1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/delay.h> 18 #include <linux/netdevice.h> 19 #include <linux/inetdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 #include <linux/if_vlan.h> 24 #include <linux/in.h> 25 #include <linux/slab.h> 26 #include <linux/rtnetlink.h> 27 #include <linux/netpoll.h> 28 #include <linux/bpf.h> 29 30 #include <net/arp.h> 31 #include <net/route.h> 32 #include <net/sock.h> 33 #include <net/pkt_sched.h> 34 #include <net/checksum.h> 35 #include <net/ip6_checksum.h> 36 37 #include "hyperv_net.h" 38 39 #define RING_SIZE_MIN 64 40 #define RETRY_US_LO 5000 41 #define RETRY_US_HI 10000 42 #define RETRY_MAX 2000 /* >10 sec */ 43 44 #define LINKCHANGE_INT (2 * HZ) 45 #define VF_TAKEOVER_INT (HZ / 10) 46 47 static unsigned int ring_size __ro_after_init = 128; 48 module_param(ring_size, uint, 0444); 49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 50 unsigned int netvsc_ring_bytes __ro_after_init; 51 52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 53 NETIF_MSG_LINK | NETIF_MSG_IFUP | 54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 55 NETIF_MSG_TX_ERR; 56 57 static int debug = -1; 58 module_param(debug, int, 0444); 59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 60 61 static LIST_HEAD(netvsc_dev_list); 62 63 static void netvsc_change_rx_flags(struct net_device *net, int change) 64 { 65 struct net_device_context *ndev_ctx = netdev_priv(net); 66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 67 int inc; 68 69 if (!vf_netdev) 70 return; 71 72 if (change & IFF_PROMISC) { 73 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 74 dev_set_promiscuity(vf_netdev, inc); 75 } 76 77 if (change & IFF_ALLMULTI) { 78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 79 dev_set_allmulti(vf_netdev, inc); 80 } 81 } 82 83 static void netvsc_set_rx_mode(struct net_device *net) 84 { 85 struct net_device_context *ndev_ctx = netdev_priv(net); 86 struct net_device *vf_netdev; 87 struct netvsc_device *nvdev; 88 89 rcu_read_lock(); 90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 91 if (vf_netdev) { 92 dev_uc_sync(vf_netdev, net); 93 dev_mc_sync(vf_netdev, net); 94 } 95 96 nvdev = rcu_dereference(ndev_ctx->nvdev); 97 if (nvdev) 98 rndis_filter_update(nvdev); 99 rcu_read_unlock(); 100 } 101 102 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 103 struct net_device *ndev) 104 { 105 nvscdev->tx_disable = false; 106 virt_wmb(); /* ensure queue wake up mechanism is on */ 107 108 netif_tx_wake_all_queues(ndev); 109 } 110 111 static int netvsc_open(struct net_device *net) 112 { 113 struct net_device_context *ndev_ctx = netdev_priv(net); 114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 116 struct rndis_device *rdev; 117 int ret = 0; 118 119 netif_carrier_off(net); 120 121 /* Open up the device */ 122 ret = rndis_filter_open(nvdev); 123 if (ret != 0) { 124 netdev_err(net, "unable to open device (ret %d).\n", ret); 125 return ret; 126 } 127 128 rdev = nvdev->extension; 129 if (!rdev->link_state) { 130 netif_carrier_on(net); 131 netvsc_tx_enable(nvdev, net); 132 } 133 134 if (vf_netdev) { 135 /* Setting synthetic device up transparently sets 136 * slave as up. If open fails, then slave will be 137 * still be offline (and not used). 138 */ 139 ret = dev_open(vf_netdev, NULL); 140 if (ret) 141 netdev_warn(net, 142 "unable to open slave: %s: %d\n", 143 vf_netdev->name, ret); 144 } 145 return 0; 146 } 147 148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 149 { 150 unsigned int retry = 0; 151 int i; 152 153 /* Ensure pending bytes in ring are read */ 154 for (;;) { 155 u32 aread = 0; 156 157 for (i = 0; i < nvdev->num_chn; i++) { 158 struct vmbus_channel *chn 159 = nvdev->chan_table[i].channel; 160 161 if (!chn) 162 continue; 163 164 /* make sure receive not running now */ 165 napi_synchronize(&nvdev->chan_table[i].napi); 166 167 aread = hv_get_bytes_to_read(&chn->inbound); 168 if (aread) 169 break; 170 171 aread = hv_get_bytes_to_read(&chn->outbound); 172 if (aread) 173 break; 174 } 175 176 if (aread == 0) 177 return 0; 178 179 if (++retry > RETRY_MAX) 180 return -ETIMEDOUT; 181 182 usleep_range(RETRY_US_LO, RETRY_US_HI); 183 } 184 } 185 186 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 187 struct net_device *ndev) 188 { 189 if (nvscdev) { 190 nvscdev->tx_disable = true; 191 virt_wmb(); /* ensure txq will not wake up after stop */ 192 } 193 194 netif_tx_disable(ndev); 195 } 196 197 static int netvsc_close(struct net_device *net) 198 { 199 struct net_device_context *net_device_ctx = netdev_priv(net); 200 struct net_device *vf_netdev 201 = rtnl_dereference(net_device_ctx->vf_netdev); 202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 203 int ret; 204 205 netvsc_tx_disable(nvdev, net); 206 207 /* No need to close rndis filter if it is removed already */ 208 if (!nvdev) 209 return 0; 210 211 ret = rndis_filter_close(nvdev); 212 if (ret != 0) { 213 netdev_err(net, "unable to close device (ret %d).\n", ret); 214 return ret; 215 } 216 217 ret = netvsc_wait_until_empty(nvdev); 218 if (ret) 219 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 220 221 if (vf_netdev) 222 dev_close(vf_netdev); 223 224 return ret; 225 } 226 227 static inline void *init_ppi_data(struct rndis_message *msg, 228 u32 ppi_size, u32 pkt_type) 229 { 230 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 231 struct rndis_per_packet_info *ppi; 232 233 rndis_pkt->data_offset += ppi_size; 234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 235 + rndis_pkt->per_pkt_info_len; 236 237 ppi->size = ppi_size; 238 ppi->type = pkt_type; 239 ppi->internal = 0; 240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 241 242 rndis_pkt->per_pkt_info_len += ppi_size; 243 244 return ppi + 1; 245 } 246 247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 248 * packets. We can use ethtool to change UDP hash level when necessary. 249 */ 250 static inline u32 netvsc_get_hash( 251 struct sk_buff *skb, 252 const struct net_device_context *ndc) 253 { 254 struct flow_keys flow; 255 u32 hash, pkt_proto = 0; 256 static u32 hashrnd __read_mostly; 257 258 net_get_random_once(&hashrnd, sizeof(hashrnd)); 259 260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 261 return 0; 262 263 switch (flow.basic.ip_proto) { 264 case IPPROTO_TCP: 265 if (flow.basic.n_proto == htons(ETH_P_IP)) 266 pkt_proto = HV_TCP4_L4HASH; 267 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 268 pkt_proto = HV_TCP6_L4HASH; 269 270 break; 271 272 case IPPROTO_UDP: 273 if (flow.basic.n_proto == htons(ETH_P_IP)) 274 pkt_proto = HV_UDP4_L4HASH; 275 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 276 pkt_proto = HV_UDP6_L4HASH; 277 278 break; 279 } 280 281 if (pkt_proto & ndc->l4_hash) { 282 return skb_get_hash(skb); 283 } else { 284 if (flow.basic.n_proto == htons(ETH_P_IP)) 285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 286 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 288 else 289 return 0; 290 291 __skb_set_sw_hash(skb, hash, false); 292 } 293 294 return hash; 295 } 296 297 static inline int netvsc_get_tx_queue(struct net_device *ndev, 298 struct sk_buff *skb, int old_idx) 299 { 300 const struct net_device_context *ndc = netdev_priv(ndev); 301 struct sock *sk = skb->sk; 302 int q_idx; 303 304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 305 (VRSS_SEND_TAB_SIZE - 1)]; 306 307 /* If queue index changed record the new value */ 308 if (q_idx != old_idx && 309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 310 sk_tx_queue_set(sk, q_idx); 311 312 return q_idx; 313 } 314 315 /* 316 * Select queue for transmit. 317 * 318 * If a valid queue has already been assigned, then use that. 319 * Otherwise compute tx queue based on hash and the send table. 320 * 321 * This is basically similar to default (netdev_pick_tx) with the added step 322 * of using the host send_table when no other queue has been assigned. 323 * 324 * TODO support XPS - but get_xps_queue not exported 325 */ 326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 327 { 328 int q_idx = sk_tx_queue_get(skb->sk); 329 330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 331 /* If forwarding a packet, we use the recorded queue when 332 * available for better cache locality. 333 */ 334 if (skb_rx_queue_recorded(skb)) 335 q_idx = skb_get_rx_queue(skb); 336 else 337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 338 } 339 340 return q_idx; 341 } 342 343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 344 struct net_device *sb_dev) 345 { 346 struct net_device_context *ndc = netdev_priv(ndev); 347 struct net_device *vf_netdev; 348 u16 txq; 349 350 rcu_read_lock(); 351 vf_netdev = rcu_dereference(ndc->vf_netdev); 352 if (vf_netdev) { 353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 354 355 if (vf_ops->ndo_select_queue) 356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 357 else 358 txq = netdev_pick_tx(vf_netdev, skb, NULL); 359 360 /* Record the queue selected by VF so that it can be 361 * used for common case where VF has more queues than 362 * the synthetic device. 363 */ 364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 365 } else { 366 txq = netvsc_pick_tx(ndev, skb); 367 } 368 rcu_read_unlock(); 369 370 while (txq >= ndev->real_num_tx_queues) 371 txq -= ndev->real_num_tx_queues; 372 373 return txq; 374 } 375 376 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 377 struct hv_page_buffer *pb) 378 { 379 int j = 0; 380 381 /* Deal with compound pages by ignoring unused part 382 * of the page. 383 */ 384 page += (offset >> PAGE_SHIFT); 385 offset &= ~PAGE_MASK; 386 387 while (len > 0) { 388 unsigned long bytes; 389 390 bytes = PAGE_SIZE - offset; 391 if (bytes > len) 392 bytes = len; 393 pb[j].pfn = page_to_pfn(page); 394 pb[j].offset = offset; 395 pb[j].len = bytes; 396 397 offset += bytes; 398 len -= bytes; 399 400 if (offset == PAGE_SIZE && len) { 401 page++; 402 offset = 0; 403 j++; 404 } 405 } 406 407 return j + 1; 408 } 409 410 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 411 struct hv_netvsc_packet *packet, 412 struct hv_page_buffer *pb) 413 { 414 u32 slots_used = 0; 415 char *data = skb->data; 416 int frags = skb_shinfo(skb)->nr_frags; 417 int i; 418 419 /* The packet is laid out thus: 420 * 1. hdr: RNDIS header and PPI 421 * 2. skb linear data 422 * 3. skb fragment data 423 */ 424 slots_used += fill_pg_buf(virt_to_page(hdr), 425 offset_in_page(hdr), 426 len, &pb[slots_used]); 427 428 packet->rmsg_size = len; 429 packet->rmsg_pgcnt = slots_used; 430 431 slots_used += fill_pg_buf(virt_to_page(data), 432 offset_in_page(data), 433 skb_headlen(skb), &pb[slots_used]); 434 435 for (i = 0; i < frags; i++) { 436 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 437 438 slots_used += fill_pg_buf(skb_frag_page(frag), 439 skb_frag_off(frag), 440 skb_frag_size(frag), &pb[slots_used]); 441 } 442 return slots_used; 443 } 444 445 static int count_skb_frag_slots(struct sk_buff *skb) 446 { 447 int i, frags = skb_shinfo(skb)->nr_frags; 448 int pages = 0; 449 450 for (i = 0; i < frags; i++) { 451 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 452 unsigned long size = skb_frag_size(frag); 453 unsigned long offset = skb_frag_off(frag); 454 455 /* Skip unused frames from start of page */ 456 offset &= ~PAGE_MASK; 457 pages += PFN_UP(offset + size); 458 } 459 return pages; 460 } 461 462 static int netvsc_get_slots(struct sk_buff *skb) 463 { 464 char *data = skb->data; 465 unsigned int offset = offset_in_page(data); 466 unsigned int len = skb_headlen(skb); 467 int slots; 468 int frag_slots; 469 470 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 471 frag_slots = count_skb_frag_slots(skb); 472 return slots + frag_slots; 473 } 474 475 static u32 net_checksum_info(struct sk_buff *skb) 476 { 477 if (skb->protocol == htons(ETH_P_IP)) { 478 struct iphdr *ip = ip_hdr(skb); 479 480 if (ip->protocol == IPPROTO_TCP) 481 return TRANSPORT_INFO_IPV4_TCP; 482 else if (ip->protocol == IPPROTO_UDP) 483 return TRANSPORT_INFO_IPV4_UDP; 484 } else { 485 struct ipv6hdr *ip6 = ipv6_hdr(skb); 486 487 if (ip6->nexthdr == IPPROTO_TCP) 488 return TRANSPORT_INFO_IPV6_TCP; 489 else if (ip6->nexthdr == IPPROTO_UDP) 490 return TRANSPORT_INFO_IPV6_UDP; 491 } 492 493 return TRANSPORT_INFO_NOT_IP; 494 } 495 496 /* Send skb on the slave VF device. */ 497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 498 struct sk_buff *skb) 499 { 500 struct net_device_context *ndev_ctx = netdev_priv(net); 501 unsigned int len = skb->len; 502 int rc; 503 504 skb->dev = vf_netdev; 505 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping); 506 507 rc = dev_queue_xmit(skb); 508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 509 struct netvsc_vf_pcpu_stats *pcpu_stats 510 = this_cpu_ptr(ndev_ctx->vf_stats); 511 512 u64_stats_update_begin(&pcpu_stats->syncp); 513 pcpu_stats->tx_packets++; 514 pcpu_stats->tx_bytes += len; 515 u64_stats_update_end(&pcpu_stats->syncp); 516 } else { 517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 518 } 519 520 return rc; 521 } 522 523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 524 { 525 struct net_device_context *net_device_ctx = netdev_priv(net); 526 struct hv_netvsc_packet *packet = NULL; 527 int ret; 528 unsigned int num_data_pgs; 529 struct rndis_message *rndis_msg; 530 struct net_device *vf_netdev; 531 u32 rndis_msg_size; 532 u32 hash; 533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 534 535 /* If VF is present and up then redirect packets to it. 536 * Skip the VF if it is marked down or has no carrier. 537 * If netpoll is in uses, then VF can not be used either. 538 */ 539 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 540 if (vf_netdev && netif_running(vf_netdev) && 541 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net)) 542 return netvsc_vf_xmit(net, vf_netdev, skb); 543 544 /* We will atmost need two pages to describe the rndis 545 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 546 * of pages in a single packet. If skb is scattered around 547 * more pages we try linearizing it. 548 */ 549 550 num_data_pgs = netvsc_get_slots(skb) + 2; 551 552 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 553 ++net_device_ctx->eth_stats.tx_scattered; 554 555 if (skb_linearize(skb)) 556 goto no_memory; 557 558 num_data_pgs = netvsc_get_slots(skb) + 2; 559 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 560 ++net_device_ctx->eth_stats.tx_too_big; 561 goto drop; 562 } 563 } 564 565 /* 566 * Place the rndis header in the skb head room and 567 * the skb->cb will be used for hv_netvsc_packet 568 * structure. 569 */ 570 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 571 if (ret) 572 goto no_memory; 573 574 /* Use the skb control buffer for building up the packet */ 575 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 576 sizeof_field(struct sk_buff, cb)); 577 packet = (struct hv_netvsc_packet *)skb->cb; 578 579 packet->q_idx = skb_get_queue_mapping(skb); 580 581 packet->total_data_buflen = skb->len; 582 packet->total_bytes = skb->len; 583 packet->total_packets = 1; 584 585 rndis_msg = (struct rndis_message *)skb->head; 586 587 /* Add the rndis header */ 588 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 589 rndis_msg->msg_len = packet->total_data_buflen; 590 591 rndis_msg->msg.pkt = (struct rndis_packet) { 592 .data_offset = sizeof(struct rndis_packet), 593 .data_len = packet->total_data_buflen, 594 .per_pkt_info_offset = sizeof(struct rndis_packet), 595 }; 596 597 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 598 599 hash = skb_get_hash_raw(skb); 600 if (hash != 0 && net->real_num_tx_queues > 1) { 601 u32 *hash_info; 602 603 rndis_msg_size += NDIS_HASH_PPI_SIZE; 604 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 605 NBL_HASH_VALUE); 606 *hash_info = hash; 607 } 608 609 /* When using AF_PACKET we need to drop VLAN header from 610 * the frame and update the SKB to allow the HOST OS 611 * to transmit the 802.1Q packet 612 */ 613 if (skb->protocol == htons(ETH_P_8021Q)) { 614 u16 vlan_tci; 615 616 skb_reset_mac_header(skb); 617 if (eth_type_vlan(eth_hdr(skb)->h_proto)) { 618 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { 619 ++net_device_ctx->eth_stats.vlan_error; 620 goto drop; 621 } 622 623 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 624 /* Update the NDIS header pkt lengths */ 625 packet->total_data_buflen -= VLAN_HLEN; 626 packet->total_bytes -= VLAN_HLEN; 627 rndis_msg->msg_len = packet->total_data_buflen; 628 rndis_msg->msg.pkt.data_len = packet->total_data_buflen; 629 } 630 } 631 632 if (skb_vlan_tag_present(skb)) { 633 struct ndis_pkt_8021q_info *vlan; 634 635 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 636 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 637 IEEE_8021Q_INFO); 638 639 vlan->value = 0; 640 vlan->vlanid = skb_vlan_tag_get_id(skb); 641 vlan->cfi = skb_vlan_tag_get_cfi(skb); 642 vlan->pri = skb_vlan_tag_get_prio(skb); 643 } 644 645 if (skb_is_gso(skb)) { 646 struct ndis_tcp_lso_info *lso_info; 647 648 rndis_msg_size += NDIS_LSO_PPI_SIZE; 649 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 650 TCP_LARGESEND_PKTINFO); 651 652 lso_info->value = 0; 653 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 654 if (skb->protocol == htons(ETH_P_IP)) { 655 lso_info->lso_v2_transmit.ip_version = 656 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 657 ip_hdr(skb)->tot_len = 0; 658 ip_hdr(skb)->check = 0; 659 tcp_hdr(skb)->check = 660 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 661 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 662 } else { 663 lso_info->lso_v2_transmit.ip_version = 664 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 665 tcp_v6_gso_csum_prep(skb); 666 } 667 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 668 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 669 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 670 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 671 struct ndis_tcp_ip_checksum_info *csum_info; 672 673 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 674 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 675 TCPIP_CHKSUM_PKTINFO); 676 677 csum_info->value = 0; 678 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 679 680 if (skb->protocol == htons(ETH_P_IP)) { 681 csum_info->transmit.is_ipv4 = 1; 682 683 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 684 csum_info->transmit.tcp_checksum = 1; 685 else 686 csum_info->transmit.udp_checksum = 1; 687 } else { 688 csum_info->transmit.is_ipv6 = 1; 689 690 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 691 csum_info->transmit.tcp_checksum = 1; 692 else 693 csum_info->transmit.udp_checksum = 1; 694 } 695 } else { 696 /* Can't do offload of this type of checksum */ 697 if (skb_checksum_help(skb)) 698 goto drop; 699 } 700 } 701 702 /* Start filling in the page buffers with the rndis hdr */ 703 rndis_msg->msg_len += rndis_msg_size; 704 packet->total_data_buflen = rndis_msg->msg_len; 705 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 706 skb, packet, pb); 707 708 /* timestamp packet in software */ 709 skb_tx_timestamp(skb); 710 711 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 712 if (likely(ret == 0)) 713 return NETDEV_TX_OK; 714 715 if (ret == -EAGAIN) { 716 ++net_device_ctx->eth_stats.tx_busy; 717 return NETDEV_TX_BUSY; 718 } 719 720 if (ret == -ENOSPC) 721 ++net_device_ctx->eth_stats.tx_no_space; 722 723 drop: 724 dev_kfree_skb_any(skb); 725 net->stats.tx_dropped++; 726 727 return NETDEV_TX_OK; 728 729 no_memory: 730 ++net_device_ctx->eth_stats.tx_no_memory; 731 goto drop; 732 } 733 734 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 735 struct net_device *ndev) 736 { 737 return netvsc_xmit(skb, ndev, false); 738 } 739 740 /* 741 * netvsc_linkstatus_callback - Link up/down notification 742 */ 743 void netvsc_linkstatus_callback(struct net_device *net, 744 struct rndis_message *resp) 745 { 746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 747 struct net_device_context *ndev_ctx = netdev_priv(net); 748 struct netvsc_reconfig *event; 749 unsigned long flags; 750 751 /* Update the physical link speed when changing to another vSwitch */ 752 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 753 u32 speed; 754 755 speed = *(u32 *)((void *)indicate 756 + indicate->status_buf_offset) / 10000; 757 ndev_ctx->speed = speed; 758 return; 759 } 760 761 /* Handle these link change statuses below */ 762 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 763 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 764 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 765 return; 766 767 if (net->reg_state != NETREG_REGISTERED) 768 return; 769 770 event = kzalloc(sizeof(*event), GFP_ATOMIC); 771 if (!event) 772 return; 773 event->event = indicate->status; 774 775 spin_lock_irqsave(&ndev_ctx->lock, flags); 776 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 777 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 778 779 schedule_delayed_work(&ndev_ctx->dwork, 0); 780 } 781 782 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 783 { 784 int rc; 785 786 skb->queue_mapping = skb_get_rx_queue(skb); 787 __skb_push(skb, ETH_HLEN); 788 789 rc = netvsc_xmit(skb, ndev, true); 790 791 if (dev_xmit_complete(rc)) 792 return; 793 794 dev_kfree_skb_any(skb); 795 ndev->stats.tx_dropped++; 796 } 797 798 static void netvsc_comp_ipcsum(struct sk_buff *skb) 799 { 800 struct iphdr *iph = (struct iphdr *)skb->data; 801 802 iph->check = 0; 803 iph->check = ip_fast_csum(iph, iph->ihl); 804 } 805 806 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 807 struct netvsc_channel *nvchan, 808 struct xdp_buff *xdp) 809 { 810 struct napi_struct *napi = &nvchan->napi; 811 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 812 const struct ndis_tcp_ip_checksum_info *csum_info = 813 nvchan->rsc.csum_info; 814 const u32 *hash_info = nvchan->rsc.hash_info; 815 struct sk_buff *skb; 816 void *xbuf = xdp->data_hard_start; 817 int i; 818 819 if (xbuf) { 820 unsigned int hdroom = xdp->data - xdp->data_hard_start; 821 unsigned int xlen = xdp->data_end - xdp->data; 822 unsigned int frag_size = xdp->frame_sz; 823 824 skb = build_skb(xbuf, frag_size); 825 826 if (!skb) { 827 __free_page(virt_to_page(xbuf)); 828 return NULL; 829 } 830 831 skb_reserve(skb, hdroom); 832 skb_put(skb, xlen); 833 skb->dev = napi->dev; 834 } else { 835 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 836 837 if (!skb) 838 return NULL; 839 840 /* Copy to skb. This copy is needed here since the memory 841 * pointed by hv_netvsc_packet cannot be deallocated. 842 */ 843 for (i = 0; i < nvchan->rsc.cnt; i++) 844 skb_put_data(skb, nvchan->rsc.data[i], 845 nvchan->rsc.len[i]); 846 } 847 848 skb->protocol = eth_type_trans(skb, net); 849 850 /* skb is already created with CHECKSUM_NONE */ 851 skb_checksum_none_assert(skb); 852 853 /* Incoming packets may have IP header checksum verified by the host. 854 * They may not have IP header checksum computed after coalescing. 855 * We compute it here if the flags are set, because on Linux, the IP 856 * checksum is always checked. 857 */ 858 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 859 csum_info->receive.ip_checksum_succeeded && 860 skb->protocol == htons(ETH_P_IP)) 861 netvsc_comp_ipcsum(skb); 862 863 /* Do L4 checksum offload if enabled and present. */ 864 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 865 if (csum_info->receive.tcp_checksum_succeeded || 866 csum_info->receive.udp_checksum_succeeded) 867 skb->ip_summed = CHECKSUM_UNNECESSARY; 868 } 869 870 if (hash_info && (net->features & NETIF_F_RXHASH)) 871 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 872 873 if (vlan) { 874 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 875 (vlan->cfi ? VLAN_CFI_MASK : 0); 876 877 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 878 vlan_tci); 879 } 880 881 return skb; 882 } 883 884 /* 885 * netvsc_recv_callback - Callback when we receive a packet from the 886 * "wire" on the specified device. 887 */ 888 int netvsc_recv_callback(struct net_device *net, 889 struct netvsc_device *net_device, 890 struct netvsc_channel *nvchan) 891 { 892 struct net_device_context *net_device_ctx = netdev_priv(net); 893 struct vmbus_channel *channel = nvchan->channel; 894 u16 q_idx = channel->offermsg.offer.sub_channel_index; 895 struct sk_buff *skb; 896 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 897 struct xdp_buff xdp; 898 u32 act; 899 900 if (net->reg_state != NETREG_REGISTERED) 901 return NVSP_STAT_FAIL; 902 903 act = netvsc_run_xdp(net, nvchan, &xdp); 904 905 if (act != XDP_PASS && act != XDP_TX) { 906 u64_stats_update_begin(&rx_stats->syncp); 907 rx_stats->xdp_drop++; 908 u64_stats_update_end(&rx_stats->syncp); 909 910 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 911 } 912 913 /* Allocate a skb - TODO direct I/O to pages? */ 914 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 915 916 if (unlikely(!skb)) { 917 ++net_device_ctx->eth_stats.rx_no_memory; 918 return NVSP_STAT_FAIL; 919 } 920 921 skb_record_rx_queue(skb, q_idx); 922 923 /* 924 * Even if injecting the packet, record the statistics 925 * on the synthetic device because modifying the VF device 926 * statistics will not work correctly. 927 */ 928 u64_stats_update_begin(&rx_stats->syncp); 929 rx_stats->packets++; 930 rx_stats->bytes += nvchan->rsc.pktlen; 931 932 if (skb->pkt_type == PACKET_BROADCAST) 933 ++rx_stats->broadcast; 934 else if (skb->pkt_type == PACKET_MULTICAST) 935 ++rx_stats->multicast; 936 u64_stats_update_end(&rx_stats->syncp); 937 938 if (act == XDP_TX) { 939 netvsc_xdp_xmit(skb, net); 940 return NVSP_STAT_SUCCESS; 941 } 942 943 napi_gro_receive(&nvchan->napi, skb); 944 return NVSP_STAT_SUCCESS; 945 } 946 947 static void netvsc_get_drvinfo(struct net_device *net, 948 struct ethtool_drvinfo *info) 949 { 950 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 951 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 952 } 953 954 static void netvsc_get_channels(struct net_device *net, 955 struct ethtool_channels *channel) 956 { 957 struct net_device_context *net_device_ctx = netdev_priv(net); 958 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 959 960 if (nvdev) { 961 channel->max_combined = nvdev->max_chn; 962 channel->combined_count = nvdev->num_chn; 963 } 964 } 965 966 /* Alloc struct netvsc_device_info, and initialize it from either existing 967 * struct netvsc_device, or from default values. 968 */ 969 static 970 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 971 { 972 struct netvsc_device_info *dev_info; 973 struct bpf_prog *prog; 974 975 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 976 977 if (!dev_info) 978 return NULL; 979 980 if (nvdev) { 981 ASSERT_RTNL(); 982 983 dev_info->num_chn = nvdev->num_chn; 984 dev_info->send_sections = nvdev->send_section_cnt; 985 dev_info->send_section_size = nvdev->send_section_size; 986 dev_info->recv_sections = nvdev->recv_section_cnt; 987 dev_info->recv_section_size = nvdev->recv_section_size; 988 989 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 990 NETVSC_HASH_KEYLEN); 991 992 prog = netvsc_xdp_get(nvdev); 993 if (prog) { 994 bpf_prog_inc(prog); 995 dev_info->bprog = prog; 996 } 997 } else { 998 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 999 dev_info->send_sections = NETVSC_DEFAULT_TX; 1000 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 1001 dev_info->recv_sections = NETVSC_DEFAULT_RX; 1002 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 1003 } 1004 1005 return dev_info; 1006 } 1007 1008 /* Free struct netvsc_device_info */ 1009 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 1010 { 1011 if (dev_info->bprog) { 1012 ASSERT_RTNL(); 1013 bpf_prog_put(dev_info->bprog); 1014 } 1015 1016 kfree(dev_info); 1017 } 1018 1019 static int netvsc_detach(struct net_device *ndev, 1020 struct netvsc_device *nvdev) 1021 { 1022 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1023 struct hv_device *hdev = ndev_ctx->device_ctx; 1024 int ret; 1025 1026 /* Don't try continuing to try and setup sub channels */ 1027 if (cancel_work_sync(&nvdev->subchan_work)) 1028 nvdev->num_chn = 1; 1029 1030 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1031 1032 /* If device was up (receiving) then shutdown */ 1033 if (netif_running(ndev)) { 1034 netvsc_tx_disable(nvdev, ndev); 1035 1036 ret = rndis_filter_close(nvdev); 1037 if (ret) { 1038 netdev_err(ndev, 1039 "unable to close device (ret %d).\n", ret); 1040 return ret; 1041 } 1042 1043 ret = netvsc_wait_until_empty(nvdev); 1044 if (ret) { 1045 netdev_err(ndev, 1046 "Ring buffer not empty after closing rndis\n"); 1047 return ret; 1048 } 1049 } 1050 1051 netif_device_detach(ndev); 1052 1053 rndis_filter_device_remove(hdev, nvdev); 1054 1055 return 0; 1056 } 1057 1058 static int netvsc_attach(struct net_device *ndev, 1059 struct netvsc_device_info *dev_info) 1060 { 1061 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1062 struct hv_device *hdev = ndev_ctx->device_ctx; 1063 struct netvsc_device *nvdev; 1064 struct rndis_device *rdev; 1065 struct bpf_prog *prog; 1066 int ret = 0; 1067 1068 nvdev = rndis_filter_device_add(hdev, dev_info); 1069 if (IS_ERR(nvdev)) 1070 return PTR_ERR(nvdev); 1071 1072 if (nvdev->num_chn > 1) { 1073 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1074 1075 /* if unavailable, just proceed with one queue */ 1076 if (ret) { 1077 nvdev->max_chn = 1; 1078 nvdev->num_chn = 1; 1079 } 1080 } 1081 1082 prog = dev_info->bprog; 1083 if (prog) { 1084 bpf_prog_inc(prog); 1085 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1086 if (ret) { 1087 bpf_prog_put(prog); 1088 goto err1; 1089 } 1090 } 1091 1092 /* In any case device is now ready */ 1093 nvdev->tx_disable = false; 1094 netif_device_attach(ndev); 1095 1096 /* Note: enable and attach happen when sub-channels setup */ 1097 netif_carrier_off(ndev); 1098 1099 if (netif_running(ndev)) { 1100 ret = rndis_filter_open(nvdev); 1101 if (ret) 1102 goto err2; 1103 1104 rdev = nvdev->extension; 1105 if (!rdev->link_state) 1106 netif_carrier_on(ndev); 1107 } 1108 1109 return 0; 1110 1111 err2: 1112 netif_device_detach(ndev); 1113 1114 err1: 1115 rndis_filter_device_remove(hdev, nvdev); 1116 1117 return ret; 1118 } 1119 1120 static int netvsc_set_channels(struct net_device *net, 1121 struct ethtool_channels *channels) 1122 { 1123 struct net_device_context *net_device_ctx = netdev_priv(net); 1124 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1125 unsigned int orig, count = channels->combined_count; 1126 struct netvsc_device_info *device_info; 1127 int ret; 1128 1129 /* We do not support separate count for rx, tx, or other */ 1130 if (count == 0 || 1131 channels->rx_count || channels->tx_count || channels->other_count) 1132 return -EINVAL; 1133 1134 if (!nvdev || nvdev->destroy) 1135 return -ENODEV; 1136 1137 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1138 return -EINVAL; 1139 1140 if (count > nvdev->max_chn) 1141 return -EINVAL; 1142 1143 orig = nvdev->num_chn; 1144 1145 device_info = netvsc_devinfo_get(nvdev); 1146 1147 if (!device_info) 1148 return -ENOMEM; 1149 1150 device_info->num_chn = count; 1151 1152 ret = netvsc_detach(net, nvdev); 1153 if (ret) 1154 goto out; 1155 1156 ret = netvsc_attach(net, device_info); 1157 if (ret) { 1158 device_info->num_chn = orig; 1159 if (netvsc_attach(net, device_info)) 1160 netdev_err(net, "restoring channel setting failed\n"); 1161 } 1162 1163 out: 1164 netvsc_devinfo_put(device_info); 1165 return ret; 1166 } 1167 1168 static void netvsc_init_settings(struct net_device *dev) 1169 { 1170 struct net_device_context *ndc = netdev_priv(dev); 1171 1172 ndc->l4_hash = HV_DEFAULT_L4HASH; 1173 1174 ndc->speed = SPEED_UNKNOWN; 1175 ndc->duplex = DUPLEX_FULL; 1176 1177 dev->features = NETIF_F_LRO; 1178 } 1179 1180 static int netvsc_get_link_ksettings(struct net_device *dev, 1181 struct ethtool_link_ksettings *cmd) 1182 { 1183 struct net_device_context *ndc = netdev_priv(dev); 1184 struct net_device *vf_netdev; 1185 1186 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1187 1188 if (vf_netdev) 1189 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1190 1191 cmd->base.speed = ndc->speed; 1192 cmd->base.duplex = ndc->duplex; 1193 cmd->base.port = PORT_OTHER; 1194 1195 return 0; 1196 } 1197 1198 static int netvsc_set_link_ksettings(struct net_device *dev, 1199 const struct ethtool_link_ksettings *cmd) 1200 { 1201 struct net_device_context *ndc = netdev_priv(dev); 1202 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1203 1204 if (vf_netdev) { 1205 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1206 return -EOPNOTSUPP; 1207 1208 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1209 cmd); 1210 } 1211 1212 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1213 &ndc->speed, &ndc->duplex); 1214 } 1215 1216 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1217 { 1218 struct net_device_context *ndevctx = netdev_priv(ndev); 1219 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1220 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1221 int orig_mtu = ndev->mtu; 1222 struct netvsc_device_info *device_info; 1223 int ret = 0; 1224 1225 if (!nvdev || nvdev->destroy) 1226 return -ENODEV; 1227 1228 device_info = netvsc_devinfo_get(nvdev); 1229 1230 if (!device_info) 1231 return -ENOMEM; 1232 1233 /* Change MTU of underlying VF netdev first. */ 1234 if (vf_netdev) { 1235 ret = dev_set_mtu(vf_netdev, mtu); 1236 if (ret) 1237 goto out; 1238 } 1239 1240 ret = netvsc_detach(ndev, nvdev); 1241 if (ret) 1242 goto rollback_vf; 1243 1244 ndev->mtu = mtu; 1245 1246 ret = netvsc_attach(ndev, device_info); 1247 if (!ret) 1248 goto out; 1249 1250 /* Attempt rollback to original MTU */ 1251 ndev->mtu = orig_mtu; 1252 1253 if (netvsc_attach(ndev, device_info)) 1254 netdev_err(ndev, "restoring mtu failed\n"); 1255 rollback_vf: 1256 if (vf_netdev) 1257 dev_set_mtu(vf_netdev, orig_mtu); 1258 1259 out: 1260 netvsc_devinfo_put(device_info); 1261 return ret; 1262 } 1263 1264 static void netvsc_get_vf_stats(struct net_device *net, 1265 struct netvsc_vf_pcpu_stats *tot) 1266 { 1267 struct net_device_context *ndev_ctx = netdev_priv(net); 1268 int i; 1269 1270 memset(tot, 0, sizeof(*tot)); 1271 1272 for_each_possible_cpu(i) { 1273 const struct netvsc_vf_pcpu_stats *stats 1274 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1275 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1276 unsigned int start; 1277 1278 do { 1279 start = u64_stats_fetch_begin_irq(&stats->syncp); 1280 rx_packets = stats->rx_packets; 1281 tx_packets = stats->tx_packets; 1282 rx_bytes = stats->rx_bytes; 1283 tx_bytes = stats->tx_bytes; 1284 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1285 1286 tot->rx_packets += rx_packets; 1287 tot->tx_packets += tx_packets; 1288 tot->rx_bytes += rx_bytes; 1289 tot->tx_bytes += tx_bytes; 1290 tot->tx_dropped += stats->tx_dropped; 1291 } 1292 } 1293 1294 static void netvsc_get_pcpu_stats(struct net_device *net, 1295 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1296 { 1297 struct net_device_context *ndev_ctx = netdev_priv(net); 1298 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1299 int i; 1300 1301 /* fetch percpu stats of vf */ 1302 for_each_possible_cpu(i) { 1303 const struct netvsc_vf_pcpu_stats *stats = 1304 per_cpu_ptr(ndev_ctx->vf_stats, i); 1305 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1306 unsigned int start; 1307 1308 do { 1309 start = u64_stats_fetch_begin_irq(&stats->syncp); 1310 this_tot->vf_rx_packets = stats->rx_packets; 1311 this_tot->vf_tx_packets = stats->tx_packets; 1312 this_tot->vf_rx_bytes = stats->rx_bytes; 1313 this_tot->vf_tx_bytes = stats->tx_bytes; 1314 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1315 this_tot->rx_packets = this_tot->vf_rx_packets; 1316 this_tot->tx_packets = this_tot->vf_tx_packets; 1317 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1318 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1319 } 1320 1321 /* fetch percpu stats of netvsc */ 1322 for (i = 0; i < nvdev->num_chn; i++) { 1323 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1324 const struct netvsc_stats *stats; 1325 struct netvsc_ethtool_pcpu_stats *this_tot = 1326 &pcpu_tot[nvchan->channel->target_cpu]; 1327 u64 packets, bytes; 1328 unsigned int start; 1329 1330 stats = &nvchan->tx_stats; 1331 do { 1332 start = u64_stats_fetch_begin_irq(&stats->syncp); 1333 packets = stats->packets; 1334 bytes = stats->bytes; 1335 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1336 1337 this_tot->tx_bytes += bytes; 1338 this_tot->tx_packets += packets; 1339 1340 stats = &nvchan->rx_stats; 1341 do { 1342 start = u64_stats_fetch_begin_irq(&stats->syncp); 1343 packets = stats->packets; 1344 bytes = stats->bytes; 1345 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1346 1347 this_tot->rx_bytes += bytes; 1348 this_tot->rx_packets += packets; 1349 } 1350 } 1351 1352 static void netvsc_get_stats64(struct net_device *net, 1353 struct rtnl_link_stats64 *t) 1354 { 1355 struct net_device_context *ndev_ctx = netdev_priv(net); 1356 struct netvsc_device *nvdev; 1357 struct netvsc_vf_pcpu_stats vf_tot; 1358 int i; 1359 1360 rcu_read_lock(); 1361 1362 nvdev = rcu_dereference(ndev_ctx->nvdev); 1363 if (!nvdev) 1364 goto out; 1365 1366 netdev_stats_to_stats64(t, &net->stats); 1367 1368 netvsc_get_vf_stats(net, &vf_tot); 1369 t->rx_packets += vf_tot.rx_packets; 1370 t->tx_packets += vf_tot.tx_packets; 1371 t->rx_bytes += vf_tot.rx_bytes; 1372 t->tx_bytes += vf_tot.tx_bytes; 1373 t->tx_dropped += vf_tot.tx_dropped; 1374 1375 for (i = 0; i < nvdev->num_chn; i++) { 1376 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1377 const struct netvsc_stats *stats; 1378 u64 packets, bytes, multicast; 1379 unsigned int start; 1380 1381 stats = &nvchan->tx_stats; 1382 do { 1383 start = u64_stats_fetch_begin_irq(&stats->syncp); 1384 packets = stats->packets; 1385 bytes = stats->bytes; 1386 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1387 1388 t->tx_bytes += bytes; 1389 t->tx_packets += packets; 1390 1391 stats = &nvchan->rx_stats; 1392 do { 1393 start = u64_stats_fetch_begin_irq(&stats->syncp); 1394 packets = stats->packets; 1395 bytes = stats->bytes; 1396 multicast = stats->multicast + stats->broadcast; 1397 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1398 1399 t->rx_bytes += bytes; 1400 t->rx_packets += packets; 1401 t->multicast += multicast; 1402 } 1403 out: 1404 rcu_read_unlock(); 1405 } 1406 1407 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1408 { 1409 struct net_device_context *ndc = netdev_priv(ndev); 1410 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1411 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1412 struct sockaddr *addr = p; 1413 int err; 1414 1415 err = eth_prepare_mac_addr_change(ndev, p); 1416 if (err) 1417 return err; 1418 1419 if (!nvdev) 1420 return -ENODEV; 1421 1422 if (vf_netdev) { 1423 err = dev_set_mac_address(vf_netdev, addr, NULL); 1424 if (err) 1425 return err; 1426 } 1427 1428 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1429 if (!err) { 1430 eth_commit_mac_addr_change(ndev, p); 1431 } else if (vf_netdev) { 1432 /* rollback change on VF */ 1433 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1434 dev_set_mac_address(vf_netdev, addr, NULL); 1435 } 1436 1437 return err; 1438 } 1439 1440 static const struct { 1441 char name[ETH_GSTRING_LEN]; 1442 u16 offset; 1443 } netvsc_stats[] = { 1444 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1445 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1446 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1447 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1448 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1449 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1450 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1451 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1452 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1453 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1454 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, 1455 }, pcpu_stats[] = { 1456 { "cpu%u_rx_packets", 1457 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1458 { "cpu%u_rx_bytes", 1459 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1460 { "cpu%u_tx_packets", 1461 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1462 { "cpu%u_tx_bytes", 1463 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1464 { "cpu%u_vf_rx_packets", 1465 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1466 { "cpu%u_vf_rx_bytes", 1467 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1468 { "cpu%u_vf_tx_packets", 1469 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1470 { "cpu%u_vf_tx_bytes", 1471 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1472 }, vf_stats[] = { 1473 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1474 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1475 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1476 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1477 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1478 }; 1479 1480 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1481 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1482 1483 /* statistics per queue (rx/tx packets/bytes) */ 1484 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1485 1486 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1487 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1488 1489 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1490 { 1491 struct net_device_context *ndc = netdev_priv(dev); 1492 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1493 1494 if (!nvdev) 1495 return -ENODEV; 1496 1497 switch (string_set) { 1498 case ETH_SS_STATS: 1499 return NETVSC_GLOBAL_STATS_LEN 1500 + NETVSC_VF_STATS_LEN 1501 + NETVSC_QUEUE_STATS_LEN(nvdev) 1502 + NETVSC_PCPU_STATS_LEN; 1503 default: 1504 return -EINVAL; 1505 } 1506 } 1507 1508 static void netvsc_get_ethtool_stats(struct net_device *dev, 1509 struct ethtool_stats *stats, u64 *data) 1510 { 1511 struct net_device_context *ndc = netdev_priv(dev); 1512 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1513 const void *nds = &ndc->eth_stats; 1514 const struct netvsc_stats *qstats; 1515 struct netvsc_vf_pcpu_stats sum; 1516 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1517 unsigned int start; 1518 u64 packets, bytes; 1519 u64 xdp_drop; 1520 int i, j, cpu; 1521 1522 if (!nvdev) 1523 return; 1524 1525 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1526 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1527 1528 netvsc_get_vf_stats(dev, &sum); 1529 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1530 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1531 1532 for (j = 0; j < nvdev->num_chn; j++) { 1533 qstats = &nvdev->chan_table[j].tx_stats; 1534 1535 do { 1536 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1537 packets = qstats->packets; 1538 bytes = qstats->bytes; 1539 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1540 data[i++] = packets; 1541 data[i++] = bytes; 1542 1543 qstats = &nvdev->chan_table[j].rx_stats; 1544 do { 1545 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1546 packets = qstats->packets; 1547 bytes = qstats->bytes; 1548 xdp_drop = qstats->xdp_drop; 1549 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1550 data[i++] = packets; 1551 data[i++] = bytes; 1552 data[i++] = xdp_drop; 1553 } 1554 1555 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1556 sizeof(struct netvsc_ethtool_pcpu_stats), 1557 GFP_KERNEL); 1558 netvsc_get_pcpu_stats(dev, pcpu_sum); 1559 for_each_present_cpu(cpu) { 1560 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1561 1562 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1563 data[i++] = *(u64 *)((void *)this_sum 1564 + pcpu_stats[j].offset); 1565 } 1566 kvfree(pcpu_sum); 1567 } 1568 1569 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1570 { 1571 struct net_device_context *ndc = netdev_priv(dev); 1572 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1573 u8 *p = data; 1574 int i, cpu; 1575 1576 if (!nvdev) 1577 return; 1578 1579 switch (stringset) { 1580 case ETH_SS_STATS: 1581 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1582 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1583 p += ETH_GSTRING_LEN; 1584 } 1585 1586 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1587 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1588 p += ETH_GSTRING_LEN; 1589 } 1590 1591 for (i = 0; i < nvdev->num_chn; i++) { 1592 sprintf(p, "tx_queue_%u_packets", i); 1593 p += ETH_GSTRING_LEN; 1594 sprintf(p, "tx_queue_%u_bytes", i); 1595 p += ETH_GSTRING_LEN; 1596 sprintf(p, "rx_queue_%u_packets", i); 1597 p += ETH_GSTRING_LEN; 1598 sprintf(p, "rx_queue_%u_bytes", i); 1599 p += ETH_GSTRING_LEN; 1600 sprintf(p, "rx_queue_%u_xdp_drop", i); 1601 p += ETH_GSTRING_LEN; 1602 } 1603 1604 for_each_present_cpu(cpu) { 1605 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1606 sprintf(p, pcpu_stats[i].name, cpu); 1607 p += ETH_GSTRING_LEN; 1608 } 1609 } 1610 1611 break; 1612 } 1613 } 1614 1615 static int 1616 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1617 struct ethtool_rxnfc *info) 1618 { 1619 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1620 1621 info->data = RXH_IP_SRC | RXH_IP_DST; 1622 1623 switch (info->flow_type) { 1624 case TCP_V4_FLOW: 1625 if (ndc->l4_hash & HV_TCP4_L4HASH) 1626 info->data |= l4_flag; 1627 1628 break; 1629 1630 case TCP_V6_FLOW: 1631 if (ndc->l4_hash & HV_TCP6_L4HASH) 1632 info->data |= l4_flag; 1633 1634 break; 1635 1636 case UDP_V4_FLOW: 1637 if (ndc->l4_hash & HV_UDP4_L4HASH) 1638 info->data |= l4_flag; 1639 1640 break; 1641 1642 case UDP_V6_FLOW: 1643 if (ndc->l4_hash & HV_UDP6_L4HASH) 1644 info->data |= l4_flag; 1645 1646 break; 1647 1648 case IPV4_FLOW: 1649 case IPV6_FLOW: 1650 break; 1651 default: 1652 info->data = 0; 1653 break; 1654 } 1655 1656 return 0; 1657 } 1658 1659 static int 1660 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1661 u32 *rules) 1662 { 1663 struct net_device_context *ndc = netdev_priv(dev); 1664 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1665 1666 if (!nvdev) 1667 return -ENODEV; 1668 1669 switch (info->cmd) { 1670 case ETHTOOL_GRXRINGS: 1671 info->data = nvdev->num_chn; 1672 return 0; 1673 1674 case ETHTOOL_GRXFH: 1675 return netvsc_get_rss_hash_opts(ndc, info); 1676 } 1677 return -EOPNOTSUPP; 1678 } 1679 1680 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1681 struct ethtool_rxnfc *info) 1682 { 1683 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1684 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1685 switch (info->flow_type) { 1686 case TCP_V4_FLOW: 1687 ndc->l4_hash |= HV_TCP4_L4HASH; 1688 break; 1689 1690 case TCP_V6_FLOW: 1691 ndc->l4_hash |= HV_TCP6_L4HASH; 1692 break; 1693 1694 case UDP_V4_FLOW: 1695 ndc->l4_hash |= HV_UDP4_L4HASH; 1696 break; 1697 1698 case UDP_V6_FLOW: 1699 ndc->l4_hash |= HV_UDP6_L4HASH; 1700 break; 1701 1702 default: 1703 return -EOPNOTSUPP; 1704 } 1705 1706 return 0; 1707 } 1708 1709 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1710 switch (info->flow_type) { 1711 case TCP_V4_FLOW: 1712 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1713 break; 1714 1715 case TCP_V6_FLOW: 1716 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1717 break; 1718 1719 case UDP_V4_FLOW: 1720 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1721 break; 1722 1723 case UDP_V6_FLOW: 1724 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1725 break; 1726 1727 default: 1728 return -EOPNOTSUPP; 1729 } 1730 1731 return 0; 1732 } 1733 1734 return -EOPNOTSUPP; 1735 } 1736 1737 static int 1738 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1739 { 1740 struct net_device_context *ndc = netdev_priv(ndev); 1741 1742 if (info->cmd == ETHTOOL_SRXFH) 1743 return netvsc_set_rss_hash_opts(ndc, info); 1744 1745 return -EOPNOTSUPP; 1746 } 1747 1748 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1749 { 1750 return NETVSC_HASH_KEYLEN; 1751 } 1752 1753 static u32 netvsc_rss_indir_size(struct net_device *dev) 1754 { 1755 return ITAB_NUM; 1756 } 1757 1758 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1759 u8 *hfunc) 1760 { 1761 struct net_device_context *ndc = netdev_priv(dev); 1762 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1763 struct rndis_device *rndis_dev; 1764 int i; 1765 1766 if (!ndev) 1767 return -ENODEV; 1768 1769 if (hfunc) 1770 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1771 1772 rndis_dev = ndev->extension; 1773 if (indir) { 1774 for (i = 0; i < ITAB_NUM; i++) 1775 indir[i] = ndc->rx_table[i]; 1776 } 1777 1778 if (key) 1779 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1780 1781 return 0; 1782 } 1783 1784 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1785 const u8 *key, const u8 hfunc) 1786 { 1787 struct net_device_context *ndc = netdev_priv(dev); 1788 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1789 struct rndis_device *rndis_dev; 1790 int i; 1791 1792 if (!ndev) 1793 return -ENODEV; 1794 1795 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1796 return -EOPNOTSUPP; 1797 1798 rndis_dev = ndev->extension; 1799 if (indir) { 1800 for (i = 0; i < ITAB_NUM; i++) 1801 if (indir[i] >= ndev->num_chn) 1802 return -EINVAL; 1803 1804 for (i = 0; i < ITAB_NUM; i++) 1805 ndc->rx_table[i] = indir[i]; 1806 } 1807 1808 if (!key) { 1809 if (!indir) 1810 return 0; 1811 1812 key = rndis_dev->rss_key; 1813 } 1814 1815 return rndis_filter_set_rss_param(rndis_dev, key); 1816 } 1817 1818 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1819 * It does have pre-allocated receive area which is divided into sections. 1820 */ 1821 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1822 struct ethtool_ringparam *ring) 1823 { 1824 u32 max_buf_size; 1825 1826 ring->rx_pending = nvdev->recv_section_cnt; 1827 ring->tx_pending = nvdev->send_section_cnt; 1828 1829 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1830 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1831 else 1832 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1833 1834 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1835 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1836 / nvdev->send_section_size; 1837 } 1838 1839 static void netvsc_get_ringparam(struct net_device *ndev, 1840 struct ethtool_ringparam *ring) 1841 { 1842 struct net_device_context *ndevctx = netdev_priv(ndev); 1843 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1844 1845 if (!nvdev) 1846 return; 1847 1848 __netvsc_get_ringparam(nvdev, ring); 1849 } 1850 1851 static int netvsc_set_ringparam(struct net_device *ndev, 1852 struct ethtool_ringparam *ring) 1853 { 1854 struct net_device_context *ndevctx = netdev_priv(ndev); 1855 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1856 struct netvsc_device_info *device_info; 1857 struct ethtool_ringparam orig; 1858 u32 new_tx, new_rx; 1859 int ret = 0; 1860 1861 if (!nvdev || nvdev->destroy) 1862 return -ENODEV; 1863 1864 memset(&orig, 0, sizeof(orig)); 1865 __netvsc_get_ringparam(nvdev, &orig); 1866 1867 new_tx = clamp_t(u32, ring->tx_pending, 1868 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1869 new_rx = clamp_t(u32, ring->rx_pending, 1870 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1871 1872 if (new_tx == orig.tx_pending && 1873 new_rx == orig.rx_pending) 1874 return 0; /* no change */ 1875 1876 device_info = netvsc_devinfo_get(nvdev); 1877 1878 if (!device_info) 1879 return -ENOMEM; 1880 1881 device_info->send_sections = new_tx; 1882 device_info->recv_sections = new_rx; 1883 1884 ret = netvsc_detach(ndev, nvdev); 1885 if (ret) 1886 goto out; 1887 1888 ret = netvsc_attach(ndev, device_info); 1889 if (ret) { 1890 device_info->send_sections = orig.tx_pending; 1891 device_info->recv_sections = orig.rx_pending; 1892 1893 if (netvsc_attach(ndev, device_info)) 1894 netdev_err(ndev, "restoring ringparam failed"); 1895 } 1896 1897 out: 1898 netvsc_devinfo_put(device_info); 1899 return ret; 1900 } 1901 1902 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1903 netdev_features_t features) 1904 { 1905 struct net_device_context *ndevctx = netdev_priv(ndev); 1906 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1907 1908 if (!nvdev || nvdev->destroy) 1909 return features; 1910 1911 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1912 features ^= NETIF_F_LRO; 1913 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1914 } 1915 1916 return features; 1917 } 1918 1919 static int netvsc_set_features(struct net_device *ndev, 1920 netdev_features_t features) 1921 { 1922 netdev_features_t change = features ^ ndev->features; 1923 struct net_device_context *ndevctx = netdev_priv(ndev); 1924 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1925 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1926 struct ndis_offload_params offloads; 1927 int ret = 0; 1928 1929 if (!nvdev || nvdev->destroy) 1930 return -ENODEV; 1931 1932 if (!(change & NETIF_F_LRO)) 1933 goto syncvf; 1934 1935 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1936 1937 if (features & NETIF_F_LRO) { 1938 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1939 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1940 } else { 1941 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1942 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1943 } 1944 1945 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1946 1947 if (ret) { 1948 features ^= NETIF_F_LRO; 1949 ndev->features = features; 1950 } 1951 1952 syncvf: 1953 if (!vf_netdev) 1954 return ret; 1955 1956 vf_netdev->wanted_features = features; 1957 netdev_update_features(vf_netdev); 1958 1959 return ret; 1960 } 1961 1962 static int netvsc_get_regs_len(struct net_device *netdev) 1963 { 1964 return VRSS_SEND_TAB_SIZE * sizeof(u32); 1965 } 1966 1967 static void netvsc_get_regs(struct net_device *netdev, 1968 struct ethtool_regs *regs, void *p) 1969 { 1970 struct net_device_context *ndc = netdev_priv(netdev); 1971 u32 *regs_buff = p; 1972 1973 /* increase the version, if buffer format is changed. */ 1974 regs->version = 1; 1975 1976 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); 1977 } 1978 1979 static u32 netvsc_get_msglevel(struct net_device *ndev) 1980 { 1981 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1982 1983 return ndev_ctx->msg_enable; 1984 } 1985 1986 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1987 { 1988 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1989 1990 ndev_ctx->msg_enable = val; 1991 } 1992 1993 static const struct ethtool_ops ethtool_ops = { 1994 .get_drvinfo = netvsc_get_drvinfo, 1995 .get_regs_len = netvsc_get_regs_len, 1996 .get_regs = netvsc_get_regs, 1997 .get_msglevel = netvsc_get_msglevel, 1998 .set_msglevel = netvsc_set_msglevel, 1999 .get_link = ethtool_op_get_link, 2000 .get_ethtool_stats = netvsc_get_ethtool_stats, 2001 .get_sset_count = netvsc_get_sset_count, 2002 .get_strings = netvsc_get_strings, 2003 .get_channels = netvsc_get_channels, 2004 .set_channels = netvsc_set_channels, 2005 .get_ts_info = ethtool_op_get_ts_info, 2006 .get_rxnfc = netvsc_get_rxnfc, 2007 .set_rxnfc = netvsc_set_rxnfc, 2008 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 2009 .get_rxfh_indir_size = netvsc_rss_indir_size, 2010 .get_rxfh = netvsc_get_rxfh, 2011 .set_rxfh = netvsc_set_rxfh, 2012 .get_link_ksettings = netvsc_get_link_ksettings, 2013 .set_link_ksettings = netvsc_set_link_ksettings, 2014 .get_ringparam = netvsc_get_ringparam, 2015 .set_ringparam = netvsc_set_ringparam, 2016 }; 2017 2018 static const struct net_device_ops device_ops = { 2019 .ndo_open = netvsc_open, 2020 .ndo_stop = netvsc_close, 2021 .ndo_start_xmit = netvsc_start_xmit, 2022 .ndo_change_rx_flags = netvsc_change_rx_flags, 2023 .ndo_set_rx_mode = netvsc_set_rx_mode, 2024 .ndo_fix_features = netvsc_fix_features, 2025 .ndo_set_features = netvsc_set_features, 2026 .ndo_change_mtu = netvsc_change_mtu, 2027 .ndo_validate_addr = eth_validate_addr, 2028 .ndo_set_mac_address = netvsc_set_mac_addr, 2029 .ndo_select_queue = netvsc_select_queue, 2030 .ndo_get_stats64 = netvsc_get_stats64, 2031 .ndo_bpf = netvsc_bpf, 2032 }; 2033 2034 /* 2035 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2036 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2037 * present send GARP packet to network peers with netif_notify_peers(). 2038 */ 2039 static void netvsc_link_change(struct work_struct *w) 2040 { 2041 struct net_device_context *ndev_ctx = 2042 container_of(w, struct net_device_context, dwork.work); 2043 struct hv_device *device_obj = ndev_ctx->device_ctx; 2044 struct net_device *net = hv_get_drvdata(device_obj); 2045 struct netvsc_device *net_device; 2046 struct rndis_device *rdev; 2047 struct netvsc_reconfig *event = NULL; 2048 bool notify = false, reschedule = false; 2049 unsigned long flags, next_reconfig, delay; 2050 2051 /* if changes are happening, comeback later */ 2052 if (!rtnl_trylock()) { 2053 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2054 return; 2055 } 2056 2057 net_device = rtnl_dereference(ndev_ctx->nvdev); 2058 if (!net_device) 2059 goto out_unlock; 2060 2061 rdev = net_device->extension; 2062 2063 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2064 if (time_is_after_jiffies(next_reconfig)) { 2065 /* link_watch only sends one notification with current state 2066 * per second, avoid doing reconfig more frequently. Handle 2067 * wrap around. 2068 */ 2069 delay = next_reconfig - jiffies; 2070 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2071 schedule_delayed_work(&ndev_ctx->dwork, delay); 2072 goto out_unlock; 2073 } 2074 ndev_ctx->last_reconfig = jiffies; 2075 2076 spin_lock_irqsave(&ndev_ctx->lock, flags); 2077 if (!list_empty(&ndev_ctx->reconfig_events)) { 2078 event = list_first_entry(&ndev_ctx->reconfig_events, 2079 struct netvsc_reconfig, list); 2080 list_del(&event->list); 2081 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2082 } 2083 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2084 2085 if (!event) 2086 goto out_unlock; 2087 2088 switch (event->event) { 2089 /* Only the following events are possible due to the check in 2090 * netvsc_linkstatus_callback() 2091 */ 2092 case RNDIS_STATUS_MEDIA_CONNECT: 2093 if (rdev->link_state) { 2094 rdev->link_state = false; 2095 netif_carrier_on(net); 2096 netvsc_tx_enable(net_device, net); 2097 } else { 2098 notify = true; 2099 } 2100 kfree(event); 2101 break; 2102 case RNDIS_STATUS_MEDIA_DISCONNECT: 2103 if (!rdev->link_state) { 2104 rdev->link_state = true; 2105 netif_carrier_off(net); 2106 netvsc_tx_disable(net_device, net); 2107 } 2108 kfree(event); 2109 break; 2110 case RNDIS_STATUS_NETWORK_CHANGE: 2111 /* Only makes sense if carrier is present */ 2112 if (!rdev->link_state) { 2113 rdev->link_state = true; 2114 netif_carrier_off(net); 2115 netvsc_tx_disable(net_device, net); 2116 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2117 spin_lock_irqsave(&ndev_ctx->lock, flags); 2118 list_add(&event->list, &ndev_ctx->reconfig_events); 2119 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2120 reschedule = true; 2121 } 2122 break; 2123 } 2124 2125 rtnl_unlock(); 2126 2127 if (notify) 2128 netdev_notify_peers(net); 2129 2130 /* link_watch only sends one notification with current state per 2131 * second, handle next reconfig event in 2 seconds. 2132 */ 2133 if (reschedule) 2134 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2135 2136 return; 2137 2138 out_unlock: 2139 rtnl_unlock(); 2140 } 2141 2142 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2143 { 2144 struct net_device_context *net_device_ctx; 2145 struct net_device *dev; 2146 2147 dev = netdev_master_upper_dev_get(vf_netdev); 2148 if (!dev || dev->netdev_ops != &device_ops) 2149 return NULL; /* not a netvsc device */ 2150 2151 net_device_ctx = netdev_priv(dev); 2152 if (!rtnl_dereference(net_device_ctx->nvdev)) 2153 return NULL; /* device is removed */ 2154 2155 return dev; 2156 } 2157 2158 /* Called when VF is injecting data into network stack. 2159 * Change the associated network device from VF to netvsc. 2160 * note: already called with rcu_read_lock 2161 */ 2162 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2163 { 2164 struct sk_buff *skb = *pskb; 2165 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2166 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2167 struct netvsc_vf_pcpu_stats *pcpu_stats 2168 = this_cpu_ptr(ndev_ctx->vf_stats); 2169 2170 skb = skb_share_check(skb, GFP_ATOMIC); 2171 if (unlikely(!skb)) 2172 return RX_HANDLER_CONSUMED; 2173 2174 *pskb = skb; 2175 2176 skb->dev = ndev; 2177 2178 u64_stats_update_begin(&pcpu_stats->syncp); 2179 pcpu_stats->rx_packets++; 2180 pcpu_stats->rx_bytes += skb->len; 2181 u64_stats_update_end(&pcpu_stats->syncp); 2182 2183 return RX_HANDLER_ANOTHER; 2184 } 2185 2186 static int netvsc_vf_join(struct net_device *vf_netdev, 2187 struct net_device *ndev) 2188 { 2189 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2190 int ret; 2191 2192 ret = netdev_rx_handler_register(vf_netdev, 2193 netvsc_vf_handle_frame, ndev); 2194 if (ret != 0) { 2195 netdev_err(vf_netdev, 2196 "can not register netvsc VF receive handler (err = %d)\n", 2197 ret); 2198 goto rx_handler_failed; 2199 } 2200 2201 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2202 NULL, NULL, NULL); 2203 if (ret != 0) { 2204 netdev_err(vf_netdev, 2205 "can not set master device %s (err = %d)\n", 2206 ndev->name, ret); 2207 goto upper_link_failed; 2208 } 2209 2210 /* set slave flag before open to prevent IPv6 addrconf */ 2211 vf_netdev->flags |= IFF_SLAVE; 2212 2213 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2214 2215 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2216 2217 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2218 return 0; 2219 2220 upper_link_failed: 2221 netdev_rx_handler_unregister(vf_netdev); 2222 rx_handler_failed: 2223 return ret; 2224 } 2225 2226 static void __netvsc_vf_setup(struct net_device *ndev, 2227 struct net_device *vf_netdev) 2228 { 2229 int ret; 2230 2231 /* Align MTU of VF with master */ 2232 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2233 if (ret) 2234 netdev_warn(vf_netdev, 2235 "unable to change mtu to %u\n", ndev->mtu); 2236 2237 /* set multicast etc flags on VF */ 2238 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2239 2240 /* sync address list from ndev to VF */ 2241 netif_addr_lock_bh(ndev); 2242 dev_uc_sync(vf_netdev, ndev); 2243 dev_mc_sync(vf_netdev, ndev); 2244 netif_addr_unlock_bh(ndev); 2245 2246 if (netif_running(ndev)) { 2247 ret = dev_open(vf_netdev, NULL); 2248 if (ret) 2249 netdev_warn(vf_netdev, 2250 "unable to open: %d\n", ret); 2251 } 2252 } 2253 2254 /* Setup VF as slave of the synthetic device. 2255 * Runs in workqueue to avoid recursion in netlink callbacks. 2256 */ 2257 static void netvsc_vf_setup(struct work_struct *w) 2258 { 2259 struct net_device_context *ndev_ctx 2260 = container_of(w, struct net_device_context, vf_takeover.work); 2261 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2262 struct net_device *vf_netdev; 2263 2264 if (!rtnl_trylock()) { 2265 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2266 return; 2267 } 2268 2269 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2270 if (vf_netdev) 2271 __netvsc_vf_setup(ndev, vf_netdev); 2272 2273 rtnl_unlock(); 2274 } 2275 2276 /* Find netvsc by VF serial number. 2277 * The PCI hyperv controller records the serial number as the slot kobj name. 2278 */ 2279 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2280 { 2281 struct device *parent = vf_netdev->dev.parent; 2282 struct net_device_context *ndev_ctx; 2283 struct pci_dev *pdev; 2284 u32 serial; 2285 2286 if (!parent || !dev_is_pci(parent)) 2287 return NULL; /* not a PCI device */ 2288 2289 pdev = to_pci_dev(parent); 2290 if (!pdev->slot) { 2291 netdev_notice(vf_netdev, "no PCI slot information\n"); 2292 return NULL; 2293 } 2294 2295 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2296 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2297 pci_slot_name(pdev->slot)); 2298 return NULL; 2299 } 2300 2301 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2302 if (!ndev_ctx->vf_alloc) 2303 continue; 2304 2305 if (ndev_ctx->vf_serial == serial) 2306 return hv_get_drvdata(ndev_ctx->device_ctx); 2307 } 2308 2309 netdev_notice(vf_netdev, 2310 "no netdev found for vf serial:%u\n", serial); 2311 return NULL; 2312 } 2313 2314 static int netvsc_register_vf(struct net_device *vf_netdev) 2315 { 2316 struct net_device_context *net_device_ctx; 2317 struct netvsc_device *netvsc_dev; 2318 struct bpf_prog *prog; 2319 struct net_device *ndev; 2320 int ret; 2321 2322 if (vf_netdev->addr_len != ETH_ALEN) 2323 return NOTIFY_DONE; 2324 2325 ndev = get_netvsc_byslot(vf_netdev); 2326 if (!ndev) 2327 return NOTIFY_DONE; 2328 2329 net_device_ctx = netdev_priv(ndev); 2330 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2331 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2332 return NOTIFY_DONE; 2333 2334 /* if synthetic interface is a different namespace, 2335 * then move the VF to that namespace; join will be 2336 * done again in that context. 2337 */ 2338 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2339 ret = dev_change_net_namespace(vf_netdev, 2340 dev_net(ndev), "eth%d"); 2341 if (ret) 2342 netdev_err(vf_netdev, 2343 "could not move to same namespace as %s: %d\n", 2344 ndev->name, ret); 2345 else 2346 netdev_info(vf_netdev, 2347 "VF moved to namespace with: %s\n", 2348 ndev->name); 2349 return NOTIFY_DONE; 2350 } 2351 2352 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2353 2354 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2355 return NOTIFY_DONE; 2356 2357 dev_hold(vf_netdev); 2358 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2359 2360 vf_netdev->wanted_features = ndev->features; 2361 netdev_update_features(vf_netdev); 2362 2363 prog = netvsc_xdp_get(netvsc_dev); 2364 netvsc_vf_setxdp(vf_netdev, prog); 2365 2366 return NOTIFY_OK; 2367 } 2368 2369 /* VF up/down change detected, schedule to change data path */ 2370 static int netvsc_vf_changed(struct net_device *vf_netdev) 2371 { 2372 struct net_device_context *net_device_ctx; 2373 struct netvsc_device *netvsc_dev; 2374 struct net_device *ndev; 2375 bool vf_is_up = netif_running(vf_netdev); 2376 2377 ndev = get_netvsc_byref(vf_netdev); 2378 if (!ndev) 2379 return NOTIFY_DONE; 2380 2381 net_device_ctx = netdev_priv(ndev); 2382 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2383 if (!netvsc_dev) 2384 return NOTIFY_DONE; 2385 2386 netvsc_switch_datapath(ndev, vf_is_up); 2387 netdev_info(ndev, "Data path switched %s VF: %s\n", 2388 vf_is_up ? "to" : "from", vf_netdev->name); 2389 2390 return NOTIFY_OK; 2391 } 2392 2393 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2394 { 2395 struct net_device *ndev; 2396 struct net_device_context *net_device_ctx; 2397 2398 ndev = get_netvsc_byref(vf_netdev); 2399 if (!ndev) 2400 return NOTIFY_DONE; 2401 2402 net_device_ctx = netdev_priv(ndev); 2403 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2404 2405 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2406 2407 netvsc_vf_setxdp(vf_netdev, NULL); 2408 2409 netdev_rx_handler_unregister(vf_netdev); 2410 netdev_upper_dev_unlink(vf_netdev, ndev); 2411 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2412 dev_put(vf_netdev); 2413 2414 return NOTIFY_OK; 2415 } 2416 2417 static int netvsc_probe(struct hv_device *dev, 2418 const struct hv_vmbus_device_id *dev_id) 2419 { 2420 struct net_device *net = NULL; 2421 struct net_device_context *net_device_ctx; 2422 struct netvsc_device_info *device_info = NULL; 2423 struct netvsc_device *nvdev; 2424 int ret = -ENOMEM; 2425 2426 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2427 VRSS_CHANNEL_MAX); 2428 if (!net) 2429 goto no_net; 2430 2431 netif_carrier_off(net); 2432 2433 netvsc_init_settings(net); 2434 2435 net_device_ctx = netdev_priv(net); 2436 net_device_ctx->device_ctx = dev; 2437 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2438 if (netif_msg_probe(net_device_ctx)) 2439 netdev_dbg(net, "netvsc msg_enable: %d\n", 2440 net_device_ctx->msg_enable); 2441 2442 hv_set_drvdata(dev, net); 2443 2444 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2445 2446 spin_lock_init(&net_device_ctx->lock); 2447 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2448 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2449 2450 net_device_ctx->vf_stats 2451 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2452 if (!net_device_ctx->vf_stats) 2453 goto no_stats; 2454 2455 net->netdev_ops = &device_ops; 2456 net->ethtool_ops = ðtool_ops; 2457 SET_NETDEV_DEV(net, &dev->device); 2458 2459 /* We always need headroom for rndis header */ 2460 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2461 2462 /* Initialize the number of queues to be 1, we may change it if more 2463 * channels are offered later. 2464 */ 2465 netif_set_real_num_tx_queues(net, 1); 2466 netif_set_real_num_rx_queues(net, 1); 2467 2468 /* Notify the netvsc driver of the new device */ 2469 device_info = netvsc_devinfo_get(NULL); 2470 2471 if (!device_info) { 2472 ret = -ENOMEM; 2473 goto devinfo_failed; 2474 } 2475 2476 nvdev = rndis_filter_device_add(dev, device_info); 2477 if (IS_ERR(nvdev)) { 2478 ret = PTR_ERR(nvdev); 2479 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2480 goto rndis_failed; 2481 } 2482 2483 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2484 2485 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2486 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2487 * all subchannels to show up, but that may not happen because 2488 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2489 * -> ... -> device_add() -> ... -> __device_attach() can't get 2490 * the device lock, so all the subchannels can't be processed -- 2491 * finally netvsc_subchan_work() hangs forever. 2492 */ 2493 rtnl_lock(); 2494 2495 if (nvdev->num_chn > 1) 2496 schedule_work(&nvdev->subchan_work); 2497 2498 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2499 net->features = net->hw_features | 2500 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2501 NETIF_F_HW_VLAN_CTAG_RX; 2502 net->vlan_features = net->features; 2503 2504 netdev_lockdep_set_classes(net); 2505 2506 /* MTU range: 68 - 1500 or 65521 */ 2507 net->min_mtu = NETVSC_MTU_MIN; 2508 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2509 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2510 else 2511 net->max_mtu = ETH_DATA_LEN; 2512 2513 nvdev->tx_disable = false; 2514 2515 ret = register_netdevice(net); 2516 if (ret != 0) { 2517 pr_err("Unable to register netdev.\n"); 2518 goto register_failed; 2519 } 2520 2521 list_add(&net_device_ctx->list, &netvsc_dev_list); 2522 rtnl_unlock(); 2523 2524 netvsc_devinfo_put(device_info); 2525 return 0; 2526 2527 register_failed: 2528 rtnl_unlock(); 2529 rndis_filter_device_remove(dev, nvdev); 2530 rndis_failed: 2531 netvsc_devinfo_put(device_info); 2532 devinfo_failed: 2533 free_percpu(net_device_ctx->vf_stats); 2534 no_stats: 2535 hv_set_drvdata(dev, NULL); 2536 free_netdev(net); 2537 no_net: 2538 return ret; 2539 } 2540 2541 static int netvsc_remove(struct hv_device *dev) 2542 { 2543 struct net_device_context *ndev_ctx; 2544 struct net_device *vf_netdev, *net; 2545 struct netvsc_device *nvdev; 2546 2547 net = hv_get_drvdata(dev); 2548 if (net == NULL) { 2549 dev_err(&dev->device, "No net device to remove\n"); 2550 return 0; 2551 } 2552 2553 ndev_ctx = netdev_priv(net); 2554 2555 cancel_delayed_work_sync(&ndev_ctx->dwork); 2556 2557 rtnl_lock(); 2558 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2559 if (nvdev) { 2560 cancel_work_sync(&nvdev->subchan_work); 2561 netvsc_xdp_set(net, NULL, NULL, nvdev); 2562 } 2563 2564 /* 2565 * Call to the vsc driver to let it know that the device is being 2566 * removed. Also blocks mtu and channel changes. 2567 */ 2568 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2569 if (vf_netdev) 2570 netvsc_unregister_vf(vf_netdev); 2571 2572 if (nvdev) 2573 rndis_filter_device_remove(dev, nvdev); 2574 2575 unregister_netdevice(net); 2576 list_del(&ndev_ctx->list); 2577 2578 rtnl_unlock(); 2579 2580 hv_set_drvdata(dev, NULL); 2581 2582 free_percpu(ndev_ctx->vf_stats); 2583 free_netdev(net); 2584 return 0; 2585 } 2586 2587 static int netvsc_suspend(struct hv_device *dev) 2588 { 2589 struct net_device_context *ndev_ctx; 2590 struct net_device *vf_netdev, *net; 2591 struct netvsc_device *nvdev; 2592 int ret; 2593 2594 net = hv_get_drvdata(dev); 2595 2596 ndev_ctx = netdev_priv(net); 2597 cancel_delayed_work_sync(&ndev_ctx->dwork); 2598 2599 rtnl_lock(); 2600 2601 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2602 if (nvdev == NULL) { 2603 ret = -ENODEV; 2604 goto out; 2605 } 2606 2607 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2608 if (vf_netdev) 2609 netvsc_unregister_vf(vf_netdev); 2610 2611 /* Save the current config info */ 2612 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2613 2614 ret = netvsc_detach(net, nvdev); 2615 out: 2616 rtnl_unlock(); 2617 2618 return ret; 2619 } 2620 2621 static int netvsc_resume(struct hv_device *dev) 2622 { 2623 struct net_device *net = hv_get_drvdata(dev); 2624 struct net_device_context *net_device_ctx; 2625 struct netvsc_device_info *device_info; 2626 int ret; 2627 2628 rtnl_lock(); 2629 2630 net_device_ctx = netdev_priv(net); 2631 device_info = net_device_ctx->saved_netvsc_dev_info; 2632 2633 ret = netvsc_attach(net, device_info); 2634 2635 netvsc_devinfo_put(device_info); 2636 net_device_ctx->saved_netvsc_dev_info = NULL; 2637 2638 rtnl_unlock(); 2639 2640 return ret; 2641 } 2642 static const struct hv_vmbus_device_id id_table[] = { 2643 /* Network guid */ 2644 { HV_NIC_GUID, }, 2645 { }, 2646 }; 2647 2648 MODULE_DEVICE_TABLE(vmbus, id_table); 2649 2650 /* The one and only one */ 2651 static struct hv_driver netvsc_drv = { 2652 .name = KBUILD_MODNAME, 2653 .id_table = id_table, 2654 .probe = netvsc_probe, 2655 .remove = netvsc_remove, 2656 .suspend = netvsc_suspend, 2657 .resume = netvsc_resume, 2658 .driver = { 2659 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2660 }, 2661 }; 2662 2663 /* 2664 * On Hyper-V, every VF interface is matched with a corresponding 2665 * synthetic interface. The synthetic interface is presented first 2666 * to the guest. When the corresponding VF instance is registered, 2667 * we will take care of switching the data path. 2668 */ 2669 static int netvsc_netdev_event(struct notifier_block *this, 2670 unsigned long event, void *ptr) 2671 { 2672 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2673 2674 /* Skip our own events */ 2675 if (event_dev->netdev_ops == &device_ops) 2676 return NOTIFY_DONE; 2677 2678 /* Avoid non-Ethernet type devices */ 2679 if (event_dev->type != ARPHRD_ETHER) 2680 return NOTIFY_DONE; 2681 2682 /* Avoid Vlan dev with same MAC registering as VF */ 2683 if (is_vlan_dev(event_dev)) 2684 return NOTIFY_DONE; 2685 2686 /* Avoid Bonding master dev with same MAC registering as VF */ 2687 if ((event_dev->priv_flags & IFF_BONDING) && 2688 (event_dev->flags & IFF_MASTER)) 2689 return NOTIFY_DONE; 2690 2691 switch (event) { 2692 case NETDEV_REGISTER: 2693 return netvsc_register_vf(event_dev); 2694 case NETDEV_UNREGISTER: 2695 return netvsc_unregister_vf(event_dev); 2696 case NETDEV_UP: 2697 case NETDEV_DOWN: 2698 return netvsc_vf_changed(event_dev); 2699 default: 2700 return NOTIFY_DONE; 2701 } 2702 } 2703 2704 static struct notifier_block netvsc_netdev_notifier = { 2705 .notifier_call = netvsc_netdev_event, 2706 }; 2707 2708 static void __exit netvsc_drv_exit(void) 2709 { 2710 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2711 vmbus_driver_unregister(&netvsc_drv); 2712 } 2713 2714 static int __init netvsc_drv_init(void) 2715 { 2716 int ret; 2717 2718 if (ring_size < RING_SIZE_MIN) { 2719 ring_size = RING_SIZE_MIN; 2720 pr_info("Increased ring_size to %u (min allowed)\n", 2721 ring_size); 2722 } 2723 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2724 2725 ret = vmbus_driver_register(&netvsc_drv); 2726 if (ret) 2727 return ret; 2728 2729 register_netdevice_notifier(&netvsc_netdev_notifier); 2730 return 0; 2731 } 2732 2733 MODULE_LICENSE("GPL"); 2734 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2735 2736 module_init(netvsc_drv_init); 2737 module_exit(netvsc_drv_exit); 2738