1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/delay.h> 18 #include <linux/netdevice.h> 19 #include <linux/inetdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 #include <linux/if_vlan.h> 24 #include <linux/in.h> 25 #include <linux/slab.h> 26 #include <linux/rtnetlink.h> 27 #include <linux/netpoll.h> 28 #include <linux/bpf.h> 29 30 #include <net/arp.h> 31 #include <net/route.h> 32 #include <net/sock.h> 33 #include <net/pkt_sched.h> 34 #include <net/checksum.h> 35 #include <net/ip6_checksum.h> 36 37 #include "hyperv_net.h" 38 39 #define RING_SIZE_MIN 64 40 #define RETRY_US_LO 5000 41 #define RETRY_US_HI 10000 42 #define RETRY_MAX 2000 /* >10 sec */ 43 44 #define LINKCHANGE_INT (2 * HZ) 45 #define VF_TAKEOVER_INT (HZ / 10) 46 47 static unsigned int ring_size __ro_after_init = 128; 48 module_param(ring_size, uint, 0444); 49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 50 unsigned int netvsc_ring_bytes __ro_after_init; 51 52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 53 NETIF_MSG_LINK | NETIF_MSG_IFUP | 54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 55 NETIF_MSG_TX_ERR; 56 57 static int debug = -1; 58 module_param(debug, int, 0444); 59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 60 61 static LIST_HEAD(netvsc_dev_list); 62 63 static void netvsc_change_rx_flags(struct net_device *net, int change) 64 { 65 struct net_device_context *ndev_ctx = netdev_priv(net); 66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 67 int inc; 68 69 if (!vf_netdev) 70 return; 71 72 if (change & IFF_PROMISC) { 73 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 74 dev_set_promiscuity(vf_netdev, inc); 75 } 76 77 if (change & IFF_ALLMULTI) { 78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 79 dev_set_allmulti(vf_netdev, inc); 80 } 81 } 82 83 static void netvsc_set_rx_mode(struct net_device *net) 84 { 85 struct net_device_context *ndev_ctx = netdev_priv(net); 86 struct net_device *vf_netdev; 87 struct netvsc_device *nvdev; 88 89 rcu_read_lock(); 90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 91 if (vf_netdev) { 92 dev_uc_sync(vf_netdev, net); 93 dev_mc_sync(vf_netdev, net); 94 } 95 96 nvdev = rcu_dereference(ndev_ctx->nvdev); 97 if (nvdev) 98 rndis_filter_update(nvdev); 99 rcu_read_unlock(); 100 } 101 102 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 103 struct net_device *ndev) 104 { 105 nvscdev->tx_disable = false; 106 virt_wmb(); /* ensure queue wake up mechanism is on */ 107 108 netif_tx_wake_all_queues(ndev); 109 } 110 111 static int netvsc_open(struct net_device *net) 112 { 113 struct net_device_context *ndev_ctx = netdev_priv(net); 114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 116 struct rndis_device *rdev; 117 int ret = 0; 118 119 netif_carrier_off(net); 120 121 /* Open up the device */ 122 ret = rndis_filter_open(nvdev); 123 if (ret != 0) { 124 netdev_err(net, "unable to open device (ret %d).\n", ret); 125 return ret; 126 } 127 128 rdev = nvdev->extension; 129 if (!rdev->link_state) { 130 netif_carrier_on(net); 131 netvsc_tx_enable(nvdev, net); 132 } 133 134 if (vf_netdev) { 135 /* Setting synthetic device up transparently sets 136 * slave as up. If open fails, then slave will be 137 * still be offline (and not used). 138 */ 139 ret = dev_open(vf_netdev, NULL); 140 if (ret) 141 netdev_warn(net, 142 "unable to open slave: %s: %d\n", 143 vf_netdev->name, ret); 144 } 145 return 0; 146 } 147 148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 149 { 150 unsigned int retry = 0; 151 int i; 152 153 /* Ensure pending bytes in ring are read */ 154 for (;;) { 155 u32 aread = 0; 156 157 for (i = 0; i < nvdev->num_chn; i++) { 158 struct vmbus_channel *chn 159 = nvdev->chan_table[i].channel; 160 161 if (!chn) 162 continue; 163 164 /* make sure receive not running now */ 165 napi_synchronize(&nvdev->chan_table[i].napi); 166 167 aread = hv_get_bytes_to_read(&chn->inbound); 168 if (aread) 169 break; 170 171 aread = hv_get_bytes_to_read(&chn->outbound); 172 if (aread) 173 break; 174 } 175 176 if (aread == 0) 177 return 0; 178 179 if (++retry > RETRY_MAX) 180 return -ETIMEDOUT; 181 182 usleep_range(RETRY_US_LO, RETRY_US_HI); 183 } 184 } 185 186 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 187 struct net_device *ndev) 188 { 189 if (nvscdev) { 190 nvscdev->tx_disable = true; 191 virt_wmb(); /* ensure txq will not wake up after stop */ 192 } 193 194 netif_tx_disable(ndev); 195 } 196 197 static int netvsc_close(struct net_device *net) 198 { 199 struct net_device_context *net_device_ctx = netdev_priv(net); 200 struct net_device *vf_netdev 201 = rtnl_dereference(net_device_ctx->vf_netdev); 202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 203 int ret; 204 205 netvsc_tx_disable(nvdev, net); 206 207 /* No need to close rndis filter if it is removed already */ 208 if (!nvdev) 209 return 0; 210 211 ret = rndis_filter_close(nvdev); 212 if (ret != 0) { 213 netdev_err(net, "unable to close device (ret %d).\n", ret); 214 return ret; 215 } 216 217 ret = netvsc_wait_until_empty(nvdev); 218 if (ret) 219 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 220 221 if (vf_netdev) 222 dev_close(vf_netdev); 223 224 return ret; 225 } 226 227 static inline void *init_ppi_data(struct rndis_message *msg, 228 u32 ppi_size, u32 pkt_type) 229 { 230 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 231 struct rndis_per_packet_info *ppi; 232 233 rndis_pkt->data_offset += ppi_size; 234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 235 + rndis_pkt->per_pkt_info_len; 236 237 ppi->size = ppi_size; 238 ppi->type = pkt_type; 239 ppi->internal = 0; 240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 241 242 rndis_pkt->per_pkt_info_len += ppi_size; 243 244 return ppi + 1; 245 } 246 247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 248 * packets. We can use ethtool to change UDP hash level when necessary. 249 */ 250 static inline u32 netvsc_get_hash( 251 struct sk_buff *skb, 252 const struct net_device_context *ndc) 253 { 254 struct flow_keys flow; 255 u32 hash, pkt_proto = 0; 256 static u32 hashrnd __read_mostly; 257 258 net_get_random_once(&hashrnd, sizeof(hashrnd)); 259 260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 261 return 0; 262 263 switch (flow.basic.ip_proto) { 264 case IPPROTO_TCP: 265 if (flow.basic.n_proto == htons(ETH_P_IP)) 266 pkt_proto = HV_TCP4_L4HASH; 267 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 268 pkt_proto = HV_TCP6_L4HASH; 269 270 break; 271 272 case IPPROTO_UDP: 273 if (flow.basic.n_proto == htons(ETH_P_IP)) 274 pkt_proto = HV_UDP4_L4HASH; 275 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 276 pkt_proto = HV_UDP6_L4HASH; 277 278 break; 279 } 280 281 if (pkt_proto & ndc->l4_hash) { 282 return skb_get_hash(skb); 283 } else { 284 if (flow.basic.n_proto == htons(ETH_P_IP)) 285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 286 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 288 else 289 return 0; 290 291 __skb_set_sw_hash(skb, hash, false); 292 } 293 294 return hash; 295 } 296 297 static inline int netvsc_get_tx_queue(struct net_device *ndev, 298 struct sk_buff *skb, int old_idx) 299 { 300 const struct net_device_context *ndc = netdev_priv(ndev); 301 struct sock *sk = skb->sk; 302 int q_idx; 303 304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 305 (VRSS_SEND_TAB_SIZE - 1)]; 306 307 /* If queue index changed record the new value */ 308 if (q_idx != old_idx && 309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 310 sk_tx_queue_set(sk, q_idx); 311 312 return q_idx; 313 } 314 315 /* 316 * Select queue for transmit. 317 * 318 * If a valid queue has already been assigned, then use that. 319 * Otherwise compute tx queue based on hash and the send table. 320 * 321 * This is basically similar to default (netdev_pick_tx) with the added step 322 * of using the host send_table when no other queue has been assigned. 323 * 324 * TODO support XPS - but get_xps_queue not exported 325 */ 326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 327 { 328 int q_idx = sk_tx_queue_get(skb->sk); 329 330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 331 /* If forwarding a packet, we use the recorded queue when 332 * available for better cache locality. 333 */ 334 if (skb_rx_queue_recorded(skb)) 335 q_idx = skb_get_rx_queue(skb); 336 else 337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 338 } 339 340 return q_idx; 341 } 342 343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 344 struct net_device *sb_dev) 345 { 346 struct net_device_context *ndc = netdev_priv(ndev); 347 struct net_device *vf_netdev; 348 u16 txq; 349 350 rcu_read_lock(); 351 vf_netdev = rcu_dereference(ndc->vf_netdev); 352 if (vf_netdev) { 353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 354 355 if (vf_ops->ndo_select_queue) 356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 357 else 358 txq = netdev_pick_tx(vf_netdev, skb, NULL); 359 360 /* Record the queue selected by VF so that it can be 361 * used for common case where VF has more queues than 362 * the synthetic device. 363 */ 364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 365 } else { 366 txq = netvsc_pick_tx(ndev, skb); 367 } 368 rcu_read_unlock(); 369 370 while (unlikely(txq >= ndev->real_num_tx_queues)) 371 txq -= ndev->real_num_tx_queues; 372 373 return txq; 374 } 375 376 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 377 struct hv_page_buffer *pb) 378 { 379 int j = 0; 380 381 /* Deal with compound pages by ignoring unused part 382 * of the page. 383 */ 384 page += (offset >> PAGE_SHIFT); 385 offset &= ~PAGE_MASK; 386 387 while (len > 0) { 388 unsigned long bytes; 389 390 bytes = PAGE_SIZE - offset; 391 if (bytes > len) 392 bytes = len; 393 pb[j].pfn = page_to_pfn(page); 394 pb[j].offset = offset; 395 pb[j].len = bytes; 396 397 offset += bytes; 398 len -= bytes; 399 400 if (offset == PAGE_SIZE && len) { 401 page++; 402 offset = 0; 403 j++; 404 } 405 } 406 407 return j + 1; 408 } 409 410 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 411 struct hv_netvsc_packet *packet, 412 struct hv_page_buffer *pb) 413 { 414 u32 slots_used = 0; 415 char *data = skb->data; 416 int frags = skb_shinfo(skb)->nr_frags; 417 int i; 418 419 /* The packet is laid out thus: 420 * 1. hdr: RNDIS header and PPI 421 * 2. skb linear data 422 * 3. skb fragment data 423 */ 424 slots_used += fill_pg_buf(virt_to_page(hdr), 425 offset_in_page(hdr), 426 len, &pb[slots_used]); 427 428 packet->rmsg_size = len; 429 packet->rmsg_pgcnt = slots_used; 430 431 slots_used += fill_pg_buf(virt_to_page(data), 432 offset_in_page(data), 433 skb_headlen(skb), &pb[slots_used]); 434 435 for (i = 0; i < frags; i++) { 436 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 437 438 slots_used += fill_pg_buf(skb_frag_page(frag), 439 skb_frag_off(frag), 440 skb_frag_size(frag), &pb[slots_used]); 441 } 442 return slots_used; 443 } 444 445 static int count_skb_frag_slots(struct sk_buff *skb) 446 { 447 int i, frags = skb_shinfo(skb)->nr_frags; 448 int pages = 0; 449 450 for (i = 0; i < frags; i++) { 451 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 452 unsigned long size = skb_frag_size(frag); 453 unsigned long offset = skb_frag_off(frag); 454 455 /* Skip unused frames from start of page */ 456 offset &= ~PAGE_MASK; 457 pages += PFN_UP(offset + size); 458 } 459 return pages; 460 } 461 462 static int netvsc_get_slots(struct sk_buff *skb) 463 { 464 char *data = skb->data; 465 unsigned int offset = offset_in_page(data); 466 unsigned int len = skb_headlen(skb); 467 int slots; 468 int frag_slots; 469 470 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 471 frag_slots = count_skb_frag_slots(skb); 472 return slots + frag_slots; 473 } 474 475 static u32 net_checksum_info(struct sk_buff *skb) 476 { 477 if (skb->protocol == htons(ETH_P_IP)) { 478 struct iphdr *ip = ip_hdr(skb); 479 480 if (ip->protocol == IPPROTO_TCP) 481 return TRANSPORT_INFO_IPV4_TCP; 482 else if (ip->protocol == IPPROTO_UDP) 483 return TRANSPORT_INFO_IPV4_UDP; 484 } else { 485 struct ipv6hdr *ip6 = ipv6_hdr(skb); 486 487 if (ip6->nexthdr == IPPROTO_TCP) 488 return TRANSPORT_INFO_IPV6_TCP; 489 else if (ip6->nexthdr == IPPROTO_UDP) 490 return TRANSPORT_INFO_IPV6_UDP; 491 } 492 493 return TRANSPORT_INFO_NOT_IP; 494 } 495 496 /* Send skb on the slave VF device. */ 497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 498 struct sk_buff *skb) 499 { 500 struct net_device_context *ndev_ctx = netdev_priv(net); 501 unsigned int len = skb->len; 502 int rc; 503 504 skb->dev = vf_netdev; 505 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 506 507 rc = dev_queue_xmit(skb); 508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 509 struct netvsc_vf_pcpu_stats *pcpu_stats 510 = this_cpu_ptr(ndev_ctx->vf_stats); 511 512 u64_stats_update_begin(&pcpu_stats->syncp); 513 pcpu_stats->tx_packets++; 514 pcpu_stats->tx_bytes += len; 515 u64_stats_update_end(&pcpu_stats->syncp); 516 } else { 517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 518 } 519 520 return rc; 521 } 522 523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 524 { 525 struct net_device_context *net_device_ctx = netdev_priv(net); 526 struct hv_netvsc_packet *packet = NULL; 527 int ret; 528 unsigned int num_data_pgs; 529 struct rndis_message *rndis_msg; 530 struct net_device *vf_netdev; 531 u32 rndis_msg_size; 532 u32 hash; 533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 534 535 /* if VF is present and up then redirect packets 536 * already called with rcu_read_lock_bh 537 */ 538 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 539 if (vf_netdev && netif_running(vf_netdev) && 540 !netpoll_tx_running(net)) 541 return netvsc_vf_xmit(net, vf_netdev, skb); 542 543 /* We will atmost need two pages to describe the rndis 544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 545 * of pages in a single packet. If skb is scattered around 546 * more pages we try linearizing it. 547 */ 548 549 num_data_pgs = netvsc_get_slots(skb) + 2; 550 551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 552 ++net_device_ctx->eth_stats.tx_scattered; 553 554 if (skb_linearize(skb)) 555 goto no_memory; 556 557 num_data_pgs = netvsc_get_slots(skb) + 2; 558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 559 ++net_device_ctx->eth_stats.tx_too_big; 560 goto drop; 561 } 562 } 563 564 /* 565 * Place the rndis header in the skb head room and 566 * the skb->cb will be used for hv_netvsc_packet 567 * structure. 568 */ 569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 570 if (ret) 571 goto no_memory; 572 573 /* Use the skb control buffer for building up the packet */ 574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 575 sizeof_field(struct sk_buff, cb)); 576 packet = (struct hv_netvsc_packet *)skb->cb; 577 578 packet->q_idx = skb_get_queue_mapping(skb); 579 580 packet->total_data_buflen = skb->len; 581 packet->total_bytes = skb->len; 582 packet->total_packets = 1; 583 584 rndis_msg = (struct rndis_message *)skb->head; 585 586 /* Add the rndis header */ 587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 588 rndis_msg->msg_len = packet->total_data_buflen; 589 590 rndis_msg->msg.pkt = (struct rndis_packet) { 591 .data_offset = sizeof(struct rndis_packet), 592 .data_len = packet->total_data_buflen, 593 .per_pkt_info_offset = sizeof(struct rndis_packet), 594 }; 595 596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 597 598 hash = skb_get_hash_raw(skb); 599 if (hash != 0 && net->real_num_tx_queues > 1) { 600 u32 *hash_info; 601 602 rndis_msg_size += NDIS_HASH_PPI_SIZE; 603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 604 NBL_HASH_VALUE); 605 *hash_info = hash; 606 } 607 608 if (skb_vlan_tag_present(skb)) { 609 struct ndis_pkt_8021q_info *vlan; 610 611 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 612 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 613 IEEE_8021Q_INFO); 614 615 vlan->value = 0; 616 vlan->vlanid = skb_vlan_tag_get_id(skb); 617 vlan->cfi = skb_vlan_tag_get_cfi(skb); 618 vlan->pri = skb_vlan_tag_get_prio(skb); 619 } 620 621 if (skb_is_gso(skb)) { 622 struct ndis_tcp_lso_info *lso_info; 623 624 rndis_msg_size += NDIS_LSO_PPI_SIZE; 625 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 626 TCP_LARGESEND_PKTINFO); 627 628 lso_info->value = 0; 629 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 630 if (skb->protocol == htons(ETH_P_IP)) { 631 lso_info->lso_v2_transmit.ip_version = 632 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 633 ip_hdr(skb)->tot_len = 0; 634 ip_hdr(skb)->check = 0; 635 tcp_hdr(skb)->check = 636 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 637 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 638 } else { 639 lso_info->lso_v2_transmit.ip_version = 640 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 641 ipv6_hdr(skb)->payload_len = 0; 642 tcp_hdr(skb)->check = 643 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 644 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 645 } 646 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 647 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 648 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 649 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 650 struct ndis_tcp_ip_checksum_info *csum_info; 651 652 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 653 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 654 TCPIP_CHKSUM_PKTINFO); 655 656 csum_info->value = 0; 657 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 658 659 if (skb->protocol == htons(ETH_P_IP)) { 660 csum_info->transmit.is_ipv4 = 1; 661 662 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 663 csum_info->transmit.tcp_checksum = 1; 664 else 665 csum_info->transmit.udp_checksum = 1; 666 } else { 667 csum_info->transmit.is_ipv6 = 1; 668 669 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 670 csum_info->transmit.tcp_checksum = 1; 671 else 672 csum_info->transmit.udp_checksum = 1; 673 } 674 } else { 675 /* Can't do offload of this type of checksum */ 676 if (skb_checksum_help(skb)) 677 goto drop; 678 } 679 } 680 681 /* Start filling in the page buffers with the rndis hdr */ 682 rndis_msg->msg_len += rndis_msg_size; 683 packet->total_data_buflen = rndis_msg->msg_len; 684 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 685 skb, packet, pb); 686 687 /* timestamp packet in software */ 688 skb_tx_timestamp(skb); 689 690 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 691 if (likely(ret == 0)) 692 return NETDEV_TX_OK; 693 694 if (ret == -EAGAIN) { 695 ++net_device_ctx->eth_stats.tx_busy; 696 return NETDEV_TX_BUSY; 697 } 698 699 if (ret == -ENOSPC) 700 ++net_device_ctx->eth_stats.tx_no_space; 701 702 drop: 703 dev_kfree_skb_any(skb); 704 net->stats.tx_dropped++; 705 706 return NETDEV_TX_OK; 707 708 no_memory: 709 ++net_device_ctx->eth_stats.tx_no_memory; 710 goto drop; 711 } 712 713 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *ndev) 714 { 715 return netvsc_xmit(skb, ndev, false); 716 } 717 718 /* 719 * netvsc_linkstatus_callback - Link up/down notification 720 */ 721 void netvsc_linkstatus_callback(struct net_device *net, 722 struct rndis_message *resp) 723 { 724 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 725 struct net_device_context *ndev_ctx = netdev_priv(net); 726 struct netvsc_reconfig *event; 727 unsigned long flags; 728 729 /* Update the physical link speed when changing to another vSwitch */ 730 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 731 u32 speed; 732 733 speed = *(u32 *)((void *)indicate 734 + indicate->status_buf_offset) / 10000; 735 ndev_ctx->speed = speed; 736 return; 737 } 738 739 /* Handle these link change statuses below */ 740 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 741 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 742 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 743 return; 744 745 if (net->reg_state != NETREG_REGISTERED) 746 return; 747 748 event = kzalloc(sizeof(*event), GFP_ATOMIC); 749 if (!event) 750 return; 751 event->event = indicate->status; 752 753 spin_lock_irqsave(&ndev_ctx->lock, flags); 754 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 755 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 756 757 schedule_delayed_work(&ndev_ctx->dwork, 0); 758 } 759 760 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 761 { 762 int rc; 763 764 skb->queue_mapping = skb_get_rx_queue(skb); 765 __skb_push(skb, ETH_HLEN); 766 767 rc = netvsc_xmit(skb, ndev, true); 768 769 if (dev_xmit_complete(rc)) 770 return; 771 772 dev_kfree_skb_any(skb); 773 ndev->stats.tx_dropped++; 774 } 775 776 static void netvsc_comp_ipcsum(struct sk_buff *skb) 777 { 778 struct iphdr *iph = (struct iphdr *)skb->data; 779 780 iph->check = 0; 781 iph->check = ip_fast_csum(iph, iph->ihl); 782 } 783 784 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 785 struct netvsc_channel *nvchan, 786 struct xdp_buff *xdp) 787 { 788 struct napi_struct *napi = &nvchan->napi; 789 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 790 const struct ndis_tcp_ip_checksum_info *csum_info = 791 nvchan->rsc.csum_info; 792 const u32 *hash_info = nvchan->rsc.hash_info; 793 struct sk_buff *skb; 794 void *xbuf = xdp->data_hard_start; 795 int i; 796 797 if (xbuf) { 798 unsigned int hdroom = xdp->data - xdp->data_hard_start; 799 unsigned int xlen = xdp->data_end - xdp->data; 800 unsigned int frag_size = netvsc_xdp_fraglen(hdroom + xlen); 801 802 skb = build_skb(xbuf, frag_size); 803 804 if (!skb) { 805 __free_page(virt_to_page(xbuf)); 806 return NULL; 807 } 808 809 skb_reserve(skb, hdroom); 810 skb_put(skb, xlen); 811 skb->dev = napi->dev; 812 } else { 813 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 814 815 if (!skb) 816 return NULL; 817 818 /* Copy to skb. This copy is needed here since the memory 819 * pointed by hv_netvsc_packet cannot be deallocated. 820 */ 821 for (i = 0; i < nvchan->rsc.cnt; i++) 822 skb_put_data(skb, nvchan->rsc.data[i], 823 nvchan->rsc.len[i]); 824 } 825 826 skb->protocol = eth_type_trans(skb, net); 827 828 /* skb is already created with CHECKSUM_NONE */ 829 skb_checksum_none_assert(skb); 830 831 /* Incoming packets may have IP header checksum verified by the host. 832 * They may not have IP header checksum computed after coalescing. 833 * We compute it here if the flags are set, because on Linux, the IP 834 * checksum is always checked. 835 */ 836 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 837 csum_info->receive.ip_checksum_succeeded && 838 skb->protocol == htons(ETH_P_IP)) 839 netvsc_comp_ipcsum(skb); 840 841 /* Do L4 checksum offload if enabled and present. */ 842 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 843 if (csum_info->receive.tcp_checksum_succeeded || 844 csum_info->receive.udp_checksum_succeeded) 845 skb->ip_summed = CHECKSUM_UNNECESSARY; 846 } 847 848 if (hash_info && (net->features & NETIF_F_RXHASH)) 849 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 850 851 if (vlan) { 852 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 853 (vlan->cfi ? VLAN_CFI_MASK : 0); 854 855 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 856 vlan_tci); 857 } 858 859 return skb; 860 } 861 862 /* 863 * netvsc_recv_callback - Callback when we receive a packet from the 864 * "wire" on the specified device. 865 */ 866 int netvsc_recv_callback(struct net_device *net, 867 struct netvsc_device *net_device, 868 struct netvsc_channel *nvchan) 869 { 870 struct net_device_context *net_device_ctx = netdev_priv(net); 871 struct vmbus_channel *channel = nvchan->channel; 872 u16 q_idx = channel->offermsg.offer.sub_channel_index; 873 struct sk_buff *skb; 874 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 875 struct xdp_buff xdp; 876 u32 act; 877 878 if (net->reg_state != NETREG_REGISTERED) 879 return NVSP_STAT_FAIL; 880 881 act = netvsc_run_xdp(net, nvchan, &xdp); 882 883 if (act != XDP_PASS && act != XDP_TX) { 884 u64_stats_update_begin(&rx_stats->syncp); 885 rx_stats->xdp_drop++; 886 u64_stats_update_end(&rx_stats->syncp); 887 888 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 889 } 890 891 /* Allocate a skb - TODO direct I/O to pages? */ 892 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 893 894 if (unlikely(!skb)) { 895 ++net_device_ctx->eth_stats.rx_no_memory; 896 return NVSP_STAT_FAIL; 897 } 898 899 skb_record_rx_queue(skb, q_idx); 900 901 /* 902 * Even if injecting the packet, record the statistics 903 * on the synthetic device because modifying the VF device 904 * statistics will not work correctly. 905 */ 906 u64_stats_update_begin(&rx_stats->syncp); 907 rx_stats->packets++; 908 rx_stats->bytes += nvchan->rsc.pktlen; 909 910 if (skb->pkt_type == PACKET_BROADCAST) 911 ++rx_stats->broadcast; 912 else if (skb->pkt_type == PACKET_MULTICAST) 913 ++rx_stats->multicast; 914 u64_stats_update_end(&rx_stats->syncp); 915 916 if (act == XDP_TX) { 917 netvsc_xdp_xmit(skb, net); 918 return NVSP_STAT_SUCCESS; 919 } 920 921 napi_gro_receive(&nvchan->napi, skb); 922 return NVSP_STAT_SUCCESS; 923 } 924 925 static void netvsc_get_drvinfo(struct net_device *net, 926 struct ethtool_drvinfo *info) 927 { 928 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 929 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 930 } 931 932 static void netvsc_get_channels(struct net_device *net, 933 struct ethtool_channels *channel) 934 { 935 struct net_device_context *net_device_ctx = netdev_priv(net); 936 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 937 938 if (nvdev) { 939 channel->max_combined = nvdev->max_chn; 940 channel->combined_count = nvdev->num_chn; 941 } 942 } 943 944 /* Alloc struct netvsc_device_info, and initialize it from either existing 945 * struct netvsc_device, or from default values. 946 */ 947 static 948 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 949 { 950 struct netvsc_device_info *dev_info; 951 struct bpf_prog *prog; 952 953 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 954 955 if (!dev_info) 956 return NULL; 957 958 if (nvdev) { 959 ASSERT_RTNL(); 960 961 dev_info->num_chn = nvdev->num_chn; 962 dev_info->send_sections = nvdev->send_section_cnt; 963 dev_info->send_section_size = nvdev->send_section_size; 964 dev_info->recv_sections = nvdev->recv_section_cnt; 965 dev_info->recv_section_size = nvdev->recv_section_size; 966 967 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 968 NETVSC_HASH_KEYLEN); 969 970 prog = netvsc_xdp_get(nvdev); 971 if (prog) { 972 bpf_prog_inc(prog); 973 dev_info->bprog = prog; 974 } 975 } else { 976 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 977 dev_info->send_sections = NETVSC_DEFAULT_TX; 978 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 979 dev_info->recv_sections = NETVSC_DEFAULT_RX; 980 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 981 } 982 983 return dev_info; 984 } 985 986 /* Free struct netvsc_device_info */ 987 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 988 { 989 if (dev_info->bprog) { 990 ASSERT_RTNL(); 991 bpf_prog_put(dev_info->bprog); 992 } 993 994 kfree(dev_info); 995 } 996 997 static int netvsc_detach(struct net_device *ndev, 998 struct netvsc_device *nvdev) 999 { 1000 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1001 struct hv_device *hdev = ndev_ctx->device_ctx; 1002 int ret; 1003 1004 /* Don't try continuing to try and setup sub channels */ 1005 if (cancel_work_sync(&nvdev->subchan_work)) 1006 nvdev->num_chn = 1; 1007 1008 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1009 1010 /* If device was up (receiving) then shutdown */ 1011 if (netif_running(ndev)) { 1012 netvsc_tx_disable(nvdev, ndev); 1013 1014 ret = rndis_filter_close(nvdev); 1015 if (ret) { 1016 netdev_err(ndev, 1017 "unable to close device (ret %d).\n", ret); 1018 return ret; 1019 } 1020 1021 ret = netvsc_wait_until_empty(nvdev); 1022 if (ret) { 1023 netdev_err(ndev, 1024 "Ring buffer not empty after closing rndis\n"); 1025 return ret; 1026 } 1027 } 1028 1029 netif_device_detach(ndev); 1030 1031 rndis_filter_device_remove(hdev, nvdev); 1032 1033 return 0; 1034 } 1035 1036 static int netvsc_attach(struct net_device *ndev, 1037 struct netvsc_device_info *dev_info) 1038 { 1039 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1040 struct hv_device *hdev = ndev_ctx->device_ctx; 1041 struct netvsc_device *nvdev; 1042 struct rndis_device *rdev; 1043 struct bpf_prog *prog; 1044 int ret = 0; 1045 1046 nvdev = rndis_filter_device_add(hdev, dev_info); 1047 if (IS_ERR(nvdev)) 1048 return PTR_ERR(nvdev); 1049 1050 if (nvdev->num_chn > 1) { 1051 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1052 1053 /* if unavailable, just proceed with one queue */ 1054 if (ret) { 1055 nvdev->max_chn = 1; 1056 nvdev->num_chn = 1; 1057 } 1058 } 1059 1060 prog = dev_info->bprog; 1061 if (prog) { 1062 bpf_prog_inc(prog); 1063 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1064 if (ret) { 1065 bpf_prog_put(prog); 1066 goto err1; 1067 } 1068 } 1069 1070 /* In any case device is now ready */ 1071 netif_device_attach(ndev); 1072 1073 /* Note: enable and attach happen when sub-channels setup */ 1074 netif_carrier_off(ndev); 1075 1076 if (netif_running(ndev)) { 1077 ret = rndis_filter_open(nvdev); 1078 if (ret) 1079 goto err2; 1080 1081 rdev = nvdev->extension; 1082 if (!rdev->link_state) 1083 netif_carrier_on(ndev); 1084 } 1085 1086 return 0; 1087 1088 err2: 1089 netif_device_detach(ndev); 1090 1091 err1: 1092 rndis_filter_device_remove(hdev, nvdev); 1093 1094 return ret; 1095 } 1096 1097 static int netvsc_set_channels(struct net_device *net, 1098 struct ethtool_channels *channels) 1099 { 1100 struct net_device_context *net_device_ctx = netdev_priv(net); 1101 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1102 unsigned int orig, count = channels->combined_count; 1103 struct netvsc_device_info *device_info; 1104 int ret; 1105 1106 /* We do not support separate count for rx, tx, or other */ 1107 if (count == 0 || 1108 channels->rx_count || channels->tx_count || channels->other_count) 1109 return -EINVAL; 1110 1111 if (!nvdev || nvdev->destroy) 1112 return -ENODEV; 1113 1114 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1115 return -EINVAL; 1116 1117 if (count > nvdev->max_chn) 1118 return -EINVAL; 1119 1120 orig = nvdev->num_chn; 1121 1122 device_info = netvsc_devinfo_get(nvdev); 1123 1124 if (!device_info) 1125 return -ENOMEM; 1126 1127 device_info->num_chn = count; 1128 1129 ret = netvsc_detach(net, nvdev); 1130 if (ret) 1131 goto out; 1132 1133 ret = netvsc_attach(net, device_info); 1134 if (ret) { 1135 device_info->num_chn = orig; 1136 if (netvsc_attach(net, device_info)) 1137 netdev_err(net, "restoring channel setting failed\n"); 1138 } 1139 1140 out: 1141 netvsc_devinfo_put(device_info); 1142 return ret; 1143 } 1144 1145 static bool 1146 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 1147 { 1148 struct ethtool_link_ksettings diff1 = *cmd; 1149 struct ethtool_link_ksettings diff2 = {}; 1150 1151 diff1.base.speed = 0; 1152 diff1.base.duplex = 0; 1153 /* advertising and cmd are usually set */ 1154 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 1155 diff1.base.cmd = 0; 1156 /* We set port to PORT_OTHER */ 1157 diff2.base.port = PORT_OTHER; 1158 1159 return !memcmp(&diff1, &diff2, sizeof(diff1)); 1160 } 1161 1162 static void netvsc_init_settings(struct net_device *dev) 1163 { 1164 struct net_device_context *ndc = netdev_priv(dev); 1165 1166 ndc->l4_hash = HV_DEFAULT_L4HASH; 1167 1168 ndc->speed = SPEED_UNKNOWN; 1169 ndc->duplex = DUPLEX_FULL; 1170 1171 dev->features = NETIF_F_LRO; 1172 } 1173 1174 static int netvsc_get_link_ksettings(struct net_device *dev, 1175 struct ethtool_link_ksettings *cmd) 1176 { 1177 struct net_device_context *ndc = netdev_priv(dev); 1178 1179 cmd->base.speed = ndc->speed; 1180 cmd->base.duplex = ndc->duplex; 1181 cmd->base.port = PORT_OTHER; 1182 1183 return 0; 1184 } 1185 1186 static int netvsc_set_link_ksettings(struct net_device *dev, 1187 const struct ethtool_link_ksettings *cmd) 1188 { 1189 struct net_device_context *ndc = netdev_priv(dev); 1190 u32 speed; 1191 1192 speed = cmd->base.speed; 1193 if (!ethtool_validate_speed(speed) || 1194 !ethtool_validate_duplex(cmd->base.duplex) || 1195 !netvsc_validate_ethtool_ss_cmd(cmd)) 1196 return -EINVAL; 1197 1198 ndc->speed = speed; 1199 ndc->duplex = cmd->base.duplex; 1200 1201 return 0; 1202 } 1203 1204 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1205 { 1206 struct net_device_context *ndevctx = netdev_priv(ndev); 1207 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1208 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1209 int orig_mtu = ndev->mtu; 1210 struct netvsc_device_info *device_info; 1211 int ret = 0; 1212 1213 if (!nvdev || nvdev->destroy) 1214 return -ENODEV; 1215 1216 device_info = netvsc_devinfo_get(nvdev); 1217 1218 if (!device_info) 1219 return -ENOMEM; 1220 1221 /* Change MTU of underlying VF netdev first. */ 1222 if (vf_netdev) { 1223 ret = dev_set_mtu(vf_netdev, mtu); 1224 if (ret) 1225 goto out; 1226 } 1227 1228 ret = netvsc_detach(ndev, nvdev); 1229 if (ret) 1230 goto rollback_vf; 1231 1232 ndev->mtu = mtu; 1233 1234 ret = netvsc_attach(ndev, device_info); 1235 if (!ret) 1236 goto out; 1237 1238 /* Attempt rollback to original MTU */ 1239 ndev->mtu = orig_mtu; 1240 1241 if (netvsc_attach(ndev, device_info)) 1242 netdev_err(ndev, "restoring mtu failed\n"); 1243 rollback_vf: 1244 if (vf_netdev) 1245 dev_set_mtu(vf_netdev, orig_mtu); 1246 1247 out: 1248 netvsc_devinfo_put(device_info); 1249 return ret; 1250 } 1251 1252 static void netvsc_get_vf_stats(struct net_device *net, 1253 struct netvsc_vf_pcpu_stats *tot) 1254 { 1255 struct net_device_context *ndev_ctx = netdev_priv(net); 1256 int i; 1257 1258 memset(tot, 0, sizeof(*tot)); 1259 1260 for_each_possible_cpu(i) { 1261 const struct netvsc_vf_pcpu_stats *stats 1262 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1263 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1264 unsigned int start; 1265 1266 do { 1267 start = u64_stats_fetch_begin_irq(&stats->syncp); 1268 rx_packets = stats->rx_packets; 1269 tx_packets = stats->tx_packets; 1270 rx_bytes = stats->rx_bytes; 1271 tx_bytes = stats->tx_bytes; 1272 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1273 1274 tot->rx_packets += rx_packets; 1275 tot->tx_packets += tx_packets; 1276 tot->rx_bytes += rx_bytes; 1277 tot->tx_bytes += tx_bytes; 1278 tot->tx_dropped += stats->tx_dropped; 1279 } 1280 } 1281 1282 static void netvsc_get_pcpu_stats(struct net_device *net, 1283 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1284 { 1285 struct net_device_context *ndev_ctx = netdev_priv(net); 1286 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1287 int i; 1288 1289 /* fetch percpu stats of vf */ 1290 for_each_possible_cpu(i) { 1291 const struct netvsc_vf_pcpu_stats *stats = 1292 per_cpu_ptr(ndev_ctx->vf_stats, i); 1293 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1294 unsigned int start; 1295 1296 do { 1297 start = u64_stats_fetch_begin_irq(&stats->syncp); 1298 this_tot->vf_rx_packets = stats->rx_packets; 1299 this_tot->vf_tx_packets = stats->tx_packets; 1300 this_tot->vf_rx_bytes = stats->rx_bytes; 1301 this_tot->vf_tx_bytes = stats->tx_bytes; 1302 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1303 this_tot->rx_packets = this_tot->vf_rx_packets; 1304 this_tot->tx_packets = this_tot->vf_tx_packets; 1305 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1306 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1307 } 1308 1309 /* fetch percpu stats of netvsc */ 1310 for (i = 0; i < nvdev->num_chn; i++) { 1311 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1312 const struct netvsc_stats *stats; 1313 struct netvsc_ethtool_pcpu_stats *this_tot = 1314 &pcpu_tot[nvchan->channel->target_cpu]; 1315 u64 packets, bytes; 1316 unsigned int start; 1317 1318 stats = &nvchan->tx_stats; 1319 do { 1320 start = u64_stats_fetch_begin_irq(&stats->syncp); 1321 packets = stats->packets; 1322 bytes = stats->bytes; 1323 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1324 1325 this_tot->tx_bytes += bytes; 1326 this_tot->tx_packets += packets; 1327 1328 stats = &nvchan->rx_stats; 1329 do { 1330 start = u64_stats_fetch_begin_irq(&stats->syncp); 1331 packets = stats->packets; 1332 bytes = stats->bytes; 1333 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1334 1335 this_tot->rx_bytes += bytes; 1336 this_tot->rx_packets += packets; 1337 } 1338 } 1339 1340 static void netvsc_get_stats64(struct net_device *net, 1341 struct rtnl_link_stats64 *t) 1342 { 1343 struct net_device_context *ndev_ctx = netdev_priv(net); 1344 struct netvsc_device *nvdev; 1345 struct netvsc_vf_pcpu_stats vf_tot; 1346 int i; 1347 1348 rcu_read_lock(); 1349 1350 nvdev = rcu_dereference(ndev_ctx->nvdev); 1351 if (!nvdev) 1352 goto out; 1353 1354 netdev_stats_to_stats64(t, &net->stats); 1355 1356 netvsc_get_vf_stats(net, &vf_tot); 1357 t->rx_packets += vf_tot.rx_packets; 1358 t->tx_packets += vf_tot.tx_packets; 1359 t->rx_bytes += vf_tot.rx_bytes; 1360 t->tx_bytes += vf_tot.tx_bytes; 1361 t->tx_dropped += vf_tot.tx_dropped; 1362 1363 for (i = 0; i < nvdev->num_chn; i++) { 1364 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1365 const struct netvsc_stats *stats; 1366 u64 packets, bytes, multicast; 1367 unsigned int start; 1368 1369 stats = &nvchan->tx_stats; 1370 do { 1371 start = u64_stats_fetch_begin_irq(&stats->syncp); 1372 packets = stats->packets; 1373 bytes = stats->bytes; 1374 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1375 1376 t->tx_bytes += bytes; 1377 t->tx_packets += packets; 1378 1379 stats = &nvchan->rx_stats; 1380 do { 1381 start = u64_stats_fetch_begin_irq(&stats->syncp); 1382 packets = stats->packets; 1383 bytes = stats->bytes; 1384 multicast = stats->multicast + stats->broadcast; 1385 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1386 1387 t->rx_bytes += bytes; 1388 t->rx_packets += packets; 1389 t->multicast += multicast; 1390 } 1391 out: 1392 rcu_read_unlock(); 1393 } 1394 1395 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1396 { 1397 struct net_device_context *ndc = netdev_priv(ndev); 1398 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1399 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1400 struct sockaddr *addr = p; 1401 int err; 1402 1403 err = eth_prepare_mac_addr_change(ndev, p); 1404 if (err) 1405 return err; 1406 1407 if (!nvdev) 1408 return -ENODEV; 1409 1410 if (vf_netdev) { 1411 err = dev_set_mac_address(vf_netdev, addr, NULL); 1412 if (err) 1413 return err; 1414 } 1415 1416 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1417 if (!err) { 1418 eth_commit_mac_addr_change(ndev, p); 1419 } else if (vf_netdev) { 1420 /* rollback change on VF */ 1421 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1422 dev_set_mac_address(vf_netdev, addr, NULL); 1423 } 1424 1425 return err; 1426 } 1427 1428 static const struct { 1429 char name[ETH_GSTRING_LEN]; 1430 u16 offset; 1431 } netvsc_stats[] = { 1432 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1433 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1434 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1435 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1436 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1437 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1438 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1439 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1440 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1441 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1442 }, pcpu_stats[] = { 1443 { "cpu%u_rx_packets", 1444 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1445 { "cpu%u_rx_bytes", 1446 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1447 { "cpu%u_tx_packets", 1448 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1449 { "cpu%u_tx_bytes", 1450 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1451 { "cpu%u_vf_rx_packets", 1452 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1453 { "cpu%u_vf_rx_bytes", 1454 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1455 { "cpu%u_vf_tx_packets", 1456 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1457 { "cpu%u_vf_tx_bytes", 1458 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1459 }, vf_stats[] = { 1460 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1461 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1462 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1463 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1464 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1465 }; 1466 1467 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1468 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1469 1470 /* statistics per queue (rx/tx packets/bytes) */ 1471 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1472 1473 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1474 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1475 1476 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1477 { 1478 struct net_device_context *ndc = netdev_priv(dev); 1479 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1480 1481 if (!nvdev) 1482 return -ENODEV; 1483 1484 switch (string_set) { 1485 case ETH_SS_STATS: 1486 return NETVSC_GLOBAL_STATS_LEN 1487 + NETVSC_VF_STATS_LEN 1488 + NETVSC_QUEUE_STATS_LEN(nvdev) 1489 + NETVSC_PCPU_STATS_LEN; 1490 default: 1491 return -EINVAL; 1492 } 1493 } 1494 1495 static void netvsc_get_ethtool_stats(struct net_device *dev, 1496 struct ethtool_stats *stats, u64 *data) 1497 { 1498 struct net_device_context *ndc = netdev_priv(dev); 1499 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1500 const void *nds = &ndc->eth_stats; 1501 const struct netvsc_stats *qstats; 1502 struct netvsc_vf_pcpu_stats sum; 1503 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1504 unsigned int start; 1505 u64 packets, bytes; 1506 u64 xdp_drop; 1507 int i, j, cpu; 1508 1509 if (!nvdev) 1510 return; 1511 1512 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1513 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1514 1515 netvsc_get_vf_stats(dev, &sum); 1516 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1517 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1518 1519 for (j = 0; j < nvdev->num_chn; j++) { 1520 qstats = &nvdev->chan_table[j].tx_stats; 1521 1522 do { 1523 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1524 packets = qstats->packets; 1525 bytes = qstats->bytes; 1526 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1527 data[i++] = packets; 1528 data[i++] = bytes; 1529 1530 qstats = &nvdev->chan_table[j].rx_stats; 1531 do { 1532 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1533 packets = qstats->packets; 1534 bytes = qstats->bytes; 1535 xdp_drop = qstats->xdp_drop; 1536 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1537 data[i++] = packets; 1538 data[i++] = bytes; 1539 data[i++] = xdp_drop; 1540 } 1541 1542 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1543 sizeof(struct netvsc_ethtool_pcpu_stats), 1544 GFP_KERNEL); 1545 netvsc_get_pcpu_stats(dev, pcpu_sum); 1546 for_each_present_cpu(cpu) { 1547 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1548 1549 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1550 data[i++] = *(u64 *)((void *)this_sum 1551 + pcpu_stats[j].offset); 1552 } 1553 kvfree(pcpu_sum); 1554 } 1555 1556 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1557 { 1558 struct net_device_context *ndc = netdev_priv(dev); 1559 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1560 u8 *p = data; 1561 int i, cpu; 1562 1563 if (!nvdev) 1564 return; 1565 1566 switch (stringset) { 1567 case ETH_SS_STATS: 1568 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1569 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1570 p += ETH_GSTRING_LEN; 1571 } 1572 1573 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1574 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1575 p += ETH_GSTRING_LEN; 1576 } 1577 1578 for (i = 0; i < nvdev->num_chn; i++) { 1579 sprintf(p, "tx_queue_%u_packets", i); 1580 p += ETH_GSTRING_LEN; 1581 sprintf(p, "tx_queue_%u_bytes", i); 1582 p += ETH_GSTRING_LEN; 1583 sprintf(p, "rx_queue_%u_packets", i); 1584 p += ETH_GSTRING_LEN; 1585 sprintf(p, "rx_queue_%u_bytes", i); 1586 p += ETH_GSTRING_LEN; 1587 sprintf(p, "rx_queue_%u_xdp_drop", i); 1588 p += ETH_GSTRING_LEN; 1589 } 1590 1591 for_each_present_cpu(cpu) { 1592 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1593 sprintf(p, pcpu_stats[i].name, cpu); 1594 p += ETH_GSTRING_LEN; 1595 } 1596 } 1597 1598 break; 1599 } 1600 } 1601 1602 static int 1603 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1604 struct ethtool_rxnfc *info) 1605 { 1606 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1607 1608 info->data = RXH_IP_SRC | RXH_IP_DST; 1609 1610 switch (info->flow_type) { 1611 case TCP_V4_FLOW: 1612 if (ndc->l4_hash & HV_TCP4_L4HASH) 1613 info->data |= l4_flag; 1614 1615 break; 1616 1617 case TCP_V6_FLOW: 1618 if (ndc->l4_hash & HV_TCP6_L4HASH) 1619 info->data |= l4_flag; 1620 1621 break; 1622 1623 case UDP_V4_FLOW: 1624 if (ndc->l4_hash & HV_UDP4_L4HASH) 1625 info->data |= l4_flag; 1626 1627 break; 1628 1629 case UDP_V6_FLOW: 1630 if (ndc->l4_hash & HV_UDP6_L4HASH) 1631 info->data |= l4_flag; 1632 1633 break; 1634 1635 case IPV4_FLOW: 1636 case IPV6_FLOW: 1637 break; 1638 default: 1639 info->data = 0; 1640 break; 1641 } 1642 1643 return 0; 1644 } 1645 1646 static int 1647 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1648 u32 *rules) 1649 { 1650 struct net_device_context *ndc = netdev_priv(dev); 1651 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1652 1653 if (!nvdev) 1654 return -ENODEV; 1655 1656 switch (info->cmd) { 1657 case ETHTOOL_GRXRINGS: 1658 info->data = nvdev->num_chn; 1659 return 0; 1660 1661 case ETHTOOL_GRXFH: 1662 return netvsc_get_rss_hash_opts(ndc, info); 1663 } 1664 return -EOPNOTSUPP; 1665 } 1666 1667 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1668 struct ethtool_rxnfc *info) 1669 { 1670 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1671 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1672 switch (info->flow_type) { 1673 case TCP_V4_FLOW: 1674 ndc->l4_hash |= HV_TCP4_L4HASH; 1675 break; 1676 1677 case TCP_V6_FLOW: 1678 ndc->l4_hash |= HV_TCP6_L4HASH; 1679 break; 1680 1681 case UDP_V4_FLOW: 1682 ndc->l4_hash |= HV_UDP4_L4HASH; 1683 break; 1684 1685 case UDP_V6_FLOW: 1686 ndc->l4_hash |= HV_UDP6_L4HASH; 1687 break; 1688 1689 default: 1690 return -EOPNOTSUPP; 1691 } 1692 1693 return 0; 1694 } 1695 1696 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1697 switch (info->flow_type) { 1698 case TCP_V4_FLOW: 1699 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1700 break; 1701 1702 case TCP_V6_FLOW: 1703 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1704 break; 1705 1706 case UDP_V4_FLOW: 1707 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1708 break; 1709 1710 case UDP_V6_FLOW: 1711 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1712 break; 1713 1714 default: 1715 return -EOPNOTSUPP; 1716 } 1717 1718 return 0; 1719 } 1720 1721 return -EOPNOTSUPP; 1722 } 1723 1724 static int 1725 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1726 { 1727 struct net_device_context *ndc = netdev_priv(ndev); 1728 1729 if (info->cmd == ETHTOOL_SRXFH) 1730 return netvsc_set_rss_hash_opts(ndc, info); 1731 1732 return -EOPNOTSUPP; 1733 } 1734 1735 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1736 { 1737 return NETVSC_HASH_KEYLEN; 1738 } 1739 1740 static u32 netvsc_rss_indir_size(struct net_device *dev) 1741 { 1742 return ITAB_NUM; 1743 } 1744 1745 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1746 u8 *hfunc) 1747 { 1748 struct net_device_context *ndc = netdev_priv(dev); 1749 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1750 struct rndis_device *rndis_dev; 1751 int i; 1752 1753 if (!ndev) 1754 return -ENODEV; 1755 1756 if (hfunc) 1757 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1758 1759 rndis_dev = ndev->extension; 1760 if (indir) { 1761 for (i = 0; i < ITAB_NUM; i++) 1762 indir[i] = ndc->rx_table[i]; 1763 } 1764 1765 if (key) 1766 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1767 1768 return 0; 1769 } 1770 1771 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1772 const u8 *key, const u8 hfunc) 1773 { 1774 struct net_device_context *ndc = netdev_priv(dev); 1775 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1776 struct rndis_device *rndis_dev; 1777 int i; 1778 1779 if (!ndev) 1780 return -ENODEV; 1781 1782 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1783 return -EOPNOTSUPP; 1784 1785 rndis_dev = ndev->extension; 1786 if (indir) { 1787 for (i = 0; i < ITAB_NUM; i++) 1788 if (indir[i] >= ndev->num_chn) 1789 return -EINVAL; 1790 1791 for (i = 0; i < ITAB_NUM; i++) 1792 ndc->rx_table[i] = indir[i]; 1793 } 1794 1795 if (!key) { 1796 if (!indir) 1797 return 0; 1798 1799 key = rndis_dev->rss_key; 1800 } 1801 1802 return rndis_filter_set_rss_param(rndis_dev, key); 1803 } 1804 1805 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1806 * It does have pre-allocated receive area which is divided into sections. 1807 */ 1808 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1809 struct ethtool_ringparam *ring) 1810 { 1811 u32 max_buf_size; 1812 1813 ring->rx_pending = nvdev->recv_section_cnt; 1814 ring->tx_pending = nvdev->send_section_cnt; 1815 1816 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1817 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1818 else 1819 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1820 1821 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1822 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1823 / nvdev->send_section_size; 1824 } 1825 1826 static void netvsc_get_ringparam(struct net_device *ndev, 1827 struct ethtool_ringparam *ring) 1828 { 1829 struct net_device_context *ndevctx = netdev_priv(ndev); 1830 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1831 1832 if (!nvdev) 1833 return; 1834 1835 __netvsc_get_ringparam(nvdev, ring); 1836 } 1837 1838 static int netvsc_set_ringparam(struct net_device *ndev, 1839 struct ethtool_ringparam *ring) 1840 { 1841 struct net_device_context *ndevctx = netdev_priv(ndev); 1842 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1843 struct netvsc_device_info *device_info; 1844 struct ethtool_ringparam orig; 1845 u32 new_tx, new_rx; 1846 int ret = 0; 1847 1848 if (!nvdev || nvdev->destroy) 1849 return -ENODEV; 1850 1851 memset(&orig, 0, sizeof(orig)); 1852 __netvsc_get_ringparam(nvdev, &orig); 1853 1854 new_tx = clamp_t(u32, ring->tx_pending, 1855 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1856 new_rx = clamp_t(u32, ring->rx_pending, 1857 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1858 1859 if (new_tx == orig.tx_pending && 1860 new_rx == orig.rx_pending) 1861 return 0; /* no change */ 1862 1863 device_info = netvsc_devinfo_get(nvdev); 1864 1865 if (!device_info) 1866 return -ENOMEM; 1867 1868 device_info->send_sections = new_tx; 1869 device_info->recv_sections = new_rx; 1870 1871 ret = netvsc_detach(ndev, nvdev); 1872 if (ret) 1873 goto out; 1874 1875 ret = netvsc_attach(ndev, device_info); 1876 if (ret) { 1877 device_info->send_sections = orig.tx_pending; 1878 device_info->recv_sections = orig.rx_pending; 1879 1880 if (netvsc_attach(ndev, device_info)) 1881 netdev_err(ndev, "restoring ringparam failed"); 1882 } 1883 1884 out: 1885 netvsc_devinfo_put(device_info); 1886 return ret; 1887 } 1888 1889 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1890 netdev_features_t features) 1891 { 1892 struct net_device_context *ndevctx = netdev_priv(ndev); 1893 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1894 1895 if (!nvdev || nvdev->destroy) 1896 return features; 1897 1898 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1899 features ^= NETIF_F_LRO; 1900 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1901 } 1902 1903 return features; 1904 } 1905 1906 static int netvsc_set_features(struct net_device *ndev, 1907 netdev_features_t features) 1908 { 1909 netdev_features_t change = features ^ ndev->features; 1910 struct net_device_context *ndevctx = netdev_priv(ndev); 1911 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1912 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1913 struct ndis_offload_params offloads; 1914 int ret = 0; 1915 1916 if (!nvdev || nvdev->destroy) 1917 return -ENODEV; 1918 1919 if (!(change & NETIF_F_LRO)) 1920 goto syncvf; 1921 1922 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1923 1924 if (features & NETIF_F_LRO) { 1925 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1926 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1927 } else { 1928 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1929 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1930 } 1931 1932 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1933 1934 if (ret) { 1935 features ^= NETIF_F_LRO; 1936 ndev->features = features; 1937 } 1938 1939 syncvf: 1940 if (!vf_netdev) 1941 return ret; 1942 1943 vf_netdev->wanted_features = features; 1944 netdev_update_features(vf_netdev); 1945 1946 return ret; 1947 } 1948 1949 static u32 netvsc_get_msglevel(struct net_device *ndev) 1950 { 1951 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1952 1953 return ndev_ctx->msg_enable; 1954 } 1955 1956 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1957 { 1958 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1959 1960 ndev_ctx->msg_enable = val; 1961 } 1962 1963 static const struct ethtool_ops ethtool_ops = { 1964 .get_drvinfo = netvsc_get_drvinfo, 1965 .get_msglevel = netvsc_get_msglevel, 1966 .set_msglevel = netvsc_set_msglevel, 1967 .get_link = ethtool_op_get_link, 1968 .get_ethtool_stats = netvsc_get_ethtool_stats, 1969 .get_sset_count = netvsc_get_sset_count, 1970 .get_strings = netvsc_get_strings, 1971 .get_channels = netvsc_get_channels, 1972 .set_channels = netvsc_set_channels, 1973 .get_ts_info = ethtool_op_get_ts_info, 1974 .get_rxnfc = netvsc_get_rxnfc, 1975 .set_rxnfc = netvsc_set_rxnfc, 1976 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1977 .get_rxfh_indir_size = netvsc_rss_indir_size, 1978 .get_rxfh = netvsc_get_rxfh, 1979 .set_rxfh = netvsc_set_rxfh, 1980 .get_link_ksettings = netvsc_get_link_ksettings, 1981 .set_link_ksettings = netvsc_set_link_ksettings, 1982 .get_ringparam = netvsc_get_ringparam, 1983 .set_ringparam = netvsc_set_ringparam, 1984 }; 1985 1986 static const struct net_device_ops device_ops = { 1987 .ndo_open = netvsc_open, 1988 .ndo_stop = netvsc_close, 1989 .ndo_start_xmit = netvsc_start_xmit, 1990 .ndo_change_rx_flags = netvsc_change_rx_flags, 1991 .ndo_set_rx_mode = netvsc_set_rx_mode, 1992 .ndo_fix_features = netvsc_fix_features, 1993 .ndo_set_features = netvsc_set_features, 1994 .ndo_change_mtu = netvsc_change_mtu, 1995 .ndo_validate_addr = eth_validate_addr, 1996 .ndo_set_mac_address = netvsc_set_mac_addr, 1997 .ndo_select_queue = netvsc_select_queue, 1998 .ndo_get_stats64 = netvsc_get_stats64, 1999 .ndo_bpf = netvsc_bpf, 2000 }; 2001 2002 /* 2003 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2004 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2005 * present send GARP packet to network peers with netif_notify_peers(). 2006 */ 2007 static void netvsc_link_change(struct work_struct *w) 2008 { 2009 struct net_device_context *ndev_ctx = 2010 container_of(w, struct net_device_context, dwork.work); 2011 struct hv_device *device_obj = ndev_ctx->device_ctx; 2012 struct net_device *net = hv_get_drvdata(device_obj); 2013 struct netvsc_device *net_device; 2014 struct rndis_device *rdev; 2015 struct netvsc_reconfig *event = NULL; 2016 bool notify = false, reschedule = false; 2017 unsigned long flags, next_reconfig, delay; 2018 2019 /* if changes are happening, comeback later */ 2020 if (!rtnl_trylock()) { 2021 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2022 return; 2023 } 2024 2025 net_device = rtnl_dereference(ndev_ctx->nvdev); 2026 if (!net_device) 2027 goto out_unlock; 2028 2029 rdev = net_device->extension; 2030 2031 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2032 if (time_is_after_jiffies(next_reconfig)) { 2033 /* link_watch only sends one notification with current state 2034 * per second, avoid doing reconfig more frequently. Handle 2035 * wrap around. 2036 */ 2037 delay = next_reconfig - jiffies; 2038 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2039 schedule_delayed_work(&ndev_ctx->dwork, delay); 2040 goto out_unlock; 2041 } 2042 ndev_ctx->last_reconfig = jiffies; 2043 2044 spin_lock_irqsave(&ndev_ctx->lock, flags); 2045 if (!list_empty(&ndev_ctx->reconfig_events)) { 2046 event = list_first_entry(&ndev_ctx->reconfig_events, 2047 struct netvsc_reconfig, list); 2048 list_del(&event->list); 2049 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2050 } 2051 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2052 2053 if (!event) 2054 goto out_unlock; 2055 2056 switch (event->event) { 2057 /* Only the following events are possible due to the check in 2058 * netvsc_linkstatus_callback() 2059 */ 2060 case RNDIS_STATUS_MEDIA_CONNECT: 2061 if (rdev->link_state) { 2062 rdev->link_state = false; 2063 netif_carrier_on(net); 2064 netvsc_tx_enable(net_device, net); 2065 } else { 2066 notify = true; 2067 } 2068 kfree(event); 2069 break; 2070 case RNDIS_STATUS_MEDIA_DISCONNECT: 2071 if (!rdev->link_state) { 2072 rdev->link_state = true; 2073 netif_carrier_off(net); 2074 netvsc_tx_disable(net_device, net); 2075 } 2076 kfree(event); 2077 break; 2078 case RNDIS_STATUS_NETWORK_CHANGE: 2079 /* Only makes sense if carrier is present */ 2080 if (!rdev->link_state) { 2081 rdev->link_state = true; 2082 netif_carrier_off(net); 2083 netvsc_tx_disable(net_device, net); 2084 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2085 spin_lock_irqsave(&ndev_ctx->lock, flags); 2086 list_add(&event->list, &ndev_ctx->reconfig_events); 2087 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2088 reschedule = true; 2089 } 2090 break; 2091 } 2092 2093 rtnl_unlock(); 2094 2095 if (notify) 2096 netdev_notify_peers(net); 2097 2098 /* link_watch only sends one notification with current state per 2099 * second, handle next reconfig event in 2 seconds. 2100 */ 2101 if (reschedule) 2102 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2103 2104 return; 2105 2106 out_unlock: 2107 rtnl_unlock(); 2108 } 2109 2110 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2111 { 2112 struct net_device_context *net_device_ctx; 2113 struct net_device *dev; 2114 2115 dev = netdev_master_upper_dev_get(vf_netdev); 2116 if (!dev || dev->netdev_ops != &device_ops) 2117 return NULL; /* not a netvsc device */ 2118 2119 net_device_ctx = netdev_priv(dev); 2120 if (!rtnl_dereference(net_device_ctx->nvdev)) 2121 return NULL; /* device is removed */ 2122 2123 return dev; 2124 } 2125 2126 /* Called when VF is injecting data into network stack. 2127 * Change the associated network device from VF to netvsc. 2128 * note: already called with rcu_read_lock 2129 */ 2130 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2131 { 2132 struct sk_buff *skb = *pskb; 2133 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2134 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2135 struct netvsc_vf_pcpu_stats *pcpu_stats 2136 = this_cpu_ptr(ndev_ctx->vf_stats); 2137 2138 skb = skb_share_check(skb, GFP_ATOMIC); 2139 if (unlikely(!skb)) 2140 return RX_HANDLER_CONSUMED; 2141 2142 *pskb = skb; 2143 2144 skb->dev = ndev; 2145 2146 u64_stats_update_begin(&pcpu_stats->syncp); 2147 pcpu_stats->rx_packets++; 2148 pcpu_stats->rx_bytes += skb->len; 2149 u64_stats_update_end(&pcpu_stats->syncp); 2150 2151 return RX_HANDLER_ANOTHER; 2152 } 2153 2154 static int netvsc_vf_join(struct net_device *vf_netdev, 2155 struct net_device *ndev) 2156 { 2157 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2158 int ret; 2159 2160 ret = netdev_rx_handler_register(vf_netdev, 2161 netvsc_vf_handle_frame, ndev); 2162 if (ret != 0) { 2163 netdev_err(vf_netdev, 2164 "can not register netvsc VF receive handler (err = %d)\n", 2165 ret); 2166 goto rx_handler_failed; 2167 } 2168 2169 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2170 NULL, NULL, NULL); 2171 if (ret != 0) { 2172 netdev_err(vf_netdev, 2173 "can not set master device %s (err = %d)\n", 2174 ndev->name, ret); 2175 goto upper_link_failed; 2176 } 2177 2178 /* set slave flag before open to prevent IPv6 addrconf */ 2179 vf_netdev->flags |= IFF_SLAVE; 2180 2181 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2182 2183 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2184 2185 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2186 return 0; 2187 2188 upper_link_failed: 2189 netdev_rx_handler_unregister(vf_netdev); 2190 rx_handler_failed: 2191 return ret; 2192 } 2193 2194 static void __netvsc_vf_setup(struct net_device *ndev, 2195 struct net_device *vf_netdev) 2196 { 2197 int ret; 2198 2199 /* Align MTU of VF with master */ 2200 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2201 if (ret) 2202 netdev_warn(vf_netdev, 2203 "unable to change mtu to %u\n", ndev->mtu); 2204 2205 /* set multicast etc flags on VF */ 2206 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2207 2208 /* sync address list from ndev to VF */ 2209 netif_addr_lock_bh(ndev); 2210 dev_uc_sync(vf_netdev, ndev); 2211 dev_mc_sync(vf_netdev, ndev); 2212 netif_addr_unlock_bh(ndev); 2213 2214 if (netif_running(ndev)) { 2215 ret = dev_open(vf_netdev, NULL); 2216 if (ret) 2217 netdev_warn(vf_netdev, 2218 "unable to open: %d\n", ret); 2219 } 2220 } 2221 2222 /* Setup VF as slave of the synthetic device. 2223 * Runs in workqueue to avoid recursion in netlink callbacks. 2224 */ 2225 static void netvsc_vf_setup(struct work_struct *w) 2226 { 2227 struct net_device_context *ndev_ctx 2228 = container_of(w, struct net_device_context, vf_takeover.work); 2229 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2230 struct net_device *vf_netdev; 2231 2232 if (!rtnl_trylock()) { 2233 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2234 return; 2235 } 2236 2237 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2238 if (vf_netdev) 2239 __netvsc_vf_setup(ndev, vf_netdev); 2240 2241 rtnl_unlock(); 2242 } 2243 2244 /* Find netvsc by VF serial number. 2245 * The PCI hyperv controller records the serial number as the slot kobj name. 2246 */ 2247 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2248 { 2249 struct device *parent = vf_netdev->dev.parent; 2250 struct net_device_context *ndev_ctx; 2251 struct pci_dev *pdev; 2252 u32 serial; 2253 2254 if (!parent || !dev_is_pci(parent)) 2255 return NULL; /* not a PCI device */ 2256 2257 pdev = to_pci_dev(parent); 2258 if (!pdev->slot) { 2259 netdev_notice(vf_netdev, "no PCI slot information\n"); 2260 return NULL; 2261 } 2262 2263 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2264 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2265 pci_slot_name(pdev->slot)); 2266 return NULL; 2267 } 2268 2269 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2270 if (!ndev_ctx->vf_alloc) 2271 continue; 2272 2273 if (ndev_ctx->vf_serial == serial) 2274 return hv_get_drvdata(ndev_ctx->device_ctx); 2275 } 2276 2277 netdev_notice(vf_netdev, 2278 "no netdev found for vf serial:%u\n", serial); 2279 return NULL; 2280 } 2281 2282 static int netvsc_register_vf(struct net_device *vf_netdev) 2283 { 2284 struct net_device_context *net_device_ctx; 2285 struct netvsc_device *netvsc_dev; 2286 struct bpf_prog *prog; 2287 struct net_device *ndev; 2288 int ret; 2289 2290 if (vf_netdev->addr_len != ETH_ALEN) 2291 return NOTIFY_DONE; 2292 2293 ndev = get_netvsc_byslot(vf_netdev); 2294 if (!ndev) 2295 return NOTIFY_DONE; 2296 2297 net_device_ctx = netdev_priv(ndev); 2298 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2299 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2300 return NOTIFY_DONE; 2301 2302 /* if synthetic interface is a different namespace, 2303 * then move the VF to that namespace; join will be 2304 * done again in that context. 2305 */ 2306 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2307 ret = dev_change_net_namespace(vf_netdev, 2308 dev_net(ndev), "eth%d"); 2309 if (ret) 2310 netdev_err(vf_netdev, 2311 "could not move to same namespace as %s: %d\n", 2312 ndev->name, ret); 2313 else 2314 netdev_info(vf_netdev, 2315 "VF moved to namespace with: %s\n", 2316 ndev->name); 2317 return NOTIFY_DONE; 2318 } 2319 2320 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2321 2322 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2323 return NOTIFY_DONE; 2324 2325 dev_hold(vf_netdev); 2326 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2327 2328 vf_netdev->wanted_features = ndev->features; 2329 netdev_update_features(vf_netdev); 2330 2331 prog = netvsc_xdp_get(netvsc_dev); 2332 netvsc_vf_setxdp(vf_netdev, prog); 2333 2334 return NOTIFY_OK; 2335 } 2336 2337 /* VF up/down change detected, schedule to change data path */ 2338 static int netvsc_vf_changed(struct net_device *vf_netdev) 2339 { 2340 struct net_device_context *net_device_ctx; 2341 struct netvsc_device *netvsc_dev; 2342 struct net_device *ndev; 2343 bool vf_is_up = netif_running(vf_netdev); 2344 2345 ndev = get_netvsc_byref(vf_netdev); 2346 if (!ndev) 2347 return NOTIFY_DONE; 2348 2349 net_device_ctx = netdev_priv(ndev); 2350 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2351 if (!netvsc_dev) 2352 return NOTIFY_DONE; 2353 2354 netvsc_switch_datapath(ndev, vf_is_up); 2355 netdev_info(ndev, "Data path switched %s VF: %s\n", 2356 vf_is_up ? "to" : "from", vf_netdev->name); 2357 2358 return NOTIFY_OK; 2359 } 2360 2361 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2362 { 2363 struct net_device *ndev; 2364 struct net_device_context *net_device_ctx; 2365 2366 ndev = get_netvsc_byref(vf_netdev); 2367 if (!ndev) 2368 return NOTIFY_DONE; 2369 2370 net_device_ctx = netdev_priv(ndev); 2371 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2372 2373 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2374 2375 netvsc_vf_setxdp(vf_netdev, NULL); 2376 2377 netdev_rx_handler_unregister(vf_netdev); 2378 netdev_upper_dev_unlink(vf_netdev, ndev); 2379 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2380 dev_put(vf_netdev); 2381 2382 return NOTIFY_OK; 2383 } 2384 2385 static int netvsc_probe(struct hv_device *dev, 2386 const struct hv_vmbus_device_id *dev_id) 2387 { 2388 struct net_device *net = NULL; 2389 struct net_device_context *net_device_ctx; 2390 struct netvsc_device_info *device_info = NULL; 2391 struct netvsc_device *nvdev; 2392 int ret = -ENOMEM; 2393 2394 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2395 VRSS_CHANNEL_MAX); 2396 if (!net) 2397 goto no_net; 2398 2399 netif_carrier_off(net); 2400 2401 netvsc_init_settings(net); 2402 2403 net_device_ctx = netdev_priv(net); 2404 net_device_ctx->device_ctx = dev; 2405 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2406 if (netif_msg_probe(net_device_ctx)) 2407 netdev_dbg(net, "netvsc msg_enable: %d\n", 2408 net_device_ctx->msg_enable); 2409 2410 hv_set_drvdata(dev, net); 2411 2412 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2413 2414 spin_lock_init(&net_device_ctx->lock); 2415 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2416 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2417 2418 net_device_ctx->vf_stats 2419 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2420 if (!net_device_ctx->vf_stats) 2421 goto no_stats; 2422 2423 net->netdev_ops = &device_ops; 2424 net->ethtool_ops = ðtool_ops; 2425 SET_NETDEV_DEV(net, &dev->device); 2426 2427 /* We always need headroom for rndis header */ 2428 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2429 2430 /* Initialize the number of queues to be 1, we may change it if more 2431 * channels are offered later. 2432 */ 2433 netif_set_real_num_tx_queues(net, 1); 2434 netif_set_real_num_rx_queues(net, 1); 2435 2436 /* Notify the netvsc driver of the new device */ 2437 device_info = netvsc_devinfo_get(NULL); 2438 2439 if (!device_info) { 2440 ret = -ENOMEM; 2441 goto devinfo_failed; 2442 } 2443 2444 nvdev = rndis_filter_device_add(dev, device_info); 2445 if (IS_ERR(nvdev)) { 2446 ret = PTR_ERR(nvdev); 2447 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2448 goto rndis_failed; 2449 } 2450 2451 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2452 2453 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2454 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2455 * all subchannels to show up, but that may not happen because 2456 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2457 * -> ... -> device_add() -> ... -> __device_attach() can't get 2458 * the device lock, so all the subchannels can't be processed -- 2459 * finally netvsc_subchan_work() hangs forever. 2460 */ 2461 rtnl_lock(); 2462 2463 if (nvdev->num_chn > 1) 2464 schedule_work(&nvdev->subchan_work); 2465 2466 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2467 net->features = net->hw_features | 2468 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2469 NETIF_F_HW_VLAN_CTAG_RX; 2470 net->vlan_features = net->features; 2471 2472 /* MTU range: 68 - 1500 or 65521 */ 2473 net->min_mtu = NETVSC_MTU_MIN; 2474 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2475 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2476 else 2477 net->max_mtu = ETH_DATA_LEN; 2478 2479 ret = register_netdevice(net); 2480 if (ret != 0) { 2481 pr_err("Unable to register netdev.\n"); 2482 goto register_failed; 2483 } 2484 2485 list_add(&net_device_ctx->list, &netvsc_dev_list); 2486 rtnl_unlock(); 2487 2488 netvsc_devinfo_put(device_info); 2489 return 0; 2490 2491 register_failed: 2492 rtnl_unlock(); 2493 rndis_filter_device_remove(dev, nvdev); 2494 rndis_failed: 2495 netvsc_devinfo_put(device_info); 2496 devinfo_failed: 2497 free_percpu(net_device_ctx->vf_stats); 2498 no_stats: 2499 hv_set_drvdata(dev, NULL); 2500 free_netdev(net); 2501 no_net: 2502 return ret; 2503 } 2504 2505 static int netvsc_remove(struct hv_device *dev) 2506 { 2507 struct net_device_context *ndev_ctx; 2508 struct net_device *vf_netdev, *net; 2509 struct netvsc_device *nvdev; 2510 2511 net = hv_get_drvdata(dev); 2512 if (net == NULL) { 2513 dev_err(&dev->device, "No net device to remove\n"); 2514 return 0; 2515 } 2516 2517 ndev_ctx = netdev_priv(net); 2518 2519 cancel_delayed_work_sync(&ndev_ctx->dwork); 2520 2521 rtnl_lock(); 2522 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2523 if (nvdev) { 2524 cancel_work_sync(&nvdev->subchan_work); 2525 netvsc_xdp_set(net, NULL, NULL, nvdev); 2526 } 2527 2528 /* 2529 * Call to the vsc driver to let it know that the device is being 2530 * removed. Also blocks mtu and channel changes. 2531 */ 2532 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2533 if (vf_netdev) 2534 netvsc_unregister_vf(vf_netdev); 2535 2536 if (nvdev) 2537 rndis_filter_device_remove(dev, nvdev); 2538 2539 unregister_netdevice(net); 2540 list_del(&ndev_ctx->list); 2541 2542 rtnl_unlock(); 2543 2544 hv_set_drvdata(dev, NULL); 2545 2546 free_percpu(ndev_ctx->vf_stats); 2547 free_netdev(net); 2548 return 0; 2549 } 2550 2551 static int netvsc_suspend(struct hv_device *dev) 2552 { 2553 struct net_device_context *ndev_ctx; 2554 struct net_device *vf_netdev, *net; 2555 struct netvsc_device *nvdev; 2556 int ret; 2557 2558 net = hv_get_drvdata(dev); 2559 2560 ndev_ctx = netdev_priv(net); 2561 cancel_delayed_work_sync(&ndev_ctx->dwork); 2562 2563 rtnl_lock(); 2564 2565 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2566 if (nvdev == NULL) { 2567 ret = -ENODEV; 2568 goto out; 2569 } 2570 2571 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2572 if (vf_netdev) 2573 netvsc_unregister_vf(vf_netdev); 2574 2575 /* Save the current config info */ 2576 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2577 2578 ret = netvsc_detach(net, nvdev); 2579 out: 2580 rtnl_unlock(); 2581 2582 return ret; 2583 } 2584 2585 static int netvsc_resume(struct hv_device *dev) 2586 { 2587 struct net_device *net = hv_get_drvdata(dev); 2588 struct net_device_context *net_device_ctx; 2589 struct netvsc_device_info *device_info; 2590 int ret; 2591 2592 rtnl_lock(); 2593 2594 net_device_ctx = netdev_priv(net); 2595 device_info = net_device_ctx->saved_netvsc_dev_info; 2596 2597 ret = netvsc_attach(net, device_info); 2598 2599 netvsc_devinfo_put(device_info); 2600 net_device_ctx->saved_netvsc_dev_info = NULL; 2601 2602 rtnl_unlock(); 2603 2604 return ret; 2605 } 2606 static const struct hv_vmbus_device_id id_table[] = { 2607 /* Network guid */ 2608 { HV_NIC_GUID, }, 2609 { }, 2610 }; 2611 2612 MODULE_DEVICE_TABLE(vmbus, id_table); 2613 2614 /* The one and only one */ 2615 static struct hv_driver netvsc_drv = { 2616 .name = KBUILD_MODNAME, 2617 .id_table = id_table, 2618 .probe = netvsc_probe, 2619 .remove = netvsc_remove, 2620 .suspend = netvsc_suspend, 2621 .resume = netvsc_resume, 2622 .driver = { 2623 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2624 }, 2625 }; 2626 2627 /* 2628 * On Hyper-V, every VF interface is matched with a corresponding 2629 * synthetic interface. The synthetic interface is presented first 2630 * to the guest. When the corresponding VF instance is registered, 2631 * we will take care of switching the data path. 2632 */ 2633 static int netvsc_netdev_event(struct notifier_block *this, 2634 unsigned long event, void *ptr) 2635 { 2636 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2637 2638 /* Skip our own events */ 2639 if (event_dev->netdev_ops == &device_ops) 2640 return NOTIFY_DONE; 2641 2642 /* Avoid non-Ethernet type devices */ 2643 if (event_dev->type != ARPHRD_ETHER) 2644 return NOTIFY_DONE; 2645 2646 /* Avoid Vlan dev with same MAC registering as VF */ 2647 if (is_vlan_dev(event_dev)) 2648 return NOTIFY_DONE; 2649 2650 /* Avoid Bonding master dev with same MAC registering as VF */ 2651 if ((event_dev->priv_flags & IFF_BONDING) && 2652 (event_dev->flags & IFF_MASTER)) 2653 return NOTIFY_DONE; 2654 2655 switch (event) { 2656 case NETDEV_REGISTER: 2657 return netvsc_register_vf(event_dev); 2658 case NETDEV_UNREGISTER: 2659 return netvsc_unregister_vf(event_dev); 2660 case NETDEV_UP: 2661 case NETDEV_DOWN: 2662 return netvsc_vf_changed(event_dev); 2663 default: 2664 return NOTIFY_DONE; 2665 } 2666 } 2667 2668 static struct notifier_block netvsc_netdev_notifier = { 2669 .notifier_call = netvsc_netdev_event, 2670 }; 2671 2672 static void __exit netvsc_drv_exit(void) 2673 { 2674 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2675 vmbus_driver_unregister(&netvsc_drv); 2676 } 2677 2678 static int __init netvsc_drv_init(void) 2679 { 2680 int ret; 2681 2682 if (ring_size < RING_SIZE_MIN) { 2683 ring_size = RING_SIZE_MIN; 2684 pr_info("Increased ring_size to %u (min allowed)\n", 2685 ring_size); 2686 } 2687 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2688 2689 ret = vmbus_driver_register(&netvsc_drv); 2690 if (ret) 2691 return ret; 2692 2693 register_netdevice_notifier(&netvsc_netdev_notifier); 2694 return 0; 2695 } 2696 2697 MODULE_LICENSE("GPL"); 2698 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2699 2700 module_init(netvsc_drv_init); 2701 module_exit(netvsc_drv_exit); 2702