 { 718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 719 struct net_device_context *ndev_ctx = netdev_priv(net); 720 struct netvsc_reconfig *event; 721 unsigned long flags; 722 723 /* Update the physical link speed when changing to another vSwitch */ 724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 725 u32 speed; 726 727 speed = *(u32 *)((void *)indicate 728 + indicate->status_buf_offset) / 10000; 729 ndev_ctx->speed = speed; 730 return; 731 } 732 733 /* Handle these link change statuses below */ 734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 737 return; 738 739 if (net->reg_state != NETREG_REGISTERED) 740 return; 741 742 event = kzalloc(sizeof(*event), GFP_ATOMIC); 743 if (!event) 744 return; 745 event->event = indicate->status; 746 747 spin_lock_irqsave(&ndev_ctx->lock, flags); 748 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 749 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 750 751 schedule_delayed_work(&ndev_ctx->dwork, 0); 752 } 753 754 static void netvsc_comp_ipcsum(struct sk_buff *skb) 755 { 756 struct iphdr *iph = (struct iphdr *)skb->data; 757 758 iph->check = 0; 759 iph->check = ip_fast_csum(iph, iph->ihl); 760 } 761 762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 763 struct netvsc_channel *nvchan) 764 { 765 struct napi_struct *napi = &nvchan->napi; 766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 767 const struct ndis_tcp_ip_checksum_info *csum_info = 768 nvchan->rsc.csum_info; 769 struct sk_buff *skb; 770 int i; 771 772 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 773 if (!skb) 774 return skb; 775 776 /* 777 * Copy to skb. This copy is needed here since the memory pointed by 778 * hv_netvsc_packet cannot be deallocated 779 */ 780 for (i = 0; i < nvchan->rsc.cnt; i++) 781 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]); 782 783 skb->protocol = eth_type_trans(skb, net); 784 785 /* skb is already created with CHECKSUM_NONE */ 786 skb_checksum_none_assert(skb); 787 788 /* Incoming packets may have IP header checksum verified by the host. 789 * They may not have IP header checksum computed after coalescing. 790 * We compute it here if the flags are set, because on Linux, the IP 791 * checksum is always checked. 792 */ 793 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 794 csum_info->receive.ip_checksum_succeeded && 795 skb->protocol == htons(ETH_P_IP)) 796 netvsc_comp_ipcsum(skb); 797 798 /* Do L4 checksum offload if enabled and present. 799 */ 800 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 801 if (csum_info->receive.tcp_checksum_succeeded || 802 csum_info->receive.udp_checksum_succeeded) 803 skb->ip_summed = CHECKSUM_UNNECESSARY; 804 } 805 806 if (vlan) { 807 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 808 (vlan->cfi ? VLAN_CFI_MASK : 0); 809 810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 811 vlan_tci); 812 } 813 814 return skb; 815 } 816 817 /* 818 * netvsc_recv_callback - Callback when we receive a packet from the 819 * "wire" on the specified device. 820 */ 821 int netvsc_recv_callback(struct net_device *net, 822 struct netvsc_device *net_device, 823 struct netvsc_channel *nvchan) 824 { 825 struct net_device_context *net_device_ctx = netdev_priv(net); 826 struct vmbus_channel *channel = nvchan->channel; 827 u16 q_idx = channel->offermsg.offer.sub_channel_index; 828 struct sk_buff *skb; 829 struct netvsc_stats *rx_stats; 830 831 if (net->reg_state != NETREG_REGISTERED) 832 return NVSP_STAT_FAIL; 833 834 /* Allocate a skb - TODO direct I/O to pages? */ 835 skb = netvsc_alloc_recv_skb(net, nvchan); 836 837 if (unlikely(!skb)) { 838 ++net_device_ctx->eth_stats.rx_no_memory; 839 return NVSP_STAT_FAIL; 840 } 841 842 skb_record_rx_queue(skb, q_idx); 843 844 /* 845 * Even if injecting the packet, record the statistics 846 * on the synthetic device because modifying the VF device 847 * statistics will not work correctly. 848 */ 849 rx_stats = &nvchan->rx_stats; 850 u64_stats_update_begin(&rx_stats->syncp); 851 rx_stats->packets++; 852 rx_stats->bytes += nvchan->rsc.pktlen; 853 854 if (skb->pkt_type == PACKET_BROADCAST) 855 ++rx_stats->broadcast; 856 else if (skb->pkt_type == PACKET_MULTICAST) 857 ++rx_stats->multicast; 858 u64_stats_update_end(&rx_stats->syncp); 859 860 napi_gro_receive(&nvchan->napi, skb); 861 return NVSP_STAT_SUCCESS; 862 } 863 864 static void netvsc_get_drvinfo(struct net_device *net, 865 struct ethtool_drvinfo *info) 866 { 867 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 868 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 869 } 870 871 static void netvsc_get_channels(struct net_device *net, 872 struct ethtool_channels *channel) 873 { 874 struct net_device_context *net_device_ctx = netdev_priv(net); 875 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 876 877 if (nvdev) { 878 channel->max_combined = nvdev->max_chn; 879 channel->combined_count = nvdev->num_chn; 880 } 881 } 882 883 /* Alloc struct netvsc_device_info, and initialize it from either existing 884 * struct netvsc_device, or from default values. 885 */ 886 static struct netvsc_device_info *netvsc_devinfo_get 887 (struct netvsc_device *nvdev) 888 { 889 struct netvsc_device_info *dev_info; 890 891 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 892 893 if (!dev_info) 894 return NULL; 895 896 if (nvdev) { 897 dev_info->num_chn = nvdev->num_chn; 898 dev_info->send_sections = nvdev->send_section_cnt; 899 dev_info->send_section_size = nvdev->send_section_size; 900 dev_info->recv_sections = nvdev->recv_section_cnt; 901 dev_info->recv_section_size = nvdev->recv_section_size; 902 903 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 904 NETVSC_HASH_KEYLEN); 905 } else { 906 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 907 dev_info->send_sections = NETVSC_DEFAULT_TX; 908 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 909 dev_info->recv_sections = NETVSC_DEFAULT_RX; 910 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 911 } 912 913 return dev_info; 914 } 915 916 static int netvsc_detach(struct net_device *ndev, 917 struct netvsc_device *nvdev) 918 { 919 struct net_device_context *ndev_ctx = netdev_priv(ndev); 920 struct hv_device *hdev = ndev_ctx->device_ctx; 921 int ret; 922 923 /* Don't try continuing to try and setup sub channels */ 924 if (cancel_work_sync(&nvdev->subchan_work)) 925 nvdev->num_chn = 1; 926 927 /* If device was up (receiving) then shutdown */ 928 if (netif_running(ndev)) { 929 netvsc_tx_disable(nvdev, ndev); 930 931 ret = rndis_filter_close(nvdev); 932 if (ret) { 933 netdev_err(ndev, 934 "unable to close device (ret %d).\n", ret); 935 return ret; 936 } 937 938 ret = netvsc_wait_until_empty(nvdev); 939 if (ret) { 940 netdev_err(ndev, 941 "Ring buffer not empty after closing rndis\n"); 942 return ret; 943 } 944 } 945 946 netif_device_detach(ndev); 947 948 rndis_filter_device_remove(hdev, nvdev); 949 950 return 0; 951 } 952 953 static int netvsc_attach(struct net_device *ndev, 954 struct netvsc_device_info *dev_info) 955 { 956 struct net_device_context *ndev_ctx = netdev_priv(ndev); 957 struct hv_device *hdev = ndev_ctx->device_ctx; 958 struct netvsc_device *nvdev; 959 struct rndis_device *rdev; 960 int ret; 961 962 nvdev = rndis_filter_device_add(hdev, dev_info); 963 if (IS_ERR(nvdev)) 964 return PTR_ERR(nvdev); 965 966 if (nvdev->num_chn > 1) { 967 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 968 969 /* if unavailable, just proceed with one queue */ 970 if (ret) { 971 nvdev->max_chn = 1; 972 nvdev->num_chn = 1; 973 } 974 } 975 976 /* In any case device is now ready */ 977 netif_device_attach(ndev); 978 979 /* Note: enable and attach happen when sub-channels setup */ 980 netif_carrier_off(ndev); 981 982 if (netif_running(ndev)) { 983 ret = rndis_filter_open(nvdev); 984 if (ret) 985 goto err; 986 987 rdev = nvdev->extension; 988 if (!rdev->link_state) 989 netif_carrier_on(ndev); 990 } 991 992 return 0; 993 994 err: 995 netif_device_detach(ndev); 996 997 rndis_filter_device_remove(hdev, nvdev); 998 999 return ret; 1000 } 1001 1002 static int netvsc_set_channels(struct net_device *net, 1003 struct ethtool_channels *channels) 1004 { 1005 struct net_device_context *net_device_ctx = netdev_priv(net); 1006 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1007 unsigned int orig, count = channels->combined_count; 1008 struct netvsc_device_info *device_info; 1009 int ret; 1010 1011 /* We do not support separate count for rx, tx, or other */ 1012 if (count == 0 || 1013 channels->rx_count || channels->tx_count || channels->other_count) 1014 return -EINVAL; 1015 1016 if (!nvdev || nvdev->destroy) 1017 return -ENODEV; 1018 1019 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1020 return -EINVAL; 1021 1022 if (count > nvdev->max_chn) 1023 return -EINVAL; 1024 1025 orig = nvdev->num_chn; 1026 1027 device_info = netvsc_devinfo_get(nvdev); 1028 1029 if (!device_info) 1030 return -ENOMEM; 1031 1032 device_info->num_chn = count; 1033 1034 ret = netvsc_detach(net, nvdev); 1035 if (ret) 1036 goto out; 1037 1038 ret = netvsc_attach(net, device_info); 1039 if (ret) { 1040 device_info->num_chn = orig; 1041 if (netvsc_attach(net, device_info)) 1042 netdev_err(net, "restoring channel setting failed\n"); 1043 } 1044 1045 out: 1046 kfree(device_info); 1047 return ret; 1048 } 1049 1050 static bool 1051 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 1052 { 1053 struct ethtool_link_ksettings diff1 = *cmd; 1054 struct ethtool_link_ksettings diff2 = {}; 1055 1056 diff1.base.speed = 0; 1057 diff1.base.duplex = 0; 1058 /* advertising and cmd are usually set */ 1059 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 1060 diff1.base.cmd = 0; 1061 /* We set port to PORT_OTHER */ 1062 diff2.base.port = PORT_OTHER; 1063 1064 return !memcmp(&diff1, &diff2, sizeof(diff1)); 1065 } 1066 1067 static void netvsc_init_settings(struct net_device *dev) 1068 { 1069 struct net_device_context *ndc = netdev_priv(dev); 1070 1071 ndc->l4_hash = HV_DEFAULT_L4HASH; 1072 1073 ndc->speed = SPEED_UNKNOWN; 1074 ndc->duplex = DUPLEX_FULL; 1075 1076 dev->features = NETIF_F_LRO; 1077 } 1078 1079 static int netvsc_get_link_ksettings(struct net_device *dev, 1080 struct ethtool_link_ksettings *cmd) 1081 { 1082 struct net_device_context *ndc = netdev_priv(dev); 1083 1084 cmd->base.speed = ndc->speed; 1085 cmd->base.duplex = ndc->duplex; 1086 cmd->base.port = PORT_OTHER; 1087 1088 return 0; 1089 } 1090 1091 static int netvsc_set_link_ksettings(struct net_device *dev, 1092 const struct ethtool_link_ksettings *cmd) 1093 { 1094 struct net_device_context *ndc = netdev_priv(dev); 1095 u32 speed; 1096 1097 speed = cmd->base.speed; 1098 if (!ethtool_validate_speed(speed) || 1099 !ethtool_validate_duplex(cmd->base.duplex) || 1100 !netvsc_validate_ethtool_ss_cmd(cmd)) 1101 return -EINVAL; 1102 1103 ndc->speed = speed; 1104 ndc->duplex = cmd->base.duplex; 1105 1106 return 0; 1107 } 1108 1109 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1110 { 1111 struct net_device_context *ndevctx = netdev_priv(ndev); 1112 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1113 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1114 int orig_mtu = ndev->mtu; 1115 struct netvsc_device_info *device_info; 1116 int ret = 0; 1117 1118 if (!nvdev || nvdev->destroy) 1119 return -ENODEV; 1120 1121 device_info = netvsc_devinfo_get(nvdev); 1122 1123 if (!device_info) 1124 return -ENOMEM; 1125 1126 /* Change MTU of underlying VF netdev first. */ 1127 if (vf_netdev) { 1128 ret = dev_set_mtu(vf_netdev, mtu); 1129 if (ret) 1130 goto out; 1131 } 1132 1133 ret = netvsc_detach(ndev, nvdev); 1134 if (ret) 1135 goto rollback_vf; 1136 1137 ndev->mtu = mtu; 1138 1139 ret = netvsc_attach(ndev, device_info); 1140 if (!ret) 1141 goto out; 1142 1143 /* Attempt rollback to original MTU */ 1144 ndev->mtu = orig_mtu; 1145 1146 if (netvsc_attach(ndev, device_info)) 1147 netdev_err(ndev, "restoring mtu failed\n"); 1148 rollback_vf: 1149 if (vf_netdev) 1150 dev_set_mtu(vf_netdev, orig_mtu); 1151 1152 out: 1153 kfree(device_info); 1154 return ret; 1155 } 1156 1157 static void netvsc_get_vf_stats(struct net_device *net, 1158 struct netvsc_vf_pcpu_stats *tot) 1159 { 1160 struct net_device_context *ndev_ctx = netdev_priv(net); 1161 int i; 1162 1163 memset(tot, 0, sizeof(*tot)); 1164 1165 for_each_possible_cpu(i) { 1166 const struct netvsc_vf_pcpu_stats *stats 1167 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1168 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1169 unsigned int start; 1170 1171 do { 1172 start = u64_stats_fetch_begin_irq(&stats->syncp); 1173 rx_packets = stats->rx_packets; 1174 tx_packets = stats->tx_packets; 1175 rx_bytes = stats->rx_bytes; 1176 tx_bytes = stats->tx_bytes; 1177 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1178 1179 tot->rx_packets += rx_packets; 1180 tot->tx_packets += tx_packets; 1181 tot->rx_bytes += rx_bytes; 1182 tot->tx_bytes += tx_bytes; 1183 tot->tx_dropped += stats->tx_dropped; 1184 } 1185 } 1186 1187 static void netvsc_get_pcpu_stats(struct net_device *net, 1188 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1189 { 1190 struct net_device_context *ndev_ctx = netdev_priv(net); 1191 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1192 int i; 1193 1194 /* fetch percpu stats of vf */ 1195 for_each_possible_cpu(i) { 1196 const struct netvsc_vf_pcpu_stats *stats = 1197 per_cpu_ptr(ndev_ctx->vf_stats, i); 1198 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1199 unsigned int start; 1200 1201 do { 1202 start = u64_stats_fetch_begin_irq(&stats->syncp); 1203 this_tot->vf_rx_packets = stats->rx_packets; 1204 this_tot->vf_tx_packets = stats->tx_packets; 1205 this_tot->vf_rx_bytes = stats->rx_bytes; 1206 this_tot->vf_tx_bytes = stats->tx_bytes; 1207 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1208 this_tot->rx_packets = this_tot->vf_rx_packets; 1209 this_tot->tx_packets = this_tot->vf_tx_packets; 1210 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1211 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1212 } 1213 1214 /* fetch percpu stats of netvsc */ 1215 for (i = 0; i < nvdev->num_chn; i++) { 1216 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1217 const struct netvsc_stats *stats; 1218 struct netvsc_ethtool_pcpu_stats *this_tot = 1219 &pcpu_tot[nvchan->channel->target_cpu]; 1220 u64 packets, bytes; 1221 unsigned int start; 1222 1223 stats = &nvchan->tx_stats; 1224 do { 1225 start = u64_stats_fetch_begin_irq(&stats->syncp); 1226 packets = stats->packets; 1227 bytes = stats->bytes; 1228 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1229 1230 this_tot->tx_bytes += bytes; 1231 this_tot->tx_packets += packets; 1232 1233 stats = &nvchan->rx_stats; 1234 do { 1235 start = u64_stats_fetch_begin_irq(&stats->syncp); 1236 packets = stats->packets; 1237 bytes = stats->bytes; 1238 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1239 1240 this_tot->rx_bytes += bytes; 1241 this_tot->rx_packets += packets; 1242 } 1243 } 1244 1245 static void netvsc_get_stats64(struct net_device *net, 1246 struct rtnl_link_stats64 *t) 1247 { 1248 struct net_device_context *ndev_ctx = netdev_priv(net); 1249 struct netvsc_device *nvdev; 1250 struct netvsc_vf_pcpu_stats vf_tot; 1251 int i; 1252 1253 rcu_read_lock(); 1254 1255 nvdev = rcu_dereference(ndev_ctx->nvdev); 1256 if (!nvdev) 1257 goto out; 1258 1259 netdev_stats_to_stats64(t, &net->stats); 1260 1261 netvsc_get_vf_stats(net, &vf_tot); 1262 t->rx_packets += vf_tot.rx_packets; 1263 t->tx_packets += vf_tot.tx_packets; 1264 t->rx_bytes += vf_tot.rx_bytes; 1265 t->tx_bytes += vf_tot.tx_bytes; 1266 t->tx_dropped += vf_tot.tx_dropped; 1267 1268 for (i = 0; i < nvdev->num_chn; i++) { 1269 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1270 const struct netvsc_stats *stats; 1271 u64 packets, bytes, multicast; 1272 unsigned int start; 1273 1274 stats = &nvchan->tx_stats; 1275 do { 1276 start = u64_stats_fetch_begin_irq(&stats->syncp); 1277 packets = stats->packets; 1278 bytes = stats->bytes; 1279 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1280 1281 t->tx_bytes += bytes; 1282 t->tx_packets += packets; 1283 1284 stats = &nvchan->rx_stats; 1285 do { 1286 start = u64_stats_fetch_begin_irq(&stats->syncp); 1287 packets = stats->packets; 1288 bytes = stats->bytes; 1289 multicast = stats->multicast + stats->broadcast; 1290 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1291 1292 t->rx_bytes += bytes; 1293 t->rx_packets += packets; 1294 t->multicast += multicast; 1295 } 1296 out: 1297 rcu_read_unlock(); 1298 } 1299 1300 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1301 { 1302 struct net_device_context *ndc = netdev_priv(ndev); 1303 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1304 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1305 struct sockaddr *addr = p; 1306 int err; 1307 1308 err = eth_prepare_mac_addr_change(ndev, p); 1309 if (err) 1310 return err; 1311 1312 if (!nvdev) 1313 return -ENODEV; 1314 1315 if (vf_netdev) { 1316 err = dev_set_mac_address(vf_netdev, addr, NULL); 1317 if (err) 1318 return err; 1319 } 1320 1321 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1322 if (!err) { 1323 eth_commit_mac_addr_change(ndev, p); 1324 } else if (vf_netdev) { 1325 /* rollback change on VF */ 1326 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1327 dev_set_mac_address(vf_netdev, addr, NULL); 1328 } 1329 1330 return err; 1331 } 1332 1333 static const struct { 1334 char name[ETH_GSTRING_LEN]; 1335 u16 offset; 1336 } netvsc_stats[] = { 1337 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1338 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1339 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1340 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1341 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1342 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1343 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1344 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1345 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1346 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1347 }, pcpu_stats[] = { 1348 { "cpu%u_rx_packets", 1349 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1350 { "cpu%u_rx_bytes", 1351 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1352 { "cpu%u_tx_packets", 1353 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1354 { "cpu%u_tx_bytes", 1355 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1356 { "cpu%u_vf_rx_packets", 1357 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1358 { "cpu%u_vf_rx_bytes", 1359 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1360 { "cpu%u_vf_tx_packets", 1361 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1362 { "cpu%u_vf_tx_bytes", 1363 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1364 }, vf_stats[] = { 1365 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1366 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1367 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1368 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1369 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1370 }; 1371 1372 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1373 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1374 1375 /* statistics per queue (rx/tx packets/bytes) */ 1376 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1377 1378 /* 4 statistics per queue (rx/tx packets/bytes) */ 1379 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1380 1381 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1382 { 1383 struct net_device_context *ndc = netdev_priv(dev); 1384 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1385 1386 if (!nvdev) 1387 return -ENODEV; 1388 1389 switch (string_set) { 1390 case ETH_SS_STATS: 1391 return NETVSC_GLOBAL_STATS_LEN 1392 + NETVSC_VF_STATS_LEN 1393 + NETVSC_QUEUE_STATS_LEN(nvdev) 1394 + NETVSC_PCPU_STATS_LEN; 1395 default: 1396 return -EINVAL; 1397 } 1398 } 1399 1400 static void netvsc_get_ethtool_stats(struct net_device *dev, 1401 struct ethtool_stats *stats, u64 *data) 1402 { 1403 struct net_device_context *ndc = netdev_priv(dev); 1404 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1405 const void *nds = &ndc->eth_stats; 1406 const struct netvsc_stats *qstats; 1407 struct netvsc_vf_pcpu_stats sum; 1408 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1409 unsigned int start; 1410 u64 packets, bytes; 1411 int i, j, cpu; 1412 1413 if (!nvdev) 1414 return; 1415 1416 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1417 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1418 1419 netvsc_get_vf_stats(dev, &sum); 1420 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1421 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1422 1423 for (j = 0; j < nvdev->num_chn; j++) { 1424 qstats = &nvdev->chan_table[j].tx_stats; 1425 1426 do { 1427 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1428 packets = qstats->packets; 1429 bytes = qstats->bytes; 1430 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1431 data[i++] = packets; 1432 data[i++] = bytes; 1433 1434 qstats = &nvdev->chan_table[j].rx_stats; 1435 do { 1436 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1437 packets = qstats->packets; 1438 bytes = qstats->bytes; 1439 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1440 data[i++] = packets; 1441 data[i++] = bytes; 1442 } 1443 1444 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1445 sizeof(struct netvsc_ethtool_pcpu_stats), 1446 GFP_KERNEL); 1447 netvsc_get_pcpu_stats(dev, pcpu_sum); 1448 for_each_present_cpu(cpu) { 1449 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1450 1451 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1452 data[i++] = *(u64 *)((void *)this_sum 1453 + pcpu_stats[j].offset); 1454 } 1455 kvfree(pcpu_sum); 1456 } 1457 1458 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1459 { 1460 struct net_device_context *ndc = netdev_priv(dev); 1461 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1462 u8 *p = data; 1463 int i, cpu; 1464 1465 if (!nvdev) 1466 return; 1467 1468 switch (stringset) { 1469 case ETH_SS_STATS: 1470 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1471 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1472 p += ETH_GSTRING_LEN; 1473 } 1474 1475 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1476 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1477 p += ETH_GSTRING_LEN; 1478 } 1479 1480 for (i = 0; i < nvdev->num_chn; i++) { 1481 sprintf(p, "tx_queue_%u_packets", i); 1482 p += ETH_GSTRING_LEN; 1483 sprintf(p, "tx_queue_%u_bytes", i); 1484 p += ETH_GSTRING_LEN; 1485 sprintf(p, "rx_queue_%u_packets", i); 1486 p += ETH_GSTRING_LEN; 1487 sprintf(p, "rx_queue_%u_bytes", i); 1488 p += ETH_GSTRING_LEN; 1489 } 1490 1491 for_each_present_cpu(cpu) { 1492 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1493 sprintf(p, pcpu_stats[i].name, cpu); 1494 p += ETH_GSTRING_LEN; 1495 } 1496 } 1497 1498 break; 1499 } 1500 } 1501 1502 static int 1503 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1504 struct ethtool_rxnfc *info) 1505 { 1506 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1507 1508 info->data = RXH_IP_SRC | RXH_IP_DST; 1509 1510 switch (info->flow_type) { 1511 case TCP_V4_FLOW: 1512 if (ndc->l4_hash & HV_TCP4_L4HASH) 1513 info->data |= l4_flag; 1514 1515 break; 1516 1517 case TCP_V6_FLOW: 1518 if (ndc->l4_hash & HV_TCP6_L4HASH) 1519 info->data |= l4_flag; 1520 1521 break; 1522 1523 case UDP_V4_FLOW: 1524 if (ndc->l4_hash & HV_UDP4_L4HASH) 1525 info->data |= l4_flag; 1526 1527 break; 1528 1529 case UDP_V6_FLOW: 1530 if (ndc->l4_hash & HV_UDP6_L4HASH) 1531 info->data |= l4_flag; 1532 1533 break; 1534 1535 case IPV4_FLOW: 1536 case IPV6_FLOW: 1537 break; 1538 default: 1539 info->data = 0; 1540 break; 1541 } 1542 1543 return 0; 1544 } 1545 1546 static int 1547 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1548 u32 *rules) 1549 { 1550 struct net_device_context *ndc = netdev_priv(dev); 1551 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1552 1553 if (!nvdev) 1554 return -ENODEV; 1555 1556 switch (info->cmd) { 1557 case ETHTOOL_GRXRINGS: 1558 info->data = nvdev->num_chn; 1559 return 0; 1560 1561 case ETHTOOL_GRXFH: 1562 return netvsc_get_rss_hash_opts(ndc, info); 1563 } 1564 return -EOPNOTSUPP; 1565 } 1566 1567 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1568 struct ethtool_rxnfc *info) 1569 { 1570 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1571 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1572 switch (info->flow_type) { 1573 case TCP_V4_FLOW: 1574 ndc->l4_hash |= HV_TCP4_L4HASH; 1575 break; 1576 1577 case TCP_V6_FLOW: 1578 ndc->l4_hash |= HV_TCP6_L4HASH; 1579 break; 1580 1581 case UDP_V4_FLOW: 1582 ndc->l4_hash |= HV_UDP4_L4HASH; 1583 break; 1584 1585 case UDP_V6_FLOW: 1586 ndc->l4_hash |= HV_UDP6_L4HASH; 1587 break; 1588 1589 default: 1590 return -EOPNOTSUPP; 1591 } 1592 1593 return 0; 1594 } 1595 1596 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1597 switch (info->flow_type) { 1598 case TCP_V4_FLOW: 1599 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1600 break; 1601 1602 case TCP_V6_FLOW: 1603 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1604 break; 1605 1606 case UDP_V4_FLOW: 1607 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1608 break; 1609 1610 case UDP_V6_FLOW: 1611 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1612 break; 1613 1614 default: 1615 return -EOPNOTSUPP; 1616 } 1617 1618 return 0; 1619 } 1620 1621 return -EOPNOTSUPP; 1622 } 1623 1624 static int 1625 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1626 { 1627 struct net_device_context *ndc = netdev_priv(ndev); 1628 1629 if (info->cmd == ETHTOOL_SRXFH) 1630 return netvsc_set_rss_hash_opts(ndc, info); 1631 1632 return -EOPNOTSUPP; 1633 } 1634 1635 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1636 { 1637 return NETVSC_HASH_KEYLEN; 1638 } 1639 1640 static u32 netvsc_rss_indir_size(struct net_device *dev) 1641 { 1642 return ITAB_NUM; 1643 } 1644 1645 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1646 u8 *hfunc) 1647 { 1648 struct net_device_context *ndc = netdev_priv(dev); 1649 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1650 struct rndis_device *rndis_dev; 1651 int i; 1652 1653 if (!ndev) 1654 return -ENODEV; 1655 1656 if (hfunc) 1657 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1658 1659 rndis_dev = ndev->extension; 1660 if (indir) { 1661 for (i = 0; i < ITAB_NUM; i++) 1662 indir[i] = rndis_dev->rx_table[i]; 1663 } 1664 1665 if (key) 1666 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1667 1668 return 0; 1669 } 1670 1671 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1672 const u8 *key, const u8 hfunc) 1673 { 1674 struct net_device_context *ndc = netdev_priv(dev); 1675 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1676 struct rndis_device *rndis_dev; 1677 int i; 1678 1679 if (!ndev) 1680 return -ENODEV; 1681 1682 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1683 return -EOPNOTSUPP; 1684 1685 rndis_dev = ndev->extension; 1686 if (indir) { 1687 for (i = 0; i < ITAB_NUM; i++) 1688 if (indir[i] >= ndev->num_chn) 1689 return -EINVAL; 1690 1691 for (i = 0; i < ITAB_NUM; i++) 1692 rndis_dev->rx_table[i] = indir[i]; 1693 } 1694 1695 if (!key) { 1696 if (!indir) 1697 return 0; 1698 1699 key = rndis_dev->rss_key; 1700 } 1701 1702 return rndis_filter_set_rss_param(rndis_dev, key); 1703 } 1704 1705 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1706 * It does have pre-allocated receive area which is divided into sections. 1707 */ 1708 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1709 struct ethtool_ringparam *ring) 1710 { 1711 u32 max_buf_size; 1712 1713 ring->rx_pending = nvdev->recv_section_cnt; 1714 ring->tx_pending = nvdev->send_section_cnt; 1715 1716 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1717 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1718 else 1719 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1720 1721 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1722 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1723 / nvdev->send_section_size; 1724 } 1725 1726 static void netvsc_get_ringparam(struct net_device *ndev, 1727 struct ethtool_ringparam *ring) 1728 { 1729 struct net_device_context *ndevctx = netdev_priv(ndev); 1730 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1731 1732 if (!nvdev) 1733 return; 1734 1735 __netvsc_get_ringparam(nvdev, ring); 1736 } 1737 1738 static int netvsc_set_ringparam(struct net_device *ndev, 1739 struct ethtool_ringparam *ring) 1740 { 1741 struct net_device_context *ndevctx = netdev_priv(ndev); 1742 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1743 struct netvsc_device_info *device_info; 1744 struct ethtool_ringparam orig; 1745 u32 new_tx, new_rx; 1746 int ret = 0; 1747 1748 if (!nvdev || nvdev->destroy) 1749 return -ENODEV; 1750 1751 memset(&orig, 0, sizeof(orig)); 1752 __netvsc_get_ringparam(nvdev, &orig); 1753 1754 new_tx = clamp_t(u32, ring->tx_pending, 1755 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1756 new_rx = clamp_t(u32, ring->rx_pending, 1757 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1758 1759 if (new_tx == orig.tx_pending && 1760 new_rx == orig.rx_pending) 1761 return 0; /* no change */ 1762 1763 device_info = netvsc_devinfo_get(nvdev); 1764 1765 if (!device_info) 1766 return -ENOMEM; 1767 1768 device_info->send_sections = new_tx; 1769 device_info->recv_sections = new_rx; 1770 1771 ret = netvsc_detach(ndev, nvdev); 1772 if (ret) 1773 goto out; 1774 1775 ret = netvsc_attach(ndev, device_info); 1776 if (ret) { 1777 device_info->send_sections = orig.tx_pending; 1778 device_info->recv_sections = orig.rx_pending; 1779 1780 if (netvsc_attach(ndev, device_info)) 1781 netdev_err(ndev, "restoring ringparam failed"); 1782 } 1783 1784 out: 1785 kfree(device_info); 1786 return ret; 1787 } 1788 1789 static int netvsc_set_features(struct net_device *ndev, 1790 netdev_features_t features) 1791 { 1792 netdev_features_t change = features ^ ndev->features; 1793 struct net_device_context *ndevctx = netdev_priv(ndev); 1794 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1795 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1796 struct ndis_offload_params offloads; 1797 int ret = 0; 1798 1799 if (!nvdev || nvdev->destroy) 1800 return -ENODEV; 1801 1802 if (!(change & NETIF_F_LRO)) 1803 goto syncvf; 1804 1805 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1806 1807 if (features & NETIF_F_LRO) { 1808 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1809 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1810 } else { 1811 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1812 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1813 } 1814 1815 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1816 1817 if (ret) { 1818 features ^= NETIF_F_LRO; 1819 ndev->features = features; 1820 } 1821 1822 syncvf: 1823 if (!vf_netdev) 1824 return ret; 1825 1826 vf_netdev->wanted_features = features; 1827 netdev_update_features(vf_netdev); 1828 1829 return ret; 1830 } 1831 1832 static u32 netvsc_get_msglevel(struct net_device *ndev) 1833 { 1834 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1835 1836 return ndev_ctx->msg_enable; 1837 } 1838 1839 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1840 { 1841 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1842 1843 ndev_ctx->msg_enable = val; 1844 } 1845 1846 static const struct ethtool_ops ethtool_ops = { 1847 .get_drvinfo = netvsc_get_drvinfo, 1848 .get_msglevel = netvsc_get_msglevel, 1849 .set_msglevel = netvsc_set_msglevel, 1850 .get_link = ethtool_op_get_link, 1851 .get_ethtool_stats = netvsc_get_ethtool_stats, 1852 .get_sset_count = netvsc_get_sset_count, 1853 .get_strings = netvsc_get_strings, 1854 .get_channels = netvsc_get_channels, 1855 .set_channels = netvsc_set_channels, 1856 .get_ts_info = ethtool_op_get_ts_info, 1857 .get_rxnfc = netvsc_get_rxnfc, 1858 .set_rxnfc = netvsc_set_rxnfc, 1859 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1860 .get_rxfh_indir_size = netvsc_rss_indir_size, 1861 .get_rxfh = netvsc_get_rxfh, 1862 .set_rxfh = netvsc_set_rxfh, 1863 .get_link_ksettings = netvsc_get_link_ksettings, 1864 .set_link_ksettings = netvsc_set_link_ksettings, 1865 .get_ringparam = netvsc_get_ringparam, 1866 .set_ringparam = netvsc_set_ringparam, 1867 }; 1868 1869 static const struct net_device_ops device_ops = { 1870 .ndo_open = netvsc_open, 1871 .ndo_stop = netvsc_close, 1872 .ndo_start_xmit = netvsc_start_xmit, 1873 .ndo_change_rx_flags = netvsc_change_rx_flags, 1874 .ndo_set_rx_mode = netvsc_set_rx_mode, 1875 .ndo_set_features = netvsc_set_features, 1876 .ndo_change_mtu = netvsc_change_mtu, 1877 .ndo_validate_addr = eth_validate_addr, 1878 .ndo_set_mac_address = netvsc_set_mac_addr, 1879 .ndo_select_queue = netvsc_select_queue, 1880 .ndo_get_stats64 = netvsc_get_stats64, 1881 }; 1882 1883 /* 1884 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1885 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1886 * present send GARP packet to network peers with netif_notify_peers(). 1887 */ 1888 static void netvsc_link_change(struct work_struct *w) 1889 { 1890 struct net_device_context *ndev_ctx = 1891 container_of(w, struct net_device_context, dwork.work); 1892 struct hv_device *device_obj = ndev_ctx->device_ctx; 1893 struct net_device *net = hv_get_drvdata(device_obj); 1894 struct netvsc_device *net_device; 1895 struct rndis_device *rdev; 1896 struct netvsc_reconfig *event = NULL; 1897 bool notify = false, reschedule = false; 1898 unsigned long flags, next_reconfig, delay; 1899 1900 /* if changes are happening, comeback later */ 1901 if (!rtnl_trylock()) { 1902 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1903 return; 1904 } 1905 1906 net_device = rtnl_dereference(ndev_ctx->nvdev); 1907 if (!net_device) 1908 goto out_unlock; 1909 1910 rdev = net_device->extension; 1911 1912 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1913 if (time_is_after_jiffies(next_reconfig)) { 1914 /* link_watch only sends one notification with current state 1915 * per second, avoid doing reconfig more frequently. Handle 1916 * wrap around. 1917 */ 1918 delay = next_reconfig - jiffies; 1919 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1920 schedule_delayed_work(&ndev_ctx->dwork, delay); 1921 goto out_unlock; 1922 } 1923 ndev_ctx->last_reconfig = jiffies; 1924 1925 spin_lock_irqsave(&ndev_ctx->lock, flags); 1926 if (!list_empty(&ndev_ctx->reconfig_events)) { 1927 event = list_first_entry(&ndev_ctx->reconfig_events, 1928 struct netvsc_reconfig, list); 1929 list_del(&event->list); 1930 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1931 } 1932 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1933 1934 if (!event) 1935 goto out_unlock; 1936 1937 switch (event->event) { 1938 /* Only the following events are possible due to the check in 1939 * netvsc_linkstatus_callback() 1940 */ 1941 case RNDIS_STATUS_MEDIA_CONNECT: 1942 if (rdev->link_state) { 1943 rdev->link_state = false; 1944 netif_carrier_on(net); 1945 netvsc_tx_enable(net_device, net); 1946 } else { 1947 notify = true; 1948 } 1949 kfree(event); 1950 break; 1951 case RNDIS_STATUS_MEDIA_DISCONNECT: 1952 if (!rdev->link_state) { 1953 rdev->link_state = true; 1954 netif_carrier_off(net); 1955 netvsc_tx_disable(net_device, net); 1956 } 1957 kfree(event); 1958 break; 1959 case RNDIS_STATUS_NETWORK_CHANGE: 1960 /* Only makes sense if carrier is present */ 1961 if (!rdev->link_state) { 1962 rdev->link_state = true; 1963 netif_carrier_off(net); 1964 netvsc_tx_disable(net_device, net); 1965 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1966 spin_lock_irqsave(&ndev_ctx->lock, flags); 1967 list_add(&event->list, &ndev_ctx->reconfig_events); 1968 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1969 reschedule = true; 1970 } 1971 break; 1972 } 1973 1974 rtnl_unlock(); 1975 1976 if (notify) 1977 netdev_notify_peers(net); 1978 1979 /* link_watch only sends one notification with current state per 1980 * second, handle next reconfig event in 2 seconds. 1981 */ 1982 if (reschedule) 1983 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1984 1985 return; 1986 1987 out_unlock: 1988 rtnl_unlock(); 1989 } 1990 1991 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1992 { 1993 struct net_device_context *net_device_ctx; 1994 struct net_device *dev; 1995 1996 dev = netdev_master_upper_dev_get(vf_netdev); 1997 if (!dev || dev->netdev_ops != &device_ops) 1998 return NULL; /* not a netvsc device */ 1999 2000 net_device_ctx = netdev_priv(dev); 2001 if (!rtnl_dereference(net_device_ctx->nvdev)) 2002 return NULL; /* device is removed */ 2003 2004 return dev; 2005 } 2006 2007 /* Called when VF is injecting data into network stack. 2008 * Change the associated network device from VF to netvsc. 2009 * note: already called with rcu_read_lock 2010 */ 2011 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2012 { 2013 struct sk_buff *skb = *pskb; 2014 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2015 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2016 struct netvsc_vf_pcpu_stats *pcpu_stats 2017 = this_cpu_ptr(ndev_ctx->vf_stats); 2018 2019 skb = skb_share_check(skb, GFP_ATOMIC); 2020 if (unlikely(!skb)) 2021 return RX_HANDLER_CONSUMED; 2022 2023 *pskb = skb; 2024 2025 skb->dev = ndev; 2026 2027 u64_stats_update_begin(&pcpu_stats->syncp); 2028 pcpu_stats->rx_packets++; 2029 pcpu_stats->rx_bytes += skb->len; 2030 u64_stats_update_end(&pcpu_stats->syncp); 2031 2032 return RX_HANDLER_ANOTHER; 2033 } 2034 2035 static int netvsc_vf_join(struct net_device *vf_netdev, 2036 struct net_device *ndev) 2037 { 2038 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2039 int ret; 2040 2041 ret = netdev_rx_handler_register(vf_netdev, 2042 netvsc_vf_handle_frame, ndev); 2043 if (ret != 0) { 2044 netdev_err(vf_netdev, 2045 "can not register netvsc VF receive handler (err = %d)\n", 2046 ret); 2047 goto rx_handler_failed; 2048 } 2049 2050 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2051 NULL, NULL, NULL); 2052 if (ret != 0) { 2053 netdev_err(vf_netdev, 2054 "can not set master device %s (err = %d)\n", 2055 ndev->name, ret); 2056 goto upper_link_failed; 2057 } 2058 2059 /* set slave flag before open to prevent IPv6 addrconf */ 2060 vf_netdev->flags |= IFF_SLAVE; 2061 2062 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2063 2064 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2065 2066 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2067 return 0; 2068 2069 upper_link_failed: 2070 netdev_rx_handler_unregister(vf_netdev); 2071 rx_handler_failed: 2072 return ret; 2073 } 2074 2075 static void __netvsc_vf_setup(struct net_device *ndev, 2076 struct net_device *vf_netdev) 2077 { 2078 int ret; 2079 2080 /* Align MTU of VF with master */ 2081 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2082 if (ret) 2083 netdev_warn(vf_netdev, 2084 "unable to change mtu to %u\n", ndev->mtu); 2085 2086 /* set multicast etc flags on VF */ 2087 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2088 2089 /* sync address list from ndev to VF */ 2090 netif_addr_lock_bh(ndev); 2091 dev_uc_sync(vf_netdev, ndev); 2092 dev_mc_sync(vf_netdev, ndev); 2093 netif_addr_unlock_bh(ndev); 2094 2095 if (netif_running(ndev)) { 2096 ret = dev_open(vf_netdev, NULL); 2097 if (ret) 2098 netdev_warn(vf_netdev, 2099 "unable to open: %d\n", ret); 2100 } 2101 } 2102 2103 /* Setup VF as slave of the synthetic device. 2104 * Runs in workqueue to avoid recursion in netlink callbacks. 2105 */ 2106 static void netvsc_vf_setup(struct work_struct *w) 2107 { 2108 struct net_device_context *ndev_ctx 2109 = container_of(w, struct net_device_context, vf_takeover.work); 2110 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2111 struct net_device *vf_netdev; 2112 2113 if (!rtnl_trylock()) { 2114 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2115 return; 2116 } 2117 2118 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2119 if (vf_netdev) 2120 __netvsc_vf_setup(ndev, vf_netdev); 2121 2122 rtnl_unlock(); 2123 } 2124 2125 /* Find netvsc by VF serial number. 2126 * The PCI hyperv controller records the serial number as the slot kobj name. 2127 */ 2128 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2129 { 2130 struct device *parent = vf_netdev->dev.parent; 2131 struct net_device_context *ndev_ctx; 2132 struct pci_dev *pdev; 2133 u32 serial; 2134 2135 if (!parent || !dev_is_pci(parent)) 2136 return NULL; /* not a PCI device */ 2137 2138 pdev = to_pci_dev(parent); 2139 if (!pdev->slot) { 2140 netdev_notice(vf_netdev, "no PCI slot information\n"); 2141 return NULL; 2142 } 2143 2144 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2145 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2146 pci_slot_name(pdev->slot)); 2147 return NULL; 2148 } 2149 2150 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2151 if (!ndev_ctx->vf_alloc) 2152 continue; 2153 2154 if (ndev_ctx->vf_serial == serial) 2155 return hv_get_drvdata(ndev_ctx->device_ctx); 2156 } 2157 2158 netdev_notice(vf_netdev, 2159 "no netdev found for vf serial:%u\n", serial); 2160 return NULL; 2161 } 2162 2163 static int netvsc_register_vf(struct net_device *vf_netdev) 2164 { 2165 struct net_device_context *net_device_ctx; 2166 struct netvsc_device *netvsc_dev; 2167 struct net_device *ndev; 2168 int ret; 2169 2170 if (vf_netdev->addr_len != ETH_ALEN) 2171 return NOTIFY_DONE; 2172 2173 ndev = get_netvsc_byslot(vf_netdev); 2174 if (!ndev) 2175 return NOTIFY_DONE; 2176 2177 net_device_ctx = netdev_priv(ndev); 2178 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2179 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2180 return NOTIFY_DONE; 2181 2182 /* if synthetic interface is a different namespace, 2183 * then move the VF to that namespace; join will be 2184 * done again in that context. 2185 */ 2186 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2187 ret = dev_change_net_namespace(vf_netdev, 2188 dev_net(ndev), "eth%d"); 2189 if (ret) 2190 netdev_err(vf_netdev, 2191 "could not move to same namespace as %s: %d\n", 2192 ndev->name, ret); 2193 else 2194 netdev_info(vf_netdev, 2195 "VF moved to namespace with: %s\n", 2196 ndev->name); 2197 return NOTIFY_DONE; 2198 } 2199 2200 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2201 2202 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2203 return NOTIFY_DONE; 2204 2205 dev_hold(vf_netdev); 2206 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2207 2208 vf_netdev->wanted_features = ndev->features; 2209 netdev_update_features(vf_netdev); 2210 2211 return NOTIFY_OK; 2212 } 2213 2214 /* VF up/down change detected, schedule to change data path */ 2215 static int netvsc_vf_changed(struct net_device *vf_netdev) 2216 { 2217 struct net_device_context *net_device_ctx; 2218 struct netvsc_device *netvsc_dev; 2219 struct net_device *ndev; 2220 bool vf_is_up = netif_running(vf_netdev); 2221 2222 ndev = get_netvsc_byref(vf_netdev); 2223 if (!ndev) 2224 return NOTIFY_DONE; 2225 2226 net_device_ctx = netdev_priv(ndev); 2227 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2228 if (!netvsc_dev) 2229 return NOTIFY_DONE; 2230 2231 netvsc_switch_datapath(ndev, vf_is_up); 2232 netdev_info(ndev, "Data path switched %s VF: %s\n", 2233 vf_is_up ? "to" : "from", vf_netdev->name); 2234 2235 return NOTIFY_OK; 2236 } 2237 2238 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2239 { 2240 struct net_device *ndev; 2241 struct net_device_context *net_device_ctx; 2242 2243 ndev = get_netvsc_byref(vf_netdev); 2244 if (!ndev) 2245 return NOTIFY_DONE; 2246 2247 net_device_ctx = netdev_priv(ndev); 2248 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2249 2250 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2251 2252 netdev_rx_handler_unregister(vf_netdev); 2253 netdev_upper_dev_unlink(vf_netdev, ndev); 2254 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2255 dev_put(vf_netdev); 2256 2257 return NOTIFY_OK; 2258 } 2259 2260 static int netvsc_probe(struct hv_device *dev, 2261 const struct hv_vmbus_device_id *dev_id) 2262 { 2263 struct net_device *net = NULL; 2264 struct net_device_context *net_device_ctx; 2265 struct netvsc_device_info *device_info = NULL; 2266 struct netvsc_device *nvdev; 2267 int ret = -ENOMEM; 2268 2269 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2270 VRSS_CHANNEL_MAX); 2271 if (!net) 2272 goto no_net; 2273 2274 netif_carrier_off(net); 2275 2276 netvsc_init_settings(net); 2277 2278 net_device_ctx = netdev_priv(net); 2279 net_device_ctx->device_ctx = dev; 2280 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2281 if (netif_msg_probe(net_device_ctx)) 2282 netdev_dbg(net, "netvsc msg_enable: %d\n", 2283 net_device_ctx->msg_enable); 2284 2285 hv_set_drvdata(dev, net); 2286 2287 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2288 2289 spin_lock_init(&net_device_ctx->lock); 2290 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2291 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2292 2293 net_device_ctx->vf_stats 2294 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2295 if (!net_device_ctx->vf_stats) 2296 goto no_stats; 2297 2298 net->netdev_ops = &device_ops; 2299 net->ethtool_ops = ðtool_ops; 2300 SET_NETDEV_DEV(net, &dev->device); 2301 2302 /* We always need headroom for rndis header */ 2303 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2304 2305 /* Initialize the number of queues to be 1, we may change it if more 2306 * channels are offered later. 2307 */ 2308 netif_set_real_num_tx_queues(net, 1); 2309 netif_set_real_num_rx_queues(net, 1); 2310 2311 /* Notify the netvsc driver of the new device */ 2312 device_info = netvsc_devinfo_get(NULL); 2313 2314 if (!device_info) { 2315 ret = -ENOMEM; 2316 goto devinfo_failed; 2317 } 2318 2319 nvdev = rndis_filter_device_add(dev, device_info); 2320 if (IS_ERR(nvdev)) { 2321 ret = PTR_ERR(nvdev); 2322 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2323 goto rndis_failed; 2324 } 2325 2326 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2327 2328 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2329 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2330 * all subchannels to show up, but that may not happen because 2331 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2332 * -> ... -> device_add() -> ... -> __device_attach() can't get 2333 * the device lock, so all the subchannels can't be processed -- 2334 * finally netvsc_subchan_work() hangs forever. 2335 */ 2336 rtnl_lock(); 2337 2338 if (nvdev->num_chn > 1) 2339 schedule_work(&nvdev->subchan_work); 2340 2341 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2342 net->features = net->hw_features | 2343 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2344 NETIF_F_HW_VLAN_CTAG_RX; 2345 net->vlan_features = net->features; 2346 2347 /* MTU range: 68 - 1500 or 65521 */ 2348 net->min_mtu = NETVSC_MTU_MIN; 2349 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2350 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2351 else 2352 net->max_mtu = ETH_DATA_LEN; 2353 2354 ret = register_netdevice(net); 2355 if (ret != 0) { 2356 pr_err("Unable to register netdev.\n"); 2357 goto register_failed; 2358 } 2359 2360 list_add(&net_device_ctx->list, &netvsc_dev_list); 2361 rtnl_unlock(); 2362 2363 kfree(device_info); 2364 return 0; 2365 2366 register_failed: 2367 rtnl_unlock(); 2368 rndis_filter_device_remove(dev, nvdev); 2369 rndis_failed: 2370 kfree(device_info); 2371 devinfo_failed: 2372 free_percpu(net_device_ctx->vf_stats); 2373 no_stats: 2374 hv_set_drvdata(dev, NULL); 2375 free_netdev(net); 2376 no_net: 2377 return ret; 2378 } 2379 2380 static int netvsc_remove(struct hv_device *dev) 2381 { 2382 struct net_device_context *ndev_ctx; 2383 struct net_device *vf_netdev, *net; 2384 struct netvsc_device *nvdev; 2385 2386 net = hv_get_drvdata(dev); 2387 if (net == NULL) { 2388 dev_err(&dev->device, "No net device to remove\n"); 2389 return 0; 2390 } 2391 2392 ndev_ctx = netdev_priv(net); 2393 2394 cancel_delayed_work_sync(&ndev_ctx->dwork); 2395 2396 rtnl_lock(); 2397 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2398 if (nvdev) 2399 cancel_work_sync(&nvdev->subchan_work); 2400 2401 /* 2402 * Call to the vsc driver to let it know that the device is being 2403 * removed. Also blocks mtu and channel changes. 2404 */ 2405 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2406 if (vf_netdev) 2407 netvsc_unregister_vf(vf_netdev); 2408 2409 if (nvdev) 2410 rndis_filter_device_remove(dev, nvdev); 2411 2412 unregister_netdevice(net); 2413 list_del(&ndev_ctx->list); 2414 2415 rtnl_unlock(); 2416 2417 hv_set_drvdata(dev, NULL); 2418 2419 free_percpu(ndev_ctx->vf_stats); 2420 free_netdev(net); 2421 return 0; 2422 } 2423 2424 static const struct hv_vmbus_device_id id_table[] = { 2425 /* Network guid */ 2426 { HV_NIC_GUID, }, 2427 { }, 2428 }; 2429 2430 MODULE_DEVICE_TABLE(vmbus, id_table); 2431 2432 /* The one and only one */ 2433 static struct hv_driver netvsc_drv = { 2434 .name = KBUILD_MODNAME, 2435 .id_table = id_table, 2436 .probe = netvsc_probe, 2437 .remove = netvsc_remove, 2438 .driver = { 2439 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2440 }, 2441 }; 2442 2443 /* 2444 * On Hyper-V, every VF interface is matched with a corresponding 2445 * synthetic interface. The synthetic interface is presented first 2446 * to the guest. When the corresponding VF instance is registered, 2447 * we will take care of switching the data path. 2448 */ 2449 static int netvsc_netdev_event(struct notifier_block *this, 2450 unsigned long event, void *ptr) 2451 { 2452 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2453 2454 /* Skip our own events */ 2455 if (event_dev->netdev_ops == &device_ops) 2456 return NOTIFY_DONE; 2457 2458 /* Avoid non-Ethernet type devices */ 2459 if (event_dev->type != ARPHRD_ETHER) 2460 return NOTIFY_DONE; 2461 2462 /* Avoid Vlan dev with same MAC registering as VF */ 2463 if (is_vlan_dev(event_dev)) 2464 return NOTIFY_DONE; 2465 2466 /* Avoid Bonding master dev with same MAC registering as VF */ 2467 if ((event_dev->priv_flags & IFF_BONDING) && 2468 (event_dev->flags & IFF_MASTER)) 2469 return NOTIFY_DONE; 2470 2471 switch (event) { 2472 case NETDEV_REGISTER: 2473 return netvsc_register_vf(event_dev); 2474 case NETDEV_UNREGISTER: 2475 return netvsc_unregister_vf(event_dev); 2476 case NETDEV_UP: 2477 case NETDEV_DOWN: 2478 return netvsc_vf_changed(event_dev); 2479 default: 2480 return NOTIFY_DONE; 2481 } 2482 } 2483 2484 static struct notifier_block netvsc_netdev_notifier = { 2485 .notifier_call = netvsc_netdev_event, 2486 }; 2487 2488 static void __exit netvsc_drv_exit(void) 2489 { 2490 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2491 vmbus_driver_unregister(&netvsc_drv); 2492 } 2493 2494 static int __init netvsc_drv_init(void) 2495 { 2496 int ret; 2497 2498 if (ring_size < RING_SIZE_MIN) { 2499 ring_size = RING_SIZE_MIN; 2500 pr_info("Increased ring_size to %u (min allowed)\n", 2501 ring_size); 2502 } 2503 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2504 2505 ret = vmbus_driver_register(&netvsc_drv); 2506 if (ret) 2507 return ret; 2508 2509 register_netdevice_notifier(&netvsc_netdev_notifier); 2510 return 0; 2511 } 2512 2513 MODULE_LICENSE("GPL"); 2514 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2515 2516 module_init(netvsc_drv_init); 2517 module_exit(netvsc_drv_exit); 2518