1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <net/arp.h> 37 #include <net/route.h> 38 #include <net/sock.h> 39 #include <net/pkt_sched.h> 40 41 #include "hyperv_net.h" 42 43 #define RING_SIZE_MIN 64 44 #define LINKCHANGE_INT (2 * HZ) 45 46 static int ring_size = 128; 47 module_param(ring_size, int, S_IRUGO); 48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 49 50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 51 NETIF_MSG_LINK | NETIF_MSG_IFUP | 52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 53 NETIF_MSG_TX_ERR; 54 55 static int debug = -1; 56 module_param(debug, int, S_IRUGO); 57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 58 59 static void netvsc_set_multicast_list(struct net_device *net) 60 { 61 struct net_device_context *net_device_ctx = netdev_priv(net); 62 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 63 64 rndis_filter_update(nvdev); 65 } 66 67 static int netvsc_open(struct net_device *net) 68 { 69 struct netvsc_device *nvdev = net_device_to_netvsc_device(net); 70 struct rndis_device *rdev; 71 int ret = 0; 72 73 netif_carrier_off(net); 74 75 /* Open up the device */ 76 ret = rndis_filter_open(nvdev); 77 if (ret != 0) { 78 netdev_err(net, "unable to open device (ret %d).\n", ret); 79 return ret; 80 } 81 82 netif_tx_wake_all_queues(net); 83 84 rdev = nvdev->extension; 85 if (!rdev->link_state) 86 netif_carrier_on(net); 87 88 return ret; 89 } 90 91 static int netvsc_close(struct net_device *net) 92 { 93 struct net_device_context *net_device_ctx = netdev_priv(net); 94 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 95 int ret; 96 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20; 97 struct vmbus_channel *chn; 98 99 netif_tx_disable(net); 100 101 ret = rndis_filter_close(nvdev); 102 if (ret != 0) { 103 netdev_err(net, "unable to close device (ret %d).\n", ret); 104 return ret; 105 } 106 107 /* Ensure pending bytes in ring are read */ 108 while (true) { 109 aread = 0; 110 for (i = 0; i < nvdev->num_chn; i++) { 111 chn = nvdev->chan_table[i].channel; 112 if (!chn) 113 continue; 114 115 hv_get_ringbuffer_availbytes(&chn->inbound, &aread, 116 &awrite); 117 118 if (aread) 119 break; 120 121 hv_get_ringbuffer_availbytes(&chn->outbound, &aread, 122 &awrite); 123 124 if (aread) 125 break; 126 } 127 128 retry++; 129 if (retry > retry_max || aread == 0) 130 break; 131 132 msleep(msec); 133 134 if (msec < 1000) 135 msec *= 2; 136 } 137 138 if (aread) { 139 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 140 ret = -ETIMEDOUT; 141 } 142 143 return ret; 144 } 145 146 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 147 int pkt_type) 148 { 149 struct rndis_packet *rndis_pkt; 150 struct rndis_per_packet_info *ppi; 151 152 rndis_pkt = &msg->msg.pkt; 153 rndis_pkt->data_offset += ppi_size; 154 155 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 156 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 157 158 ppi->size = ppi_size; 159 ppi->type = pkt_type; 160 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 161 162 rndis_pkt->per_pkt_info_len += ppi_size; 163 164 return ppi; 165 } 166 167 /* Azure hosts don't support non-TCP port numbers in hashing yet. We compute 168 * hash for non-TCP traffic with only IP numbers. 169 */ 170 static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk) 171 { 172 struct flow_keys flow; 173 u32 hash; 174 static u32 hashrnd __read_mostly; 175 176 net_get_random_once(&hashrnd, sizeof(hashrnd)); 177 178 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 179 return 0; 180 181 if (flow.basic.ip_proto == IPPROTO_TCP) { 182 return skb_get_hash(skb); 183 } else { 184 if (flow.basic.n_proto == htons(ETH_P_IP)) 185 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 186 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 187 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 188 else 189 hash = 0; 190 191 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 192 } 193 194 return hash; 195 } 196 197 static inline int netvsc_get_tx_queue(struct net_device *ndev, 198 struct sk_buff *skb, int old_idx) 199 { 200 const struct net_device_context *ndc = netdev_priv(ndev); 201 struct sock *sk = skb->sk; 202 int q_idx; 203 204 q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) & 205 (VRSS_SEND_TAB_SIZE - 1)]; 206 207 /* If queue index changed record the new value */ 208 if (q_idx != old_idx && 209 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 210 sk_tx_queue_set(sk, q_idx); 211 212 return q_idx; 213 } 214 215 /* 216 * Select queue for transmit. 217 * 218 * If a valid queue has already been assigned, then use that. 219 * Otherwise compute tx queue based on hash and the send table. 220 * 221 * This is basically similar to default (__netdev_pick_tx) with the added step 222 * of using the host send_table when no other queue has been assigned. 223 * 224 * TODO support XPS - but get_xps_queue not exported 225 */ 226 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 227 void *accel_priv, select_queue_fallback_t fallback) 228 { 229 unsigned int num_tx_queues = ndev->real_num_tx_queues; 230 int q_idx = sk_tx_queue_get(skb->sk); 231 232 if (q_idx < 0 || skb->ooo_okay) { 233 /* If forwarding a packet, we use the recorded queue when 234 * available for better cache locality. 235 */ 236 if (skb_rx_queue_recorded(skb)) 237 q_idx = skb_get_rx_queue(skb); 238 else 239 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 240 } 241 242 while (unlikely(q_idx >= num_tx_queues)) 243 q_idx -= num_tx_queues; 244 245 return q_idx; 246 } 247 248 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 249 struct hv_page_buffer *pb) 250 { 251 int j = 0; 252 253 /* Deal with compund pages by ignoring unused part 254 * of the page. 255 */ 256 page += (offset >> PAGE_SHIFT); 257 offset &= ~PAGE_MASK; 258 259 while (len > 0) { 260 unsigned long bytes; 261 262 bytes = PAGE_SIZE - offset; 263 if (bytes > len) 264 bytes = len; 265 pb[j].pfn = page_to_pfn(page); 266 pb[j].offset = offset; 267 pb[j].len = bytes; 268 269 offset += bytes; 270 len -= bytes; 271 272 if (offset == PAGE_SIZE && len) { 273 page++; 274 offset = 0; 275 j++; 276 } 277 } 278 279 return j + 1; 280 } 281 282 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 283 struct hv_netvsc_packet *packet, 284 struct hv_page_buffer **page_buf) 285 { 286 struct hv_page_buffer *pb = *page_buf; 287 u32 slots_used = 0; 288 char *data = skb->data; 289 int frags = skb_shinfo(skb)->nr_frags; 290 int i; 291 292 /* The packet is laid out thus: 293 * 1. hdr: RNDIS header and PPI 294 * 2. skb linear data 295 * 3. skb fragment data 296 */ 297 if (hdr != NULL) 298 slots_used += fill_pg_buf(virt_to_page(hdr), 299 offset_in_page(hdr), 300 len, &pb[slots_used]); 301 302 packet->rmsg_size = len; 303 packet->rmsg_pgcnt = slots_used; 304 305 slots_used += fill_pg_buf(virt_to_page(data), 306 offset_in_page(data), 307 skb_headlen(skb), &pb[slots_used]); 308 309 for (i = 0; i < frags; i++) { 310 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 311 312 slots_used += fill_pg_buf(skb_frag_page(frag), 313 frag->page_offset, 314 skb_frag_size(frag), &pb[slots_used]); 315 } 316 return slots_used; 317 } 318 319 static int count_skb_frag_slots(struct sk_buff *skb) 320 { 321 int i, frags = skb_shinfo(skb)->nr_frags; 322 int pages = 0; 323 324 for (i = 0; i < frags; i++) { 325 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 326 unsigned long size = skb_frag_size(frag); 327 unsigned long offset = frag->page_offset; 328 329 /* Skip unused frames from start of page */ 330 offset &= ~PAGE_MASK; 331 pages += PFN_UP(offset + size); 332 } 333 return pages; 334 } 335 336 static int netvsc_get_slots(struct sk_buff *skb) 337 { 338 char *data = skb->data; 339 unsigned int offset = offset_in_page(data); 340 unsigned int len = skb_headlen(skb); 341 int slots; 342 int frag_slots; 343 344 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 345 frag_slots = count_skb_frag_slots(skb); 346 return slots + frag_slots; 347 } 348 349 static u32 net_checksum_info(struct sk_buff *skb) 350 { 351 if (skb->protocol == htons(ETH_P_IP)) { 352 struct iphdr *ip = ip_hdr(skb); 353 354 if (ip->protocol == IPPROTO_TCP) 355 return TRANSPORT_INFO_IPV4_TCP; 356 else if (ip->protocol == IPPROTO_UDP) 357 return TRANSPORT_INFO_IPV4_UDP; 358 } else { 359 struct ipv6hdr *ip6 = ipv6_hdr(skb); 360 361 if (ip6->nexthdr == IPPROTO_TCP) 362 return TRANSPORT_INFO_IPV6_TCP; 363 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) 364 return TRANSPORT_INFO_IPV6_UDP; 365 } 366 367 return TRANSPORT_INFO_NOT_IP; 368 } 369 370 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 371 { 372 struct net_device_context *net_device_ctx = netdev_priv(net); 373 struct hv_netvsc_packet *packet = NULL; 374 int ret; 375 unsigned int num_data_pgs; 376 struct rndis_message *rndis_msg; 377 struct rndis_packet *rndis_pkt; 378 u32 rndis_msg_size; 379 struct rndis_per_packet_info *ppi; 380 u32 hash; 381 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT]; 382 struct hv_page_buffer *pb = page_buf; 383 384 /* We will atmost need two pages to describe the rndis 385 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 386 * of pages in a single packet. If skb is scattered around 387 * more pages we try linearizing it. 388 */ 389 390 num_data_pgs = netvsc_get_slots(skb) + 2; 391 392 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 393 ++net_device_ctx->eth_stats.tx_scattered; 394 395 if (skb_linearize(skb)) 396 goto no_memory; 397 398 num_data_pgs = netvsc_get_slots(skb) + 2; 399 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 400 ++net_device_ctx->eth_stats.tx_too_big; 401 goto drop; 402 } 403 } 404 405 /* 406 * Place the rndis header in the skb head room and 407 * the skb->cb will be used for hv_netvsc_packet 408 * structure. 409 */ 410 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 411 if (ret) 412 goto no_memory; 413 414 /* Use the skb control buffer for building up the packet */ 415 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 416 FIELD_SIZEOF(struct sk_buff, cb)); 417 packet = (struct hv_netvsc_packet *)skb->cb; 418 419 packet->q_idx = skb_get_queue_mapping(skb); 420 421 packet->total_data_buflen = skb->len; 422 packet->total_bytes = skb->len; 423 packet->total_packets = 1; 424 425 rndis_msg = (struct rndis_message *)skb->head; 426 427 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE); 428 429 /* Add the rndis header */ 430 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 431 rndis_msg->msg_len = packet->total_data_buflen; 432 rndis_pkt = &rndis_msg->msg.pkt; 433 rndis_pkt->data_offset = sizeof(struct rndis_packet); 434 rndis_pkt->data_len = packet->total_data_buflen; 435 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 436 437 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 438 439 hash = skb_get_hash_raw(skb); 440 if (hash != 0 && net->real_num_tx_queues > 1) { 441 rndis_msg_size += NDIS_HASH_PPI_SIZE; 442 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 443 NBL_HASH_VALUE); 444 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 445 } 446 447 if (skb_vlan_tag_present(skb)) { 448 struct ndis_pkt_8021q_info *vlan; 449 450 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 451 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 452 IEEE_8021Q_INFO); 453 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + 454 ppi->ppi_offset); 455 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 456 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 457 VLAN_PRIO_SHIFT; 458 } 459 460 if (skb_is_gso(skb)) { 461 struct ndis_tcp_lso_info *lso_info; 462 463 rndis_msg_size += NDIS_LSO_PPI_SIZE; 464 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 465 TCP_LARGESEND_PKTINFO); 466 467 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + 468 ppi->ppi_offset); 469 470 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 471 if (skb->protocol == htons(ETH_P_IP)) { 472 lso_info->lso_v2_transmit.ip_version = 473 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 474 ip_hdr(skb)->tot_len = 0; 475 ip_hdr(skb)->check = 0; 476 tcp_hdr(skb)->check = 477 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 478 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 479 } else { 480 lso_info->lso_v2_transmit.ip_version = 481 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 482 ipv6_hdr(skb)->payload_len = 0; 483 tcp_hdr(skb)->check = 484 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 485 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 486 } 487 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 488 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 489 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 490 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 491 struct ndis_tcp_ip_checksum_info *csum_info; 492 493 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 494 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 495 TCPIP_CHKSUM_PKTINFO); 496 497 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 498 ppi->ppi_offset); 499 500 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 501 502 if (skb->protocol == htons(ETH_P_IP)) { 503 csum_info->transmit.is_ipv4 = 1; 504 505 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 506 csum_info->transmit.tcp_checksum = 1; 507 else 508 csum_info->transmit.udp_checksum = 1; 509 } else { 510 csum_info->transmit.is_ipv6 = 1; 511 512 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 513 csum_info->transmit.tcp_checksum = 1; 514 else 515 csum_info->transmit.udp_checksum = 1; 516 } 517 } else { 518 /* Can't do offload of this type of checksum */ 519 if (skb_checksum_help(skb)) 520 goto drop; 521 } 522 } 523 524 /* Start filling in the page buffers with the rndis hdr */ 525 rndis_msg->msg_len += rndis_msg_size; 526 packet->total_data_buflen = rndis_msg->msg_len; 527 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 528 skb, packet, &pb); 529 530 /* timestamp packet in software */ 531 skb_tx_timestamp(skb); 532 ret = netvsc_send(net_device_ctx->device_ctx, packet, 533 rndis_msg, &pb, skb); 534 if (likely(ret == 0)) 535 return NETDEV_TX_OK; 536 537 if (ret == -EAGAIN) { 538 ++net_device_ctx->eth_stats.tx_busy; 539 return NETDEV_TX_BUSY; 540 } 541 542 if (ret == -ENOSPC) 543 ++net_device_ctx->eth_stats.tx_no_space; 544 545 drop: 546 dev_kfree_skb_any(skb); 547 net->stats.tx_dropped++; 548 549 return NETDEV_TX_OK; 550 551 no_memory: 552 ++net_device_ctx->eth_stats.tx_no_memory; 553 goto drop; 554 } 555 /* 556 * netvsc_linkstatus_callback - Link up/down notification 557 */ 558 void netvsc_linkstatus_callback(struct hv_device *device_obj, 559 struct rndis_message *resp) 560 { 561 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 562 struct net_device *net; 563 struct net_device_context *ndev_ctx; 564 struct netvsc_reconfig *event; 565 unsigned long flags; 566 567 net = hv_get_drvdata(device_obj); 568 569 if (!net) 570 return; 571 572 ndev_ctx = netdev_priv(net); 573 574 /* Update the physical link speed when changing to another vSwitch */ 575 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 576 u32 speed; 577 578 speed = *(u32 *)((void *)indicate + indicate-> 579 status_buf_offset) / 10000; 580 ndev_ctx->speed = speed; 581 return; 582 } 583 584 /* Handle these link change statuses below */ 585 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 586 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 587 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 588 return; 589 590 if (net->reg_state != NETREG_REGISTERED) 591 return; 592 593 event = kzalloc(sizeof(*event), GFP_ATOMIC); 594 if (!event) 595 return; 596 event->event = indicate->status; 597 598 spin_lock_irqsave(&ndev_ctx->lock, flags); 599 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 600 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 601 602 schedule_delayed_work(&ndev_ctx->dwork, 0); 603 } 604 605 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 606 struct napi_struct *napi, 607 const struct ndis_tcp_ip_checksum_info *csum_info, 608 const struct ndis_pkt_8021q_info *vlan, 609 void *data, u32 buflen) 610 { 611 struct sk_buff *skb; 612 613 skb = napi_alloc_skb(napi, buflen); 614 if (!skb) 615 return skb; 616 617 /* 618 * Copy to skb. This copy is needed here since the memory pointed by 619 * hv_netvsc_packet cannot be deallocated 620 */ 621 memcpy(skb_put(skb, buflen), data, buflen); 622 623 skb->protocol = eth_type_trans(skb, net); 624 625 /* skb is already created with CHECKSUM_NONE */ 626 skb_checksum_none_assert(skb); 627 628 /* 629 * In Linux, the IP checksum is always checked. 630 * Do L4 checksum offload if enabled and present. 631 */ 632 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 633 if (csum_info->receive.tcp_checksum_succeeded || 634 csum_info->receive.udp_checksum_succeeded) 635 skb->ip_summed = CHECKSUM_UNNECESSARY; 636 } 637 638 if (vlan) { 639 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 640 641 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 642 vlan_tci); 643 } 644 645 return skb; 646 } 647 648 /* 649 * netvsc_recv_callback - Callback when we receive a packet from the 650 * "wire" on the specified device. 651 */ 652 int netvsc_recv_callback(struct net_device *net, 653 struct vmbus_channel *channel, 654 void *data, u32 len, 655 const struct ndis_tcp_ip_checksum_info *csum_info, 656 const struct ndis_pkt_8021q_info *vlan) 657 { 658 struct net_device_context *net_device_ctx = netdev_priv(net); 659 struct netvsc_device *net_device; 660 u16 q_idx = channel->offermsg.offer.sub_channel_index; 661 struct netvsc_channel *nvchan; 662 struct net_device *vf_netdev; 663 struct sk_buff *skb; 664 struct netvsc_stats *rx_stats; 665 666 if (net->reg_state != NETREG_REGISTERED) 667 return NVSP_STAT_FAIL; 668 669 /* 670 * If necessary, inject this packet into the VF interface. 671 * On Hyper-V, multicast and brodcast packets are only delivered 672 * to the synthetic interface (after subjecting these to 673 * policy filters on the host). Deliver these via the VF 674 * interface in the guest. 675 */ 676 rcu_read_lock(); 677 net_device = rcu_dereference(net_device_ctx->nvdev); 678 if (unlikely(!net_device)) 679 goto drop; 680 681 nvchan = &net_device->chan_table[q_idx]; 682 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev); 683 if (vf_netdev && (vf_netdev->flags & IFF_UP)) 684 net = vf_netdev; 685 686 /* Allocate a skb - TODO direct I/O to pages? */ 687 skb = netvsc_alloc_recv_skb(net, &nvchan->napi, 688 csum_info, vlan, data, len); 689 if (unlikely(!skb)) { 690 drop: 691 ++net->stats.rx_dropped; 692 rcu_read_unlock(); 693 return NVSP_STAT_FAIL; 694 } 695 696 if (net != vf_netdev) 697 skb_record_rx_queue(skb, q_idx); 698 699 /* 700 * Even if injecting the packet, record the statistics 701 * on the synthetic device because modifying the VF device 702 * statistics will not work correctly. 703 */ 704 rx_stats = &nvchan->rx_stats; 705 u64_stats_update_begin(&rx_stats->syncp); 706 rx_stats->packets++; 707 rx_stats->bytes += len; 708 709 if (skb->pkt_type == PACKET_BROADCAST) 710 ++rx_stats->broadcast; 711 else if (skb->pkt_type == PACKET_MULTICAST) 712 ++rx_stats->multicast; 713 u64_stats_update_end(&rx_stats->syncp); 714 715 napi_gro_receive(&nvchan->napi, skb); 716 rcu_read_unlock(); 717 718 return 0; 719 } 720 721 static void netvsc_get_drvinfo(struct net_device *net, 722 struct ethtool_drvinfo *info) 723 { 724 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 725 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 726 } 727 728 static void netvsc_get_channels(struct net_device *net, 729 struct ethtool_channels *channel) 730 { 731 struct net_device_context *net_device_ctx = netdev_priv(net); 732 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 733 734 if (nvdev) { 735 channel->max_combined = nvdev->max_chn; 736 channel->combined_count = nvdev->num_chn; 737 } 738 } 739 740 static int netvsc_set_queues(struct net_device *net, struct hv_device *dev, 741 u32 num_chn) 742 { 743 struct netvsc_device_info device_info; 744 int ret; 745 746 memset(&device_info, 0, sizeof(device_info)); 747 device_info.num_chn = num_chn; 748 device_info.ring_size = ring_size; 749 device_info.max_num_vrss_chns = num_chn; 750 751 ret = rndis_filter_device_add(dev, &device_info); 752 if (ret) 753 return ret; 754 755 ret = netif_set_real_num_tx_queues(net, num_chn); 756 if (ret) 757 return ret; 758 759 ret = netif_set_real_num_rx_queues(net, num_chn); 760 761 return ret; 762 } 763 764 static int netvsc_set_channels(struct net_device *net, 765 struct ethtool_channels *channels) 766 { 767 struct net_device_context *net_device_ctx = netdev_priv(net); 768 struct hv_device *dev = net_device_ctx->device_ctx; 769 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 770 unsigned int count = channels->combined_count; 771 bool was_running; 772 int ret; 773 774 /* We do not support separate count for rx, tx, or other */ 775 if (count == 0 || 776 channels->rx_count || channels->tx_count || channels->other_count) 777 return -EINVAL; 778 779 if (count > net->num_tx_queues || count > net->num_rx_queues) 780 return -EINVAL; 781 782 if (!nvdev || nvdev->destroy) 783 return -ENODEV; 784 785 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 786 return -EINVAL; 787 788 if (count > nvdev->max_chn) 789 return -EINVAL; 790 791 was_running = netif_running(net); 792 if (was_running) { 793 ret = netvsc_close(net); 794 if (ret) 795 return ret; 796 } 797 798 rndis_filter_device_remove(dev, nvdev); 799 800 ret = netvsc_set_queues(net, dev, count); 801 if (ret == 0) 802 nvdev->num_chn = count; 803 else 804 netvsc_set_queues(net, dev, nvdev->num_chn); 805 806 if (was_running) 807 ret = netvsc_open(net); 808 809 /* We may have missed link change notifications */ 810 schedule_delayed_work(&net_device_ctx->dwork, 0); 811 812 return ret; 813 } 814 815 static bool 816 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 817 { 818 struct ethtool_link_ksettings diff1 = *cmd; 819 struct ethtool_link_ksettings diff2 = {}; 820 821 diff1.base.speed = 0; 822 diff1.base.duplex = 0; 823 /* advertising and cmd are usually set */ 824 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 825 diff1.base.cmd = 0; 826 /* We set port to PORT_OTHER */ 827 diff2.base.port = PORT_OTHER; 828 829 return !memcmp(&diff1, &diff2, sizeof(diff1)); 830 } 831 832 static void netvsc_init_settings(struct net_device *dev) 833 { 834 struct net_device_context *ndc = netdev_priv(dev); 835 836 ndc->speed = SPEED_UNKNOWN; 837 ndc->duplex = DUPLEX_FULL; 838 } 839 840 static int netvsc_get_link_ksettings(struct net_device *dev, 841 struct ethtool_link_ksettings *cmd) 842 { 843 struct net_device_context *ndc = netdev_priv(dev); 844 845 cmd->base.speed = ndc->speed; 846 cmd->base.duplex = ndc->duplex; 847 cmd->base.port = PORT_OTHER; 848 849 return 0; 850 } 851 852 static int netvsc_set_link_ksettings(struct net_device *dev, 853 const struct ethtool_link_ksettings *cmd) 854 { 855 struct net_device_context *ndc = netdev_priv(dev); 856 u32 speed; 857 858 speed = cmd->base.speed; 859 if (!ethtool_validate_speed(speed) || 860 !ethtool_validate_duplex(cmd->base.duplex) || 861 !netvsc_validate_ethtool_ss_cmd(cmd)) 862 return -EINVAL; 863 864 ndc->speed = speed; 865 ndc->duplex = cmd->base.duplex; 866 867 return 0; 868 } 869 870 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 871 { 872 struct net_device_context *ndevctx = netdev_priv(ndev); 873 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 874 struct hv_device *hdev = ndevctx->device_ctx; 875 struct netvsc_device_info device_info; 876 bool was_running; 877 int ret = 0; 878 879 if (!nvdev || nvdev->destroy) 880 return -ENODEV; 881 882 was_running = netif_running(ndev); 883 if (was_running) { 884 ret = netvsc_close(ndev); 885 if (ret) 886 return ret; 887 } 888 889 memset(&device_info, 0, sizeof(device_info)); 890 device_info.ring_size = ring_size; 891 device_info.num_chn = nvdev->num_chn; 892 device_info.max_num_vrss_chns = nvdev->num_chn; 893 894 rndis_filter_device_remove(hdev, nvdev); 895 896 /* 'nvdev' has been freed in rndis_filter_device_remove() -> 897 * netvsc_device_remove () -> free_netvsc_device(). 898 * We mustn't access it before it's re-created in 899 * rndis_filter_device_add() -> netvsc_device_add(). 900 */ 901 902 ndev->mtu = mtu; 903 904 rndis_filter_device_add(hdev, &device_info); 905 906 if (was_running) 907 ret = netvsc_open(ndev); 908 909 /* We may have missed link change notifications */ 910 schedule_delayed_work(&ndevctx->dwork, 0); 911 912 return ret; 913 } 914 915 static void netvsc_get_stats64(struct net_device *net, 916 struct rtnl_link_stats64 *t) 917 { 918 struct net_device_context *ndev_ctx = netdev_priv(net); 919 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 920 int i; 921 922 if (!nvdev) 923 return; 924 925 for (i = 0; i < nvdev->num_chn; i++) { 926 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 927 const struct netvsc_stats *stats; 928 u64 packets, bytes, multicast; 929 unsigned int start; 930 931 stats = &nvchan->tx_stats; 932 do { 933 start = u64_stats_fetch_begin_irq(&stats->syncp); 934 packets = stats->packets; 935 bytes = stats->bytes; 936 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 937 938 t->tx_bytes += bytes; 939 t->tx_packets += packets; 940 941 stats = &nvchan->rx_stats; 942 do { 943 start = u64_stats_fetch_begin_irq(&stats->syncp); 944 packets = stats->packets; 945 bytes = stats->bytes; 946 multicast = stats->multicast + stats->broadcast; 947 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 948 949 t->rx_bytes += bytes; 950 t->rx_packets += packets; 951 t->multicast += multicast; 952 } 953 954 t->tx_dropped = net->stats.tx_dropped; 955 t->tx_errors = net->stats.tx_errors; 956 957 t->rx_dropped = net->stats.rx_dropped; 958 t->rx_errors = net->stats.rx_errors; 959 } 960 961 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 962 { 963 struct sockaddr *addr = p; 964 char save_adr[ETH_ALEN]; 965 unsigned char save_aatype; 966 int err; 967 968 memcpy(save_adr, ndev->dev_addr, ETH_ALEN); 969 save_aatype = ndev->addr_assign_type; 970 971 err = eth_mac_addr(ndev, p); 972 if (err != 0) 973 return err; 974 975 err = rndis_filter_set_device_mac(ndev, addr->sa_data); 976 if (err != 0) { 977 /* roll back to saved MAC */ 978 memcpy(ndev->dev_addr, save_adr, ETH_ALEN); 979 ndev->addr_assign_type = save_aatype; 980 } 981 982 return err; 983 } 984 985 static const struct { 986 char name[ETH_GSTRING_LEN]; 987 u16 offset; 988 } netvsc_stats[] = { 989 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 990 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 991 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 992 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 993 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 994 }; 995 996 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 997 998 /* 4 statistics per queue (rx/tx packets/bytes) */ 999 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1000 1001 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1002 { 1003 struct net_device_context *ndc = netdev_priv(dev); 1004 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1005 1006 if (!nvdev) 1007 return -ENODEV; 1008 1009 switch (string_set) { 1010 case ETH_SS_STATS: 1011 return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev); 1012 default: 1013 return -EINVAL; 1014 } 1015 } 1016 1017 static void netvsc_get_ethtool_stats(struct net_device *dev, 1018 struct ethtool_stats *stats, u64 *data) 1019 { 1020 struct net_device_context *ndc = netdev_priv(dev); 1021 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1022 const void *nds = &ndc->eth_stats; 1023 const struct netvsc_stats *qstats; 1024 unsigned int start; 1025 u64 packets, bytes; 1026 int i, j; 1027 1028 if (!nvdev) 1029 return; 1030 1031 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1032 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1033 1034 for (j = 0; j < nvdev->num_chn; j++) { 1035 qstats = &nvdev->chan_table[j].tx_stats; 1036 1037 do { 1038 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1039 packets = qstats->packets; 1040 bytes = qstats->bytes; 1041 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1042 data[i++] = packets; 1043 data[i++] = bytes; 1044 1045 qstats = &nvdev->chan_table[j].rx_stats; 1046 do { 1047 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1048 packets = qstats->packets; 1049 bytes = qstats->bytes; 1050 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1051 data[i++] = packets; 1052 data[i++] = bytes; 1053 } 1054 } 1055 1056 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1057 { 1058 struct net_device_context *ndc = netdev_priv(dev); 1059 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1060 u8 *p = data; 1061 int i; 1062 1063 if (!nvdev) 1064 return; 1065 1066 switch (stringset) { 1067 case ETH_SS_STATS: 1068 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1069 memcpy(p + i * ETH_GSTRING_LEN, 1070 netvsc_stats[i].name, ETH_GSTRING_LEN); 1071 1072 p += i * ETH_GSTRING_LEN; 1073 for (i = 0; i < nvdev->num_chn; i++) { 1074 sprintf(p, "tx_queue_%u_packets", i); 1075 p += ETH_GSTRING_LEN; 1076 sprintf(p, "tx_queue_%u_bytes", i); 1077 p += ETH_GSTRING_LEN; 1078 sprintf(p, "rx_queue_%u_packets", i); 1079 p += ETH_GSTRING_LEN; 1080 sprintf(p, "rx_queue_%u_bytes", i); 1081 p += ETH_GSTRING_LEN; 1082 } 1083 1084 break; 1085 } 1086 } 1087 1088 static int 1089 netvsc_get_rss_hash_opts(struct netvsc_device *nvdev, 1090 struct ethtool_rxnfc *info) 1091 { 1092 info->data = RXH_IP_SRC | RXH_IP_DST; 1093 1094 switch (info->flow_type) { 1095 case TCP_V4_FLOW: 1096 case TCP_V6_FLOW: 1097 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 1098 /* fallthrough */ 1099 case UDP_V4_FLOW: 1100 case UDP_V6_FLOW: 1101 case IPV4_FLOW: 1102 case IPV6_FLOW: 1103 break; 1104 default: 1105 info->data = 0; 1106 break; 1107 } 1108 1109 return 0; 1110 } 1111 1112 static int 1113 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1114 u32 *rules) 1115 { 1116 struct net_device_context *ndc = netdev_priv(dev); 1117 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1118 1119 if (!nvdev) 1120 return -ENODEV; 1121 1122 switch (info->cmd) { 1123 case ETHTOOL_GRXRINGS: 1124 info->data = nvdev->num_chn; 1125 return 0; 1126 1127 case ETHTOOL_GRXFH: 1128 return netvsc_get_rss_hash_opts(nvdev, info); 1129 } 1130 return -EOPNOTSUPP; 1131 } 1132 1133 #ifdef CONFIG_NET_POLL_CONTROLLER 1134 static void netvsc_poll_controller(struct net_device *dev) 1135 { 1136 struct net_device_context *ndc = netdev_priv(dev); 1137 struct netvsc_device *ndev; 1138 int i; 1139 1140 rcu_read_lock(); 1141 ndev = rcu_dereference(ndc->nvdev); 1142 if (ndev) { 1143 for (i = 0; i < ndev->num_chn; i++) { 1144 struct netvsc_channel *nvchan = &ndev->chan_table[i]; 1145 1146 napi_schedule(&nvchan->napi); 1147 } 1148 } 1149 rcu_read_unlock(); 1150 } 1151 #endif 1152 1153 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1154 { 1155 return NETVSC_HASH_KEYLEN; 1156 } 1157 1158 static u32 netvsc_rss_indir_size(struct net_device *dev) 1159 { 1160 return ITAB_NUM; 1161 } 1162 1163 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1164 u8 *hfunc) 1165 { 1166 struct net_device_context *ndc = netdev_priv(dev); 1167 struct netvsc_device *ndev = rcu_dereference(ndc->nvdev); 1168 struct rndis_device *rndis_dev; 1169 int i; 1170 1171 if (!ndev) 1172 return -ENODEV; 1173 1174 if (hfunc) 1175 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1176 1177 rndis_dev = ndev->extension; 1178 if (indir) { 1179 for (i = 0; i < ITAB_NUM; i++) 1180 indir[i] = rndis_dev->ind_table[i]; 1181 } 1182 1183 if (key) 1184 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1185 1186 return 0; 1187 } 1188 1189 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1190 const u8 *key, const u8 hfunc) 1191 { 1192 struct net_device_context *ndc = netdev_priv(dev); 1193 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1194 struct rndis_device *rndis_dev; 1195 int i; 1196 1197 if (!ndev) 1198 return -ENODEV; 1199 1200 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1201 return -EOPNOTSUPP; 1202 1203 rndis_dev = ndev->extension; 1204 if (indir) { 1205 for (i = 0; i < ITAB_NUM; i++) 1206 if (indir[i] >= dev->num_rx_queues) 1207 return -EINVAL; 1208 1209 for (i = 0; i < ITAB_NUM; i++) 1210 rndis_dev->ind_table[i] = indir[i]; 1211 } 1212 1213 if (!key) { 1214 if (!indir) 1215 return 0; 1216 1217 key = rndis_dev->rss_key; 1218 } 1219 1220 return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn); 1221 } 1222 1223 static const struct ethtool_ops ethtool_ops = { 1224 .get_drvinfo = netvsc_get_drvinfo, 1225 .get_link = ethtool_op_get_link, 1226 .get_ethtool_stats = netvsc_get_ethtool_stats, 1227 .get_sset_count = netvsc_get_sset_count, 1228 .get_strings = netvsc_get_strings, 1229 .get_channels = netvsc_get_channels, 1230 .set_channels = netvsc_set_channels, 1231 .get_ts_info = ethtool_op_get_ts_info, 1232 .get_rxnfc = netvsc_get_rxnfc, 1233 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1234 .get_rxfh_indir_size = netvsc_rss_indir_size, 1235 .get_rxfh = netvsc_get_rxfh, 1236 .set_rxfh = netvsc_set_rxfh, 1237 .get_link_ksettings = netvsc_get_link_ksettings, 1238 .set_link_ksettings = netvsc_set_link_ksettings, 1239 }; 1240 1241 static const struct net_device_ops device_ops = { 1242 .ndo_open = netvsc_open, 1243 .ndo_stop = netvsc_close, 1244 .ndo_start_xmit = netvsc_start_xmit, 1245 .ndo_set_rx_mode = netvsc_set_multicast_list, 1246 .ndo_change_mtu = netvsc_change_mtu, 1247 .ndo_validate_addr = eth_validate_addr, 1248 .ndo_set_mac_address = netvsc_set_mac_addr, 1249 .ndo_select_queue = netvsc_select_queue, 1250 .ndo_get_stats64 = netvsc_get_stats64, 1251 #ifdef CONFIG_NET_POLL_CONTROLLER 1252 .ndo_poll_controller = netvsc_poll_controller, 1253 #endif 1254 }; 1255 1256 /* 1257 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1258 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1259 * present send GARP packet to network peers with netif_notify_peers(). 1260 */ 1261 static void netvsc_link_change(struct work_struct *w) 1262 { 1263 struct net_device_context *ndev_ctx = 1264 container_of(w, struct net_device_context, dwork.work); 1265 struct hv_device *device_obj = ndev_ctx->device_ctx; 1266 struct net_device *net = hv_get_drvdata(device_obj); 1267 struct netvsc_device *net_device; 1268 struct rndis_device *rdev; 1269 struct netvsc_reconfig *event = NULL; 1270 bool notify = false, reschedule = false; 1271 unsigned long flags, next_reconfig, delay; 1272 1273 rtnl_lock(); 1274 net_device = rtnl_dereference(ndev_ctx->nvdev); 1275 if (!net_device) 1276 goto out_unlock; 1277 1278 rdev = net_device->extension; 1279 1280 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1281 if (time_is_after_jiffies(next_reconfig)) { 1282 /* link_watch only sends one notification with current state 1283 * per second, avoid doing reconfig more frequently. Handle 1284 * wrap around. 1285 */ 1286 delay = next_reconfig - jiffies; 1287 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1288 schedule_delayed_work(&ndev_ctx->dwork, delay); 1289 goto out_unlock; 1290 } 1291 ndev_ctx->last_reconfig = jiffies; 1292 1293 spin_lock_irqsave(&ndev_ctx->lock, flags); 1294 if (!list_empty(&ndev_ctx->reconfig_events)) { 1295 event = list_first_entry(&ndev_ctx->reconfig_events, 1296 struct netvsc_reconfig, list); 1297 list_del(&event->list); 1298 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1299 } 1300 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1301 1302 if (!event) 1303 goto out_unlock; 1304 1305 switch (event->event) { 1306 /* Only the following events are possible due to the check in 1307 * netvsc_linkstatus_callback() 1308 */ 1309 case RNDIS_STATUS_MEDIA_CONNECT: 1310 if (rdev->link_state) { 1311 rdev->link_state = false; 1312 netif_carrier_on(net); 1313 netif_tx_wake_all_queues(net); 1314 } else { 1315 notify = true; 1316 } 1317 kfree(event); 1318 break; 1319 case RNDIS_STATUS_MEDIA_DISCONNECT: 1320 if (!rdev->link_state) { 1321 rdev->link_state = true; 1322 netif_carrier_off(net); 1323 netif_tx_stop_all_queues(net); 1324 } 1325 kfree(event); 1326 break; 1327 case RNDIS_STATUS_NETWORK_CHANGE: 1328 /* Only makes sense if carrier is present */ 1329 if (!rdev->link_state) { 1330 rdev->link_state = true; 1331 netif_carrier_off(net); 1332 netif_tx_stop_all_queues(net); 1333 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1334 spin_lock_irqsave(&ndev_ctx->lock, flags); 1335 list_add(&event->list, &ndev_ctx->reconfig_events); 1336 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1337 reschedule = true; 1338 } 1339 break; 1340 } 1341 1342 rtnl_unlock(); 1343 1344 if (notify) 1345 netdev_notify_peers(net); 1346 1347 /* link_watch only sends one notification with current state per 1348 * second, handle next reconfig event in 2 seconds. 1349 */ 1350 if (reschedule) 1351 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1352 1353 return; 1354 1355 out_unlock: 1356 rtnl_unlock(); 1357 } 1358 1359 static struct net_device *get_netvsc_bymac(const u8 *mac) 1360 { 1361 struct net_device *dev; 1362 1363 ASSERT_RTNL(); 1364 1365 for_each_netdev(&init_net, dev) { 1366 if (dev->netdev_ops != &device_ops) 1367 continue; /* not a netvsc device */ 1368 1369 if (ether_addr_equal(mac, dev->perm_addr)) 1370 return dev; 1371 } 1372 1373 return NULL; 1374 } 1375 1376 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1377 { 1378 struct net_device *dev; 1379 1380 ASSERT_RTNL(); 1381 1382 for_each_netdev(&init_net, dev) { 1383 struct net_device_context *net_device_ctx; 1384 1385 if (dev->netdev_ops != &device_ops) 1386 continue; /* not a netvsc device */ 1387 1388 net_device_ctx = netdev_priv(dev); 1389 if (net_device_ctx->nvdev == NULL) 1390 continue; /* device is removed */ 1391 1392 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev) 1393 return dev; /* a match */ 1394 } 1395 1396 return NULL; 1397 } 1398 1399 static int netvsc_register_vf(struct net_device *vf_netdev) 1400 { 1401 struct net_device *ndev; 1402 struct net_device_context *net_device_ctx; 1403 struct netvsc_device *netvsc_dev; 1404 1405 if (vf_netdev->addr_len != ETH_ALEN) 1406 return NOTIFY_DONE; 1407 1408 /* 1409 * We will use the MAC address to locate the synthetic interface to 1410 * associate with the VF interface. If we don't find a matching 1411 * synthetic interface, move on. 1412 */ 1413 ndev = get_netvsc_bymac(vf_netdev->perm_addr); 1414 if (!ndev) 1415 return NOTIFY_DONE; 1416 1417 net_device_ctx = netdev_priv(ndev); 1418 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1419 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 1420 return NOTIFY_DONE; 1421 1422 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 1423 /* 1424 * Take a reference on the module. 1425 */ 1426 try_module_get(THIS_MODULE); 1427 1428 dev_hold(vf_netdev); 1429 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 1430 return NOTIFY_OK; 1431 } 1432 1433 static int netvsc_vf_up(struct net_device *vf_netdev) 1434 { 1435 struct net_device *ndev; 1436 struct netvsc_device *netvsc_dev; 1437 struct net_device_context *net_device_ctx; 1438 1439 ndev = get_netvsc_byref(vf_netdev); 1440 if (!ndev) 1441 return NOTIFY_DONE; 1442 1443 net_device_ctx = netdev_priv(ndev); 1444 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1445 1446 netdev_info(ndev, "VF up: %s\n", vf_netdev->name); 1447 1448 /* 1449 * Open the device before switching data path. 1450 */ 1451 rndis_filter_open(netvsc_dev); 1452 1453 /* 1454 * notify the host to switch the data path. 1455 */ 1456 netvsc_switch_datapath(ndev, true); 1457 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name); 1458 1459 netif_carrier_off(ndev); 1460 1461 /* Now notify peers through VF device. */ 1462 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev); 1463 1464 return NOTIFY_OK; 1465 } 1466 1467 static int netvsc_vf_down(struct net_device *vf_netdev) 1468 { 1469 struct net_device *ndev; 1470 struct netvsc_device *netvsc_dev; 1471 struct net_device_context *net_device_ctx; 1472 1473 ndev = get_netvsc_byref(vf_netdev); 1474 if (!ndev) 1475 return NOTIFY_DONE; 1476 1477 net_device_ctx = netdev_priv(ndev); 1478 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1479 1480 netdev_info(ndev, "VF down: %s\n", vf_netdev->name); 1481 netvsc_switch_datapath(ndev, false); 1482 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name); 1483 rndis_filter_close(netvsc_dev); 1484 netif_carrier_on(ndev); 1485 1486 /* Now notify peers through netvsc device. */ 1487 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev); 1488 1489 return NOTIFY_OK; 1490 } 1491 1492 static int netvsc_unregister_vf(struct net_device *vf_netdev) 1493 { 1494 struct net_device *ndev; 1495 struct net_device_context *net_device_ctx; 1496 1497 ndev = get_netvsc_byref(vf_netdev); 1498 if (!ndev) 1499 return NOTIFY_DONE; 1500 1501 net_device_ctx = netdev_priv(ndev); 1502 1503 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1504 1505 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 1506 dev_put(vf_netdev); 1507 module_put(THIS_MODULE); 1508 return NOTIFY_OK; 1509 } 1510 1511 static int netvsc_probe(struct hv_device *dev, 1512 const struct hv_vmbus_device_id *dev_id) 1513 { 1514 struct net_device *net = NULL; 1515 struct net_device_context *net_device_ctx; 1516 struct netvsc_device_info device_info; 1517 struct netvsc_device *nvdev; 1518 int ret; 1519 1520 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1521 VRSS_CHANNEL_MAX); 1522 if (!net) 1523 return -ENOMEM; 1524 1525 netif_carrier_off(net); 1526 1527 netvsc_init_settings(net); 1528 1529 net_device_ctx = netdev_priv(net); 1530 net_device_ctx->device_ctx = dev; 1531 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1532 if (netif_msg_probe(net_device_ctx)) 1533 netdev_dbg(net, "netvsc msg_enable: %d\n", 1534 net_device_ctx->msg_enable); 1535 1536 hv_set_drvdata(dev, net); 1537 1538 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1539 1540 spin_lock_init(&net_device_ctx->lock); 1541 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1542 1543 net->netdev_ops = &device_ops; 1544 net->ethtool_ops = ðtool_ops; 1545 SET_NETDEV_DEV(net, &dev->device); 1546 1547 /* We always need headroom for rndis header */ 1548 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1549 1550 /* Notify the netvsc driver of the new device */ 1551 memset(&device_info, 0, sizeof(device_info)); 1552 device_info.ring_size = ring_size; 1553 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 1554 ret = rndis_filter_device_add(dev, &device_info); 1555 if (ret != 0) { 1556 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 1557 free_netdev(net); 1558 hv_set_drvdata(dev, NULL); 1559 return ret; 1560 } 1561 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 1562 1563 /* hw_features computed in rndis_filter_device_add */ 1564 net->features = net->hw_features | 1565 NETIF_F_HIGHDMA | NETIF_F_SG | 1566 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 1567 net->vlan_features = net->features; 1568 1569 /* RCU not necessary here, device not registered */ 1570 nvdev = net_device_ctx->nvdev; 1571 netif_set_real_num_tx_queues(net, nvdev->num_chn); 1572 netif_set_real_num_rx_queues(net, nvdev->num_chn); 1573 1574 /* MTU range: 68 - 1500 or 65521 */ 1575 net->min_mtu = NETVSC_MTU_MIN; 1576 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 1577 net->max_mtu = NETVSC_MTU - ETH_HLEN; 1578 else 1579 net->max_mtu = ETH_DATA_LEN; 1580 1581 ret = register_netdev(net); 1582 if (ret != 0) { 1583 pr_err("Unable to register netdev.\n"); 1584 rndis_filter_device_remove(dev, nvdev); 1585 free_netdev(net); 1586 } 1587 1588 return ret; 1589 } 1590 1591 static int netvsc_remove(struct hv_device *dev) 1592 { 1593 struct net_device *net; 1594 struct net_device_context *ndev_ctx; 1595 1596 net = hv_get_drvdata(dev); 1597 1598 if (net == NULL) { 1599 dev_err(&dev->device, "No net device to remove\n"); 1600 return 0; 1601 } 1602 1603 ndev_ctx = netdev_priv(net); 1604 1605 netif_device_detach(net); 1606 1607 cancel_delayed_work_sync(&ndev_ctx->dwork); 1608 1609 /* 1610 * Call to the vsc driver to let it know that the device is being 1611 * removed. Also blocks mtu and channel changes. 1612 */ 1613 rtnl_lock(); 1614 rndis_filter_device_remove(dev, ndev_ctx->nvdev); 1615 rtnl_unlock(); 1616 1617 unregister_netdev(net); 1618 1619 hv_set_drvdata(dev, NULL); 1620 1621 free_netdev(net); 1622 return 0; 1623 } 1624 1625 static const struct hv_vmbus_device_id id_table[] = { 1626 /* Network guid */ 1627 { HV_NIC_GUID, }, 1628 { }, 1629 }; 1630 1631 MODULE_DEVICE_TABLE(vmbus, id_table); 1632 1633 /* The one and only one */ 1634 static struct hv_driver netvsc_drv = { 1635 .name = KBUILD_MODNAME, 1636 .id_table = id_table, 1637 .probe = netvsc_probe, 1638 .remove = netvsc_remove, 1639 }; 1640 1641 /* 1642 * On Hyper-V, every VF interface is matched with a corresponding 1643 * synthetic interface. The synthetic interface is presented first 1644 * to the guest. When the corresponding VF instance is registered, 1645 * we will take care of switching the data path. 1646 */ 1647 static int netvsc_netdev_event(struct notifier_block *this, 1648 unsigned long event, void *ptr) 1649 { 1650 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 1651 1652 /* Skip our own events */ 1653 if (event_dev->netdev_ops == &device_ops) 1654 return NOTIFY_DONE; 1655 1656 /* Avoid non-Ethernet type devices */ 1657 if (event_dev->type != ARPHRD_ETHER) 1658 return NOTIFY_DONE; 1659 1660 /* Avoid Vlan dev with same MAC registering as VF */ 1661 if (is_vlan_dev(event_dev)) 1662 return NOTIFY_DONE; 1663 1664 /* Avoid Bonding master dev with same MAC registering as VF */ 1665 if ((event_dev->priv_flags & IFF_BONDING) && 1666 (event_dev->flags & IFF_MASTER)) 1667 return NOTIFY_DONE; 1668 1669 switch (event) { 1670 case NETDEV_REGISTER: 1671 return netvsc_register_vf(event_dev); 1672 case NETDEV_UNREGISTER: 1673 return netvsc_unregister_vf(event_dev); 1674 case NETDEV_UP: 1675 return netvsc_vf_up(event_dev); 1676 case NETDEV_DOWN: 1677 return netvsc_vf_down(event_dev); 1678 default: 1679 return NOTIFY_DONE; 1680 } 1681 } 1682 1683 static struct notifier_block netvsc_netdev_notifier = { 1684 .notifier_call = netvsc_netdev_event, 1685 }; 1686 1687 static void __exit netvsc_drv_exit(void) 1688 { 1689 unregister_netdevice_notifier(&netvsc_netdev_notifier); 1690 vmbus_driver_unregister(&netvsc_drv); 1691 } 1692 1693 static int __init netvsc_drv_init(void) 1694 { 1695 int ret; 1696 1697 if (ring_size < RING_SIZE_MIN) { 1698 ring_size = RING_SIZE_MIN; 1699 pr_info("Increased ring_size to %d (min allowed)\n", 1700 ring_size); 1701 } 1702 ret = vmbus_driver_register(&netvsc_drv); 1703 1704 if (ret) 1705 return ret; 1706 1707 register_netdevice_notifier(&netvsc_netdev_notifier); 1708 return 0; 1709 } 1710 1711 MODULE_LICENSE("GPL"); 1712 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 1713 1714 module_init(netvsc_drv_init); 1715 module_exit(netvsc_drv_exit); 1716