xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision cfbb9be8)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
38 #include <linux/reciprocal_div.h>
39 
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 
47 #include "hyperv_net.h"
48 
49 #define RING_SIZE_MIN		64
50 
51 #define LINKCHANGE_INT (2 * HZ)
52 #define VF_TAKEOVER_INT (HZ / 10)
53 
54 static unsigned int ring_size __ro_after_init = 128;
55 module_param(ring_size, uint, S_IRUGO);
56 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
57 unsigned int netvsc_ring_bytes __ro_after_init;
58 struct reciprocal_value netvsc_ring_reciprocal __ro_after_init;
59 
60 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
61 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
62 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
63 				NETIF_MSG_TX_ERR;
64 
65 static int debug = -1;
66 module_param(debug, int, S_IRUGO);
67 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68 
69 static void netvsc_change_rx_flags(struct net_device *net, int change)
70 {
71 	struct net_device_context *ndev_ctx = netdev_priv(net);
72 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
73 	int inc;
74 
75 	if (!vf_netdev)
76 		return;
77 
78 	if (change & IFF_PROMISC) {
79 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
80 		dev_set_promiscuity(vf_netdev, inc);
81 	}
82 
83 	if (change & IFF_ALLMULTI) {
84 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
85 		dev_set_allmulti(vf_netdev, inc);
86 	}
87 }
88 
89 static void netvsc_set_rx_mode(struct net_device *net)
90 {
91 	struct net_device_context *ndev_ctx = netdev_priv(net);
92 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
93 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
94 
95 	if (vf_netdev) {
96 		dev_uc_sync(vf_netdev, net);
97 		dev_mc_sync(vf_netdev, net);
98 	}
99 
100 	rndis_filter_update(nvdev);
101 }
102 
103 static int netvsc_open(struct net_device *net)
104 {
105 	struct net_device_context *ndev_ctx = netdev_priv(net);
106 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
107 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
108 	struct rndis_device *rdev;
109 	int ret = 0;
110 
111 	netif_carrier_off(net);
112 
113 	/* Open up the device */
114 	ret = rndis_filter_open(nvdev);
115 	if (ret != 0) {
116 		netdev_err(net, "unable to open device (ret %d).\n", ret);
117 		return ret;
118 	}
119 
120 	rdev = nvdev->extension;
121 	if (!rdev->link_state) {
122 		netif_carrier_on(net);
123 		netif_tx_wake_all_queues(net);
124 	}
125 
126 	if (vf_netdev) {
127 		/* Setting synthetic device up transparently sets
128 		 * slave as up. If open fails, then slave will be
129 		 * still be offline (and not used).
130 		 */
131 		ret = dev_open(vf_netdev);
132 		if (ret)
133 			netdev_warn(net,
134 				    "unable to open slave: %s: %d\n",
135 				    vf_netdev->name, ret);
136 	}
137 	return 0;
138 }
139 
140 static int netvsc_close(struct net_device *net)
141 {
142 	struct net_device_context *net_device_ctx = netdev_priv(net);
143 	struct net_device *vf_netdev
144 		= rtnl_dereference(net_device_ctx->vf_netdev);
145 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
146 	int ret = 0;
147 	u32 aread, i, msec = 10, retry = 0, retry_max = 20;
148 	struct vmbus_channel *chn;
149 
150 	netif_tx_disable(net);
151 
152 	/* No need to close rndis filter if it is removed already */
153 	if (!nvdev)
154 		goto out;
155 
156 	ret = rndis_filter_close(nvdev);
157 	if (ret != 0) {
158 		netdev_err(net, "unable to close device (ret %d).\n", ret);
159 		return ret;
160 	}
161 
162 	/* Ensure pending bytes in ring are read */
163 	while (true) {
164 		aread = 0;
165 		for (i = 0; i < nvdev->num_chn; i++) {
166 			chn = nvdev->chan_table[i].channel;
167 			if (!chn)
168 				continue;
169 
170 			aread = hv_get_bytes_to_read(&chn->inbound);
171 			if (aread)
172 				break;
173 
174 			aread = hv_get_bytes_to_read(&chn->outbound);
175 			if (aread)
176 				break;
177 		}
178 
179 		retry++;
180 		if (retry > retry_max || aread == 0)
181 			break;
182 
183 		msleep(msec);
184 
185 		if (msec < 1000)
186 			msec *= 2;
187 	}
188 
189 	if (aread) {
190 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
191 		ret = -ETIMEDOUT;
192 	}
193 
194 out:
195 	if (vf_netdev)
196 		dev_close(vf_netdev);
197 
198 	return ret;
199 }
200 
201 static inline void *init_ppi_data(struct rndis_message *msg,
202 				  u32 ppi_size, u32 pkt_type)
203 {
204 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
205 	struct rndis_per_packet_info *ppi;
206 
207 	rndis_pkt->data_offset += ppi_size;
208 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
209 		+ rndis_pkt->per_pkt_info_len;
210 
211 	ppi->size = ppi_size;
212 	ppi->type = pkt_type;
213 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
214 
215 	rndis_pkt->per_pkt_info_len += ppi_size;
216 
217 	return ppi + 1;
218 }
219 
220 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
221  * packets. We can use ethtool to change UDP hash level when necessary.
222  */
223 static inline u32 netvsc_get_hash(
224 	struct sk_buff *skb,
225 	const struct net_device_context *ndc)
226 {
227 	struct flow_keys flow;
228 	u32 hash, pkt_proto = 0;
229 	static u32 hashrnd __read_mostly;
230 
231 	net_get_random_once(&hashrnd, sizeof(hashrnd));
232 
233 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
234 		return 0;
235 
236 	switch (flow.basic.ip_proto) {
237 	case IPPROTO_TCP:
238 		if (flow.basic.n_proto == htons(ETH_P_IP))
239 			pkt_proto = HV_TCP4_L4HASH;
240 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
241 			pkt_proto = HV_TCP6_L4HASH;
242 
243 		break;
244 
245 	case IPPROTO_UDP:
246 		if (flow.basic.n_proto == htons(ETH_P_IP))
247 			pkt_proto = HV_UDP4_L4HASH;
248 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
249 			pkt_proto = HV_UDP6_L4HASH;
250 
251 		break;
252 	}
253 
254 	if (pkt_proto & ndc->l4_hash) {
255 		return skb_get_hash(skb);
256 	} else {
257 		if (flow.basic.n_proto == htons(ETH_P_IP))
258 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
259 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
260 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
261 		else
262 			hash = 0;
263 
264 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
265 	}
266 
267 	return hash;
268 }
269 
270 static inline int netvsc_get_tx_queue(struct net_device *ndev,
271 				      struct sk_buff *skb, int old_idx)
272 {
273 	const struct net_device_context *ndc = netdev_priv(ndev);
274 	struct sock *sk = skb->sk;
275 	int q_idx;
276 
277 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
278 			      (VRSS_SEND_TAB_SIZE - 1)];
279 
280 	/* If queue index changed record the new value */
281 	if (q_idx != old_idx &&
282 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
283 		sk_tx_queue_set(sk, q_idx);
284 
285 	return q_idx;
286 }
287 
288 /*
289  * Select queue for transmit.
290  *
291  * If a valid queue has already been assigned, then use that.
292  * Otherwise compute tx queue based on hash and the send table.
293  *
294  * This is basically similar to default (__netdev_pick_tx) with the added step
295  * of using the host send_table when no other queue has been assigned.
296  *
297  * TODO support XPS - but get_xps_queue not exported
298  */
299 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
300 {
301 	int q_idx = sk_tx_queue_get(skb->sk);
302 
303 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
304 		/* If forwarding a packet, we use the recorded queue when
305 		 * available for better cache locality.
306 		 */
307 		if (skb_rx_queue_recorded(skb))
308 			q_idx = skb_get_rx_queue(skb);
309 		else
310 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
311 	}
312 
313 	return q_idx;
314 }
315 
316 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
317 			       void *accel_priv,
318 			       select_queue_fallback_t fallback)
319 {
320 	struct net_device_context *ndc = netdev_priv(ndev);
321 	struct net_device *vf_netdev;
322 	u16 txq;
323 
324 	rcu_read_lock();
325 	vf_netdev = rcu_dereference(ndc->vf_netdev);
326 	if (vf_netdev) {
327 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
328 
329 		if (vf_ops->ndo_select_queue)
330 			txq = vf_ops->ndo_select_queue(vf_netdev, skb,
331 						       accel_priv, fallback);
332 		else
333 			txq = fallback(vf_netdev, skb);
334 
335 		/* Record the queue selected by VF so that it can be
336 		 * used for common case where VF has more queues than
337 		 * the synthetic device.
338 		 */
339 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
340 	} else {
341 		txq = netvsc_pick_tx(ndev, skb);
342 	}
343 	rcu_read_unlock();
344 
345 	while (unlikely(txq >= ndev->real_num_tx_queues))
346 		txq -= ndev->real_num_tx_queues;
347 
348 	return txq;
349 }
350 
351 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
352 		       struct hv_page_buffer *pb)
353 {
354 	int j = 0;
355 
356 	/* Deal with compund pages by ignoring unused part
357 	 * of the page.
358 	 */
359 	page += (offset >> PAGE_SHIFT);
360 	offset &= ~PAGE_MASK;
361 
362 	while (len > 0) {
363 		unsigned long bytes;
364 
365 		bytes = PAGE_SIZE - offset;
366 		if (bytes > len)
367 			bytes = len;
368 		pb[j].pfn = page_to_pfn(page);
369 		pb[j].offset = offset;
370 		pb[j].len = bytes;
371 
372 		offset += bytes;
373 		len -= bytes;
374 
375 		if (offset == PAGE_SIZE && len) {
376 			page++;
377 			offset = 0;
378 			j++;
379 		}
380 	}
381 
382 	return j + 1;
383 }
384 
385 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
386 			   struct hv_netvsc_packet *packet,
387 			   struct hv_page_buffer *pb)
388 {
389 	u32 slots_used = 0;
390 	char *data = skb->data;
391 	int frags = skb_shinfo(skb)->nr_frags;
392 	int i;
393 
394 	/* The packet is laid out thus:
395 	 * 1. hdr: RNDIS header and PPI
396 	 * 2. skb linear data
397 	 * 3. skb fragment data
398 	 */
399 	slots_used += fill_pg_buf(virt_to_page(hdr),
400 				  offset_in_page(hdr),
401 				  len, &pb[slots_used]);
402 
403 	packet->rmsg_size = len;
404 	packet->rmsg_pgcnt = slots_used;
405 
406 	slots_used += fill_pg_buf(virt_to_page(data),
407 				offset_in_page(data),
408 				skb_headlen(skb), &pb[slots_used]);
409 
410 	for (i = 0; i < frags; i++) {
411 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
412 
413 		slots_used += fill_pg_buf(skb_frag_page(frag),
414 					frag->page_offset,
415 					skb_frag_size(frag), &pb[slots_used]);
416 	}
417 	return slots_used;
418 }
419 
420 static int count_skb_frag_slots(struct sk_buff *skb)
421 {
422 	int i, frags = skb_shinfo(skb)->nr_frags;
423 	int pages = 0;
424 
425 	for (i = 0; i < frags; i++) {
426 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
427 		unsigned long size = skb_frag_size(frag);
428 		unsigned long offset = frag->page_offset;
429 
430 		/* Skip unused frames from start of page */
431 		offset &= ~PAGE_MASK;
432 		pages += PFN_UP(offset + size);
433 	}
434 	return pages;
435 }
436 
437 static int netvsc_get_slots(struct sk_buff *skb)
438 {
439 	char *data = skb->data;
440 	unsigned int offset = offset_in_page(data);
441 	unsigned int len = skb_headlen(skb);
442 	int slots;
443 	int frag_slots;
444 
445 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
446 	frag_slots = count_skb_frag_slots(skb);
447 	return slots + frag_slots;
448 }
449 
450 static u32 net_checksum_info(struct sk_buff *skb)
451 {
452 	if (skb->protocol == htons(ETH_P_IP)) {
453 		struct iphdr *ip = ip_hdr(skb);
454 
455 		if (ip->protocol == IPPROTO_TCP)
456 			return TRANSPORT_INFO_IPV4_TCP;
457 		else if (ip->protocol == IPPROTO_UDP)
458 			return TRANSPORT_INFO_IPV4_UDP;
459 	} else {
460 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
461 
462 		if (ip6->nexthdr == IPPROTO_TCP)
463 			return TRANSPORT_INFO_IPV6_TCP;
464 		else if (ip6->nexthdr == IPPROTO_UDP)
465 			return TRANSPORT_INFO_IPV6_UDP;
466 	}
467 
468 	return TRANSPORT_INFO_NOT_IP;
469 }
470 
471 /* Send skb on the slave VF device. */
472 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
473 			  struct sk_buff *skb)
474 {
475 	struct net_device_context *ndev_ctx = netdev_priv(net);
476 	unsigned int len = skb->len;
477 	int rc;
478 
479 	skb->dev = vf_netdev;
480 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
481 
482 	rc = dev_queue_xmit(skb);
483 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
484 		struct netvsc_vf_pcpu_stats *pcpu_stats
485 			= this_cpu_ptr(ndev_ctx->vf_stats);
486 
487 		u64_stats_update_begin(&pcpu_stats->syncp);
488 		pcpu_stats->tx_packets++;
489 		pcpu_stats->tx_bytes += len;
490 		u64_stats_update_end(&pcpu_stats->syncp);
491 	} else {
492 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
493 	}
494 
495 	return rc;
496 }
497 
498 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
499 {
500 	struct net_device_context *net_device_ctx = netdev_priv(net);
501 	struct hv_netvsc_packet *packet = NULL;
502 	int ret;
503 	unsigned int num_data_pgs;
504 	struct rndis_message *rndis_msg;
505 	struct net_device *vf_netdev;
506 	u32 rndis_msg_size;
507 	u32 hash;
508 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
509 
510 	/* if VF is present and up then redirect packets
511 	 * already called with rcu_read_lock_bh
512 	 */
513 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
514 	if (vf_netdev && netif_running(vf_netdev) &&
515 	    !netpoll_tx_running(net))
516 		return netvsc_vf_xmit(net, vf_netdev, skb);
517 
518 	/* We will atmost need two pages to describe the rndis
519 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
520 	 * of pages in a single packet. If skb is scattered around
521 	 * more pages we try linearizing it.
522 	 */
523 
524 	num_data_pgs = netvsc_get_slots(skb) + 2;
525 
526 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
527 		++net_device_ctx->eth_stats.tx_scattered;
528 
529 		if (skb_linearize(skb))
530 			goto no_memory;
531 
532 		num_data_pgs = netvsc_get_slots(skb) + 2;
533 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
534 			++net_device_ctx->eth_stats.tx_too_big;
535 			goto drop;
536 		}
537 	}
538 
539 	/*
540 	 * Place the rndis header in the skb head room and
541 	 * the skb->cb will be used for hv_netvsc_packet
542 	 * structure.
543 	 */
544 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
545 	if (ret)
546 		goto no_memory;
547 
548 	/* Use the skb control buffer for building up the packet */
549 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
550 			FIELD_SIZEOF(struct sk_buff, cb));
551 	packet = (struct hv_netvsc_packet *)skb->cb;
552 
553 	packet->q_idx = skb_get_queue_mapping(skb);
554 
555 	packet->total_data_buflen = skb->len;
556 	packet->total_bytes = skb->len;
557 	packet->total_packets = 1;
558 
559 	rndis_msg = (struct rndis_message *)skb->head;
560 
561 	/* Add the rndis header */
562 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
563 	rndis_msg->msg_len = packet->total_data_buflen;
564 
565 	rndis_msg->msg.pkt = (struct rndis_packet) {
566 		.data_offset = sizeof(struct rndis_packet),
567 		.data_len = packet->total_data_buflen,
568 		.per_pkt_info_offset = sizeof(struct rndis_packet),
569 	};
570 
571 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
572 
573 	hash = skb_get_hash_raw(skb);
574 	if (hash != 0 && net->real_num_tx_queues > 1) {
575 		u32 *hash_info;
576 
577 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
578 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
579 					  NBL_HASH_VALUE);
580 		*hash_info = hash;
581 	}
582 
583 	if (skb_vlan_tag_present(skb)) {
584 		struct ndis_pkt_8021q_info *vlan;
585 
586 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
587 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
588 				     IEEE_8021Q_INFO);
589 
590 		vlan->value = 0;
591 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
592 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
593 				VLAN_PRIO_SHIFT;
594 	}
595 
596 	if (skb_is_gso(skb)) {
597 		struct ndis_tcp_lso_info *lso_info;
598 
599 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
600 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
601 					 TCP_LARGESEND_PKTINFO);
602 
603 		lso_info->value = 0;
604 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
605 		if (skb->protocol == htons(ETH_P_IP)) {
606 			lso_info->lso_v2_transmit.ip_version =
607 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
608 			ip_hdr(skb)->tot_len = 0;
609 			ip_hdr(skb)->check = 0;
610 			tcp_hdr(skb)->check =
611 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
612 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
613 		} else {
614 			lso_info->lso_v2_transmit.ip_version =
615 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
616 			ipv6_hdr(skb)->payload_len = 0;
617 			tcp_hdr(skb)->check =
618 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
619 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
620 		}
621 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
622 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
623 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
624 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
625 			struct ndis_tcp_ip_checksum_info *csum_info;
626 
627 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
628 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
629 						  TCPIP_CHKSUM_PKTINFO);
630 
631 			csum_info->value = 0;
632 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
633 
634 			if (skb->protocol == htons(ETH_P_IP)) {
635 				csum_info->transmit.is_ipv4 = 1;
636 
637 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
638 					csum_info->transmit.tcp_checksum = 1;
639 				else
640 					csum_info->transmit.udp_checksum = 1;
641 			} else {
642 				csum_info->transmit.is_ipv6 = 1;
643 
644 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
645 					csum_info->transmit.tcp_checksum = 1;
646 				else
647 					csum_info->transmit.udp_checksum = 1;
648 			}
649 		} else {
650 			/* Can't do offload of this type of checksum */
651 			if (skb_checksum_help(skb))
652 				goto drop;
653 		}
654 	}
655 
656 	/* Start filling in the page buffers with the rndis hdr */
657 	rndis_msg->msg_len += rndis_msg_size;
658 	packet->total_data_buflen = rndis_msg->msg_len;
659 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
660 					       skb, packet, pb);
661 
662 	/* timestamp packet in software */
663 	skb_tx_timestamp(skb);
664 
665 	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
666 	if (likely(ret == 0))
667 		return NETDEV_TX_OK;
668 
669 	if (ret == -EAGAIN) {
670 		++net_device_ctx->eth_stats.tx_busy;
671 		return NETDEV_TX_BUSY;
672 	}
673 
674 	if (ret == -ENOSPC)
675 		++net_device_ctx->eth_stats.tx_no_space;
676 
677 drop:
678 	dev_kfree_skb_any(skb);
679 	net->stats.tx_dropped++;
680 
681 	return NETDEV_TX_OK;
682 
683 no_memory:
684 	++net_device_ctx->eth_stats.tx_no_memory;
685 	goto drop;
686 }
687 
688 /*
689  * netvsc_linkstatus_callback - Link up/down notification
690  */
691 void netvsc_linkstatus_callback(struct net_device *net,
692 				struct rndis_message *resp)
693 {
694 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
695 	struct net_device_context *ndev_ctx = netdev_priv(net);
696 	struct netvsc_reconfig *event;
697 	unsigned long flags;
698 
699 	/* Update the physical link speed when changing to another vSwitch */
700 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
701 		u32 speed;
702 
703 		speed = *(u32 *)((void *)indicate
704 				 + indicate->status_buf_offset) / 10000;
705 		ndev_ctx->speed = speed;
706 		return;
707 	}
708 
709 	/* Handle these link change statuses below */
710 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
711 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
712 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
713 		return;
714 
715 	if (net->reg_state != NETREG_REGISTERED)
716 		return;
717 
718 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
719 	if (!event)
720 		return;
721 	event->event = indicate->status;
722 
723 	spin_lock_irqsave(&ndev_ctx->lock, flags);
724 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
725 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
726 
727 	schedule_delayed_work(&ndev_ctx->dwork, 0);
728 }
729 
730 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
731 					     struct napi_struct *napi,
732 					     const struct ndis_tcp_ip_checksum_info *csum_info,
733 					     const struct ndis_pkt_8021q_info *vlan,
734 					     void *data, u32 buflen)
735 {
736 	struct sk_buff *skb;
737 
738 	skb = napi_alloc_skb(napi, buflen);
739 	if (!skb)
740 		return skb;
741 
742 	/*
743 	 * Copy to skb. This copy is needed here since the memory pointed by
744 	 * hv_netvsc_packet cannot be deallocated
745 	 */
746 	skb_put_data(skb, data, buflen);
747 
748 	skb->protocol = eth_type_trans(skb, net);
749 
750 	/* skb is already created with CHECKSUM_NONE */
751 	skb_checksum_none_assert(skb);
752 
753 	/*
754 	 * In Linux, the IP checksum is always checked.
755 	 * Do L4 checksum offload if enabled and present.
756 	 */
757 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
758 		if (csum_info->receive.tcp_checksum_succeeded ||
759 		    csum_info->receive.udp_checksum_succeeded)
760 			skb->ip_summed = CHECKSUM_UNNECESSARY;
761 	}
762 
763 	if (vlan) {
764 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
765 
766 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
767 				       vlan_tci);
768 	}
769 
770 	return skb;
771 }
772 
773 /*
774  * netvsc_recv_callback -  Callback when we receive a packet from the
775  * "wire" on the specified device.
776  */
777 int netvsc_recv_callback(struct net_device *net,
778 			 struct netvsc_device *net_device,
779 			 struct vmbus_channel *channel,
780 			 void  *data, u32 len,
781 			 const struct ndis_tcp_ip_checksum_info *csum_info,
782 			 const struct ndis_pkt_8021q_info *vlan)
783 {
784 	struct net_device_context *net_device_ctx = netdev_priv(net);
785 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
786 	struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
787 	struct sk_buff *skb;
788 	struct netvsc_stats *rx_stats;
789 
790 	if (net->reg_state != NETREG_REGISTERED)
791 		return NVSP_STAT_FAIL;
792 
793 	/* Allocate a skb - TODO direct I/O to pages? */
794 	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
795 				    csum_info, vlan, data, len);
796 	if (unlikely(!skb)) {
797 		++net_device_ctx->eth_stats.rx_no_memory;
798 		rcu_read_unlock();
799 		return NVSP_STAT_FAIL;
800 	}
801 
802 	skb_record_rx_queue(skb, q_idx);
803 
804 	/*
805 	 * Even if injecting the packet, record the statistics
806 	 * on the synthetic device because modifying the VF device
807 	 * statistics will not work correctly.
808 	 */
809 	rx_stats = &nvchan->rx_stats;
810 	u64_stats_update_begin(&rx_stats->syncp);
811 	rx_stats->packets++;
812 	rx_stats->bytes += len;
813 
814 	if (skb->pkt_type == PACKET_BROADCAST)
815 		++rx_stats->broadcast;
816 	else if (skb->pkt_type == PACKET_MULTICAST)
817 		++rx_stats->multicast;
818 	u64_stats_update_end(&rx_stats->syncp);
819 
820 	napi_gro_receive(&nvchan->napi, skb);
821 	return 0;
822 }
823 
824 static void netvsc_get_drvinfo(struct net_device *net,
825 			       struct ethtool_drvinfo *info)
826 {
827 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
828 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
829 }
830 
831 static void netvsc_get_channels(struct net_device *net,
832 				struct ethtool_channels *channel)
833 {
834 	struct net_device_context *net_device_ctx = netdev_priv(net);
835 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
836 
837 	if (nvdev) {
838 		channel->max_combined	= nvdev->max_chn;
839 		channel->combined_count = nvdev->num_chn;
840 	}
841 }
842 
843 static int netvsc_set_channels(struct net_device *net,
844 			       struct ethtool_channels *channels)
845 {
846 	struct net_device_context *net_device_ctx = netdev_priv(net);
847 	struct hv_device *dev = net_device_ctx->device_ctx;
848 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
849 	unsigned int orig, count = channels->combined_count;
850 	struct netvsc_device_info device_info;
851 	bool was_opened;
852 	int ret = 0;
853 
854 	/* We do not support separate count for rx, tx, or other */
855 	if (count == 0 ||
856 	    channels->rx_count || channels->tx_count || channels->other_count)
857 		return -EINVAL;
858 
859 	if (!nvdev || nvdev->destroy)
860 		return -ENODEV;
861 
862 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
863 		return -EINVAL;
864 
865 	if (count > nvdev->max_chn)
866 		return -EINVAL;
867 
868 	orig = nvdev->num_chn;
869 	was_opened = rndis_filter_opened(nvdev);
870 	if (was_opened)
871 		rndis_filter_close(nvdev);
872 
873 	memset(&device_info, 0, sizeof(device_info));
874 	device_info.num_chn = count;
875 	device_info.send_sections = nvdev->send_section_cnt;
876 	device_info.send_section_size = nvdev->send_section_size;
877 	device_info.recv_sections = nvdev->recv_section_cnt;
878 	device_info.recv_section_size = nvdev->recv_section_size;
879 
880 	rndis_filter_device_remove(dev, nvdev);
881 
882 	nvdev = rndis_filter_device_add(dev, &device_info);
883 	if (IS_ERR(nvdev)) {
884 		ret = PTR_ERR(nvdev);
885 		device_info.num_chn = orig;
886 		nvdev = rndis_filter_device_add(dev, &device_info);
887 
888 		if (IS_ERR(nvdev)) {
889 			netdev_err(net, "restoring channel setting failed: %ld\n",
890 				   PTR_ERR(nvdev));
891 			return ret;
892 		}
893 	}
894 
895 	if (was_opened)
896 		rndis_filter_open(nvdev);
897 
898 	/* We may have missed link change notifications */
899 	net_device_ctx->last_reconfig = 0;
900 	schedule_delayed_work(&net_device_ctx->dwork, 0);
901 
902 	return ret;
903 }
904 
905 static bool
906 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
907 {
908 	struct ethtool_link_ksettings diff1 = *cmd;
909 	struct ethtool_link_ksettings diff2 = {};
910 
911 	diff1.base.speed = 0;
912 	diff1.base.duplex = 0;
913 	/* advertising and cmd are usually set */
914 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
915 	diff1.base.cmd = 0;
916 	/* We set port to PORT_OTHER */
917 	diff2.base.port = PORT_OTHER;
918 
919 	return !memcmp(&diff1, &diff2, sizeof(diff1));
920 }
921 
922 static void netvsc_init_settings(struct net_device *dev)
923 {
924 	struct net_device_context *ndc = netdev_priv(dev);
925 
926 	ndc->l4_hash = HV_DEFAULT_L4HASH;
927 
928 	ndc->speed = SPEED_UNKNOWN;
929 	ndc->duplex = DUPLEX_FULL;
930 }
931 
932 static int netvsc_get_link_ksettings(struct net_device *dev,
933 				     struct ethtool_link_ksettings *cmd)
934 {
935 	struct net_device_context *ndc = netdev_priv(dev);
936 
937 	cmd->base.speed = ndc->speed;
938 	cmd->base.duplex = ndc->duplex;
939 	cmd->base.port = PORT_OTHER;
940 
941 	return 0;
942 }
943 
944 static int netvsc_set_link_ksettings(struct net_device *dev,
945 				     const struct ethtool_link_ksettings *cmd)
946 {
947 	struct net_device_context *ndc = netdev_priv(dev);
948 	u32 speed;
949 
950 	speed = cmd->base.speed;
951 	if (!ethtool_validate_speed(speed) ||
952 	    !ethtool_validate_duplex(cmd->base.duplex) ||
953 	    !netvsc_validate_ethtool_ss_cmd(cmd))
954 		return -EINVAL;
955 
956 	ndc->speed = speed;
957 	ndc->duplex = cmd->base.duplex;
958 
959 	return 0;
960 }
961 
962 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
963 {
964 	struct net_device_context *ndevctx = netdev_priv(ndev);
965 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
966 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
967 	struct hv_device *hdev = ndevctx->device_ctx;
968 	int orig_mtu = ndev->mtu;
969 	struct netvsc_device_info device_info;
970 	bool was_opened;
971 	int ret = 0;
972 
973 	if (!nvdev || nvdev->destroy)
974 		return -ENODEV;
975 
976 	/* Change MTU of underlying VF netdev first. */
977 	if (vf_netdev) {
978 		ret = dev_set_mtu(vf_netdev, mtu);
979 		if (ret)
980 			return ret;
981 	}
982 
983 	netif_device_detach(ndev);
984 	was_opened = rndis_filter_opened(nvdev);
985 	if (was_opened)
986 		rndis_filter_close(nvdev);
987 
988 	memset(&device_info, 0, sizeof(device_info));
989 	device_info.num_chn = nvdev->num_chn;
990 	device_info.send_sections = nvdev->send_section_cnt;
991 	device_info.send_section_size = nvdev->send_section_size;
992 	device_info.recv_sections = nvdev->recv_section_cnt;
993 	device_info.recv_section_size = nvdev->recv_section_size;
994 
995 	rndis_filter_device_remove(hdev, nvdev);
996 
997 	ndev->mtu = mtu;
998 
999 	nvdev = rndis_filter_device_add(hdev, &device_info);
1000 	if (IS_ERR(nvdev)) {
1001 		ret = PTR_ERR(nvdev);
1002 
1003 		/* Attempt rollback to original MTU */
1004 		ndev->mtu = orig_mtu;
1005 		nvdev = rndis_filter_device_add(hdev, &device_info);
1006 
1007 		if (vf_netdev)
1008 			dev_set_mtu(vf_netdev, orig_mtu);
1009 
1010 		if (IS_ERR(nvdev)) {
1011 			netdev_err(ndev, "restoring mtu failed: %ld\n",
1012 				   PTR_ERR(nvdev));
1013 			return ret;
1014 		}
1015 	}
1016 
1017 	if (was_opened)
1018 		rndis_filter_open(nvdev);
1019 
1020 	netif_device_attach(ndev);
1021 
1022 	/* We may have missed link change notifications */
1023 	schedule_delayed_work(&ndevctx->dwork, 0);
1024 
1025 	return ret;
1026 }
1027 
1028 static void netvsc_get_vf_stats(struct net_device *net,
1029 				struct netvsc_vf_pcpu_stats *tot)
1030 {
1031 	struct net_device_context *ndev_ctx = netdev_priv(net);
1032 	int i;
1033 
1034 	memset(tot, 0, sizeof(*tot));
1035 
1036 	for_each_possible_cpu(i) {
1037 		const struct netvsc_vf_pcpu_stats *stats
1038 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1039 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1040 		unsigned int start;
1041 
1042 		do {
1043 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1044 			rx_packets = stats->rx_packets;
1045 			tx_packets = stats->tx_packets;
1046 			rx_bytes = stats->rx_bytes;
1047 			tx_bytes = stats->tx_bytes;
1048 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1049 
1050 		tot->rx_packets += rx_packets;
1051 		tot->tx_packets += tx_packets;
1052 		tot->rx_bytes   += rx_bytes;
1053 		tot->tx_bytes   += tx_bytes;
1054 		tot->tx_dropped += stats->tx_dropped;
1055 	}
1056 }
1057 
1058 static void netvsc_get_stats64(struct net_device *net,
1059 			       struct rtnl_link_stats64 *t)
1060 {
1061 	struct net_device_context *ndev_ctx = netdev_priv(net);
1062 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1063 	struct netvsc_vf_pcpu_stats vf_tot;
1064 	int i;
1065 
1066 	if (!nvdev)
1067 		return;
1068 
1069 	netdev_stats_to_stats64(t, &net->stats);
1070 
1071 	netvsc_get_vf_stats(net, &vf_tot);
1072 	t->rx_packets += vf_tot.rx_packets;
1073 	t->tx_packets += vf_tot.tx_packets;
1074 	t->rx_bytes   += vf_tot.rx_bytes;
1075 	t->tx_bytes   += vf_tot.tx_bytes;
1076 	t->tx_dropped += vf_tot.tx_dropped;
1077 
1078 	for (i = 0; i < nvdev->num_chn; i++) {
1079 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1080 		const struct netvsc_stats *stats;
1081 		u64 packets, bytes, multicast;
1082 		unsigned int start;
1083 
1084 		stats = &nvchan->tx_stats;
1085 		do {
1086 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1087 			packets = stats->packets;
1088 			bytes = stats->bytes;
1089 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1090 
1091 		t->tx_bytes	+= bytes;
1092 		t->tx_packets	+= packets;
1093 
1094 		stats = &nvchan->rx_stats;
1095 		do {
1096 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1097 			packets = stats->packets;
1098 			bytes = stats->bytes;
1099 			multicast = stats->multicast + stats->broadcast;
1100 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1101 
1102 		t->rx_bytes	+= bytes;
1103 		t->rx_packets	+= packets;
1104 		t->multicast	+= multicast;
1105 	}
1106 }
1107 
1108 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1109 {
1110 	struct net_device_context *ndc = netdev_priv(ndev);
1111 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1112 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1113 	struct sockaddr *addr = p;
1114 	int err;
1115 
1116 	err = eth_prepare_mac_addr_change(ndev, p);
1117 	if (err)
1118 		return err;
1119 
1120 	if (!nvdev)
1121 		return -ENODEV;
1122 
1123 	if (vf_netdev) {
1124 		err = dev_set_mac_address(vf_netdev, addr);
1125 		if (err)
1126 			return err;
1127 	}
1128 
1129 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1130 	if (!err) {
1131 		eth_commit_mac_addr_change(ndev, p);
1132 	} else if (vf_netdev) {
1133 		/* rollback change on VF */
1134 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1135 		dev_set_mac_address(vf_netdev, addr);
1136 	}
1137 
1138 	return err;
1139 }
1140 
1141 static const struct {
1142 	char name[ETH_GSTRING_LEN];
1143 	u16 offset;
1144 } netvsc_stats[] = {
1145 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1146 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1147 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1148 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1149 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1150 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1151 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1152 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1153 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1154 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1155 }, vf_stats[] = {
1156 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1157 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1158 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1159 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1160 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1161 };
1162 
1163 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1164 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1165 
1166 /* 4 statistics per queue (rx/tx packets/bytes) */
1167 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1168 
1169 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1170 {
1171 	struct net_device_context *ndc = netdev_priv(dev);
1172 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1173 
1174 	if (!nvdev)
1175 		return -ENODEV;
1176 
1177 	switch (string_set) {
1178 	case ETH_SS_STATS:
1179 		return NETVSC_GLOBAL_STATS_LEN
1180 			+ NETVSC_VF_STATS_LEN
1181 			+ NETVSC_QUEUE_STATS_LEN(nvdev);
1182 	default:
1183 		return -EINVAL;
1184 	}
1185 }
1186 
1187 static void netvsc_get_ethtool_stats(struct net_device *dev,
1188 				     struct ethtool_stats *stats, u64 *data)
1189 {
1190 	struct net_device_context *ndc = netdev_priv(dev);
1191 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1192 	const void *nds = &ndc->eth_stats;
1193 	const struct netvsc_stats *qstats;
1194 	struct netvsc_vf_pcpu_stats sum;
1195 	unsigned int start;
1196 	u64 packets, bytes;
1197 	int i, j;
1198 
1199 	if (!nvdev)
1200 		return;
1201 
1202 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1203 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1204 
1205 	netvsc_get_vf_stats(dev, &sum);
1206 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1207 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1208 
1209 	for (j = 0; j < nvdev->num_chn; j++) {
1210 		qstats = &nvdev->chan_table[j].tx_stats;
1211 
1212 		do {
1213 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1214 			packets = qstats->packets;
1215 			bytes = qstats->bytes;
1216 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1217 		data[i++] = packets;
1218 		data[i++] = bytes;
1219 
1220 		qstats = &nvdev->chan_table[j].rx_stats;
1221 		do {
1222 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1223 			packets = qstats->packets;
1224 			bytes = qstats->bytes;
1225 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1226 		data[i++] = packets;
1227 		data[i++] = bytes;
1228 	}
1229 }
1230 
1231 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1232 {
1233 	struct net_device_context *ndc = netdev_priv(dev);
1234 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1235 	u8 *p = data;
1236 	int i;
1237 
1238 	if (!nvdev)
1239 		return;
1240 
1241 	switch (stringset) {
1242 	case ETH_SS_STATS:
1243 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1244 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1245 			p += ETH_GSTRING_LEN;
1246 		}
1247 
1248 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1249 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1250 			p += ETH_GSTRING_LEN;
1251 		}
1252 
1253 		for (i = 0; i < nvdev->num_chn; i++) {
1254 			sprintf(p, "tx_queue_%u_packets", i);
1255 			p += ETH_GSTRING_LEN;
1256 			sprintf(p, "tx_queue_%u_bytes", i);
1257 			p += ETH_GSTRING_LEN;
1258 			sprintf(p, "rx_queue_%u_packets", i);
1259 			p += ETH_GSTRING_LEN;
1260 			sprintf(p, "rx_queue_%u_bytes", i);
1261 			p += ETH_GSTRING_LEN;
1262 		}
1263 
1264 		break;
1265 	}
1266 }
1267 
1268 static int
1269 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1270 			 struct ethtool_rxnfc *info)
1271 {
1272 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1273 
1274 	info->data = RXH_IP_SRC | RXH_IP_DST;
1275 
1276 	switch (info->flow_type) {
1277 	case TCP_V4_FLOW:
1278 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1279 			info->data |= l4_flag;
1280 
1281 		break;
1282 
1283 	case TCP_V6_FLOW:
1284 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1285 			info->data |= l4_flag;
1286 
1287 		break;
1288 
1289 	case UDP_V4_FLOW:
1290 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1291 			info->data |= l4_flag;
1292 
1293 		break;
1294 
1295 	case UDP_V6_FLOW:
1296 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1297 			info->data |= l4_flag;
1298 
1299 		break;
1300 
1301 	case IPV4_FLOW:
1302 	case IPV6_FLOW:
1303 		break;
1304 	default:
1305 		info->data = 0;
1306 		break;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 static int
1313 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1314 		 u32 *rules)
1315 {
1316 	struct net_device_context *ndc = netdev_priv(dev);
1317 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1318 
1319 	if (!nvdev)
1320 		return -ENODEV;
1321 
1322 	switch (info->cmd) {
1323 	case ETHTOOL_GRXRINGS:
1324 		info->data = nvdev->num_chn;
1325 		return 0;
1326 
1327 	case ETHTOOL_GRXFH:
1328 		return netvsc_get_rss_hash_opts(ndc, info);
1329 	}
1330 	return -EOPNOTSUPP;
1331 }
1332 
1333 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1334 				    struct ethtool_rxnfc *info)
1335 {
1336 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1337 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1338 		switch (info->flow_type) {
1339 		case TCP_V4_FLOW:
1340 			ndc->l4_hash |= HV_TCP4_L4HASH;
1341 			break;
1342 
1343 		case TCP_V6_FLOW:
1344 			ndc->l4_hash |= HV_TCP6_L4HASH;
1345 			break;
1346 
1347 		case UDP_V4_FLOW:
1348 			ndc->l4_hash |= HV_UDP4_L4HASH;
1349 			break;
1350 
1351 		case UDP_V6_FLOW:
1352 			ndc->l4_hash |= HV_UDP6_L4HASH;
1353 			break;
1354 
1355 		default:
1356 			return -EOPNOTSUPP;
1357 		}
1358 
1359 		return 0;
1360 	}
1361 
1362 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1363 		switch (info->flow_type) {
1364 		case TCP_V4_FLOW:
1365 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1366 			break;
1367 
1368 		case TCP_V6_FLOW:
1369 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1370 			break;
1371 
1372 		case UDP_V4_FLOW:
1373 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1374 			break;
1375 
1376 		case UDP_V6_FLOW:
1377 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1378 			break;
1379 
1380 		default:
1381 			return -EOPNOTSUPP;
1382 		}
1383 
1384 		return 0;
1385 	}
1386 
1387 	return -EOPNOTSUPP;
1388 }
1389 
1390 static int
1391 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1392 {
1393 	struct net_device_context *ndc = netdev_priv(ndev);
1394 
1395 	if (info->cmd == ETHTOOL_SRXFH)
1396 		return netvsc_set_rss_hash_opts(ndc, info);
1397 
1398 	return -EOPNOTSUPP;
1399 }
1400 
1401 #ifdef CONFIG_NET_POLL_CONTROLLER
1402 static void netvsc_poll_controller(struct net_device *dev)
1403 {
1404 	struct net_device_context *ndc = netdev_priv(dev);
1405 	struct netvsc_device *ndev;
1406 	int i;
1407 
1408 	rcu_read_lock();
1409 	ndev = rcu_dereference(ndc->nvdev);
1410 	if (ndev) {
1411 		for (i = 0; i < ndev->num_chn; i++) {
1412 			struct netvsc_channel *nvchan = &ndev->chan_table[i];
1413 
1414 			napi_schedule(&nvchan->napi);
1415 		}
1416 	}
1417 	rcu_read_unlock();
1418 }
1419 #endif
1420 
1421 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1422 {
1423 	return NETVSC_HASH_KEYLEN;
1424 }
1425 
1426 static u32 netvsc_rss_indir_size(struct net_device *dev)
1427 {
1428 	return ITAB_NUM;
1429 }
1430 
1431 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1432 			   u8 *hfunc)
1433 {
1434 	struct net_device_context *ndc = netdev_priv(dev);
1435 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1436 	struct rndis_device *rndis_dev;
1437 	int i;
1438 
1439 	if (!ndev)
1440 		return -ENODEV;
1441 
1442 	if (hfunc)
1443 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1444 
1445 	rndis_dev = ndev->extension;
1446 	if (indir) {
1447 		for (i = 0; i < ITAB_NUM; i++)
1448 			indir[i] = rndis_dev->rx_table[i];
1449 	}
1450 
1451 	if (key)
1452 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1453 
1454 	return 0;
1455 }
1456 
1457 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1458 			   const u8 *key, const u8 hfunc)
1459 {
1460 	struct net_device_context *ndc = netdev_priv(dev);
1461 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1462 	struct rndis_device *rndis_dev;
1463 	int i;
1464 
1465 	if (!ndev)
1466 		return -ENODEV;
1467 
1468 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1469 		return -EOPNOTSUPP;
1470 
1471 	rndis_dev = ndev->extension;
1472 	if (indir) {
1473 		for (i = 0; i < ITAB_NUM; i++)
1474 			if (indir[i] >= ndev->num_chn)
1475 				return -EINVAL;
1476 
1477 		for (i = 0; i < ITAB_NUM; i++)
1478 			rndis_dev->rx_table[i] = indir[i];
1479 	}
1480 
1481 	if (!key) {
1482 		if (!indir)
1483 			return 0;
1484 
1485 		key = rndis_dev->rss_key;
1486 	}
1487 
1488 	return rndis_filter_set_rss_param(rndis_dev, key);
1489 }
1490 
1491 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1492  * It does have pre-allocated receive area which is divided into sections.
1493  */
1494 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1495 				   struct ethtool_ringparam *ring)
1496 {
1497 	u32 max_buf_size;
1498 
1499 	ring->rx_pending = nvdev->recv_section_cnt;
1500 	ring->tx_pending = nvdev->send_section_cnt;
1501 
1502 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1503 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1504 	else
1505 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1506 
1507 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1508 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1509 		/ nvdev->send_section_size;
1510 }
1511 
1512 static void netvsc_get_ringparam(struct net_device *ndev,
1513 				 struct ethtool_ringparam *ring)
1514 {
1515 	struct net_device_context *ndevctx = netdev_priv(ndev);
1516 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1517 
1518 	if (!nvdev)
1519 		return;
1520 
1521 	__netvsc_get_ringparam(nvdev, ring);
1522 }
1523 
1524 static int netvsc_set_ringparam(struct net_device *ndev,
1525 				struct ethtool_ringparam *ring)
1526 {
1527 	struct net_device_context *ndevctx = netdev_priv(ndev);
1528 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1529 	struct hv_device *hdev = ndevctx->device_ctx;
1530 	struct netvsc_device_info device_info;
1531 	struct ethtool_ringparam orig;
1532 	u32 new_tx, new_rx;
1533 	bool was_opened;
1534 	int ret = 0;
1535 
1536 	if (!nvdev || nvdev->destroy)
1537 		return -ENODEV;
1538 
1539 	memset(&orig, 0, sizeof(orig));
1540 	__netvsc_get_ringparam(nvdev, &orig);
1541 
1542 	new_tx = clamp_t(u32, ring->tx_pending,
1543 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1544 	new_rx = clamp_t(u32, ring->rx_pending,
1545 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1546 
1547 	if (new_tx == orig.tx_pending &&
1548 	    new_rx == orig.rx_pending)
1549 		return 0;	 /* no change */
1550 
1551 	memset(&device_info, 0, sizeof(device_info));
1552 	device_info.num_chn = nvdev->num_chn;
1553 	device_info.send_sections = new_tx;
1554 	device_info.send_section_size = nvdev->send_section_size;
1555 	device_info.recv_sections = new_rx;
1556 	device_info.recv_section_size = nvdev->recv_section_size;
1557 
1558 	netif_device_detach(ndev);
1559 	was_opened = rndis_filter_opened(nvdev);
1560 	if (was_opened)
1561 		rndis_filter_close(nvdev);
1562 
1563 	rndis_filter_device_remove(hdev, nvdev);
1564 
1565 	nvdev = rndis_filter_device_add(hdev, &device_info);
1566 	if (IS_ERR(nvdev)) {
1567 		ret = PTR_ERR(nvdev);
1568 
1569 		device_info.send_sections = orig.tx_pending;
1570 		device_info.recv_sections = orig.rx_pending;
1571 		nvdev = rndis_filter_device_add(hdev, &device_info);
1572 		if (IS_ERR(nvdev)) {
1573 			netdev_err(ndev, "restoring ringparam failed: %ld\n",
1574 				   PTR_ERR(nvdev));
1575 			return ret;
1576 		}
1577 	}
1578 
1579 	if (was_opened)
1580 		rndis_filter_open(nvdev);
1581 	netif_device_attach(ndev);
1582 
1583 	/* We may have missed link change notifications */
1584 	ndevctx->last_reconfig = 0;
1585 	schedule_delayed_work(&ndevctx->dwork, 0);
1586 
1587 	return ret;
1588 }
1589 
1590 static const struct ethtool_ops ethtool_ops = {
1591 	.get_drvinfo	= netvsc_get_drvinfo,
1592 	.get_link	= ethtool_op_get_link,
1593 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1594 	.get_sset_count = netvsc_get_sset_count,
1595 	.get_strings	= netvsc_get_strings,
1596 	.get_channels   = netvsc_get_channels,
1597 	.set_channels   = netvsc_set_channels,
1598 	.get_ts_info	= ethtool_op_get_ts_info,
1599 	.get_rxnfc	= netvsc_get_rxnfc,
1600 	.set_rxnfc	= netvsc_set_rxnfc,
1601 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1602 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1603 	.get_rxfh	= netvsc_get_rxfh,
1604 	.set_rxfh	= netvsc_set_rxfh,
1605 	.get_link_ksettings = netvsc_get_link_ksettings,
1606 	.set_link_ksettings = netvsc_set_link_ksettings,
1607 	.get_ringparam	= netvsc_get_ringparam,
1608 	.set_ringparam	= netvsc_set_ringparam,
1609 };
1610 
1611 static const struct net_device_ops device_ops = {
1612 	.ndo_open =			netvsc_open,
1613 	.ndo_stop =			netvsc_close,
1614 	.ndo_start_xmit =		netvsc_start_xmit,
1615 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1616 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1617 	.ndo_change_mtu =		netvsc_change_mtu,
1618 	.ndo_validate_addr =		eth_validate_addr,
1619 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1620 	.ndo_select_queue =		netvsc_select_queue,
1621 	.ndo_get_stats64 =		netvsc_get_stats64,
1622 #ifdef CONFIG_NET_POLL_CONTROLLER
1623 	.ndo_poll_controller =		netvsc_poll_controller,
1624 #endif
1625 };
1626 
1627 /*
1628  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1629  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1630  * present send GARP packet to network peers with netif_notify_peers().
1631  */
1632 static void netvsc_link_change(struct work_struct *w)
1633 {
1634 	struct net_device_context *ndev_ctx =
1635 		container_of(w, struct net_device_context, dwork.work);
1636 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1637 	struct net_device *net = hv_get_drvdata(device_obj);
1638 	struct netvsc_device *net_device;
1639 	struct rndis_device *rdev;
1640 	struct netvsc_reconfig *event = NULL;
1641 	bool notify = false, reschedule = false;
1642 	unsigned long flags, next_reconfig, delay;
1643 
1644 	/* if changes are happening, comeback later */
1645 	if (!rtnl_trylock()) {
1646 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1647 		return;
1648 	}
1649 
1650 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1651 	if (!net_device)
1652 		goto out_unlock;
1653 
1654 	rdev = net_device->extension;
1655 
1656 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1657 	if (time_is_after_jiffies(next_reconfig)) {
1658 		/* link_watch only sends one notification with current state
1659 		 * per second, avoid doing reconfig more frequently. Handle
1660 		 * wrap around.
1661 		 */
1662 		delay = next_reconfig - jiffies;
1663 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1664 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1665 		goto out_unlock;
1666 	}
1667 	ndev_ctx->last_reconfig = jiffies;
1668 
1669 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1670 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1671 		event = list_first_entry(&ndev_ctx->reconfig_events,
1672 					 struct netvsc_reconfig, list);
1673 		list_del(&event->list);
1674 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1675 	}
1676 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1677 
1678 	if (!event)
1679 		goto out_unlock;
1680 
1681 	switch (event->event) {
1682 		/* Only the following events are possible due to the check in
1683 		 * netvsc_linkstatus_callback()
1684 		 */
1685 	case RNDIS_STATUS_MEDIA_CONNECT:
1686 		if (rdev->link_state) {
1687 			rdev->link_state = false;
1688 			netif_carrier_on(net);
1689 			netif_tx_wake_all_queues(net);
1690 		} else {
1691 			notify = true;
1692 		}
1693 		kfree(event);
1694 		break;
1695 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1696 		if (!rdev->link_state) {
1697 			rdev->link_state = true;
1698 			netif_carrier_off(net);
1699 			netif_tx_stop_all_queues(net);
1700 		}
1701 		kfree(event);
1702 		break;
1703 	case RNDIS_STATUS_NETWORK_CHANGE:
1704 		/* Only makes sense if carrier is present */
1705 		if (!rdev->link_state) {
1706 			rdev->link_state = true;
1707 			netif_carrier_off(net);
1708 			netif_tx_stop_all_queues(net);
1709 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1710 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1711 			list_add(&event->list, &ndev_ctx->reconfig_events);
1712 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1713 			reschedule = true;
1714 		}
1715 		break;
1716 	}
1717 
1718 	rtnl_unlock();
1719 
1720 	if (notify)
1721 		netdev_notify_peers(net);
1722 
1723 	/* link_watch only sends one notification with current state per
1724 	 * second, handle next reconfig event in 2 seconds.
1725 	 */
1726 	if (reschedule)
1727 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1728 
1729 	return;
1730 
1731 out_unlock:
1732 	rtnl_unlock();
1733 }
1734 
1735 static struct net_device *get_netvsc_bymac(const u8 *mac)
1736 {
1737 	struct net_device *dev;
1738 
1739 	ASSERT_RTNL();
1740 
1741 	for_each_netdev(&init_net, dev) {
1742 		if (dev->netdev_ops != &device_ops)
1743 			continue;	/* not a netvsc device */
1744 
1745 		if (ether_addr_equal(mac, dev->perm_addr))
1746 			return dev;
1747 	}
1748 
1749 	return NULL;
1750 }
1751 
1752 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1753 {
1754 	struct net_device *dev;
1755 
1756 	ASSERT_RTNL();
1757 
1758 	for_each_netdev(&init_net, dev) {
1759 		struct net_device_context *net_device_ctx;
1760 
1761 		if (dev->netdev_ops != &device_ops)
1762 			continue;	/* not a netvsc device */
1763 
1764 		net_device_ctx = netdev_priv(dev);
1765 		if (!rtnl_dereference(net_device_ctx->nvdev))
1766 			continue;	/* device is removed */
1767 
1768 		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1769 			return dev;	/* a match */
1770 	}
1771 
1772 	return NULL;
1773 }
1774 
1775 /* Called when VF is injecting data into network stack.
1776  * Change the associated network device from VF to netvsc.
1777  * note: already called with rcu_read_lock
1778  */
1779 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1780 {
1781 	struct sk_buff *skb = *pskb;
1782 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1783 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1784 	struct netvsc_vf_pcpu_stats *pcpu_stats
1785 		 = this_cpu_ptr(ndev_ctx->vf_stats);
1786 
1787 	skb->dev = ndev;
1788 
1789 	u64_stats_update_begin(&pcpu_stats->syncp);
1790 	pcpu_stats->rx_packets++;
1791 	pcpu_stats->rx_bytes += skb->len;
1792 	u64_stats_update_end(&pcpu_stats->syncp);
1793 
1794 	return RX_HANDLER_ANOTHER;
1795 }
1796 
1797 static int netvsc_vf_join(struct net_device *vf_netdev,
1798 			  struct net_device *ndev)
1799 {
1800 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1801 	int ret;
1802 
1803 	ret = netdev_rx_handler_register(vf_netdev,
1804 					 netvsc_vf_handle_frame, ndev);
1805 	if (ret != 0) {
1806 		netdev_err(vf_netdev,
1807 			   "can not register netvsc VF receive handler (err = %d)\n",
1808 			   ret);
1809 		goto rx_handler_failed;
1810 	}
1811 
1812 	ret = netdev_upper_dev_link(vf_netdev, ndev, NULL);
1813 	if (ret != 0) {
1814 		netdev_err(vf_netdev,
1815 			   "can not set master device %s (err = %d)\n",
1816 			   ndev->name, ret);
1817 		goto upper_link_failed;
1818 	}
1819 
1820 	/* set slave flag before open to prevent IPv6 addrconf */
1821 	vf_netdev->flags |= IFF_SLAVE;
1822 
1823 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1824 
1825 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1826 
1827 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1828 	return 0;
1829 
1830 upper_link_failed:
1831 	netdev_rx_handler_unregister(vf_netdev);
1832 rx_handler_failed:
1833 	return ret;
1834 }
1835 
1836 static void __netvsc_vf_setup(struct net_device *ndev,
1837 			      struct net_device *vf_netdev)
1838 {
1839 	int ret;
1840 
1841 	/* Align MTU of VF with master */
1842 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
1843 	if (ret)
1844 		netdev_warn(vf_netdev,
1845 			    "unable to change mtu to %u\n", ndev->mtu);
1846 
1847 	/* set multicast etc flags on VF */
1848 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1849 	dev_uc_sync(vf_netdev, ndev);
1850 	dev_mc_sync(vf_netdev, ndev);
1851 
1852 	if (netif_running(ndev)) {
1853 		ret = dev_open(vf_netdev);
1854 		if (ret)
1855 			netdev_warn(vf_netdev,
1856 				    "unable to open: %d\n", ret);
1857 	}
1858 }
1859 
1860 /* Setup VF as slave of the synthetic device.
1861  * Runs in workqueue to avoid recursion in netlink callbacks.
1862  */
1863 static void netvsc_vf_setup(struct work_struct *w)
1864 {
1865 	struct net_device_context *ndev_ctx
1866 		= container_of(w, struct net_device_context, vf_takeover.work);
1867 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1868 	struct net_device *vf_netdev;
1869 
1870 	if (!rtnl_trylock()) {
1871 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1872 		return;
1873 	}
1874 
1875 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1876 	if (vf_netdev)
1877 		__netvsc_vf_setup(ndev, vf_netdev);
1878 
1879 	rtnl_unlock();
1880 }
1881 
1882 static int netvsc_register_vf(struct net_device *vf_netdev)
1883 {
1884 	struct net_device *ndev;
1885 	struct net_device_context *net_device_ctx;
1886 	struct netvsc_device *netvsc_dev;
1887 
1888 	if (vf_netdev->addr_len != ETH_ALEN)
1889 		return NOTIFY_DONE;
1890 
1891 	/*
1892 	 * We will use the MAC address to locate the synthetic interface to
1893 	 * associate with the VF interface. If we don't find a matching
1894 	 * synthetic interface, move on.
1895 	 */
1896 	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1897 	if (!ndev)
1898 		return NOTIFY_DONE;
1899 
1900 	net_device_ctx = netdev_priv(ndev);
1901 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1902 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1903 		return NOTIFY_DONE;
1904 
1905 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
1906 		return NOTIFY_DONE;
1907 
1908 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1909 
1910 	dev_hold(vf_netdev);
1911 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1912 	return NOTIFY_OK;
1913 }
1914 
1915 /* VF up/down change detected, schedule to change data path */
1916 static int netvsc_vf_changed(struct net_device *vf_netdev)
1917 {
1918 	struct net_device_context *net_device_ctx;
1919 	struct netvsc_device *netvsc_dev;
1920 	struct net_device *ndev;
1921 	bool vf_is_up = netif_running(vf_netdev);
1922 
1923 	ndev = get_netvsc_byref(vf_netdev);
1924 	if (!ndev)
1925 		return NOTIFY_DONE;
1926 
1927 	net_device_ctx = netdev_priv(ndev);
1928 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1929 	if (!netvsc_dev)
1930 		return NOTIFY_DONE;
1931 
1932 	netvsc_switch_datapath(ndev, vf_is_up);
1933 	netdev_info(ndev, "Data path switched %s VF: %s\n",
1934 		    vf_is_up ? "to" : "from", vf_netdev->name);
1935 
1936 	return NOTIFY_OK;
1937 }
1938 
1939 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1940 {
1941 	struct net_device *ndev;
1942 	struct net_device_context *net_device_ctx;
1943 
1944 	ndev = get_netvsc_byref(vf_netdev);
1945 	if (!ndev)
1946 		return NOTIFY_DONE;
1947 
1948 	net_device_ctx = netdev_priv(ndev);
1949 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1950 
1951 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1952 
1953 	netdev_rx_handler_unregister(vf_netdev);
1954 	netdev_upper_dev_unlink(vf_netdev, ndev);
1955 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1956 	dev_put(vf_netdev);
1957 
1958 	return NOTIFY_OK;
1959 }
1960 
1961 static int netvsc_probe(struct hv_device *dev,
1962 			const struct hv_vmbus_device_id *dev_id)
1963 {
1964 	struct net_device *net = NULL;
1965 	struct net_device_context *net_device_ctx;
1966 	struct netvsc_device_info device_info;
1967 	struct netvsc_device *nvdev;
1968 	int ret = -ENOMEM;
1969 
1970 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1971 				VRSS_CHANNEL_MAX);
1972 	if (!net)
1973 		goto no_net;
1974 
1975 	netif_carrier_off(net);
1976 
1977 	netvsc_init_settings(net);
1978 
1979 	net_device_ctx = netdev_priv(net);
1980 	net_device_ctx->device_ctx = dev;
1981 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1982 	if (netif_msg_probe(net_device_ctx))
1983 		netdev_dbg(net, "netvsc msg_enable: %d\n",
1984 			   net_device_ctx->msg_enable);
1985 
1986 	hv_set_drvdata(dev, net);
1987 
1988 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1989 
1990 	spin_lock_init(&net_device_ctx->lock);
1991 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1992 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
1993 
1994 	net_device_ctx->vf_stats
1995 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
1996 	if (!net_device_ctx->vf_stats)
1997 		goto no_stats;
1998 
1999 	net->netdev_ops = &device_ops;
2000 	net->ethtool_ops = &ethtool_ops;
2001 	SET_NETDEV_DEV(net, &dev->device);
2002 
2003 	/* We always need headroom for rndis header */
2004 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2005 
2006 	/* Initialize the number of queues to be 1, we may change it if more
2007 	 * channels are offered later.
2008 	 */
2009 	netif_set_real_num_tx_queues(net, 1);
2010 	netif_set_real_num_rx_queues(net, 1);
2011 
2012 	/* Notify the netvsc driver of the new device */
2013 	memset(&device_info, 0, sizeof(device_info));
2014 	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2015 	device_info.send_sections = NETVSC_DEFAULT_TX;
2016 	device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2017 	device_info.recv_sections = NETVSC_DEFAULT_RX;
2018 	device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2019 
2020 	nvdev = rndis_filter_device_add(dev, &device_info);
2021 	if (IS_ERR(nvdev)) {
2022 		ret = PTR_ERR(nvdev);
2023 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2024 		goto rndis_failed;
2025 	}
2026 
2027 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2028 
2029 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2030 	net->features = net->hw_features |
2031 		NETIF_F_HIGHDMA | NETIF_F_SG |
2032 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2033 	net->vlan_features = net->features;
2034 
2035 	netdev_lockdep_set_classes(net);
2036 
2037 	/* MTU range: 68 - 1500 or 65521 */
2038 	net->min_mtu = NETVSC_MTU_MIN;
2039 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2040 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2041 	else
2042 		net->max_mtu = ETH_DATA_LEN;
2043 
2044 	ret = register_netdev(net);
2045 	if (ret != 0) {
2046 		pr_err("Unable to register netdev.\n");
2047 		goto register_failed;
2048 	}
2049 
2050 	return ret;
2051 
2052 register_failed:
2053 	rndis_filter_device_remove(dev, nvdev);
2054 rndis_failed:
2055 	free_percpu(net_device_ctx->vf_stats);
2056 no_stats:
2057 	hv_set_drvdata(dev, NULL);
2058 	free_netdev(net);
2059 no_net:
2060 	return ret;
2061 }
2062 
2063 static int netvsc_remove(struct hv_device *dev)
2064 {
2065 	struct net_device_context *ndev_ctx;
2066 	struct net_device *vf_netdev;
2067 	struct net_device *net;
2068 
2069 	net = hv_get_drvdata(dev);
2070 	if (net == NULL) {
2071 		dev_err(&dev->device, "No net device to remove\n");
2072 		return 0;
2073 	}
2074 
2075 	ndev_ctx = netdev_priv(net);
2076 
2077 	netif_device_detach(net);
2078 
2079 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2080 
2081 	/*
2082 	 * Call to the vsc driver to let it know that the device is being
2083 	 * removed. Also blocks mtu and channel changes.
2084 	 */
2085 	rtnl_lock();
2086 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2087 	if (vf_netdev)
2088 		netvsc_unregister_vf(vf_netdev);
2089 
2090 	unregister_netdevice(net);
2091 
2092 	rndis_filter_device_remove(dev,
2093 				   rtnl_dereference(ndev_ctx->nvdev));
2094 	rtnl_unlock();
2095 
2096 	hv_set_drvdata(dev, NULL);
2097 
2098 	free_percpu(ndev_ctx->vf_stats);
2099 	free_netdev(net);
2100 	return 0;
2101 }
2102 
2103 static const struct hv_vmbus_device_id id_table[] = {
2104 	/* Network guid */
2105 	{ HV_NIC_GUID, },
2106 	{ },
2107 };
2108 
2109 MODULE_DEVICE_TABLE(vmbus, id_table);
2110 
2111 /* The one and only one */
2112 static struct  hv_driver netvsc_drv = {
2113 	.name = KBUILD_MODNAME,
2114 	.id_table = id_table,
2115 	.probe = netvsc_probe,
2116 	.remove = netvsc_remove,
2117 };
2118 
2119 /*
2120  * On Hyper-V, every VF interface is matched with a corresponding
2121  * synthetic interface. The synthetic interface is presented first
2122  * to the guest. When the corresponding VF instance is registered,
2123  * we will take care of switching the data path.
2124  */
2125 static int netvsc_netdev_event(struct notifier_block *this,
2126 			       unsigned long event, void *ptr)
2127 {
2128 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2129 
2130 	/* Skip our own events */
2131 	if (event_dev->netdev_ops == &device_ops)
2132 		return NOTIFY_DONE;
2133 
2134 	/* Avoid non-Ethernet type devices */
2135 	if (event_dev->type != ARPHRD_ETHER)
2136 		return NOTIFY_DONE;
2137 
2138 	/* Avoid Vlan dev with same MAC registering as VF */
2139 	if (is_vlan_dev(event_dev))
2140 		return NOTIFY_DONE;
2141 
2142 	/* Avoid Bonding master dev with same MAC registering as VF */
2143 	if ((event_dev->priv_flags & IFF_BONDING) &&
2144 	    (event_dev->flags & IFF_MASTER))
2145 		return NOTIFY_DONE;
2146 
2147 	switch (event) {
2148 	case NETDEV_REGISTER:
2149 		return netvsc_register_vf(event_dev);
2150 	case NETDEV_UNREGISTER:
2151 		return netvsc_unregister_vf(event_dev);
2152 	case NETDEV_UP:
2153 	case NETDEV_DOWN:
2154 		return netvsc_vf_changed(event_dev);
2155 	default:
2156 		return NOTIFY_DONE;
2157 	}
2158 }
2159 
2160 static struct notifier_block netvsc_netdev_notifier = {
2161 	.notifier_call = netvsc_netdev_event,
2162 };
2163 
2164 static void __exit netvsc_drv_exit(void)
2165 {
2166 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2167 	vmbus_driver_unregister(&netvsc_drv);
2168 }
2169 
2170 static int __init netvsc_drv_init(void)
2171 {
2172 	int ret;
2173 
2174 	if (ring_size < RING_SIZE_MIN) {
2175 		ring_size = RING_SIZE_MIN;
2176 		pr_info("Increased ring_size to %u (min allowed)\n",
2177 			ring_size);
2178 	}
2179 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2180 	netvsc_ring_reciprocal = reciprocal_value(netvsc_ring_bytes);
2181 
2182 	ret = vmbus_driver_register(&netvsc_drv);
2183 	if (ret)
2184 		return ret;
2185 
2186 	register_netdevice_notifier(&netvsc_netdev_notifier);
2187 	return 0;
2188 }
2189 
2190 MODULE_LICENSE("GPL");
2191 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2192 
2193 module_init(netvsc_drv_init);
2194 module_exit(netvsc_drv_exit);
2195