xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision e2f1cf25)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40 
41 #include "hyperv_net.h"
42 
43 
44 #define RING_SIZE_MIN 64
45 static int ring_size = 128;
46 module_param(ring_size, int, S_IRUGO);
47 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48 
49 static int max_num_vrss_chns = 8;
50 
51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 				NETIF_MSG_TX_ERR;
55 
56 static int debug = -1;
57 module_param(debug, int, S_IRUGO);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static void do_set_multicast(struct work_struct *w)
61 {
62 	struct net_device_context *ndevctx =
63 		container_of(w, struct net_device_context, work);
64 	struct netvsc_device *nvdev;
65 	struct rndis_device *rdev;
66 
67 	nvdev = hv_get_drvdata(ndevctx->device_ctx);
68 	if (nvdev == NULL || nvdev->ndev == NULL)
69 		return;
70 
71 	rdev = nvdev->extension;
72 	if (rdev == NULL)
73 		return;
74 
75 	if (nvdev->ndev->flags & IFF_PROMISC)
76 		rndis_filter_set_packet_filter(rdev,
77 			NDIS_PACKET_TYPE_PROMISCUOUS);
78 	else
79 		rndis_filter_set_packet_filter(rdev,
80 			NDIS_PACKET_TYPE_BROADCAST |
81 			NDIS_PACKET_TYPE_ALL_MULTICAST |
82 			NDIS_PACKET_TYPE_DIRECTED);
83 }
84 
85 static void netvsc_set_multicast_list(struct net_device *net)
86 {
87 	struct net_device_context *net_device_ctx = netdev_priv(net);
88 
89 	schedule_work(&net_device_ctx->work);
90 }
91 
92 static int netvsc_open(struct net_device *net)
93 {
94 	struct net_device_context *net_device_ctx = netdev_priv(net);
95 	struct hv_device *device_obj = net_device_ctx->device_ctx;
96 	struct netvsc_device *nvdev;
97 	struct rndis_device *rdev;
98 	int ret = 0;
99 
100 	netif_carrier_off(net);
101 
102 	/* Open up the device */
103 	ret = rndis_filter_open(device_obj);
104 	if (ret != 0) {
105 		netdev_err(net, "unable to open device (ret %d).\n", ret);
106 		return ret;
107 	}
108 
109 	netif_tx_start_all_queues(net);
110 
111 	nvdev = hv_get_drvdata(device_obj);
112 	rdev = nvdev->extension;
113 	if (!rdev->link_state)
114 		netif_carrier_on(net);
115 
116 	return ret;
117 }
118 
119 static int netvsc_close(struct net_device *net)
120 {
121 	struct net_device_context *net_device_ctx = netdev_priv(net);
122 	struct hv_device *device_obj = net_device_ctx->device_ctx;
123 	int ret;
124 
125 	netif_tx_disable(net);
126 
127 	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
128 	cancel_work_sync(&net_device_ctx->work);
129 	ret = rndis_filter_close(device_obj);
130 	if (ret != 0)
131 		netdev_err(net, "unable to close device (ret %d).\n", ret);
132 
133 	return ret;
134 }
135 
136 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
137 				int pkt_type)
138 {
139 	struct rndis_packet *rndis_pkt;
140 	struct rndis_per_packet_info *ppi;
141 
142 	rndis_pkt = &msg->msg.pkt;
143 	rndis_pkt->data_offset += ppi_size;
144 
145 	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
146 		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
147 
148 	ppi->size = ppi_size;
149 	ppi->type = pkt_type;
150 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
151 
152 	rndis_pkt->per_pkt_info_len += ppi_size;
153 
154 	return ppi;
155 }
156 
157 union sub_key {
158 	u64 k;
159 	struct {
160 		u8 pad[3];
161 		u8 kb;
162 		u32 ka;
163 	};
164 };
165 
166 /* Toeplitz hash function
167  * data: network byte order
168  * return: host byte order
169  */
170 static u32 comp_hash(u8 *key, int klen, void *data, int dlen)
171 {
172 	union sub_key subk;
173 	int k_next = 4;
174 	u8 dt;
175 	int i, j;
176 	u32 ret = 0;
177 
178 	subk.k = 0;
179 	subk.ka = ntohl(*(u32 *)key);
180 
181 	for (i = 0; i < dlen; i++) {
182 		subk.kb = key[k_next];
183 		k_next = (k_next + 1) % klen;
184 		dt = ((u8 *)data)[i];
185 		for (j = 0; j < 8; j++) {
186 			if (dt & 0x80)
187 				ret ^= subk.ka;
188 			dt <<= 1;
189 			subk.k <<= 1;
190 		}
191 	}
192 
193 	return ret;
194 }
195 
196 static bool netvsc_set_hash(u32 *hash, struct sk_buff *skb)
197 {
198 	struct flow_keys flow;
199 	int data_len;
200 
201 	if (!skb_flow_dissect_flow_keys(skb, &flow) ||
202 	    !(flow.basic.n_proto == htons(ETH_P_IP) ||
203 	      flow.basic.n_proto == htons(ETH_P_IPV6)))
204 		return false;
205 
206 	if (flow.basic.ip_proto == IPPROTO_TCP)
207 		data_len = 12;
208 	else
209 		data_len = 8;
210 
211 	*hash = comp_hash(netvsc_hash_key, HASH_KEYLEN, &flow, data_len);
212 
213 	return true;
214 }
215 
216 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
217 			void *accel_priv, select_queue_fallback_t fallback)
218 {
219 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
220 	struct hv_device *hdev =  net_device_ctx->device_ctx;
221 	struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev);
222 	u32 hash;
223 	u16 q_idx = 0;
224 
225 	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
226 		return 0;
227 
228 	if (netvsc_set_hash(&hash, skb)) {
229 		q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
230 			ndev->real_num_tx_queues;
231 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
232 	}
233 
234 	return q_idx;
235 }
236 
237 void netvsc_xmit_completion(void *context)
238 {
239 	struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context;
240 	struct sk_buff *skb = (struct sk_buff *)
241 		(unsigned long)packet->send_completion_tid;
242 
243 	if (skb)
244 		dev_kfree_skb_any(skb);
245 }
246 
247 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
248 			struct hv_page_buffer *pb)
249 {
250 	int j = 0;
251 
252 	/* Deal with compund pages by ignoring unused part
253 	 * of the page.
254 	 */
255 	page += (offset >> PAGE_SHIFT);
256 	offset &= ~PAGE_MASK;
257 
258 	while (len > 0) {
259 		unsigned long bytes;
260 
261 		bytes = PAGE_SIZE - offset;
262 		if (bytes > len)
263 			bytes = len;
264 		pb[j].pfn = page_to_pfn(page);
265 		pb[j].offset = offset;
266 		pb[j].len = bytes;
267 
268 		offset += bytes;
269 		len -= bytes;
270 
271 		if (offset == PAGE_SIZE && len) {
272 			page++;
273 			offset = 0;
274 			j++;
275 		}
276 	}
277 
278 	return j + 1;
279 }
280 
281 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
282 			   struct hv_netvsc_packet *packet)
283 {
284 	struct hv_page_buffer *pb = packet->page_buf;
285 	u32 slots_used = 0;
286 	char *data = skb->data;
287 	int frags = skb_shinfo(skb)->nr_frags;
288 	int i;
289 
290 	/* The packet is laid out thus:
291 	 * 1. hdr: RNDIS header and PPI
292 	 * 2. skb linear data
293 	 * 3. skb fragment data
294 	 */
295 	if (hdr != NULL)
296 		slots_used += fill_pg_buf(virt_to_page(hdr),
297 					offset_in_page(hdr),
298 					len, &pb[slots_used]);
299 
300 	packet->rmsg_size = len;
301 	packet->rmsg_pgcnt = slots_used;
302 
303 	slots_used += fill_pg_buf(virt_to_page(data),
304 				offset_in_page(data),
305 				skb_headlen(skb), &pb[slots_used]);
306 
307 	for (i = 0; i < frags; i++) {
308 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
309 
310 		slots_used += fill_pg_buf(skb_frag_page(frag),
311 					frag->page_offset,
312 					skb_frag_size(frag), &pb[slots_used]);
313 	}
314 	return slots_used;
315 }
316 
317 static int count_skb_frag_slots(struct sk_buff *skb)
318 {
319 	int i, frags = skb_shinfo(skb)->nr_frags;
320 	int pages = 0;
321 
322 	for (i = 0; i < frags; i++) {
323 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
324 		unsigned long size = skb_frag_size(frag);
325 		unsigned long offset = frag->page_offset;
326 
327 		/* Skip unused frames from start of page */
328 		offset &= ~PAGE_MASK;
329 		pages += PFN_UP(offset + size);
330 	}
331 	return pages;
332 }
333 
334 static int netvsc_get_slots(struct sk_buff *skb)
335 {
336 	char *data = skb->data;
337 	unsigned int offset = offset_in_page(data);
338 	unsigned int len = skb_headlen(skb);
339 	int slots;
340 	int frag_slots;
341 
342 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
343 	frag_slots = count_skb_frag_slots(skb);
344 	return slots + frag_slots;
345 }
346 
347 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
348 {
349 	u32 ret_val = TRANSPORT_INFO_NOT_IP;
350 
351 	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
352 		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
353 		goto not_ip;
354 	}
355 
356 	*trans_off = skb_transport_offset(skb);
357 
358 	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
359 		struct iphdr *iphdr = ip_hdr(skb);
360 
361 		if (iphdr->protocol == IPPROTO_TCP)
362 			ret_val = TRANSPORT_INFO_IPV4_TCP;
363 		else if (iphdr->protocol == IPPROTO_UDP)
364 			ret_val = TRANSPORT_INFO_IPV4_UDP;
365 	} else {
366 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
367 			ret_val = TRANSPORT_INFO_IPV6_TCP;
368 		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
369 			ret_val = TRANSPORT_INFO_IPV6_UDP;
370 	}
371 
372 not_ip:
373 	return ret_val;
374 }
375 
376 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
377 {
378 	struct net_device_context *net_device_ctx = netdev_priv(net);
379 	struct hv_netvsc_packet *packet = NULL;
380 	int ret;
381 	unsigned int num_data_pgs;
382 	struct rndis_message *rndis_msg;
383 	struct rndis_packet *rndis_pkt;
384 	u32 rndis_msg_size;
385 	bool isvlan;
386 	bool linear = false;
387 	struct rndis_per_packet_info *ppi;
388 	struct ndis_tcp_ip_checksum_info *csum_info;
389 	struct ndis_tcp_lso_info *lso_info;
390 	int  hdr_offset;
391 	u32 net_trans_info;
392 	u32 hash;
393 	u32 skb_length;
394 	u32 pkt_sz;
395 	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
396 	struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
397 
398 	/* We will atmost need two pages to describe the rndis
399 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
400 	 * of pages in a single packet. If skb is scattered around
401 	 * more pages we try linearizing it.
402 	 */
403 
404 check_size:
405 	skb_length = skb->len;
406 	num_data_pgs = netvsc_get_slots(skb) + 2;
407 	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
408 		net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
409 				      num_data_pgs, skb->len);
410 		ret = -EFAULT;
411 		goto drop;
412 	} else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
413 		if (skb_linearize(skb)) {
414 			net_alert_ratelimited("failed to linearize skb\n");
415 			ret = -ENOMEM;
416 			goto drop;
417 		}
418 		linear = true;
419 		goto check_size;
420 	}
421 
422 	pkt_sz = sizeof(struct hv_netvsc_packet) + RNDIS_AND_PPI_SIZE;
423 
424 	ret = skb_cow_head(skb, pkt_sz);
425 	if (ret) {
426 		netdev_err(net, "unable to alloc hv_netvsc_packet\n");
427 		ret = -ENOMEM;
428 		goto drop;
429 	}
430 	/* Use the headroom for building up the packet */
431 	packet = (struct hv_netvsc_packet *)skb->head;
432 
433 	packet->status = 0;
434 	packet->xmit_more = skb->xmit_more;
435 
436 	packet->vlan_tci = skb->vlan_tci;
437 	packet->page_buf = page_buf;
438 
439 	packet->q_idx = skb_get_queue_mapping(skb);
440 
441 	packet->is_data_pkt = true;
442 	packet->total_data_buflen = skb->len;
443 
444 	packet->rndis_msg = (struct rndis_message *)((unsigned long)packet +
445 				sizeof(struct hv_netvsc_packet));
446 
447 	memset(packet->rndis_msg, 0, RNDIS_AND_PPI_SIZE);
448 
449 	/* Set the completion routine */
450 	packet->send_completion = netvsc_xmit_completion;
451 	packet->send_completion_ctx = packet;
452 	packet->send_completion_tid = (unsigned long)skb;
453 
454 	isvlan = packet->vlan_tci & VLAN_TAG_PRESENT;
455 
456 	/* Add the rndis header */
457 	rndis_msg = packet->rndis_msg;
458 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
459 	rndis_msg->msg_len = packet->total_data_buflen;
460 	rndis_pkt = &rndis_msg->msg.pkt;
461 	rndis_pkt->data_offset = sizeof(struct rndis_packet);
462 	rndis_pkt->data_len = packet->total_data_buflen;
463 	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
464 
465 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
466 
467 	hash = skb_get_hash_raw(skb);
468 	if (hash != 0 && net->real_num_tx_queues > 1) {
469 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
470 		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
471 				    NBL_HASH_VALUE);
472 		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
473 	}
474 
475 	if (isvlan) {
476 		struct ndis_pkt_8021q_info *vlan;
477 
478 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
479 		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
480 					IEEE_8021Q_INFO);
481 		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
482 						ppi->ppi_offset);
483 		vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK;
484 		vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >>
485 				VLAN_PRIO_SHIFT;
486 	}
487 
488 	net_trans_info = get_net_transport_info(skb, &hdr_offset);
489 	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
490 		goto do_send;
491 
492 	/*
493 	 * Setup the sendside checksum offload only if this is not a
494 	 * GSO packet.
495 	 */
496 	if (skb_is_gso(skb))
497 		goto do_lso;
498 
499 	if ((skb->ip_summed == CHECKSUM_NONE) ||
500 	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
501 		goto do_send;
502 
503 	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
504 	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
505 			    TCPIP_CHKSUM_PKTINFO);
506 
507 	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
508 			ppi->ppi_offset);
509 
510 	if (net_trans_info & (INFO_IPV4 << 16))
511 		csum_info->transmit.is_ipv4 = 1;
512 	else
513 		csum_info->transmit.is_ipv6 = 1;
514 
515 	if (net_trans_info & INFO_TCP) {
516 		csum_info->transmit.tcp_checksum = 1;
517 		csum_info->transmit.tcp_header_offset = hdr_offset;
518 	} else if (net_trans_info & INFO_UDP) {
519 		/* UDP checksum offload is not supported on ws2008r2.
520 		 * Furthermore, on ws2012 and ws2012r2, there are some
521 		 * issues with udp checksum offload from Linux guests.
522 		 * (these are host issues).
523 		 * For now compute the checksum here.
524 		 */
525 		struct udphdr *uh;
526 		u16 udp_len;
527 
528 		ret = skb_cow_head(skb, 0);
529 		if (ret)
530 			goto drop;
531 
532 		uh = udp_hdr(skb);
533 		udp_len = ntohs(uh->len);
534 		uh->check = 0;
535 		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
536 					      ip_hdr(skb)->daddr,
537 					      udp_len, IPPROTO_UDP,
538 					      csum_partial(uh, udp_len, 0));
539 		if (uh->check == 0)
540 			uh->check = CSUM_MANGLED_0;
541 
542 		csum_info->transmit.udp_checksum = 0;
543 	}
544 	goto do_send;
545 
546 do_lso:
547 	rndis_msg_size += NDIS_LSO_PPI_SIZE;
548 	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
549 			    TCP_LARGESEND_PKTINFO);
550 
551 	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
552 			ppi->ppi_offset);
553 
554 	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
555 	if (net_trans_info & (INFO_IPV4 << 16)) {
556 		lso_info->lso_v2_transmit.ip_version =
557 			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
558 		ip_hdr(skb)->tot_len = 0;
559 		ip_hdr(skb)->check = 0;
560 		tcp_hdr(skb)->check =
561 		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
562 				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
563 	} else {
564 		lso_info->lso_v2_transmit.ip_version =
565 			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
566 		ipv6_hdr(skb)->payload_len = 0;
567 		tcp_hdr(skb)->check =
568 		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
569 				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
570 	}
571 	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
572 	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
573 
574 do_send:
575 	/* Start filling in the page buffers with the rndis hdr */
576 	rndis_msg->msg_len += rndis_msg_size;
577 	packet->total_data_buflen = rndis_msg->msg_len;
578 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
579 					       skb, packet);
580 
581 	ret = netvsc_send(net_device_ctx->device_ctx, packet);
582 
583 drop:
584 	if (ret == 0) {
585 		u64_stats_update_begin(&tx_stats->syncp);
586 		tx_stats->packets++;
587 		tx_stats->bytes += skb_length;
588 		u64_stats_update_end(&tx_stats->syncp);
589 	} else {
590 		if (ret != -EAGAIN) {
591 			dev_kfree_skb_any(skb);
592 			net->stats.tx_dropped++;
593 		}
594 	}
595 
596 	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
597 }
598 
599 /*
600  * netvsc_linkstatus_callback - Link up/down notification
601  */
602 void netvsc_linkstatus_callback(struct hv_device *device_obj,
603 				struct rndis_message *resp)
604 {
605 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
606 	struct net_device *net;
607 	struct net_device_context *ndev_ctx;
608 	struct netvsc_device *net_device;
609 	struct rndis_device *rdev;
610 
611 	net_device = hv_get_drvdata(device_obj);
612 	rdev = net_device->extension;
613 
614 	switch (indicate->status) {
615 	case RNDIS_STATUS_MEDIA_CONNECT:
616 		rdev->link_state = false;
617 		break;
618 	case RNDIS_STATUS_MEDIA_DISCONNECT:
619 		rdev->link_state = true;
620 		break;
621 	case RNDIS_STATUS_NETWORK_CHANGE:
622 		rdev->link_change = true;
623 		break;
624 	default:
625 		return;
626 	}
627 
628 	net = net_device->ndev;
629 
630 	if (!net || net->reg_state != NETREG_REGISTERED)
631 		return;
632 
633 	ndev_ctx = netdev_priv(net);
634 	if (!rdev->link_state) {
635 		schedule_delayed_work(&ndev_ctx->dwork, 0);
636 		schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20));
637 	} else {
638 		schedule_delayed_work(&ndev_ctx->dwork, 0);
639 	}
640 }
641 
642 /*
643  * netvsc_recv_callback -  Callback when we receive a packet from the
644  * "wire" on the specified device.
645  */
646 int netvsc_recv_callback(struct hv_device *device_obj,
647 				struct hv_netvsc_packet *packet,
648 				struct ndis_tcp_ip_checksum_info *csum_info)
649 {
650 	struct net_device *net;
651 	struct net_device_context *net_device_ctx;
652 	struct sk_buff *skb;
653 	struct netvsc_stats *rx_stats;
654 
655 	net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev;
656 	if (!net || net->reg_state != NETREG_REGISTERED) {
657 		packet->status = NVSP_STAT_FAIL;
658 		return 0;
659 	}
660 	net_device_ctx = netdev_priv(net);
661 	rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);
662 
663 	/* Allocate a skb - TODO direct I/O to pages? */
664 	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
665 	if (unlikely(!skb)) {
666 		++net->stats.rx_dropped;
667 		packet->status = NVSP_STAT_FAIL;
668 		return 0;
669 	}
670 
671 	/*
672 	 * Copy to skb. This copy is needed here since the memory pointed by
673 	 * hv_netvsc_packet cannot be deallocated
674 	 */
675 	memcpy(skb_put(skb, packet->total_data_buflen), packet->data,
676 		packet->total_data_buflen);
677 
678 	skb->protocol = eth_type_trans(skb, net);
679 	if (csum_info) {
680 		/* We only look at the IP checksum here.
681 		 * Should we be dropping the packet if checksum
682 		 * failed? How do we deal with other checksums - TCP/UDP?
683 		 */
684 		if (csum_info->receive.ip_checksum_succeeded)
685 			skb->ip_summed = CHECKSUM_UNNECESSARY;
686 		else
687 			skb->ip_summed = CHECKSUM_NONE;
688 	}
689 
690 	if (packet->vlan_tci & VLAN_TAG_PRESENT)
691 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
692 				       packet->vlan_tci);
693 
694 	skb_record_rx_queue(skb, packet->channel->
695 			    offermsg.offer.sub_channel_index);
696 
697 	u64_stats_update_begin(&rx_stats->syncp);
698 	rx_stats->packets++;
699 	rx_stats->bytes += packet->total_data_buflen;
700 	u64_stats_update_end(&rx_stats->syncp);
701 
702 	/*
703 	 * Pass the skb back up. Network stack will deallocate the skb when it
704 	 * is done.
705 	 * TODO - use NAPI?
706 	 */
707 	netif_rx(skb);
708 
709 	return 0;
710 }
711 
712 static void netvsc_get_drvinfo(struct net_device *net,
713 			       struct ethtool_drvinfo *info)
714 {
715 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
716 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
717 }
718 
719 static void netvsc_get_channels(struct net_device *net,
720 				struct ethtool_channels *channel)
721 {
722 	struct net_device_context *net_device_ctx = netdev_priv(net);
723 	struct hv_device *dev = net_device_ctx->device_ctx;
724 	struct netvsc_device *nvdev = hv_get_drvdata(dev);
725 
726 	if (nvdev) {
727 		channel->max_combined	= nvdev->max_chn;
728 		channel->combined_count = nvdev->num_chn;
729 	}
730 }
731 
732 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
733 {
734 	struct net_device_context *ndevctx = netdev_priv(ndev);
735 	struct hv_device *hdev =  ndevctx->device_ctx;
736 	struct netvsc_device *nvdev = hv_get_drvdata(hdev);
737 	struct netvsc_device_info device_info;
738 	int limit = ETH_DATA_LEN;
739 
740 	if (nvdev == NULL || nvdev->destroy)
741 		return -ENODEV;
742 
743 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
744 		limit = NETVSC_MTU - ETH_HLEN;
745 
746 	/* Hyper-V hosts don't support MTU < ETH_DATA_LEN (1500) */
747 	if (mtu < ETH_DATA_LEN || mtu > limit)
748 		return -EINVAL;
749 
750 	nvdev->start_remove = true;
751 	cancel_work_sync(&ndevctx->work);
752 	netif_tx_disable(ndev);
753 	rndis_filter_device_remove(hdev);
754 
755 	ndev->mtu = mtu;
756 
757 	ndevctx->device_ctx = hdev;
758 	hv_set_drvdata(hdev, ndev);
759 	device_info.ring_size = ring_size;
760 	device_info.max_num_vrss_chns = max_num_vrss_chns;
761 	rndis_filter_device_add(hdev, &device_info);
762 	netif_tx_wake_all_queues(ndev);
763 
764 	return 0;
765 }
766 
767 static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
768 						    struct rtnl_link_stats64 *t)
769 {
770 	struct net_device_context *ndev_ctx = netdev_priv(net);
771 	int cpu;
772 
773 	for_each_possible_cpu(cpu) {
774 		struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
775 							    cpu);
776 		struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
777 							    cpu);
778 		u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
779 		unsigned int start;
780 
781 		do {
782 			start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
783 			tx_packets = tx_stats->packets;
784 			tx_bytes = tx_stats->bytes;
785 		} while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
786 
787 		do {
788 			start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
789 			rx_packets = rx_stats->packets;
790 			rx_bytes = rx_stats->bytes;
791 		} while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
792 
793 		t->tx_bytes	+= tx_bytes;
794 		t->tx_packets	+= tx_packets;
795 		t->rx_bytes	+= rx_bytes;
796 		t->rx_packets	+= rx_packets;
797 	}
798 
799 	t->tx_dropped	= net->stats.tx_dropped;
800 	t->tx_errors	= net->stats.tx_dropped;
801 
802 	t->rx_dropped	= net->stats.rx_dropped;
803 	t->rx_errors	= net->stats.rx_errors;
804 
805 	return t;
806 }
807 
808 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
809 {
810 	struct net_device_context *ndevctx = netdev_priv(ndev);
811 	struct hv_device *hdev =  ndevctx->device_ctx;
812 	struct sockaddr *addr = p;
813 	char save_adr[ETH_ALEN];
814 	unsigned char save_aatype;
815 	int err;
816 
817 	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
818 	save_aatype = ndev->addr_assign_type;
819 
820 	err = eth_mac_addr(ndev, p);
821 	if (err != 0)
822 		return err;
823 
824 	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
825 	if (err != 0) {
826 		/* roll back to saved MAC */
827 		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
828 		ndev->addr_assign_type = save_aatype;
829 	}
830 
831 	return err;
832 }
833 
834 #ifdef CONFIG_NET_POLL_CONTROLLER
835 static void netvsc_poll_controller(struct net_device *net)
836 {
837 	/* As netvsc_start_xmit() works synchronous we don't have to
838 	 * trigger anything here.
839 	 */
840 }
841 #endif
842 
843 static const struct ethtool_ops ethtool_ops = {
844 	.get_drvinfo	= netvsc_get_drvinfo,
845 	.get_link	= ethtool_op_get_link,
846 	.get_channels   = netvsc_get_channels,
847 };
848 
849 static const struct net_device_ops device_ops = {
850 	.ndo_open =			netvsc_open,
851 	.ndo_stop =			netvsc_close,
852 	.ndo_start_xmit =		netvsc_start_xmit,
853 	.ndo_set_rx_mode =		netvsc_set_multicast_list,
854 	.ndo_change_mtu =		netvsc_change_mtu,
855 	.ndo_validate_addr =		eth_validate_addr,
856 	.ndo_set_mac_address =		netvsc_set_mac_addr,
857 	.ndo_select_queue =		netvsc_select_queue,
858 	.ndo_get_stats64 =		netvsc_get_stats64,
859 #ifdef CONFIG_NET_POLL_CONTROLLER
860 	.ndo_poll_controller =		netvsc_poll_controller,
861 #endif
862 };
863 
864 /*
865  * Send GARP packet to network peers after migrations.
866  * After Quick Migration, the network is not immediately operational in the
867  * current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add
868  * another netif_notify_peers() into a delayed work, otherwise GARP packet
869  * will not be sent after quick migration, and cause network disconnection.
870  * Also, we update the carrier status here.
871  */
872 static void netvsc_link_change(struct work_struct *w)
873 {
874 	struct net_device_context *ndev_ctx;
875 	struct net_device *net;
876 	struct netvsc_device *net_device;
877 	struct rndis_device *rdev;
878 	bool notify, refresh = false;
879 	char *argv[] = { "/etc/init.d/network", "restart", NULL };
880 	char *envp[] = { "HOME=/", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
881 
882 	rtnl_lock();
883 
884 	ndev_ctx = container_of(w, struct net_device_context, dwork.work);
885 	net_device = hv_get_drvdata(ndev_ctx->device_ctx);
886 	rdev = net_device->extension;
887 	net = net_device->ndev;
888 
889 	if (rdev->link_state) {
890 		netif_carrier_off(net);
891 		notify = false;
892 	} else {
893 		netif_carrier_on(net);
894 		notify = true;
895 		if (rdev->link_change) {
896 			rdev->link_change = false;
897 			refresh = true;
898 		}
899 	}
900 
901 	rtnl_unlock();
902 
903 	if (refresh)
904 		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
905 
906 	if (notify)
907 		netdev_notify_peers(net);
908 }
909 
910 static void netvsc_free_netdev(struct net_device *netdev)
911 {
912 	struct net_device_context *net_device_ctx = netdev_priv(netdev);
913 
914 	free_percpu(net_device_ctx->tx_stats);
915 	free_percpu(net_device_ctx->rx_stats);
916 	free_netdev(netdev);
917 }
918 
919 static int netvsc_probe(struct hv_device *dev,
920 			const struct hv_vmbus_device_id *dev_id)
921 {
922 	struct net_device *net = NULL;
923 	struct net_device_context *net_device_ctx;
924 	struct netvsc_device_info device_info;
925 	struct netvsc_device *nvdev;
926 	int ret;
927 	u32 max_needed_headroom;
928 
929 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
930 				num_online_cpus());
931 	if (!net)
932 		return -ENOMEM;
933 
934 	max_needed_headroom = sizeof(struct hv_netvsc_packet) +
935 			      RNDIS_AND_PPI_SIZE;
936 
937 	netif_carrier_off(net);
938 
939 	net_device_ctx = netdev_priv(net);
940 	net_device_ctx->device_ctx = dev;
941 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
942 	if (netif_msg_probe(net_device_ctx))
943 		netdev_dbg(net, "netvsc msg_enable: %d\n",
944 			   net_device_ctx->msg_enable);
945 
946 	net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
947 	if (!net_device_ctx->tx_stats) {
948 		free_netdev(net);
949 		return -ENOMEM;
950 	}
951 	net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
952 	if (!net_device_ctx->rx_stats) {
953 		free_percpu(net_device_ctx->tx_stats);
954 		free_netdev(net);
955 		return -ENOMEM;
956 	}
957 
958 	hv_set_drvdata(dev, net);
959 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
960 	INIT_WORK(&net_device_ctx->work, do_set_multicast);
961 
962 	net->netdev_ops = &device_ops;
963 
964 	net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM |
965 				NETIF_F_TSO;
966 	net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM |
967 			NETIF_F_IP_CSUM | NETIF_F_TSO;
968 
969 	net->ethtool_ops = &ethtool_ops;
970 	SET_NETDEV_DEV(net, &dev->device);
971 
972 	/*
973 	 * Request additional head room in the skb.
974 	 * We will use this space to build the rndis
975 	 * heaser and other state we need to maintain.
976 	 */
977 	net->needed_headroom = max_needed_headroom;
978 
979 	/* Notify the netvsc driver of the new device */
980 	device_info.ring_size = ring_size;
981 	device_info.max_num_vrss_chns = max_num_vrss_chns;
982 	ret = rndis_filter_device_add(dev, &device_info);
983 	if (ret != 0) {
984 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
985 		netvsc_free_netdev(net);
986 		hv_set_drvdata(dev, NULL);
987 		return ret;
988 	}
989 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
990 
991 	nvdev = hv_get_drvdata(dev);
992 	netif_set_real_num_tx_queues(net, nvdev->num_chn);
993 	netif_set_real_num_rx_queues(net, nvdev->num_chn);
994 
995 	ret = register_netdev(net);
996 	if (ret != 0) {
997 		pr_err("Unable to register netdev.\n");
998 		rndis_filter_device_remove(dev);
999 		netvsc_free_netdev(net);
1000 	} else {
1001 		schedule_delayed_work(&net_device_ctx->dwork, 0);
1002 	}
1003 
1004 	return ret;
1005 }
1006 
1007 static int netvsc_remove(struct hv_device *dev)
1008 {
1009 	struct net_device *net;
1010 	struct net_device_context *ndev_ctx;
1011 	struct netvsc_device *net_device;
1012 
1013 	net_device = hv_get_drvdata(dev);
1014 	net = net_device->ndev;
1015 
1016 	if (net == NULL) {
1017 		dev_err(&dev->device, "No net device to remove\n");
1018 		return 0;
1019 	}
1020 
1021 	net_device->start_remove = true;
1022 
1023 	ndev_ctx = netdev_priv(net);
1024 	cancel_delayed_work_sync(&ndev_ctx->dwork);
1025 	cancel_work_sync(&ndev_ctx->work);
1026 
1027 	/* Stop outbound asap */
1028 	netif_tx_disable(net);
1029 
1030 	unregister_netdev(net);
1031 
1032 	/*
1033 	 * Call to the vsc driver to let it know that the device is being
1034 	 * removed
1035 	 */
1036 	rndis_filter_device_remove(dev);
1037 
1038 	netvsc_free_netdev(net);
1039 	return 0;
1040 }
1041 
1042 static const struct hv_vmbus_device_id id_table[] = {
1043 	/* Network guid */
1044 	{ HV_NIC_GUID, },
1045 	{ },
1046 };
1047 
1048 MODULE_DEVICE_TABLE(vmbus, id_table);
1049 
1050 /* The one and only one */
1051 static struct  hv_driver netvsc_drv = {
1052 	.name = KBUILD_MODNAME,
1053 	.id_table = id_table,
1054 	.probe = netvsc_probe,
1055 	.remove = netvsc_remove,
1056 };
1057 
1058 static void __exit netvsc_drv_exit(void)
1059 {
1060 	vmbus_driver_unregister(&netvsc_drv);
1061 }
1062 
1063 static int __init netvsc_drv_init(void)
1064 {
1065 	if (ring_size < RING_SIZE_MIN) {
1066 		ring_size = RING_SIZE_MIN;
1067 		pr_info("Increased ring_size to %d (min allowed)\n",
1068 			ring_size);
1069 	}
1070 	return vmbus_driver_register(&netvsc_drv);
1071 }
1072 
1073 MODULE_LICENSE("GPL");
1074 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1075 
1076 module_init(netvsc_drv_init);
1077 module_exit(netvsc_drv_exit);
1078