xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision f7d84fa7)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40 
41 #include "hyperv_net.h"
42 
43 #define RING_SIZE_MIN 64
44 #define LINKCHANGE_INT (2 * HZ)
45 
46 static int ring_size = 128;
47 module_param(ring_size, int, S_IRUGO);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49 
50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
52 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
53 				NETIF_MSG_TX_ERR;
54 
55 static int debug = -1;
56 module_param(debug, int, S_IRUGO);
57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
58 
59 static void netvsc_set_multicast_list(struct net_device *net)
60 {
61 	struct net_device_context *net_device_ctx = netdev_priv(net);
62 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
63 
64 	rndis_filter_update(nvdev);
65 }
66 
67 static int netvsc_open(struct net_device *net)
68 {
69 	struct netvsc_device *nvdev = net_device_to_netvsc_device(net);
70 	struct rndis_device *rdev;
71 	int ret = 0;
72 
73 	netif_carrier_off(net);
74 
75 	/* Open up the device */
76 	ret = rndis_filter_open(nvdev);
77 	if (ret != 0) {
78 		netdev_err(net, "unable to open device (ret %d).\n", ret);
79 		return ret;
80 	}
81 
82 	netif_tx_wake_all_queues(net);
83 
84 	rdev = nvdev->extension;
85 	if (!rdev->link_state)
86 		netif_carrier_on(net);
87 
88 	return ret;
89 }
90 
91 static int netvsc_close(struct net_device *net)
92 {
93 	struct net_device_context *net_device_ctx = netdev_priv(net);
94 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
95 	int ret;
96 	u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
97 	struct vmbus_channel *chn;
98 
99 	netif_tx_disable(net);
100 
101 	ret = rndis_filter_close(nvdev);
102 	if (ret != 0) {
103 		netdev_err(net, "unable to close device (ret %d).\n", ret);
104 		return ret;
105 	}
106 
107 	/* Ensure pending bytes in ring are read */
108 	while (true) {
109 		aread = 0;
110 		for (i = 0; i < nvdev->num_chn; i++) {
111 			chn = nvdev->chan_table[i].channel;
112 			if (!chn)
113 				continue;
114 
115 			hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
116 						     &awrite);
117 
118 			if (aread)
119 				break;
120 
121 			hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
122 						     &awrite);
123 
124 			if (aread)
125 				break;
126 		}
127 
128 		retry++;
129 		if (retry > retry_max || aread == 0)
130 			break;
131 
132 		msleep(msec);
133 
134 		if (msec < 1000)
135 			msec *= 2;
136 	}
137 
138 	if (aread) {
139 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
140 		ret = -ETIMEDOUT;
141 	}
142 
143 	return ret;
144 }
145 
146 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
147 				int pkt_type)
148 {
149 	struct rndis_packet *rndis_pkt;
150 	struct rndis_per_packet_info *ppi;
151 
152 	rndis_pkt = &msg->msg.pkt;
153 	rndis_pkt->data_offset += ppi_size;
154 
155 	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
156 		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
157 
158 	ppi->size = ppi_size;
159 	ppi->type = pkt_type;
160 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
161 
162 	rndis_pkt->per_pkt_info_len += ppi_size;
163 
164 	return ppi;
165 }
166 
167 /* Azure hosts don't support non-TCP port numbers in hashing yet. We compute
168  * hash for non-TCP traffic with only IP numbers.
169  */
170 static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk)
171 {
172 	struct flow_keys flow;
173 	u32 hash;
174 	static u32 hashrnd __read_mostly;
175 
176 	net_get_random_once(&hashrnd, sizeof(hashrnd));
177 
178 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
179 		return 0;
180 
181 	if (flow.basic.ip_proto == IPPROTO_TCP) {
182 		return skb_get_hash(skb);
183 	} else {
184 		if (flow.basic.n_proto == htons(ETH_P_IP))
185 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
186 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
187 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
188 		else
189 			hash = 0;
190 
191 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
192 	}
193 
194 	return hash;
195 }
196 
197 static inline int netvsc_get_tx_queue(struct net_device *ndev,
198 				      struct sk_buff *skb, int old_idx)
199 {
200 	const struct net_device_context *ndc = netdev_priv(ndev);
201 	struct sock *sk = skb->sk;
202 	int q_idx;
203 
204 	q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) &
205 				   (VRSS_SEND_TAB_SIZE - 1)];
206 
207 	/* If queue index changed record the new value */
208 	if (q_idx != old_idx &&
209 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
210 		sk_tx_queue_set(sk, q_idx);
211 
212 	return q_idx;
213 }
214 
215 /*
216  * Select queue for transmit.
217  *
218  * If a valid queue has already been assigned, then use that.
219  * Otherwise compute tx queue based on hash and the send table.
220  *
221  * This is basically similar to default (__netdev_pick_tx) with the added step
222  * of using the host send_table when no other queue has been assigned.
223  *
224  * TODO support XPS - but get_xps_queue not exported
225  */
226 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
227 			void *accel_priv, select_queue_fallback_t fallback)
228 {
229 	unsigned int num_tx_queues = ndev->real_num_tx_queues;
230 	int q_idx = sk_tx_queue_get(skb->sk);
231 
232 	if (q_idx < 0 || skb->ooo_okay) {
233 		/* If forwarding a packet, we use the recorded queue when
234 		 * available for better cache locality.
235 		 */
236 		if (skb_rx_queue_recorded(skb))
237 			q_idx = skb_get_rx_queue(skb);
238 		else
239 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
240 	}
241 
242 	while (unlikely(q_idx >= num_tx_queues))
243 		q_idx -= num_tx_queues;
244 
245 	return q_idx;
246 }
247 
248 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
249 			struct hv_page_buffer *pb)
250 {
251 	int j = 0;
252 
253 	/* Deal with compund pages by ignoring unused part
254 	 * of the page.
255 	 */
256 	page += (offset >> PAGE_SHIFT);
257 	offset &= ~PAGE_MASK;
258 
259 	while (len > 0) {
260 		unsigned long bytes;
261 
262 		bytes = PAGE_SIZE - offset;
263 		if (bytes > len)
264 			bytes = len;
265 		pb[j].pfn = page_to_pfn(page);
266 		pb[j].offset = offset;
267 		pb[j].len = bytes;
268 
269 		offset += bytes;
270 		len -= bytes;
271 
272 		if (offset == PAGE_SIZE && len) {
273 			page++;
274 			offset = 0;
275 			j++;
276 		}
277 	}
278 
279 	return j + 1;
280 }
281 
282 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
283 			   struct hv_netvsc_packet *packet,
284 			   struct hv_page_buffer **page_buf)
285 {
286 	struct hv_page_buffer *pb = *page_buf;
287 	u32 slots_used = 0;
288 	char *data = skb->data;
289 	int frags = skb_shinfo(skb)->nr_frags;
290 	int i;
291 
292 	/* The packet is laid out thus:
293 	 * 1. hdr: RNDIS header and PPI
294 	 * 2. skb linear data
295 	 * 3. skb fragment data
296 	 */
297 	if (hdr != NULL)
298 		slots_used += fill_pg_buf(virt_to_page(hdr),
299 					offset_in_page(hdr),
300 					len, &pb[slots_used]);
301 
302 	packet->rmsg_size = len;
303 	packet->rmsg_pgcnt = slots_used;
304 
305 	slots_used += fill_pg_buf(virt_to_page(data),
306 				offset_in_page(data),
307 				skb_headlen(skb), &pb[slots_used]);
308 
309 	for (i = 0; i < frags; i++) {
310 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
311 
312 		slots_used += fill_pg_buf(skb_frag_page(frag),
313 					frag->page_offset,
314 					skb_frag_size(frag), &pb[slots_used]);
315 	}
316 	return slots_used;
317 }
318 
319 static int count_skb_frag_slots(struct sk_buff *skb)
320 {
321 	int i, frags = skb_shinfo(skb)->nr_frags;
322 	int pages = 0;
323 
324 	for (i = 0; i < frags; i++) {
325 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
326 		unsigned long size = skb_frag_size(frag);
327 		unsigned long offset = frag->page_offset;
328 
329 		/* Skip unused frames from start of page */
330 		offset &= ~PAGE_MASK;
331 		pages += PFN_UP(offset + size);
332 	}
333 	return pages;
334 }
335 
336 static int netvsc_get_slots(struct sk_buff *skb)
337 {
338 	char *data = skb->data;
339 	unsigned int offset = offset_in_page(data);
340 	unsigned int len = skb_headlen(skb);
341 	int slots;
342 	int frag_slots;
343 
344 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
345 	frag_slots = count_skb_frag_slots(skb);
346 	return slots + frag_slots;
347 }
348 
349 static u32 net_checksum_info(struct sk_buff *skb)
350 {
351 	if (skb->protocol == htons(ETH_P_IP)) {
352 		struct iphdr *ip = ip_hdr(skb);
353 
354 		if (ip->protocol == IPPROTO_TCP)
355 			return TRANSPORT_INFO_IPV4_TCP;
356 		else if (ip->protocol == IPPROTO_UDP)
357 			return TRANSPORT_INFO_IPV4_UDP;
358 	} else {
359 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
360 
361 		if (ip6->nexthdr == IPPROTO_TCP)
362 			return TRANSPORT_INFO_IPV6_TCP;
363 		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
364 			return TRANSPORT_INFO_IPV6_UDP;
365 	}
366 
367 	return TRANSPORT_INFO_NOT_IP;
368 }
369 
370 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
371 {
372 	struct net_device_context *net_device_ctx = netdev_priv(net);
373 	struct hv_netvsc_packet *packet = NULL;
374 	int ret;
375 	unsigned int num_data_pgs;
376 	struct rndis_message *rndis_msg;
377 	struct rndis_packet *rndis_pkt;
378 	u32 rndis_msg_size;
379 	struct rndis_per_packet_info *ppi;
380 	u32 hash;
381 	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
382 	struct hv_page_buffer *pb = page_buf;
383 
384 	/* We will atmost need two pages to describe the rndis
385 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
386 	 * of pages in a single packet. If skb is scattered around
387 	 * more pages we try linearizing it.
388 	 */
389 
390 	num_data_pgs = netvsc_get_slots(skb) + 2;
391 
392 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
393 		++net_device_ctx->eth_stats.tx_scattered;
394 
395 		if (skb_linearize(skb))
396 			goto no_memory;
397 
398 		num_data_pgs = netvsc_get_slots(skb) + 2;
399 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
400 			++net_device_ctx->eth_stats.tx_too_big;
401 			goto drop;
402 		}
403 	}
404 
405 	/*
406 	 * Place the rndis header in the skb head room and
407 	 * the skb->cb will be used for hv_netvsc_packet
408 	 * structure.
409 	 */
410 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
411 	if (ret)
412 		goto no_memory;
413 
414 	/* Use the skb control buffer for building up the packet */
415 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
416 			FIELD_SIZEOF(struct sk_buff, cb));
417 	packet = (struct hv_netvsc_packet *)skb->cb;
418 
419 	packet->q_idx = skb_get_queue_mapping(skb);
420 
421 	packet->total_data_buflen = skb->len;
422 	packet->total_bytes = skb->len;
423 	packet->total_packets = 1;
424 
425 	rndis_msg = (struct rndis_message *)skb->head;
426 
427 	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
428 
429 	/* Add the rndis header */
430 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
431 	rndis_msg->msg_len = packet->total_data_buflen;
432 	rndis_pkt = &rndis_msg->msg.pkt;
433 	rndis_pkt->data_offset = sizeof(struct rndis_packet);
434 	rndis_pkt->data_len = packet->total_data_buflen;
435 	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
436 
437 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
438 
439 	hash = skb_get_hash_raw(skb);
440 	if (hash != 0 && net->real_num_tx_queues > 1) {
441 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
442 		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
443 				    NBL_HASH_VALUE);
444 		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
445 	}
446 
447 	if (skb_vlan_tag_present(skb)) {
448 		struct ndis_pkt_8021q_info *vlan;
449 
450 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
451 		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
452 					IEEE_8021Q_INFO);
453 		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
454 						ppi->ppi_offset);
455 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
456 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
457 				VLAN_PRIO_SHIFT;
458 	}
459 
460 	if (skb_is_gso(skb)) {
461 		struct ndis_tcp_lso_info *lso_info;
462 
463 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
464 		ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
465 				    TCP_LARGESEND_PKTINFO);
466 
467 		lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
468 							ppi->ppi_offset);
469 
470 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
471 		if (skb->protocol == htons(ETH_P_IP)) {
472 			lso_info->lso_v2_transmit.ip_version =
473 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
474 			ip_hdr(skb)->tot_len = 0;
475 			ip_hdr(skb)->check = 0;
476 			tcp_hdr(skb)->check =
477 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
478 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
479 		} else {
480 			lso_info->lso_v2_transmit.ip_version =
481 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
482 			ipv6_hdr(skb)->payload_len = 0;
483 			tcp_hdr(skb)->check =
484 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
485 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
486 		}
487 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
488 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
489 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
490 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
491 			struct ndis_tcp_ip_checksum_info *csum_info;
492 
493 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
494 			ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
495 					    TCPIP_CHKSUM_PKTINFO);
496 
497 			csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
498 									 ppi->ppi_offset);
499 
500 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
501 
502 			if (skb->protocol == htons(ETH_P_IP)) {
503 				csum_info->transmit.is_ipv4 = 1;
504 
505 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
506 					csum_info->transmit.tcp_checksum = 1;
507 				else
508 					csum_info->transmit.udp_checksum = 1;
509 			} else {
510 				csum_info->transmit.is_ipv6 = 1;
511 
512 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
513 					csum_info->transmit.tcp_checksum = 1;
514 				else
515 					csum_info->transmit.udp_checksum = 1;
516 			}
517 		} else {
518 			/* Can't do offload of this type of checksum */
519 			if (skb_checksum_help(skb))
520 				goto drop;
521 		}
522 	}
523 
524 	/* Start filling in the page buffers with the rndis hdr */
525 	rndis_msg->msg_len += rndis_msg_size;
526 	packet->total_data_buflen = rndis_msg->msg_len;
527 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
528 					       skb, packet, &pb);
529 
530 	/* timestamp packet in software */
531 	skb_tx_timestamp(skb);
532 	ret = netvsc_send(net_device_ctx->device_ctx, packet,
533 			  rndis_msg, &pb, skb);
534 	if (likely(ret == 0))
535 		return NETDEV_TX_OK;
536 
537 	if (ret == -EAGAIN) {
538 		++net_device_ctx->eth_stats.tx_busy;
539 		return NETDEV_TX_BUSY;
540 	}
541 
542 	if (ret == -ENOSPC)
543 		++net_device_ctx->eth_stats.tx_no_space;
544 
545 drop:
546 	dev_kfree_skb_any(skb);
547 	net->stats.tx_dropped++;
548 
549 	return NETDEV_TX_OK;
550 
551 no_memory:
552 	++net_device_ctx->eth_stats.tx_no_memory;
553 	goto drop;
554 }
555 /*
556  * netvsc_linkstatus_callback - Link up/down notification
557  */
558 void netvsc_linkstatus_callback(struct hv_device *device_obj,
559 				struct rndis_message *resp)
560 {
561 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
562 	struct net_device *net;
563 	struct net_device_context *ndev_ctx;
564 	struct netvsc_reconfig *event;
565 	unsigned long flags;
566 
567 	net = hv_get_drvdata(device_obj);
568 
569 	if (!net)
570 		return;
571 
572 	ndev_ctx = netdev_priv(net);
573 
574 	/* Update the physical link speed when changing to another vSwitch */
575 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
576 		u32 speed;
577 
578 		speed = *(u32 *)((void *)indicate + indicate->
579 				 status_buf_offset) / 10000;
580 		ndev_ctx->speed = speed;
581 		return;
582 	}
583 
584 	/* Handle these link change statuses below */
585 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
586 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
587 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
588 		return;
589 
590 	if (net->reg_state != NETREG_REGISTERED)
591 		return;
592 
593 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
594 	if (!event)
595 		return;
596 	event->event = indicate->status;
597 
598 	spin_lock_irqsave(&ndev_ctx->lock, flags);
599 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
600 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
601 
602 	schedule_delayed_work(&ndev_ctx->dwork, 0);
603 }
604 
605 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
606 					     struct napi_struct *napi,
607 					     const struct ndis_tcp_ip_checksum_info *csum_info,
608 					     const struct ndis_pkt_8021q_info *vlan,
609 					     void *data, u32 buflen)
610 {
611 	struct sk_buff *skb;
612 
613 	skb = napi_alloc_skb(napi, buflen);
614 	if (!skb)
615 		return skb;
616 
617 	/*
618 	 * Copy to skb. This copy is needed here since the memory pointed by
619 	 * hv_netvsc_packet cannot be deallocated
620 	 */
621 	memcpy(skb_put(skb, buflen), data, buflen);
622 
623 	skb->protocol = eth_type_trans(skb, net);
624 
625 	/* skb is already created with CHECKSUM_NONE */
626 	skb_checksum_none_assert(skb);
627 
628 	/*
629 	 * In Linux, the IP checksum is always checked.
630 	 * Do L4 checksum offload if enabled and present.
631 	 */
632 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
633 		if (csum_info->receive.tcp_checksum_succeeded ||
634 		    csum_info->receive.udp_checksum_succeeded)
635 			skb->ip_summed = CHECKSUM_UNNECESSARY;
636 	}
637 
638 	if (vlan) {
639 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
640 
641 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
642 				       vlan_tci);
643 	}
644 
645 	return skb;
646 }
647 
648 /*
649  * netvsc_recv_callback -  Callback when we receive a packet from the
650  * "wire" on the specified device.
651  */
652 int netvsc_recv_callback(struct net_device *net,
653 			 struct vmbus_channel *channel,
654 			 void  *data, u32 len,
655 			 const struct ndis_tcp_ip_checksum_info *csum_info,
656 			 const struct ndis_pkt_8021q_info *vlan)
657 {
658 	struct net_device_context *net_device_ctx = netdev_priv(net);
659 	struct netvsc_device *net_device;
660 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
661 	struct netvsc_channel *nvchan;
662 	struct net_device *vf_netdev;
663 	struct sk_buff *skb;
664 	struct netvsc_stats *rx_stats;
665 
666 	if (net->reg_state != NETREG_REGISTERED)
667 		return NVSP_STAT_FAIL;
668 
669 	/*
670 	 * If necessary, inject this packet into the VF interface.
671 	 * On Hyper-V, multicast and brodcast packets are only delivered
672 	 * to the synthetic interface (after subjecting these to
673 	 * policy filters on the host). Deliver these via the VF
674 	 * interface in the guest.
675 	 */
676 	rcu_read_lock();
677 	net_device = rcu_dereference(net_device_ctx->nvdev);
678 	if (unlikely(!net_device))
679 		goto drop;
680 
681 	nvchan = &net_device->chan_table[q_idx];
682 	vf_netdev = rcu_dereference(net_device_ctx->vf_netdev);
683 	if (vf_netdev && (vf_netdev->flags & IFF_UP))
684 		net = vf_netdev;
685 
686 	/* Allocate a skb - TODO direct I/O to pages? */
687 	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
688 				    csum_info, vlan, data, len);
689 	if (unlikely(!skb)) {
690 drop:
691 		++net->stats.rx_dropped;
692 		rcu_read_unlock();
693 		return NVSP_STAT_FAIL;
694 	}
695 
696 	if (net != vf_netdev)
697 		skb_record_rx_queue(skb, q_idx);
698 
699 	/*
700 	 * Even if injecting the packet, record the statistics
701 	 * on the synthetic device because modifying the VF device
702 	 * statistics will not work correctly.
703 	 */
704 	rx_stats = &nvchan->rx_stats;
705 	u64_stats_update_begin(&rx_stats->syncp);
706 	rx_stats->packets++;
707 	rx_stats->bytes += len;
708 
709 	if (skb->pkt_type == PACKET_BROADCAST)
710 		++rx_stats->broadcast;
711 	else if (skb->pkt_type == PACKET_MULTICAST)
712 		++rx_stats->multicast;
713 	u64_stats_update_end(&rx_stats->syncp);
714 
715 	napi_gro_receive(&nvchan->napi, skb);
716 	rcu_read_unlock();
717 
718 	return 0;
719 }
720 
721 static void netvsc_get_drvinfo(struct net_device *net,
722 			       struct ethtool_drvinfo *info)
723 {
724 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
725 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
726 }
727 
728 static void netvsc_get_channels(struct net_device *net,
729 				struct ethtool_channels *channel)
730 {
731 	struct net_device_context *net_device_ctx = netdev_priv(net);
732 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
733 
734 	if (nvdev) {
735 		channel->max_combined	= nvdev->max_chn;
736 		channel->combined_count = nvdev->num_chn;
737 	}
738 }
739 
740 static int netvsc_set_queues(struct net_device *net, struct hv_device *dev,
741 			     u32 num_chn)
742 {
743 	struct netvsc_device_info device_info;
744 	int ret;
745 
746 	memset(&device_info, 0, sizeof(device_info));
747 	device_info.num_chn = num_chn;
748 	device_info.ring_size = ring_size;
749 	device_info.max_num_vrss_chns = num_chn;
750 
751 	ret = rndis_filter_device_add(dev, &device_info);
752 	if (ret)
753 		return ret;
754 
755 	ret = netif_set_real_num_tx_queues(net, num_chn);
756 	if (ret)
757 		return ret;
758 
759 	ret = netif_set_real_num_rx_queues(net, num_chn);
760 
761 	return ret;
762 }
763 
764 static int netvsc_set_channels(struct net_device *net,
765 			       struct ethtool_channels *channels)
766 {
767 	struct net_device_context *net_device_ctx = netdev_priv(net);
768 	struct hv_device *dev = net_device_ctx->device_ctx;
769 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
770 	unsigned int count = channels->combined_count;
771 	bool was_running;
772 	int ret;
773 
774 	/* We do not support separate count for rx, tx, or other */
775 	if (count == 0 ||
776 	    channels->rx_count || channels->tx_count || channels->other_count)
777 		return -EINVAL;
778 
779 	if (count > net->num_tx_queues || count > net->num_rx_queues)
780 		return -EINVAL;
781 
782 	if (!nvdev || nvdev->destroy)
783 		return -ENODEV;
784 
785 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
786 		return -EINVAL;
787 
788 	if (count > nvdev->max_chn)
789 		return -EINVAL;
790 
791 	was_running = netif_running(net);
792 	if (was_running) {
793 		ret = netvsc_close(net);
794 		if (ret)
795 			return ret;
796 	}
797 
798 	rndis_filter_device_remove(dev, nvdev);
799 
800 	ret = netvsc_set_queues(net, dev, count);
801 	if (ret == 0)
802 		nvdev->num_chn = count;
803 	else
804 		netvsc_set_queues(net, dev, nvdev->num_chn);
805 
806 	if (was_running)
807 		ret = netvsc_open(net);
808 
809 	/* We may have missed link change notifications */
810 	schedule_delayed_work(&net_device_ctx->dwork, 0);
811 
812 	return ret;
813 }
814 
815 static bool
816 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
817 {
818 	struct ethtool_link_ksettings diff1 = *cmd;
819 	struct ethtool_link_ksettings diff2 = {};
820 
821 	diff1.base.speed = 0;
822 	diff1.base.duplex = 0;
823 	/* advertising and cmd are usually set */
824 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
825 	diff1.base.cmd = 0;
826 	/* We set port to PORT_OTHER */
827 	diff2.base.port = PORT_OTHER;
828 
829 	return !memcmp(&diff1, &diff2, sizeof(diff1));
830 }
831 
832 static void netvsc_init_settings(struct net_device *dev)
833 {
834 	struct net_device_context *ndc = netdev_priv(dev);
835 
836 	ndc->speed = SPEED_UNKNOWN;
837 	ndc->duplex = DUPLEX_FULL;
838 }
839 
840 static int netvsc_get_link_ksettings(struct net_device *dev,
841 				     struct ethtool_link_ksettings *cmd)
842 {
843 	struct net_device_context *ndc = netdev_priv(dev);
844 
845 	cmd->base.speed = ndc->speed;
846 	cmd->base.duplex = ndc->duplex;
847 	cmd->base.port = PORT_OTHER;
848 
849 	return 0;
850 }
851 
852 static int netvsc_set_link_ksettings(struct net_device *dev,
853 				     const struct ethtool_link_ksettings *cmd)
854 {
855 	struct net_device_context *ndc = netdev_priv(dev);
856 	u32 speed;
857 
858 	speed = cmd->base.speed;
859 	if (!ethtool_validate_speed(speed) ||
860 	    !ethtool_validate_duplex(cmd->base.duplex) ||
861 	    !netvsc_validate_ethtool_ss_cmd(cmd))
862 		return -EINVAL;
863 
864 	ndc->speed = speed;
865 	ndc->duplex = cmd->base.duplex;
866 
867 	return 0;
868 }
869 
870 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
871 {
872 	struct net_device_context *ndevctx = netdev_priv(ndev);
873 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
874 	struct hv_device *hdev = ndevctx->device_ctx;
875 	struct netvsc_device_info device_info;
876 	bool was_running;
877 	int ret = 0;
878 
879 	if (!nvdev || nvdev->destroy)
880 		return -ENODEV;
881 
882 	was_running = netif_running(ndev);
883 	if (was_running) {
884 		ret = netvsc_close(ndev);
885 		if (ret)
886 			return ret;
887 	}
888 
889 	memset(&device_info, 0, sizeof(device_info));
890 	device_info.ring_size = ring_size;
891 	device_info.num_chn = nvdev->num_chn;
892 	device_info.max_num_vrss_chns = nvdev->num_chn;
893 
894 	rndis_filter_device_remove(hdev, nvdev);
895 
896 	/* 'nvdev' has been freed in rndis_filter_device_remove() ->
897 	 * netvsc_device_remove () -> free_netvsc_device().
898 	 * We mustn't access it before it's re-created in
899 	 * rndis_filter_device_add() -> netvsc_device_add().
900 	 */
901 
902 	ndev->mtu = mtu;
903 
904 	rndis_filter_device_add(hdev, &device_info);
905 
906 	if (was_running)
907 		ret = netvsc_open(ndev);
908 
909 	/* We may have missed link change notifications */
910 	schedule_delayed_work(&ndevctx->dwork, 0);
911 
912 	return ret;
913 }
914 
915 static void netvsc_get_stats64(struct net_device *net,
916 			       struct rtnl_link_stats64 *t)
917 {
918 	struct net_device_context *ndev_ctx = netdev_priv(net);
919 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
920 	int i;
921 
922 	if (!nvdev)
923 		return;
924 
925 	for (i = 0; i < nvdev->num_chn; i++) {
926 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
927 		const struct netvsc_stats *stats;
928 		u64 packets, bytes, multicast;
929 		unsigned int start;
930 
931 		stats = &nvchan->tx_stats;
932 		do {
933 			start = u64_stats_fetch_begin_irq(&stats->syncp);
934 			packets = stats->packets;
935 			bytes = stats->bytes;
936 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
937 
938 		t->tx_bytes	+= bytes;
939 		t->tx_packets	+= packets;
940 
941 		stats = &nvchan->rx_stats;
942 		do {
943 			start = u64_stats_fetch_begin_irq(&stats->syncp);
944 			packets = stats->packets;
945 			bytes = stats->bytes;
946 			multicast = stats->multicast + stats->broadcast;
947 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
948 
949 		t->rx_bytes	+= bytes;
950 		t->rx_packets	+= packets;
951 		t->multicast	+= multicast;
952 	}
953 
954 	t->tx_dropped	= net->stats.tx_dropped;
955 	t->tx_errors	= net->stats.tx_errors;
956 
957 	t->rx_dropped	= net->stats.rx_dropped;
958 	t->rx_errors	= net->stats.rx_errors;
959 }
960 
961 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
962 {
963 	struct sockaddr *addr = p;
964 	char save_adr[ETH_ALEN];
965 	unsigned char save_aatype;
966 	int err;
967 
968 	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
969 	save_aatype = ndev->addr_assign_type;
970 
971 	err = eth_mac_addr(ndev, p);
972 	if (err != 0)
973 		return err;
974 
975 	err = rndis_filter_set_device_mac(ndev, addr->sa_data);
976 	if (err != 0) {
977 		/* roll back to saved MAC */
978 		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
979 		ndev->addr_assign_type = save_aatype;
980 	}
981 
982 	return err;
983 }
984 
985 static const struct {
986 	char name[ETH_GSTRING_LEN];
987 	u16 offset;
988 } netvsc_stats[] = {
989 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
990 	{ "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
991 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
992 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
993 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
994 };
995 
996 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
997 
998 /* 4 statistics per queue (rx/tx packets/bytes) */
999 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1000 
1001 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1002 {
1003 	struct net_device_context *ndc = netdev_priv(dev);
1004 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1005 
1006 	if (!nvdev)
1007 		return -ENODEV;
1008 
1009 	switch (string_set) {
1010 	case ETH_SS_STATS:
1011 		return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev);
1012 	default:
1013 		return -EINVAL;
1014 	}
1015 }
1016 
1017 static void netvsc_get_ethtool_stats(struct net_device *dev,
1018 				     struct ethtool_stats *stats, u64 *data)
1019 {
1020 	struct net_device_context *ndc = netdev_priv(dev);
1021 	struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1022 	const void *nds = &ndc->eth_stats;
1023 	const struct netvsc_stats *qstats;
1024 	unsigned int start;
1025 	u64 packets, bytes;
1026 	int i, j;
1027 
1028 	if (!nvdev)
1029 		return;
1030 
1031 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1032 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1033 
1034 	for (j = 0; j < nvdev->num_chn; j++) {
1035 		qstats = &nvdev->chan_table[j].tx_stats;
1036 
1037 		do {
1038 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1039 			packets = qstats->packets;
1040 			bytes = qstats->bytes;
1041 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1042 		data[i++] = packets;
1043 		data[i++] = bytes;
1044 
1045 		qstats = &nvdev->chan_table[j].rx_stats;
1046 		do {
1047 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1048 			packets = qstats->packets;
1049 			bytes = qstats->bytes;
1050 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1051 		data[i++] = packets;
1052 		data[i++] = bytes;
1053 	}
1054 }
1055 
1056 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1057 {
1058 	struct net_device_context *ndc = netdev_priv(dev);
1059 	struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1060 	u8 *p = data;
1061 	int i;
1062 
1063 	if (!nvdev)
1064 		return;
1065 
1066 	switch (stringset) {
1067 	case ETH_SS_STATS:
1068 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1069 			memcpy(p + i * ETH_GSTRING_LEN,
1070 			       netvsc_stats[i].name, ETH_GSTRING_LEN);
1071 
1072 		p += i * ETH_GSTRING_LEN;
1073 		for (i = 0; i < nvdev->num_chn; i++) {
1074 			sprintf(p, "tx_queue_%u_packets", i);
1075 			p += ETH_GSTRING_LEN;
1076 			sprintf(p, "tx_queue_%u_bytes", i);
1077 			p += ETH_GSTRING_LEN;
1078 			sprintf(p, "rx_queue_%u_packets", i);
1079 			p += ETH_GSTRING_LEN;
1080 			sprintf(p, "rx_queue_%u_bytes", i);
1081 			p += ETH_GSTRING_LEN;
1082 		}
1083 
1084 		break;
1085 	}
1086 }
1087 
1088 static int
1089 netvsc_get_rss_hash_opts(struct netvsc_device *nvdev,
1090 			 struct ethtool_rxnfc *info)
1091 {
1092 	info->data = RXH_IP_SRC | RXH_IP_DST;
1093 
1094 	switch (info->flow_type) {
1095 	case TCP_V4_FLOW:
1096 	case TCP_V6_FLOW:
1097 		info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1098 		/* fallthrough */
1099 	case UDP_V4_FLOW:
1100 	case UDP_V6_FLOW:
1101 	case IPV4_FLOW:
1102 	case IPV6_FLOW:
1103 		break;
1104 	default:
1105 		info->data = 0;
1106 		break;
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 static int
1113 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1114 		 u32 *rules)
1115 {
1116 	struct net_device_context *ndc = netdev_priv(dev);
1117 	struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1118 
1119 	if (!nvdev)
1120 		return -ENODEV;
1121 
1122 	switch (info->cmd) {
1123 	case ETHTOOL_GRXRINGS:
1124 		info->data = nvdev->num_chn;
1125 		return 0;
1126 
1127 	case ETHTOOL_GRXFH:
1128 		return netvsc_get_rss_hash_opts(nvdev, info);
1129 	}
1130 	return -EOPNOTSUPP;
1131 }
1132 
1133 #ifdef CONFIG_NET_POLL_CONTROLLER
1134 static void netvsc_poll_controller(struct net_device *dev)
1135 {
1136 	struct net_device_context *ndc = netdev_priv(dev);
1137 	struct netvsc_device *ndev;
1138 	int i;
1139 
1140 	rcu_read_lock();
1141 	ndev = rcu_dereference(ndc->nvdev);
1142 	if (ndev) {
1143 		for (i = 0; i < ndev->num_chn; i++) {
1144 			struct netvsc_channel *nvchan = &ndev->chan_table[i];
1145 
1146 			napi_schedule(&nvchan->napi);
1147 		}
1148 	}
1149 	rcu_read_unlock();
1150 }
1151 #endif
1152 
1153 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1154 {
1155 	return NETVSC_HASH_KEYLEN;
1156 }
1157 
1158 static u32 netvsc_rss_indir_size(struct net_device *dev)
1159 {
1160 	return ITAB_NUM;
1161 }
1162 
1163 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1164 			   u8 *hfunc)
1165 {
1166 	struct net_device_context *ndc = netdev_priv(dev);
1167 	struct netvsc_device *ndev = rcu_dereference(ndc->nvdev);
1168 	struct rndis_device *rndis_dev;
1169 	int i;
1170 
1171 	if (!ndev)
1172 		return -ENODEV;
1173 
1174 	if (hfunc)
1175 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1176 
1177 	rndis_dev = ndev->extension;
1178 	if (indir) {
1179 		for (i = 0; i < ITAB_NUM; i++)
1180 			indir[i] = rndis_dev->ind_table[i];
1181 	}
1182 
1183 	if (key)
1184 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1185 
1186 	return 0;
1187 }
1188 
1189 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1190 			   const u8 *key, const u8 hfunc)
1191 {
1192 	struct net_device_context *ndc = netdev_priv(dev);
1193 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1194 	struct rndis_device *rndis_dev;
1195 	int i;
1196 
1197 	if (!ndev)
1198 		return -ENODEV;
1199 
1200 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1201 		return -EOPNOTSUPP;
1202 
1203 	rndis_dev = ndev->extension;
1204 	if (indir) {
1205 		for (i = 0; i < ITAB_NUM; i++)
1206 			if (indir[i] >= dev->num_rx_queues)
1207 				return -EINVAL;
1208 
1209 		for (i = 0; i < ITAB_NUM; i++)
1210 			rndis_dev->ind_table[i] = indir[i];
1211 	}
1212 
1213 	if (!key) {
1214 		if (!indir)
1215 			return 0;
1216 
1217 		key = rndis_dev->rss_key;
1218 	}
1219 
1220 	return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn);
1221 }
1222 
1223 static const struct ethtool_ops ethtool_ops = {
1224 	.get_drvinfo	= netvsc_get_drvinfo,
1225 	.get_link	= ethtool_op_get_link,
1226 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1227 	.get_sset_count = netvsc_get_sset_count,
1228 	.get_strings	= netvsc_get_strings,
1229 	.get_channels   = netvsc_get_channels,
1230 	.set_channels   = netvsc_set_channels,
1231 	.get_ts_info	= ethtool_op_get_ts_info,
1232 	.get_rxnfc	= netvsc_get_rxnfc,
1233 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1234 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1235 	.get_rxfh	= netvsc_get_rxfh,
1236 	.set_rxfh	= netvsc_set_rxfh,
1237 	.get_link_ksettings = netvsc_get_link_ksettings,
1238 	.set_link_ksettings = netvsc_set_link_ksettings,
1239 };
1240 
1241 static const struct net_device_ops device_ops = {
1242 	.ndo_open =			netvsc_open,
1243 	.ndo_stop =			netvsc_close,
1244 	.ndo_start_xmit =		netvsc_start_xmit,
1245 	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1246 	.ndo_change_mtu =		netvsc_change_mtu,
1247 	.ndo_validate_addr =		eth_validate_addr,
1248 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1249 	.ndo_select_queue =		netvsc_select_queue,
1250 	.ndo_get_stats64 =		netvsc_get_stats64,
1251 #ifdef CONFIG_NET_POLL_CONTROLLER
1252 	.ndo_poll_controller =		netvsc_poll_controller,
1253 #endif
1254 };
1255 
1256 /*
1257  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1258  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1259  * present send GARP packet to network peers with netif_notify_peers().
1260  */
1261 static void netvsc_link_change(struct work_struct *w)
1262 {
1263 	struct net_device_context *ndev_ctx =
1264 		container_of(w, struct net_device_context, dwork.work);
1265 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1266 	struct net_device *net = hv_get_drvdata(device_obj);
1267 	struct netvsc_device *net_device;
1268 	struct rndis_device *rdev;
1269 	struct netvsc_reconfig *event = NULL;
1270 	bool notify = false, reschedule = false;
1271 	unsigned long flags, next_reconfig, delay;
1272 
1273 	rtnl_lock();
1274 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1275 	if (!net_device)
1276 		goto out_unlock;
1277 
1278 	rdev = net_device->extension;
1279 
1280 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1281 	if (time_is_after_jiffies(next_reconfig)) {
1282 		/* link_watch only sends one notification with current state
1283 		 * per second, avoid doing reconfig more frequently. Handle
1284 		 * wrap around.
1285 		 */
1286 		delay = next_reconfig - jiffies;
1287 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1288 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1289 		goto out_unlock;
1290 	}
1291 	ndev_ctx->last_reconfig = jiffies;
1292 
1293 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1294 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1295 		event = list_first_entry(&ndev_ctx->reconfig_events,
1296 					 struct netvsc_reconfig, list);
1297 		list_del(&event->list);
1298 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1299 	}
1300 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1301 
1302 	if (!event)
1303 		goto out_unlock;
1304 
1305 	switch (event->event) {
1306 		/* Only the following events are possible due to the check in
1307 		 * netvsc_linkstatus_callback()
1308 		 */
1309 	case RNDIS_STATUS_MEDIA_CONNECT:
1310 		if (rdev->link_state) {
1311 			rdev->link_state = false;
1312 			netif_carrier_on(net);
1313 			netif_tx_wake_all_queues(net);
1314 		} else {
1315 			notify = true;
1316 		}
1317 		kfree(event);
1318 		break;
1319 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1320 		if (!rdev->link_state) {
1321 			rdev->link_state = true;
1322 			netif_carrier_off(net);
1323 			netif_tx_stop_all_queues(net);
1324 		}
1325 		kfree(event);
1326 		break;
1327 	case RNDIS_STATUS_NETWORK_CHANGE:
1328 		/* Only makes sense if carrier is present */
1329 		if (!rdev->link_state) {
1330 			rdev->link_state = true;
1331 			netif_carrier_off(net);
1332 			netif_tx_stop_all_queues(net);
1333 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1334 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1335 			list_add(&event->list, &ndev_ctx->reconfig_events);
1336 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1337 			reschedule = true;
1338 		}
1339 		break;
1340 	}
1341 
1342 	rtnl_unlock();
1343 
1344 	if (notify)
1345 		netdev_notify_peers(net);
1346 
1347 	/* link_watch only sends one notification with current state per
1348 	 * second, handle next reconfig event in 2 seconds.
1349 	 */
1350 	if (reschedule)
1351 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1352 
1353 	return;
1354 
1355 out_unlock:
1356 	rtnl_unlock();
1357 }
1358 
1359 static struct net_device *get_netvsc_bymac(const u8 *mac)
1360 {
1361 	struct net_device *dev;
1362 
1363 	ASSERT_RTNL();
1364 
1365 	for_each_netdev(&init_net, dev) {
1366 		if (dev->netdev_ops != &device_ops)
1367 			continue;	/* not a netvsc device */
1368 
1369 		if (ether_addr_equal(mac, dev->perm_addr))
1370 			return dev;
1371 	}
1372 
1373 	return NULL;
1374 }
1375 
1376 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1377 {
1378 	struct net_device *dev;
1379 
1380 	ASSERT_RTNL();
1381 
1382 	for_each_netdev(&init_net, dev) {
1383 		struct net_device_context *net_device_ctx;
1384 
1385 		if (dev->netdev_ops != &device_ops)
1386 			continue;	/* not a netvsc device */
1387 
1388 		net_device_ctx = netdev_priv(dev);
1389 		if (net_device_ctx->nvdev == NULL)
1390 			continue;	/* device is removed */
1391 
1392 		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1393 			return dev;	/* a match */
1394 	}
1395 
1396 	return NULL;
1397 }
1398 
1399 static int netvsc_register_vf(struct net_device *vf_netdev)
1400 {
1401 	struct net_device *ndev;
1402 	struct net_device_context *net_device_ctx;
1403 	struct netvsc_device *netvsc_dev;
1404 
1405 	if (vf_netdev->addr_len != ETH_ALEN)
1406 		return NOTIFY_DONE;
1407 
1408 	/*
1409 	 * We will use the MAC address to locate the synthetic interface to
1410 	 * associate with the VF interface. If we don't find a matching
1411 	 * synthetic interface, move on.
1412 	 */
1413 	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1414 	if (!ndev)
1415 		return NOTIFY_DONE;
1416 
1417 	net_device_ctx = netdev_priv(ndev);
1418 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1419 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1420 		return NOTIFY_DONE;
1421 
1422 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1423 	/*
1424 	 * Take a reference on the module.
1425 	 */
1426 	try_module_get(THIS_MODULE);
1427 
1428 	dev_hold(vf_netdev);
1429 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1430 	return NOTIFY_OK;
1431 }
1432 
1433 static int netvsc_vf_up(struct net_device *vf_netdev)
1434 {
1435 	struct net_device *ndev;
1436 	struct netvsc_device *netvsc_dev;
1437 	struct net_device_context *net_device_ctx;
1438 
1439 	ndev = get_netvsc_byref(vf_netdev);
1440 	if (!ndev)
1441 		return NOTIFY_DONE;
1442 
1443 	net_device_ctx = netdev_priv(ndev);
1444 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1445 
1446 	netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1447 
1448 	/*
1449 	 * Open the device before switching data path.
1450 	 */
1451 	rndis_filter_open(netvsc_dev);
1452 
1453 	/*
1454 	 * notify the host to switch the data path.
1455 	 */
1456 	netvsc_switch_datapath(ndev, true);
1457 	netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1458 
1459 	netif_carrier_off(ndev);
1460 
1461 	/* Now notify peers through VF device. */
1462 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev);
1463 
1464 	return NOTIFY_OK;
1465 }
1466 
1467 static int netvsc_vf_down(struct net_device *vf_netdev)
1468 {
1469 	struct net_device *ndev;
1470 	struct netvsc_device *netvsc_dev;
1471 	struct net_device_context *net_device_ctx;
1472 
1473 	ndev = get_netvsc_byref(vf_netdev);
1474 	if (!ndev)
1475 		return NOTIFY_DONE;
1476 
1477 	net_device_ctx = netdev_priv(ndev);
1478 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1479 
1480 	netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1481 	netvsc_switch_datapath(ndev, false);
1482 	netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1483 	rndis_filter_close(netvsc_dev);
1484 	netif_carrier_on(ndev);
1485 
1486 	/* Now notify peers through netvsc device. */
1487 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev);
1488 
1489 	return NOTIFY_OK;
1490 }
1491 
1492 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1493 {
1494 	struct net_device *ndev;
1495 	struct net_device_context *net_device_ctx;
1496 
1497 	ndev = get_netvsc_byref(vf_netdev);
1498 	if (!ndev)
1499 		return NOTIFY_DONE;
1500 
1501 	net_device_ctx = netdev_priv(ndev);
1502 
1503 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1504 
1505 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1506 	dev_put(vf_netdev);
1507 	module_put(THIS_MODULE);
1508 	return NOTIFY_OK;
1509 }
1510 
1511 static int netvsc_probe(struct hv_device *dev,
1512 			const struct hv_vmbus_device_id *dev_id)
1513 {
1514 	struct net_device *net = NULL;
1515 	struct net_device_context *net_device_ctx;
1516 	struct netvsc_device_info device_info;
1517 	struct netvsc_device *nvdev;
1518 	int ret;
1519 
1520 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1521 				VRSS_CHANNEL_MAX);
1522 	if (!net)
1523 		return -ENOMEM;
1524 
1525 	netif_carrier_off(net);
1526 
1527 	netvsc_init_settings(net);
1528 
1529 	net_device_ctx = netdev_priv(net);
1530 	net_device_ctx->device_ctx = dev;
1531 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1532 	if (netif_msg_probe(net_device_ctx))
1533 		netdev_dbg(net, "netvsc msg_enable: %d\n",
1534 			   net_device_ctx->msg_enable);
1535 
1536 	hv_set_drvdata(dev, net);
1537 
1538 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1539 
1540 	spin_lock_init(&net_device_ctx->lock);
1541 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1542 
1543 	net->netdev_ops = &device_ops;
1544 	net->ethtool_ops = &ethtool_ops;
1545 	SET_NETDEV_DEV(net, &dev->device);
1546 
1547 	/* We always need headroom for rndis header */
1548 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
1549 
1550 	/* Notify the netvsc driver of the new device */
1551 	memset(&device_info, 0, sizeof(device_info));
1552 	device_info.ring_size = ring_size;
1553 	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1554 	ret = rndis_filter_device_add(dev, &device_info);
1555 	if (ret != 0) {
1556 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1557 		free_netdev(net);
1558 		hv_set_drvdata(dev, NULL);
1559 		return ret;
1560 	}
1561 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1562 
1563 	/* hw_features computed in rndis_filter_device_add */
1564 	net->features = net->hw_features |
1565 		NETIF_F_HIGHDMA | NETIF_F_SG |
1566 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1567 	net->vlan_features = net->features;
1568 
1569 	/* RCU not necessary here, device not registered */
1570 	nvdev = net_device_ctx->nvdev;
1571 	netif_set_real_num_tx_queues(net, nvdev->num_chn);
1572 	netif_set_real_num_rx_queues(net, nvdev->num_chn);
1573 
1574 	/* MTU range: 68 - 1500 or 65521 */
1575 	net->min_mtu = NETVSC_MTU_MIN;
1576 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
1577 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
1578 	else
1579 		net->max_mtu = ETH_DATA_LEN;
1580 
1581 	ret = register_netdev(net);
1582 	if (ret != 0) {
1583 		pr_err("Unable to register netdev.\n");
1584 		rndis_filter_device_remove(dev, nvdev);
1585 		free_netdev(net);
1586 	}
1587 
1588 	return ret;
1589 }
1590 
1591 static int netvsc_remove(struct hv_device *dev)
1592 {
1593 	struct net_device *net;
1594 	struct net_device_context *ndev_ctx;
1595 
1596 	net = hv_get_drvdata(dev);
1597 
1598 	if (net == NULL) {
1599 		dev_err(&dev->device, "No net device to remove\n");
1600 		return 0;
1601 	}
1602 
1603 	ndev_ctx = netdev_priv(net);
1604 
1605 	netif_device_detach(net);
1606 
1607 	cancel_delayed_work_sync(&ndev_ctx->dwork);
1608 
1609 	/*
1610 	 * Call to the vsc driver to let it know that the device is being
1611 	 * removed. Also blocks mtu and channel changes.
1612 	 */
1613 	rtnl_lock();
1614 	rndis_filter_device_remove(dev, ndev_ctx->nvdev);
1615 	rtnl_unlock();
1616 
1617 	unregister_netdev(net);
1618 
1619 	hv_set_drvdata(dev, NULL);
1620 
1621 	free_netdev(net);
1622 	return 0;
1623 }
1624 
1625 static const struct hv_vmbus_device_id id_table[] = {
1626 	/* Network guid */
1627 	{ HV_NIC_GUID, },
1628 	{ },
1629 };
1630 
1631 MODULE_DEVICE_TABLE(vmbus, id_table);
1632 
1633 /* The one and only one */
1634 static struct  hv_driver netvsc_drv = {
1635 	.name = KBUILD_MODNAME,
1636 	.id_table = id_table,
1637 	.probe = netvsc_probe,
1638 	.remove = netvsc_remove,
1639 };
1640 
1641 /*
1642  * On Hyper-V, every VF interface is matched with a corresponding
1643  * synthetic interface. The synthetic interface is presented first
1644  * to the guest. When the corresponding VF instance is registered,
1645  * we will take care of switching the data path.
1646  */
1647 static int netvsc_netdev_event(struct notifier_block *this,
1648 			       unsigned long event, void *ptr)
1649 {
1650 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1651 
1652 	/* Skip our own events */
1653 	if (event_dev->netdev_ops == &device_ops)
1654 		return NOTIFY_DONE;
1655 
1656 	/* Avoid non-Ethernet type devices */
1657 	if (event_dev->type != ARPHRD_ETHER)
1658 		return NOTIFY_DONE;
1659 
1660 	/* Avoid Vlan dev with same MAC registering as VF */
1661 	if (is_vlan_dev(event_dev))
1662 		return NOTIFY_DONE;
1663 
1664 	/* Avoid Bonding master dev with same MAC registering as VF */
1665 	if ((event_dev->priv_flags & IFF_BONDING) &&
1666 	    (event_dev->flags & IFF_MASTER))
1667 		return NOTIFY_DONE;
1668 
1669 	switch (event) {
1670 	case NETDEV_REGISTER:
1671 		return netvsc_register_vf(event_dev);
1672 	case NETDEV_UNREGISTER:
1673 		return netvsc_unregister_vf(event_dev);
1674 	case NETDEV_UP:
1675 		return netvsc_vf_up(event_dev);
1676 	case NETDEV_DOWN:
1677 		return netvsc_vf_down(event_dev);
1678 	default:
1679 		return NOTIFY_DONE;
1680 	}
1681 }
1682 
1683 static struct notifier_block netvsc_netdev_notifier = {
1684 	.notifier_call = netvsc_netdev_event,
1685 };
1686 
1687 static void __exit netvsc_drv_exit(void)
1688 {
1689 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1690 	vmbus_driver_unregister(&netvsc_drv);
1691 }
1692 
1693 static int __init netvsc_drv_init(void)
1694 {
1695 	int ret;
1696 
1697 	if (ring_size < RING_SIZE_MIN) {
1698 		ring_size = RING_SIZE_MIN;
1699 		pr_info("Increased ring_size to %d (min allowed)\n",
1700 			ring_size);
1701 	}
1702 	ret = vmbus_driver_register(&netvsc_drv);
1703 
1704 	if (ret)
1705 		return ret;
1706 
1707 	register_netdevice_notifier(&netvsc_netdev_notifier);
1708 	return 0;
1709 }
1710 
1711 MODULE_LICENSE("GPL");
1712 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1713 
1714 module_init(netvsc_drv_init);
1715 module_exit(netvsc_drv_exit);
1716