1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <net/arp.h> 37 #include <net/route.h> 38 #include <net/sock.h> 39 #include <net/pkt_sched.h> 40 41 #include "hyperv_net.h" 42 43 #define RING_SIZE_MIN 64 44 #define LINKCHANGE_INT (2 * HZ) 45 46 static int ring_size = 128; 47 module_param(ring_size, int, S_IRUGO); 48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 49 50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 51 NETIF_MSG_LINK | NETIF_MSG_IFUP | 52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 53 NETIF_MSG_TX_ERR; 54 55 static int debug = -1; 56 module_param(debug, int, S_IRUGO); 57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 58 59 static void do_set_multicast(struct work_struct *w) 60 { 61 struct net_device_context *ndevctx = 62 container_of(w, struct net_device_context, work); 63 struct hv_device *device_obj = ndevctx->device_ctx; 64 struct net_device *ndev = hv_get_drvdata(device_obj); 65 struct netvsc_device *nvdev = rcu_dereference(ndevctx->nvdev); 66 struct rndis_device *rdev; 67 68 if (!nvdev) 69 return; 70 71 rdev = nvdev->extension; 72 if (rdev == NULL) 73 return; 74 75 if (ndev->flags & IFF_PROMISC) 76 rndis_filter_set_packet_filter(rdev, 77 NDIS_PACKET_TYPE_PROMISCUOUS); 78 else 79 rndis_filter_set_packet_filter(rdev, 80 NDIS_PACKET_TYPE_BROADCAST | 81 NDIS_PACKET_TYPE_ALL_MULTICAST | 82 NDIS_PACKET_TYPE_DIRECTED); 83 } 84 85 static void netvsc_set_multicast_list(struct net_device *net) 86 { 87 struct net_device_context *net_device_ctx = netdev_priv(net); 88 89 schedule_work(&net_device_ctx->work); 90 } 91 92 static int netvsc_open(struct net_device *net) 93 { 94 struct netvsc_device *nvdev = net_device_to_netvsc_device(net); 95 struct rndis_device *rdev; 96 int ret = 0; 97 98 netif_carrier_off(net); 99 100 /* Open up the device */ 101 ret = rndis_filter_open(nvdev); 102 if (ret != 0) { 103 netdev_err(net, "unable to open device (ret %d).\n", ret); 104 return ret; 105 } 106 107 netif_tx_wake_all_queues(net); 108 109 rdev = nvdev->extension; 110 if (!rdev->link_state) 111 netif_carrier_on(net); 112 113 return ret; 114 } 115 116 static int netvsc_close(struct net_device *net) 117 { 118 struct net_device_context *net_device_ctx = netdev_priv(net); 119 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 120 int ret; 121 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20; 122 struct vmbus_channel *chn; 123 124 netif_tx_disable(net); 125 126 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */ 127 cancel_work_sync(&net_device_ctx->work); 128 ret = rndis_filter_close(nvdev); 129 if (ret != 0) { 130 netdev_err(net, "unable to close device (ret %d).\n", ret); 131 return ret; 132 } 133 134 /* Ensure pending bytes in ring are read */ 135 while (true) { 136 aread = 0; 137 for (i = 0; i < nvdev->num_chn; i++) { 138 chn = nvdev->chan_table[i].channel; 139 if (!chn) 140 continue; 141 142 hv_get_ringbuffer_availbytes(&chn->inbound, &aread, 143 &awrite); 144 145 if (aread) 146 break; 147 148 hv_get_ringbuffer_availbytes(&chn->outbound, &aread, 149 &awrite); 150 151 if (aread) 152 break; 153 } 154 155 retry++; 156 if (retry > retry_max || aread == 0) 157 break; 158 159 msleep(msec); 160 161 if (msec < 1000) 162 msec *= 2; 163 } 164 165 if (aread) { 166 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 167 ret = -ETIMEDOUT; 168 } 169 170 return ret; 171 } 172 173 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 174 int pkt_type) 175 { 176 struct rndis_packet *rndis_pkt; 177 struct rndis_per_packet_info *ppi; 178 179 rndis_pkt = &msg->msg.pkt; 180 rndis_pkt->data_offset += ppi_size; 181 182 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 183 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 184 185 ppi->size = ppi_size; 186 ppi->type = pkt_type; 187 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 188 189 rndis_pkt->per_pkt_info_len += ppi_size; 190 191 return ppi; 192 } 193 194 /* Azure hosts don't support non-TCP port numbers in hashing yet. We compute 195 * hash for non-TCP traffic with only IP numbers. 196 */ 197 static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk) 198 { 199 struct flow_keys flow; 200 u32 hash; 201 static u32 hashrnd __read_mostly; 202 203 net_get_random_once(&hashrnd, sizeof(hashrnd)); 204 205 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 206 return 0; 207 208 if (flow.basic.ip_proto == IPPROTO_TCP) { 209 return skb_get_hash(skb); 210 } else { 211 if (flow.basic.n_proto == htons(ETH_P_IP)) 212 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 213 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 214 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 215 else 216 hash = 0; 217 218 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 219 } 220 221 return hash; 222 } 223 224 static inline int netvsc_get_tx_queue(struct net_device *ndev, 225 struct sk_buff *skb, int old_idx) 226 { 227 const struct net_device_context *ndc = netdev_priv(ndev); 228 struct sock *sk = skb->sk; 229 int q_idx; 230 231 q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) & 232 (VRSS_SEND_TAB_SIZE - 1)]; 233 234 /* If queue index changed record the new value */ 235 if (q_idx != old_idx && 236 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 237 sk_tx_queue_set(sk, q_idx); 238 239 return q_idx; 240 } 241 242 /* 243 * Select queue for transmit. 244 * 245 * If a valid queue has already been assigned, then use that. 246 * Otherwise compute tx queue based on hash and the send table. 247 * 248 * This is basically similar to default (__netdev_pick_tx) with the added step 249 * of using the host send_table when no other queue has been assigned. 250 * 251 * TODO support XPS - but get_xps_queue not exported 252 */ 253 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 254 void *accel_priv, select_queue_fallback_t fallback) 255 { 256 unsigned int num_tx_queues = ndev->real_num_tx_queues; 257 int q_idx = sk_tx_queue_get(skb->sk); 258 259 if (q_idx < 0 || skb->ooo_okay) { 260 /* If forwarding a packet, we use the recorded queue when 261 * available for better cache locality. 262 */ 263 if (skb_rx_queue_recorded(skb)) 264 q_idx = skb_get_rx_queue(skb); 265 else 266 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 267 } 268 269 while (unlikely(q_idx >= num_tx_queues)) 270 q_idx -= num_tx_queues; 271 272 return q_idx; 273 } 274 275 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 276 struct hv_page_buffer *pb) 277 { 278 int j = 0; 279 280 /* Deal with compund pages by ignoring unused part 281 * of the page. 282 */ 283 page += (offset >> PAGE_SHIFT); 284 offset &= ~PAGE_MASK; 285 286 while (len > 0) { 287 unsigned long bytes; 288 289 bytes = PAGE_SIZE - offset; 290 if (bytes > len) 291 bytes = len; 292 pb[j].pfn = page_to_pfn(page); 293 pb[j].offset = offset; 294 pb[j].len = bytes; 295 296 offset += bytes; 297 len -= bytes; 298 299 if (offset == PAGE_SIZE && len) { 300 page++; 301 offset = 0; 302 j++; 303 } 304 } 305 306 return j + 1; 307 } 308 309 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 310 struct hv_netvsc_packet *packet, 311 struct hv_page_buffer **page_buf) 312 { 313 struct hv_page_buffer *pb = *page_buf; 314 u32 slots_used = 0; 315 char *data = skb->data; 316 int frags = skb_shinfo(skb)->nr_frags; 317 int i; 318 319 /* The packet is laid out thus: 320 * 1. hdr: RNDIS header and PPI 321 * 2. skb linear data 322 * 3. skb fragment data 323 */ 324 if (hdr != NULL) 325 slots_used += fill_pg_buf(virt_to_page(hdr), 326 offset_in_page(hdr), 327 len, &pb[slots_used]); 328 329 packet->rmsg_size = len; 330 packet->rmsg_pgcnt = slots_used; 331 332 slots_used += fill_pg_buf(virt_to_page(data), 333 offset_in_page(data), 334 skb_headlen(skb), &pb[slots_used]); 335 336 for (i = 0; i < frags; i++) { 337 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 338 339 slots_used += fill_pg_buf(skb_frag_page(frag), 340 frag->page_offset, 341 skb_frag_size(frag), &pb[slots_used]); 342 } 343 return slots_used; 344 } 345 346 static int count_skb_frag_slots(struct sk_buff *skb) 347 { 348 int i, frags = skb_shinfo(skb)->nr_frags; 349 int pages = 0; 350 351 for (i = 0; i < frags; i++) { 352 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 353 unsigned long size = skb_frag_size(frag); 354 unsigned long offset = frag->page_offset; 355 356 /* Skip unused frames from start of page */ 357 offset &= ~PAGE_MASK; 358 pages += PFN_UP(offset + size); 359 } 360 return pages; 361 } 362 363 static int netvsc_get_slots(struct sk_buff *skb) 364 { 365 char *data = skb->data; 366 unsigned int offset = offset_in_page(data); 367 unsigned int len = skb_headlen(skb); 368 int slots; 369 int frag_slots; 370 371 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 372 frag_slots = count_skb_frag_slots(skb); 373 return slots + frag_slots; 374 } 375 376 static u32 net_checksum_info(struct sk_buff *skb) 377 { 378 if (skb->protocol == htons(ETH_P_IP)) { 379 struct iphdr *ip = ip_hdr(skb); 380 381 if (ip->protocol == IPPROTO_TCP) 382 return TRANSPORT_INFO_IPV4_TCP; 383 else if (ip->protocol == IPPROTO_UDP) 384 return TRANSPORT_INFO_IPV4_UDP; 385 } else { 386 struct ipv6hdr *ip6 = ipv6_hdr(skb); 387 388 if (ip6->nexthdr == IPPROTO_TCP) 389 return TRANSPORT_INFO_IPV6_TCP; 390 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) 391 return TRANSPORT_INFO_IPV6_UDP; 392 } 393 394 return TRANSPORT_INFO_NOT_IP; 395 } 396 397 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 398 { 399 struct net_device_context *net_device_ctx = netdev_priv(net); 400 struct hv_netvsc_packet *packet = NULL; 401 int ret; 402 unsigned int num_data_pgs; 403 struct rndis_message *rndis_msg; 404 struct rndis_packet *rndis_pkt; 405 u32 rndis_msg_size; 406 struct rndis_per_packet_info *ppi; 407 u32 hash; 408 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT]; 409 struct hv_page_buffer *pb = page_buf; 410 411 /* We will atmost need two pages to describe the rndis 412 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 413 * of pages in a single packet. If skb is scattered around 414 * more pages we try linearizing it. 415 */ 416 417 num_data_pgs = netvsc_get_slots(skb) + 2; 418 419 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 420 ++net_device_ctx->eth_stats.tx_scattered; 421 422 if (skb_linearize(skb)) 423 goto no_memory; 424 425 num_data_pgs = netvsc_get_slots(skb) + 2; 426 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 427 ++net_device_ctx->eth_stats.tx_too_big; 428 goto drop; 429 } 430 } 431 432 /* 433 * Place the rndis header in the skb head room and 434 * the skb->cb will be used for hv_netvsc_packet 435 * structure. 436 */ 437 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 438 if (ret) 439 goto no_memory; 440 441 /* Use the skb control buffer for building up the packet */ 442 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 443 FIELD_SIZEOF(struct sk_buff, cb)); 444 packet = (struct hv_netvsc_packet *)skb->cb; 445 446 packet->q_idx = skb_get_queue_mapping(skb); 447 448 packet->total_data_buflen = skb->len; 449 packet->total_bytes = skb->len; 450 packet->total_packets = 1; 451 452 rndis_msg = (struct rndis_message *)skb->head; 453 454 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE); 455 456 /* Add the rndis header */ 457 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 458 rndis_msg->msg_len = packet->total_data_buflen; 459 rndis_pkt = &rndis_msg->msg.pkt; 460 rndis_pkt->data_offset = sizeof(struct rndis_packet); 461 rndis_pkt->data_len = packet->total_data_buflen; 462 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 463 464 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 465 466 hash = skb_get_hash_raw(skb); 467 if (hash != 0 && net->real_num_tx_queues > 1) { 468 rndis_msg_size += NDIS_HASH_PPI_SIZE; 469 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 470 NBL_HASH_VALUE); 471 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 472 } 473 474 if (skb_vlan_tag_present(skb)) { 475 struct ndis_pkt_8021q_info *vlan; 476 477 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 478 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 479 IEEE_8021Q_INFO); 480 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + 481 ppi->ppi_offset); 482 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 483 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 484 VLAN_PRIO_SHIFT; 485 } 486 487 if (skb_is_gso(skb)) { 488 struct ndis_tcp_lso_info *lso_info; 489 490 rndis_msg_size += NDIS_LSO_PPI_SIZE; 491 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 492 TCP_LARGESEND_PKTINFO); 493 494 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + 495 ppi->ppi_offset); 496 497 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 498 if (skb->protocol == htons(ETH_P_IP)) { 499 lso_info->lso_v2_transmit.ip_version = 500 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 501 ip_hdr(skb)->tot_len = 0; 502 ip_hdr(skb)->check = 0; 503 tcp_hdr(skb)->check = 504 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 505 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 506 } else { 507 lso_info->lso_v2_transmit.ip_version = 508 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 509 ipv6_hdr(skb)->payload_len = 0; 510 tcp_hdr(skb)->check = 511 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 512 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 513 } 514 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 515 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 516 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 517 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 518 struct ndis_tcp_ip_checksum_info *csum_info; 519 520 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 521 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 522 TCPIP_CHKSUM_PKTINFO); 523 524 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 525 ppi->ppi_offset); 526 527 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 528 529 if (skb->protocol == htons(ETH_P_IP)) { 530 csum_info->transmit.is_ipv4 = 1; 531 532 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 533 csum_info->transmit.tcp_checksum = 1; 534 else 535 csum_info->transmit.udp_checksum = 1; 536 } else { 537 csum_info->transmit.is_ipv6 = 1; 538 539 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 540 csum_info->transmit.tcp_checksum = 1; 541 else 542 csum_info->transmit.udp_checksum = 1; 543 } 544 } else { 545 /* Can't do offload of this type of checksum */ 546 if (skb_checksum_help(skb)) 547 goto drop; 548 } 549 } 550 551 /* Start filling in the page buffers with the rndis hdr */ 552 rndis_msg->msg_len += rndis_msg_size; 553 packet->total_data_buflen = rndis_msg->msg_len; 554 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 555 skb, packet, &pb); 556 557 /* timestamp packet in software */ 558 skb_tx_timestamp(skb); 559 ret = netvsc_send(net_device_ctx->device_ctx, packet, 560 rndis_msg, &pb, skb); 561 if (likely(ret == 0)) 562 return NETDEV_TX_OK; 563 564 if (ret == -EAGAIN) { 565 ++net_device_ctx->eth_stats.tx_busy; 566 return NETDEV_TX_BUSY; 567 } 568 569 if (ret == -ENOSPC) 570 ++net_device_ctx->eth_stats.tx_no_space; 571 572 drop: 573 dev_kfree_skb_any(skb); 574 net->stats.tx_dropped++; 575 576 return NETDEV_TX_OK; 577 578 no_memory: 579 ++net_device_ctx->eth_stats.tx_no_memory; 580 goto drop; 581 } 582 /* 583 * netvsc_linkstatus_callback - Link up/down notification 584 */ 585 void netvsc_linkstatus_callback(struct hv_device *device_obj, 586 struct rndis_message *resp) 587 { 588 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 589 struct net_device *net; 590 struct net_device_context *ndev_ctx; 591 struct netvsc_reconfig *event; 592 unsigned long flags; 593 594 net = hv_get_drvdata(device_obj); 595 596 if (!net) 597 return; 598 599 ndev_ctx = netdev_priv(net); 600 601 /* Update the physical link speed when changing to another vSwitch */ 602 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 603 u32 speed; 604 605 speed = *(u32 *)((void *)indicate + indicate-> 606 status_buf_offset) / 10000; 607 ndev_ctx->speed = speed; 608 return; 609 } 610 611 /* Handle these link change statuses below */ 612 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 613 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 614 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 615 return; 616 617 if (net->reg_state != NETREG_REGISTERED) 618 return; 619 620 event = kzalloc(sizeof(*event), GFP_ATOMIC); 621 if (!event) 622 return; 623 event->event = indicate->status; 624 625 spin_lock_irqsave(&ndev_ctx->lock, flags); 626 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 627 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 628 629 schedule_delayed_work(&ndev_ctx->dwork, 0); 630 } 631 632 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 633 struct napi_struct *napi, 634 const struct ndis_tcp_ip_checksum_info *csum_info, 635 const struct ndis_pkt_8021q_info *vlan, 636 void *data, u32 buflen) 637 { 638 struct sk_buff *skb; 639 640 skb = napi_alloc_skb(napi, buflen); 641 if (!skb) 642 return skb; 643 644 /* 645 * Copy to skb. This copy is needed here since the memory pointed by 646 * hv_netvsc_packet cannot be deallocated 647 */ 648 memcpy(skb_put(skb, buflen), data, buflen); 649 650 skb->protocol = eth_type_trans(skb, net); 651 652 /* skb is already created with CHECKSUM_NONE */ 653 skb_checksum_none_assert(skb); 654 655 /* 656 * In Linux, the IP checksum is always checked. 657 * Do L4 checksum offload if enabled and present. 658 */ 659 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 660 if (csum_info->receive.tcp_checksum_succeeded || 661 csum_info->receive.udp_checksum_succeeded) 662 skb->ip_summed = CHECKSUM_UNNECESSARY; 663 } 664 665 if (vlan) { 666 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 667 668 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 669 vlan_tci); 670 } 671 672 return skb; 673 } 674 675 /* 676 * netvsc_recv_callback - Callback when we receive a packet from the 677 * "wire" on the specified device. 678 */ 679 int netvsc_recv_callback(struct net_device *net, 680 struct vmbus_channel *channel, 681 void *data, u32 len, 682 const struct ndis_tcp_ip_checksum_info *csum_info, 683 const struct ndis_pkt_8021q_info *vlan) 684 { 685 struct net_device_context *net_device_ctx = netdev_priv(net); 686 struct netvsc_device *net_device; 687 u16 q_idx = channel->offermsg.offer.sub_channel_index; 688 struct netvsc_channel *nvchan; 689 struct net_device *vf_netdev; 690 struct sk_buff *skb; 691 struct netvsc_stats *rx_stats; 692 693 if (net->reg_state != NETREG_REGISTERED) 694 return NVSP_STAT_FAIL; 695 696 /* 697 * If necessary, inject this packet into the VF interface. 698 * On Hyper-V, multicast and brodcast packets are only delivered 699 * to the synthetic interface (after subjecting these to 700 * policy filters on the host). Deliver these via the VF 701 * interface in the guest. 702 */ 703 rcu_read_lock(); 704 net_device = rcu_dereference(net_device_ctx->nvdev); 705 if (unlikely(!net_device)) 706 goto drop; 707 708 nvchan = &net_device->chan_table[q_idx]; 709 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev); 710 if (vf_netdev && (vf_netdev->flags & IFF_UP)) 711 net = vf_netdev; 712 713 /* Allocate a skb - TODO direct I/O to pages? */ 714 skb = netvsc_alloc_recv_skb(net, &nvchan->napi, 715 csum_info, vlan, data, len); 716 if (unlikely(!skb)) { 717 drop: 718 ++net->stats.rx_dropped; 719 rcu_read_unlock(); 720 return NVSP_STAT_FAIL; 721 } 722 723 if (net != vf_netdev) 724 skb_record_rx_queue(skb, q_idx); 725 726 /* 727 * Even if injecting the packet, record the statistics 728 * on the synthetic device because modifying the VF device 729 * statistics will not work correctly. 730 */ 731 rx_stats = &nvchan->rx_stats; 732 u64_stats_update_begin(&rx_stats->syncp); 733 rx_stats->packets++; 734 rx_stats->bytes += len; 735 736 if (skb->pkt_type == PACKET_BROADCAST) 737 ++rx_stats->broadcast; 738 else if (skb->pkt_type == PACKET_MULTICAST) 739 ++rx_stats->multicast; 740 u64_stats_update_end(&rx_stats->syncp); 741 742 napi_gro_receive(&nvchan->napi, skb); 743 rcu_read_unlock(); 744 745 return 0; 746 } 747 748 static void netvsc_get_drvinfo(struct net_device *net, 749 struct ethtool_drvinfo *info) 750 { 751 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 752 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 753 } 754 755 static void netvsc_get_channels(struct net_device *net, 756 struct ethtool_channels *channel) 757 { 758 struct net_device_context *net_device_ctx = netdev_priv(net); 759 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 760 761 if (nvdev) { 762 channel->max_combined = nvdev->max_chn; 763 channel->combined_count = nvdev->num_chn; 764 } 765 } 766 767 static int netvsc_set_queues(struct net_device *net, struct hv_device *dev, 768 u32 num_chn) 769 { 770 struct netvsc_device_info device_info; 771 int ret; 772 773 memset(&device_info, 0, sizeof(device_info)); 774 device_info.num_chn = num_chn; 775 device_info.ring_size = ring_size; 776 device_info.max_num_vrss_chns = num_chn; 777 778 ret = rndis_filter_device_add(dev, &device_info); 779 if (ret) 780 return ret; 781 782 ret = netif_set_real_num_tx_queues(net, num_chn); 783 if (ret) 784 return ret; 785 786 ret = netif_set_real_num_rx_queues(net, num_chn); 787 788 return ret; 789 } 790 791 static int netvsc_set_channels(struct net_device *net, 792 struct ethtool_channels *channels) 793 { 794 struct net_device_context *net_device_ctx = netdev_priv(net); 795 struct hv_device *dev = net_device_ctx->device_ctx; 796 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 797 unsigned int count = channels->combined_count; 798 bool was_running; 799 int ret; 800 801 /* We do not support separate count for rx, tx, or other */ 802 if (count == 0 || 803 channels->rx_count || channels->tx_count || channels->other_count) 804 return -EINVAL; 805 806 if (count > net->num_tx_queues || count > net->num_rx_queues) 807 return -EINVAL; 808 809 if (!nvdev || nvdev->destroy) 810 return -ENODEV; 811 812 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 813 return -EINVAL; 814 815 if (count > nvdev->max_chn) 816 return -EINVAL; 817 818 was_running = netif_running(net); 819 if (was_running) { 820 ret = netvsc_close(net); 821 if (ret) 822 return ret; 823 } 824 825 rndis_filter_device_remove(dev, nvdev); 826 827 ret = netvsc_set_queues(net, dev, count); 828 if (ret == 0) 829 nvdev->num_chn = count; 830 else 831 netvsc_set_queues(net, dev, nvdev->num_chn); 832 833 if (was_running) 834 ret = netvsc_open(net); 835 836 /* We may have missed link change notifications */ 837 schedule_delayed_work(&net_device_ctx->dwork, 0); 838 839 return ret; 840 } 841 842 static bool 843 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 844 { 845 struct ethtool_link_ksettings diff1 = *cmd; 846 struct ethtool_link_ksettings diff2 = {}; 847 848 diff1.base.speed = 0; 849 diff1.base.duplex = 0; 850 /* advertising and cmd are usually set */ 851 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 852 diff1.base.cmd = 0; 853 /* We set port to PORT_OTHER */ 854 diff2.base.port = PORT_OTHER; 855 856 return !memcmp(&diff1, &diff2, sizeof(diff1)); 857 } 858 859 static void netvsc_init_settings(struct net_device *dev) 860 { 861 struct net_device_context *ndc = netdev_priv(dev); 862 863 ndc->speed = SPEED_UNKNOWN; 864 ndc->duplex = DUPLEX_FULL; 865 } 866 867 static int netvsc_get_link_ksettings(struct net_device *dev, 868 struct ethtool_link_ksettings *cmd) 869 { 870 struct net_device_context *ndc = netdev_priv(dev); 871 872 cmd->base.speed = ndc->speed; 873 cmd->base.duplex = ndc->duplex; 874 cmd->base.port = PORT_OTHER; 875 876 return 0; 877 } 878 879 static int netvsc_set_link_ksettings(struct net_device *dev, 880 const struct ethtool_link_ksettings *cmd) 881 { 882 struct net_device_context *ndc = netdev_priv(dev); 883 u32 speed; 884 885 speed = cmd->base.speed; 886 if (!ethtool_validate_speed(speed) || 887 !ethtool_validate_duplex(cmd->base.duplex) || 888 !netvsc_validate_ethtool_ss_cmd(cmd)) 889 return -EINVAL; 890 891 ndc->speed = speed; 892 ndc->duplex = cmd->base.duplex; 893 894 return 0; 895 } 896 897 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 898 { 899 struct net_device_context *ndevctx = netdev_priv(ndev); 900 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 901 struct hv_device *hdev = ndevctx->device_ctx; 902 struct netvsc_device_info device_info; 903 bool was_running; 904 int ret = 0; 905 906 if (!nvdev || nvdev->destroy) 907 return -ENODEV; 908 909 was_running = netif_running(ndev); 910 if (was_running) { 911 ret = netvsc_close(ndev); 912 if (ret) 913 return ret; 914 } 915 916 memset(&device_info, 0, sizeof(device_info)); 917 device_info.ring_size = ring_size; 918 device_info.num_chn = nvdev->num_chn; 919 device_info.max_num_vrss_chns = nvdev->num_chn; 920 921 rndis_filter_device_remove(hdev, nvdev); 922 923 /* 'nvdev' has been freed in rndis_filter_device_remove() -> 924 * netvsc_device_remove () -> free_netvsc_device(). 925 * We mustn't access it before it's re-created in 926 * rndis_filter_device_add() -> netvsc_device_add(). 927 */ 928 929 ndev->mtu = mtu; 930 931 rndis_filter_device_add(hdev, &device_info); 932 933 if (was_running) 934 ret = netvsc_open(ndev); 935 936 /* We may have missed link change notifications */ 937 schedule_delayed_work(&ndevctx->dwork, 0); 938 939 return ret; 940 } 941 942 static void netvsc_get_stats64(struct net_device *net, 943 struct rtnl_link_stats64 *t) 944 { 945 struct net_device_context *ndev_ctx = netdev_priv(net); 946 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 947 int i; 948 949 if (!nvdev) 950 return; 951 952 for (i = 0; i < nvdev->num_chn; i++) { 953 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 954 const struct netvsc_stats *stats; 955 u64 packets, bytes, multicast; 956 unsigned int start; 957 958 stats = &nvchan->tx_stats; 959 do { 960 start = u64_stats_fetch_begin_irq(&stats->syncp); 961 packets = stats->packets; 962 bytes = stats->bytes; 963 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 964 965 t->tx_bytes += bytes; 966 t->tx_packets += packets; 967 968 stats = &nvchan->rx_stats; 969 do { 970 start = u64_stats_fetch_begin_irq(&stats->syncp); 971 packets = stats->packets; 972 bytes = stats->bytes; 973 multicast = stats->multicast + stats->broadcast; 974 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 975 976 t->rx_bytes += bytes; 977 t->rx_packets += packets; 978 t->multicast += multicast; 979 } 980 981 t->tx_dropped = net->stats.tx_dropped; 982 t->tx_errors = net->stats.tx_errors; 983 984 t->rx_dropped = net->stats.rx_dropped; 985 t->rx_errors = net->stats.rx_errors; 986 } 987 988 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 989 { 990 struct sockaddr *addr = p; 991 char save_adr[ETH_ALEN]; 992 unsigned char save_aatype; 993 int err; 994 995 memcpy(save_adr, ndev->dev_addr, ETH_ALEN); 996 save_aatype = ndev->addr_assign_type; 997 998 err = eth_mac_addr(ndev, p); 999 if (err != 0) 1000 return err; 1001 1002 err = rndis_filter_set_device_mac(ndev, addr->sa_data); 1003 if (err != 0) { 1004 /* roll back to saved MAC */ 1005 memcpy(ndev->dev_addr, save_adr, ETH_ALEN); 1006 ndev->addr_assign_type = save_aatype; 1007 } 1008 1009 return err; 1010 } 1011 1012 static const struct { 1013 char name[ETH_GSTRING_LEN]; 1014 u16 offset; 1015 } netvsc_stats[] = { 1016 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1017 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1018 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1019 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1020 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1021 }; 1022 1023 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1024 1025 /* 4 statistics per queue (rx/tx packets/bytes) */ 1026 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1027 1028 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1029 { 1030 struct net_device_context *ndc = netdev_priv(dev); 1031 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1032 1033 if (!nvdev) 1034 return -ENODEV; 1035 1036 switch (string_set) { 1037 case ETH_SS_STATS: 1038 return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev); 1039 default: 1040 return -EINVAL; 1041 } 1042 } 1043 1044 static void netvsc_get_ethtool_stats(struct net_device *dev, 1045 struct ethtool_stats *stats, u64 *data) 1046 { 1047 struct net_device_context *ndc = netdev_priv(dev); 1048 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1049 const void *nds = &ndc->eth_stats; 1050 const struct netvsc_stats *qstats; 1051 unsigned int start; 1052 u64 packets, bytes; 1053 int i, j; 1054 1055 if (!nvdev) 1056 return; 1057 1058 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1059 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1060 1061 for (j = 0; j < nvdev->num_chn; j++) { 1062 qstats = &nvdev->chan_table[j].tx_stats; 1063 1064 do { 1065 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1066 packets = qstats->packets; 1067 bytes = qstats->bytes; 1068 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1069 data[i++] = packets; 1070 data[i++] = bytes; 1071 1072 qstats = &nvdev->chan_table[j].rx_stats; 1073 do { 1074 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1075 packets = qstats->packets; 1076 bytes = qstats->bytes; 1077 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1078 data[i++] = packets; 1079 data[i++] = bytes; 1080 } 1081 } 1082 1083 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1084 { 1085 struct net_device_context *ndc = netdev_priv(dev); 1086 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1087 u8 *p = data; 1088 int i; 1089 1090 if (!nvdev) 1091 return; 1092 1093 switch (stringset) { 1094 case ETH_SS_STATS: 1095 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1096 memcpy(p + i * ETH_GSTRING_LEN, 1097 netvsc_stats[i].name, ETH_GSTRING_LEN); 1098 1099 p += i * ETH_GSTRING_LEN; 1100 for (i = 0; i < nvdev->num_chn; i++) { 1101 sprintf(p, "tx_queue_%u_packets", i); 1102 p += ETH_GSTRING_LEN; 1103 sprintf(p, "tx_queue_%u_bytes", i); 1104 p += ETH_GSTRING_LEN; 1105 sprintf(p, "rx_queue_%u_packets", i); 1106 p += ETH_GSTRING_LEN; 1107 sprintf(p, "rx_queue_%u_bytes", i); 1108 p += ETH_GSTRING_LEN; 1109 } 1110 1111 break; 1112 } 1113 } 1114 1115 static int 1116 netvsc_get_rss_hash_opts(struct netvsc_device *nvdev, 1117 struct ethtool_rxnfc *info) 1118 { 1119 info->data = RXH_IP_SRC | RXH_IP_DST; 1120 1121 switch (info->flow_type) { 1122 case TCP_V4_FLOW: 1123 case TCP_V6_FLOW: 1124 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 1125 /* fallthrough */ 1126 case UDP_V4_FLOW: 1127 case UDP_V6_FLOW: 1128 case IPV4_FLOW: 1129 case IPV6_FLOW: 1130 break; 1131 default: 1132 info->data = 0; 1133 break; 1134 } 1135 1136 return 0; 1137 } 1138 1139 static int 1140 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1141 u32 *rules) 1142 { 1143 struct net_device_context *ndc = netdev_priv(dev); 1144 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1145 1146 if (!nvdev) 1147 return -ENODEV; 1148 1149 switch (info->cmd) { 1150 case ETHTOOL_GRXRINGS: 1151 info->data = nvdev->num_chn; 1152 return 0; 1153 1154 case ETHTOOL_GRXFH: 1155 return netvsc_get_rss_hash_opts(nvdev, info); 1156 } 1157 return -EOPNOTSUPP; 1158 } 1159 1160 #ifdef CONFIG_NET_POLL_CONTROLLER 1161 static void netvsc_poll_controller(struct net_device *net) 1162 { 1163 /* As netvsc_start_xmit() works synchronous we don't have to 1164 * trigger anything here. 1165 */ 1166 } 1167 #endif 1168 1169 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1170 { 1171 return NETVSC_HASH_KEYLEN; 1172 } 1173 1174 static u32 netvsc_rss_indir_size(struct net_device *dev) 1175 { 1176 return ITAB_NUM; 1177 } 1178 1179 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1180 u8 *hfunc) 1181 { 1182 struct net_device_context *ndc = netdev_priv(dev); 1183 struct netvsc_device *ndev = rcu_dereference(ndc->nvdev); 1184 struct rndis_device *rndis_dev; 1185 int i; 1186 1187 if (!ndev) 1188 return -ENODEV; 1189 1190 if (hfunc) 1191 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1192 1193 rndis_dev = ndev->extension; 1194 if (indir) { 1195 for (i = 0; i < ITAB_NUM; i++) 1196 indir[i] = rndis_dev->ind_table[i]; 1197 } 1198 1199 if (key) 1200 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1201 1202 return 0; 1203 } 1204 1205 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1206 const u8 *key, const u8 hfunc) 1207 { 1208 struct net_device_context *ndc = netdev_priv(dev); 1209 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1210 struct rndis_device *rndis_dev; 1211 int i; 1212 1213 if (!ndev) 1214 return -ENODEV; 1215 1216 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1217 return -EOPNOTSUPP; 1218 1219 rndis_dev = ndev->extension; 1220 if (indir) { 1221 for (i = 0; i < ITAB_NUM; i++) 1222 if (indir[i] >= dev->num_rx_queues) 1223 return -EINVAL; 1224 1225 for (i = 0; i < ITAB_NUM; i++) 1226 rndis_dev->ind_table[i] = indir[i]; 1227 } 1228 1229 if (!key) { 1230 if (!indir) 1231 return 0; 1232 1233 key = rndis_dev->rss_key; 1234 } 1235 1236 return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn); 1237 } 1238 1239 static const struct ethtool_ops ethtool_ops = { 1240 .get_drvinfo = netvsc_get_drvinfo, 1241 .get_link = ethtool_op_get_link, 1242 .get_ethtool_stats = netvsc_get_ethtool_stats, 1243 .get_sset_count = netvsc_get_sset_count, 1244 .get_strings = netvsc_get_strings, 1245 .get_channels = netvsc_get_channels, 1246 .set_channels = netvsc_set_channels, 1247 .get_ts_info = ethtool_op_get_ts_info, 1248 .get_rxnfc = netvsc_get_rxnfc, 1249 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1250 .get_rxfh_indir_size = netvsc_rss_indir_size, 1251 .get_rxfh = netvsc_get_rxfh, 1252 .set_rxfh = netvsc_set_rxfh, 1253 .get_link_ksettings = netvsc_get_link_ksettings, 1254 .set_link_ksettings = netvsc_set_link_ksettings, 1255 }; 1256 1257 static const struct net_device_ops device_ops = { 1258 .ndo_open = netvsc_open, 1259 .ndo_stop = netvsc_close, 1260 .ndo_start_xmit = netvsc_start_xmit, 1261 .ndo_set_rx_mode = netvsc_set_multicast_list, 1262 .ndo_change_mtu = netvsc_change_mtu, 1263 .ndo_validate_addr = eth_validate_addr, 1264 .ndo_set_mac_address = netvsc_set_mac_addr, 1265 .ndo_select_queue = netvsc_select_queue, 1266 .ndo_get_stats64 = netvsc_get_stats64, 1267 #ifdef CONFIG_NET_POLL_CONTROLLER 1268 .ndo_poll_controller = netvsc_poll_controller, 1269 #endif 1270 }; 1271 1272 /* 1273 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1274 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1275 * present send GARP packet to network peers with netif_notify_peers(). 1276 */ 1277 static void netvsc_link_change(struct work_struct *w) 1278 { 1279 struct net_device_context *ndev_ctx = 1280 container_of(w, struct net_device_context, dwork.work); 1281 struct hv_device *device_obj = ndev_ctx->device_ctx; 1282 struct net_device *net = hv_get_drvdata(device_obj); 1283 struct netvsc_device *net_device; 1284 struct rndis_device *rdev; 1285 struct netvsc_reconfig *event = NULL; 1286 bool notify = false, reschedule = false; 1287 unsigned long flags, next_reconfig, delay; 1288 1289 rtnl_lock(); 1290 net_device = rtnl_dereference(ndev_ctx->nvdev); 1291 if (!net_device) 1292 goto out_unlock; 1293 1294 rdev = net_device->extension; 1295 1296 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1297 if (time_is_after_jiffies(next_reconfig)) { 1298 /* link_watch only sends one notification with current state 1299 * per second, avoid doing reconfig more frequently. Handle 1300 * wrap around. 1301 */ 1302 delay = next_reconfig - jiffies; 1303 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1304 schedule_delayed_work(&ndev_ctx->dwork, delay); 1305 goto out_unlock; 1306 } 1307 ndev_ctx->last_reconfig = jiffies; 1308 1309 spin_lock_irqsave(&ndev_ctx->lock, flags); 1310 if (!list_empty(&ndev_ctx->reconfig_events)) { 1311 event = list_first_entry(&ndev_ctx->reconfig_events, 1312 struct netvsc_reconfig, list); 1313 list_del(&event->list); 1314 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1315 } 1316 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1317 1318 if (!event) 1319 goto out_unlock; 1320 1321 switch (event->event) { 1322 /* Only the following events are possible due to the check in 1323 * netvsc_linkstatus_callback() 1324 */ 1325 case RNDIS_STATUS_MEDIA_CONNECT: 1326 if (rdev->link_state) { 1327 rdev->link_state = false; 1328 netif_carrier_on(net); 1329 netif_tx_wake_all_queues(net); 1330 } else { 1331 notify = true; 1332 } 1333 kfree(event); 1334 break; 1335 case RNDIS_STATUS_MEDIA_DISCONNECT: 1336 if (!rdev->link_state) { 1337 rdev->link_state = true; 1338 netif_carrier_off(net); 1339 netif_tx_stop_all_queues(net); 1340 } 1341 kfree(event); 1342 break; 1343 case RNDIS_STATUS_NETWORK_CHANGE: 1344 /* Only makes sense if carrier is present */ 1345 if (!rdev->link_state) { 1346 rdev->link_state = true; 1347 netif_carrier_off(net); 1348 netif_tx_stop_all_queues(net); 1349 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1350 spin_lock_irqsave(&ndev_ctx->lock, flags); 1351 list_add(&event->list, &ndev_ctx->reconfig_events); 1352 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1353 reschedule = true; 1354 } 1355 break; 1356 } 1357 1358 rtnl_unlock(); 1359 1360 if (notify) 1361 netdev_notify_peers(net); 1362 1363 /* link_watch only sends one notification with current state per 1364 * second, handle next reconfig event in 2 seconds. 1365 */ 1366 if (reschedule) 1367 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1368 1369 return; 1370 1371 out_unlock: 1372 rtnl_unlock(); 1373 } 1374 1375 static struct net_device *get_netvsc_bymac(const u8 *mac) 1376 { 1377 struct net_device *dev; 1378 1379 ASSERT_RTNL(); 1380 1381 for_each_netdev(&init_net, dev) { 1382 if (dev->netdev_ops != &device_ops) 1383 continue; /* not a netvsc device */ 1384 1385 if (ether_addr_equal(mac, dev->perm_addr)) 1386 return dev; 1387 } 1388 1389 return NULL; 1390 } 1391 1392 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1393 { 1394 struct net_device *dev; 1395 1396 ASSERT_RTNL(); 1397 1398 for_each_netdev(&init_net, dev) { 1399 struct net_device_context *net_device_ctx; 1400 1401 if (dev->netdev_ops != &device_ops) 1402 continue; /* not a netvsc device */ 1403 1404 net_device_ctx = netdev_priv(dev); 1405 if (net_device_ctx->nvdev == NULL) 1406 continue; /* device is removed */ 1407 1408 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev) 1409 return dev; /* a match */ 1410 } 1411 1412 return NULL; 1413 } 1414 1415 static int netvsc_register_vf(struct net_device *vf_netdev) 1416 { 1417 struct net_device *ndev; 1418 struct net_device_context *net_device_ctx; 1419 struct netvsc_device *netvsc_dev; 1420 1421 if (vf_netdev->addr_len != ETH_ALEN) 1422 return NOTIFY_DONE; 1423 1424 /* 1425 * We will use the MAC address to locate the synthetic interface to 1426 * associate with the VF interface. If we don't find a matching 1427 * synthetic interface, move on. 1428 */ 1429 ndev = get_netvsc_bymac(vf_netdev->perm_addr); 1430 if (!ndev) 1431 return NOTIFY_DONE; 1432 1433 net_device_ctx = netdev_priv(ndev); 1434 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1435 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 1436 return NOTIFY_DONE; 1437 1438 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 1439 /* 1440 * Take a reference on the module. 1441 */ 1442 try_module_get(THIS_MODULE); 1443 1444 dev_hold(vf_netdev); 1445 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 1446 return NOTIFY_OK; 1447 } 1448 1449 static int netvsc_vf_up(struct net_device *vf_netdev) 1450 { 1451 struct net_device *ndev; 1452 struct netvsc_device *netvsc_dev; 1453 struct net_device_context *net_device_ctx; 1454 1455 ndev = get_netvsc_byref(vf_netdev); 1456 if (!ndev) 1457 return NOTIFY_DONE; 1458 1459 net_device_ctx = netdev_priv(ndev); 1460 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1461 1462 netdev_info(ndev, "VF up: %s\n", vf_netdev->name); 1463 1464 /* 1465 * Open the device before switching data path. 1466 */ 1467 rndis_filter_open(netvsc_dev); 1468 1469 /* 1470 * notify the host to switch the data path. 1471 */ 1472 netvsc_switch_datapath(ndev, true); 1473 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name); 1474 1475 netif_carrier_off(ndev); 1476 1477 /* Now notify peers through VF device. */ 1478 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev); 1479 1480 return NOTIFY_OK; 1481 } 1482 1483 static int netvsc_vf_down(struct net_device *vf_netdev) 1484 { 1485 struct net_device *ndev; 1486 struct netvsc_device *netvsc_dev; 1487 struct net_device_context *net_device_ctx; 1488 1489 ndev = get_netvsc_byref(vf_netdev); 1490 if (!ndev) 1491 return NOTIFY_DONE; 1492 1493 net_device_ctx = netdev_priv(ndev); 1494 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1495 1496 netdev_info(ndev, "VF down: %s\n", vf_netdev->name); 1497 netvsc_switch_datapath(ndev, false); 1498 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name); 1499 rndis_filter_close(netvsc_dev); 1500 netif_carrier_on(ndev); 1501 1502 /* Now notify peers through netvsc device. */ 1503 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev); 1504 1505 return NOTIFY_OK; 1506 } 1507 1508 static int netvsc_unregister_vf(struct net_device *vf_netdev) 1509 { 1510 struct net_device *ndev; 1511 struct net_device_context *net_device_ctx; 1512 1513 ndev = get_netvsc_byref(vf_netdev); 1514 if (!ndev) 1515 return NOTIFY_DONE; 1516 1517 net_device_ctx = netdev_priv(ndev); 1518 1519 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1520 1521 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 1522 dev_put(vf_netdev); 1523 module_put(THIS_MODULE); 1524 return NOTIFY_OK; 1525 } 1526 1527 static int netvsc_probe(struct hv_device *dev, 1528 const struct hv_vmbus_device_id *dev_id) 1529 { 1530 struct net_device *net = NULL; 1531 struct net_device_context *net_device_ctx; 1532 struct netvsc_device_info device_info; 1533 struct netvsc_device *nvdev; 1534 int ret; 1535 1536 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1537 VRSS_CHANNEL_MAX); 1538 if (!net) 1539 return -ENOMEM; 1540 1541 netif_carrier_off(net); 1542 1543 netvsc_init_settings(net); 1544 1545 net_device_ctx = netdev_priv(net); 1546 net_device_ctx->device_ctx = dev; 1547 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1548 if (netif_msg_probe(net_device_ctx)) 1549 netdev_dbg(net, "netvsc msg_enable: %d\n", 1550 net_device_ctx->msg_enable); 1551 1552 hv_set_drvdata(dev, net); 1553 1554 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1555 INIT_WORK(&net_device_ctx->work, do_set_multicast); 1556 1557 spin_lock_init(&net_device_ctx->lock); 1558 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1559 1560 net->netdev_ops = &device_ops; 1561 net->ethtool_ops = ðtool_ops; 1562 SET_NETDEV_DEV(net, &dev->device); 1563 1564 /* We always need headroom for rndis header */ 1565 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1566 1567 /* Notify the netvsc driver of the new device */ 1568 memset(&device_info, 0, sizeof(device_info)); 1569 device_info.ring_size = ring_size; 1570 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 1571 ret = rndis_filter_device_add(dev, &device_info); 1572 if (ret != 0) { 1573 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 1574 free_netdev(net); 1575 hv_set_drvdata(dev, NULL); 1576 return ret; 1577 } 1578 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 1579 1580 /* hw_features computed in rndis_filter_device_add */ 1581 net->features = net->hw_features | 1582 NETIF_F_HIGHDMA | NETIF_F_SG | 1583 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 1584 net->vlan_features = net->features; 1585 1586 /* RCU not necessary here, device not registered */ 1587 nvdev = net_device_ctx->nvdev; 1588 netif_set_real_num_tx_queues(net, nvdev->num_chn); 1589 netif_set_real_num_rx_queues(net, nvdev->num_chn); 1590 1591 /* MTU range: 68 - 1500 or 65521 */ 1592 net->min_mtu = NETVSC_MTU_MIN; 1593 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 1594 net->max_mtu = NETVSC_MTU - ETH_HLEN; 1595 else 1596 net->max_mtu = ETH_DATA_LEN; 1597 1598 ret = register_netdev(net); 1599 if (ret != 0) { 1600 pr_err("Unable to register netdev.\n"); 1601 rndis_filter_device_remove(dev, nvdev); 1602 free_netdev(net); 1603 } 1604 1605 return ret; 1606 } 1607 1608 static int netvsc_remove(struct hv_device *dev) 1609 { 1610 struct net_device *net; 1611 struct net_device_context *ndev_ctx; 1612 1613 net = hv_get_drvdata(dev); 1614 1615 if (net == NULL) { 1616 dev_err(&dev->device, "No net device to remove\n"); 1617 return 0; 1618 } 1619 1620 ndev_ctx = netdev_priv(net); 1621 1622 netif_device_detach(net); 1623 1624 cancel_delayed_work_sync(&ndev_ctx->dwork); 1625 cancel_work_sync(&ndev_ctx->work); 1626 1627 /* 1628 * Call to the vsc driver to let it know that the device is being 1629 * removed. Also blocks mtu and channel changes. 1630 */ 1631 rtnl_lock(); 1632 rndis_filter_device_remove(dev, ndev_ctx->nvdev); 1633 rtnl_unlock(); 1634 1635 unregister_netdev(net); 1636 1637 hv_set_drvdata(dev, NULL); 1638 1639 free_netdev(net); 1640 return 0; 1641 } 1642 1643 static const struct hv_vmbus_device_id id_table[] = { 1644 /* Network guid */ 1645 { HV_NIC_GUID, }, 1646 { }, 1647 }; 1648 1649 MODULE_DEVICE_TABLE(vmbus, id_table); 1650 1651 /* The one and only one */ 1652 static struct hv_driver netvsc_drv = { 1653 .name = KBUILD_MODNAME, 1654 .id_table = id_table, 1655 .probe = netvsc_probe, 1656 .remove = netvsc_remove, 1657 }; 1658 1659 /* 1660 * On Hyper-V, every VF interface is matched with a corresponding 1661 * synthetic interface. The synthetic interface is presented first 1662 * to the guest. When the corresponding VF instance is registered, 1663 * we will take care of switching the data path. 1664 */ 1665 static int netvsc_netdev_event(struct notifier_block *this, 1666 unsigned long event, void *ptr) 1667 { 1668 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 1669 1670 /* Skip our own events */ 1671 if (event_dev->netdev_ops == &device_ops) 1672 return NOTIFY_DONE; 1673 1674 /* Avoid non-Ethernet type devices */ 1675 if (event_dev->type != ARPHRD_ETHER) 1676 return NOTIFY_DONE; 1677 1678 /* Avoid Vlan dev with same MAC registering as VF */ 1679 if (is_vlan_dev(event_dev)) 1680 return NOTIFY_DONE; 1681 1682 /* Avoid Bonding master dev with same MAC registering as VF */ 1683 if ((event_dev->priv_flags & IFF_BONDING) && 1684 (event_dev->flags & IFF_MASTER)) 1685 return NOTIFY_DONE; 1686 1687 switch (event) { 1688 case NETDEV_REGISTER: 1689 return netvsc_register_vf(event_dev); 1690 case NETDEV_UNREGISTER: 1691 return netvsc_unregister_vf(event_dev); 1692 case NETDEV_UP: 1693 return netvsc_vf_up(event_dev); 1694 case NETDEV_DOWN: 1695 return netvsc_vf_down(event_dev); 1696 default: 1697 return NOTIFY_DONE; 1698 } 1699 } 1700 1701 static struct notifier_block netvsc_netdev_notifier = { 1702 .notifier_call = netvsc_netdev_event, 1703 }; 1704 1705 static void __exit netvsc_drv_exit(void) 1706 { 1707 unregister_netdevice_notifier(&netvsc_netdev_notifier); 1708 vmbus_driver_unregister(&netvsc_drv); 1709 } 1710 1711 static int __init netvsc_drv_init(void) 1712 { 1713 int ret; 1714 1715 if (ring_size < RING_SIZE_MIN) { 1716 ring_size = RING_SIZE_MIN; 1717 pr_info("Increased ring_size to %d (min allowed)\n", 1718 ring_size); 1719 } 1720 ret = vmbus_driver_register(&netvsc_drv); 1721 1722 if (ret) 1723 return ret; 1724 1725 register_netdevice_notifier(&netvsc_netdev_notifier); 1726 return 0; 1727 } 1728 1729 MODULE_LICENSE("GPL"); 1730 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 1731 1732 module_init(netvsc_drv_init); 1733 module_exit(netvsc_drv_exit); 1734