1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/pci.h> 33 #include <linux/skbuff.h> 34 #include <linux/if_vlan.h> 35 #include <linux/in.h> 36 #include <linux/slab.h> 37 #include <linux/rtnetlink.h> 38 #include <linux/netpoll.h> 39 40 #include <net/arp.h> 41 #include <net/route.h> 42 #include <net/sock.h> 43 #include <net/pkt_sched.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 47 #include "hyperv_net.h" 48 49 #define RING_SIZE_MIN 64 50 #define RETRY_US_LO 5000 51 #define RETRY_US_HI 10000 52 #define RETRY_MAX 2000 /* >10 sec */ 53 54 #define LINKCHANGE_INT (2 * HZ) 55 #define VF_TAKEOVER_INT (HZ / 10) 56 57 static unsigned int ring_size __ro_after_init = 128; 58 module_param(ring_size, uint, 0444); 59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 60 unsigned int netvsc_ring_bytes __ro_after_init; 61 62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 63 NETIF_MSG_LINK | NETIF_MSG_IFUP | 64 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 65 NETIF_MSG_TX_ERR; 66 67 static int debug = -1; 68 module_param(debug, int, 0444); 69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 70 71 static LIST_HEAD(netvsc_dev_list); 72 73 static void netvsc_change_rx_flags(struct net_device *net, int change) 74 { 75 struct net_device_context *ndev_ctx = netdev_priv(net); 76 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 77 int inc; 78 79 if (!vf_netdev) 80 return; 81 82 if (change & IFF_PROMISC) { 83 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 84 dev_set_promiscuity(vf_netdev, inc); 85 } 86 87 if (change & IFF_ALLMULTI) { 88 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 89 dev_set_allmulti(vf_netdev, inc); 90 } 91 } 92 93 static void netvsc_set_rx_mode(struct net_device *net) 94 { 95 struct net_device_context *ndev_ctx = netdev_priv(net); 96 struct net_device *vf_netdev; 97 struct netvsc_device *nvdev; 98 99 rcu_read_lock(); 100 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 101 if (vf_netdev) { 102 dev_uc_sync(vf_netdev, net); 103 dev_mc_sync(vf_netdev, net); 104 } 105 106 nvdev = rcu_dereference(ndev_ctx->nvdev); 107 if (nvdev) 108 rndis_filter_update(nvdev); 109 rcu_read_unlock(); 110 } 111 112 static int netvsc_open(struct net_device *net) 113 { 114 struct net_device_context *ndev_ctx = netdev_priv(net); 115 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 116 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 117 struct rndis_device *rdev; 118 int ret = 0; 119 120 netif_carrier_off(net); 121 122 /* Open up the device */ 123 ret = rndis_filter_open(nvdev); 124 if (ret != 0) { 125 netdev_err(net, "unable to open device (ret %d).\n", ret); 126 return ret; 127 } 128 129 rdev = nvdev->extension; 130 if (!rdev->link_state) { 131 netif_carrier_on(net); 132 netif_tx_wake_all_queues(net); 133 } 134 135 if (vf_netdev) { 136 /* Setting synthetic device up transparently sets 137 * slave as up. If open fails, then slave will be 138 * still be offline (and not used). 139 */ 140 ret = dev_open(vf_netdev, NULL); 141 if (ret) 142 netdev_warn(net, 143 "unable to open slave: %s: %d\n", 144 vf_netdev->name, ret); 145 } 146 return 0; 147 } 148 149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 150 { 151 unsigned int retry = 0; 152 int i; 153 154 /* Ensure pending bytes in ring are read */ 155 for (;;) { 156 u32 aread = 0; 157 158 for (i = 0; i < nvdev->num_chn; i++) { 159 struct vmbus_channel *chn 160 = nvdev->chan_table[i].channel; 161 162 if (!chn) 163 continue; 164 165 /* make sure receive not running now */ 166 napi_synchronize(&nvdev->chan_table[i].napi); 167 168 aread = hv_get_bytes_to_read(&chn->inbound); 169 if (aread) 170 break; 171 172 aread = hv_get_bytes_to_read(&chn->outbound); 173 if (aread) 174 break; 175 } 176 177 if (aread == 0) 178 return 0; 179 180 if (++retry > RETRY_MAX) 181 return -ETIMEDOUT; 182 183 usleep_range(RETRY_US_LO, RETRY_US_HI); 184 } 185 } 186 187 static int netvsc_close(struct net_device *net) 188 { 189 struct net_device_context *net_device_ctx = netdev_priv(net); 190 struct net_device *vf_netdev 191 = rtnl_dereference(net_device_ctx->vf_netdev); 192 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 193 int ret; 194 195 netif_tx_disable(net); 196 197 /* No need to close rndis filter if it is removed already */ 198 if (!nvdev) 199 return 0; 200 201 ret = rndis_filter_close(nvdev); 202 if (ret != 0) { 203 netdev_err(net, "unable to close device (ret %d).\n", ret); 204 return ret; 205 } 206 207 ret = netvsc_wait_until_empty(nvdev); 208 if (ret) 209 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 210 211 if (vf_netdev) 212 dev_close(vf_netdev); 213 214 return ret; 215 } 216 217 static inline void *init_ppi_data(struct rndis_message *msg, 218 u32 ppi_size, u32 pkt_type) 219 { 220 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 221 struct rndis_per_packet_info *ppi; 222 223 rndis_pkt->data_offset += ppi_size; 224 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 225 + rndis_pkt->per_pkt_info_len; 226 227 ppi->size = ppi_size; 228 ppi->type = pkt_type; 229 ppi->internal = 0; 230 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 231 232 rndis_pkt->per_pkt_info_len += ppi_size; 233 234 return ppi + 1; 235 } 236 237 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 238 * packets. We can use ethtool to change UDP hash level when necessary. 239 */ 240 static inline u32 netvsc_get_hash( 241 struct sk_buff *skb, 242 const struct net_device_context *ndc) 243 { 244 struct flow_keys flow; 245 u32 hash, pkt_proto = 0; 246 static u32 hashrnd __read_mostly; 247 248 net_get_random_once(&hashrnd, sizeof(hashrnd)); 249 250 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 251 return 0; 252 253 switch (flow.basic.ip_proto) { 254 case IPPROTO_TCP: 255 if (flow.basic.n_proto == htons(ETH_P_IP)) 256 pkt_proto = HV_TCP4_L4HASH; 257 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 258 pkt_proto = HV_TCP6_L4HASH; 259 260 break; 261 262 case IPPROTO_UDP: 263 if (flow.basic.n_proto == htons(ETH_P_IP)) 264 pkt_proto = HV_UDP4_L4HASH; 265 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 266 pkt_proto = HV_UDP6_L4HASH; 267 268 break; 269 } 270 271 if (pkt_proto & ndc->l4_hash) { 272 return skb_get_hash(skb); 273 } else { 274 if (flow.basic.n_proto == htons(ETH_P_IP)) 275 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 276 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 277 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 278 else 279 hash = 0; 280 281 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 282 } 283 284 return hash; 285 } 286 287 static inline int netvsc_get_tx_queue(struct net_device *ndev, 288 struct sk_buff *skb, int old_idx) 289 { 290 const struct net_device_context *ndc = netdev_priv(ndev); 291 struct sock *sk = skb->sk; 292 int q_idx; 293 294 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 295 (VRSS_SEND_TAB_SIZE - 1)]; 296 297 /* If queue index changed record the new value */ 298 if (q_idx != old_idx && 299 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 300 sk_tx_queue_set(sk, q_idx); 301 302 return q_idx; 303 } 304 305 /* 306 * Select queue for transmit. 307 * 308 * If a valid queue has already been assigned, then use that. 309 * Otherwise compute tx queue based on hash and the send table. 310 * 311 * This is basically similar to default (__netdev_pick_tx) with the added step 312 * of using the host send_table when no other queue has been assigned. 313 * 314 * TODO support XPS - but get_xps_queue not exported 315 */ 316 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 317 { 318 int q_idx = sk_tx_queue_get(skb->sk); 319 320 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 321 /* If forwarding a packet, we use the recorded queue when 322 * available for better cache locality. 323 */ 324 if (skb_rx_queue_recorded(skb)) 325 q_idx = skb_get_rx_queue(skb); 326 else 327 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 328 } 329 330 return q_idx; 331 } 332 333 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 334 struct net_device *sb_dev, 335 select_queue_fallback_t fallback) 336 { 337 struct net_device_context *ndc = netdev_priv(ndev); 338 struct net_device *vf_netdev; 339 u16 txq; 340 341 rcu_read_lock(); 342 vf_netdev = rcu_dereference(ndc->vf_netdev); 343 if (vf_netdev) { 344 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 345 346 if (vf_ops->ndo_select_queue) 347 txq = vf_ops->ndo_select_queue(vf_netdev, skb, 348 sb_dev, fallback); 349 else 350 txq = fallback(vf_netdev, skb, NULL); 351 352 /* Record the queue selected by VF so that it can be 353 * used for common case where VF has more queues than 354 * the synthetic device. 355 */ 356 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 357 } else { 358 txq = netvsc_pick_tx(ndev, skb); 359 } 360 rcu_read_unlock(); 361 362 while (unlikely(txq >= ndev->real_num_tx_queues)) 363 txq -= ndev->real_num_tx_queues; 364 365 return txq; 366 } 367 368 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 369 struct hv_page_buffer *pb) 370 { 371 int j = 0; 372 373 /* Deal with compund pages by ignoring unused part 374 * of the page. 375 */ 376 page += (offset >> PAGE_SHIFT); 377 offset &= ~PAGE_MASK; 378 379 while (len > 0) { 380 unsigned long bytes; 381 382 bytes = PAGE_SIZE - offset; 383 if (bytes > len) 384 bytes = len; 385 pb[j].pfn = page_to_pfn(page); 386 pb[j].offset = offset; 387 pb[j].len = bytes; 388 389 offset += bytes; 390 len -= bytes; 391 392 if (offset == PAGE_SIZE && len) { 393 page++; 394 offset = 0; 395 j++; 396 } 397 } 398 399 return j + 1; 400 } 401 402 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 403 struct hv_netvsc_packet *packet, 404 struct hv_page_buffer *pb) 405 { 406 u32 slots_used = 0; 407 char *data = skb->data; 408 int frags = skb_shinfo(skb)->nr_frags; 409 int i; 410 411 /* The packet is laid out thus: 412 * 1. hdr: RNDIS header and PPI 413 * 2. skb linear data 414 * 3. skb fragment data 415 */ 416 slots_used += fill_pg_buf(virt_to_page(hdr), 417 offset_in_page(hdr), 418 len, &pb[slots_used]); 419 420 packet->rmsg_size = len; 421 packet->rmsg_pgcnt = slots_used; 422 423 slots_used += fill_pg_buf(virt_to_page(data), 424 offset_in_page(data), 425 skb_headlen(skb), &pb[slots_used]); 426 427 for (i = 0; i < frags; i++) { 428 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 429 430 slots_used += fill_pg_buf(skb_frag_page(frag), 431 frag->page_offset, 432 skb_frag_size(frag), &pb[slots_used]); 433 } 434 return slots_used; 435 } 436 437 static int count_skb_frag_slots(struct sk_buff *skb) 438 { 439 int i, frags = skb_shinfo(skb)->nr_frags; 440 int pages = 0; 441 442 for (i = 0; i < frags; i++) { 443 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 444 unsigned long size = skb_frag_size(frag); 445 unsigned long offset = frag->page_offset; 446 447 /* Skip unused frames from start of page */ 448 offset &= ~PAGE_MASK; 449 pages += PFN_UP(offset + size); 450 } 451 return pages; 452 } 453 454 static int netvsc_get_slots(struct sk_buff *skb) 455 { 456 char *data = skb->data; 457 unsigned int offset = offset_in_page(data); 458 unsigned int len = skb_headlen(skb); 459 int slots; 460 int frag_slots; 461 462 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 463 frag_slots = count_skb_frag_slots(skb); 464 return slots + frag_slots; 465 } 466 467 static u32 net_checksum_info(struct sk_buff *skb) 468 { 469 if (skb->protocol == htons(ETH_P_IP)) { 470 struct iphdr *ip = ip_hdr(skb); 471 472 if (ip->protocol == IPPROTO_TCP) 473 return TRANSPORT_INFO_IPV4_TCP; 474 else if (ip->protocol == IPPROTO_UDP) 475 return TRANSPORT_INFO_IPV4_UDP; 476 } else { 477 struct ipv6hdr *ip6 = ipv6_hdr(skb); 478 479 if (ip6->nexthdr == IPPROTO_TCP) 480 return TRANSPORT_INFO_IPV6_TCP; 481 else if (ip6->nexthdr == IPPROTO_UDP) 482 return TRANSPORT_INFO_IPV6_UDP; 483 } 484 485 return TRANSPORT_INFO_NOT_IP; 486 } 487 488 /* Send skb on the slave VF device. */ 489 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 490 struct sk_buff *skb) 491 { 492 struct net_device_context *ndev_ctx = netdev_priv(net); 493 unsigned int len = skb->len; 494 int rc; 495 496 skb->dev = vf_netdev; 497 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 498 499 rc = dev_queue_xmit(skb); 500 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 501 struct netvsc_vf_pcpu_stats *pcpu_stats 502 = this_cpu_ptr(ndev_ctx->vf_stats); 503 504 u64_stats_update_begin(&pcpu_stats->syncp); 505 pcpu_stats->tx_packets++; 506 pcpu_stats->tx_bytes += len; 507 u64_stats_update_end(&pcpu_stats->syncp); 508 } else { 509 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 510 } 511 512 return rc; 513 } 514 515 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 516 { 517 struct net_device_context *net_device_ctx = netdev_priv(net); 518 struct hv_netvsc_packet *packet = NULL; 519 int ret; 520 unsigned int num_data_pgs; 521 struct rndis_message *rndis_msg; 522 struct net_device *vf_netdev; 523 u32 rndis_msg_size; 524 u32 hash; 525 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 526 527 /* if VF is present and up then redirect packets 528 * already called with rcu_read_lock_bh 529 */ 530 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 531 if (vf_netdev && netif_running(vf_netdev) && 532 !netpoll_tx_running(net)) 533 return netvsc_vf_xmit(net, vf_netdev, skb); 534 535 /* We will atmost need two pages to describe the rndis 536 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 537 * of pages in a single packet. If skb is scattered around 538 * more pages we try linearizing it. 539 */ 540 541 num_data_pgs = netvsc_get_slots(skb) + 2; 542 543 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 544 ++net_device_ctx->eth_stats.tx_scattered; 545 546 if (skb_linearize(skb)) 547 goto no_memory; 548 549 num_data_pgs = netvsc_get_slots(skb) + 2; 550 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 551 ++net_device_ctx->eth_stats.tx_too_big; 552 goto drop; 553 } 554 } 555 556 /* 557 * Place the rndis header in the skb head room and 558 * the skb->cb will be used for hv_netvsc_packet 559 * structure. 560 */ 561 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 562 if (ret) 563 goto no_memory; 564 565 /* Use the skb control buffer for building up the packet */ 566 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 567 FIELD_SIZEOF(struct sk_buff, cb)); 568 packet = (struct hv_netvsc_packet *)skb->cb; 569 570 packet->q_idx = skb_get_queue_mapping(skb); 571 572 packet->total_data_buflen = skb->len; 573 packet->total_bytes = skb->len; 574 packet->total_packets = 1; 575 576 rndis_msg = (struct rndis_message *)skb->head; 577 578 /* Add the rndis header */ 579 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 580 rndis_msg->msg_len = packet->total_data_buflen; 581 582 rndis_msg->msg.pkt = (struct rndis_packet) { 583 .data_offset = sizeof(struct rndis_packet), 584 .data_len = packet->total_data_buflen, 585 .per_pkt_info_offset = sizeof(struct rndis_packet), 586 }; 587 588 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 589 590 hash = skb_get_hash_raw(skb); 591 if (hash != 0 && net->real_num_tx_queues > 1) { 592 u32 *hash_info; 593 594 rndis_msg_size += NDIS_HASH_PPI_SIZE; 595 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 596 NBL_HASH_VALUE); 597 *hash_info = hash; 598 } 599 600 if (skb_vlan_tag_present(skb)) { 601 struct ndis_pkt_8021q_info *vlan; 602 603 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 604 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 605 IEEE_8021Q_INFO); 606 607 vlan->value = 0; 608 vlan->vlanid = skb_vlan_tag_get_id(skb); 609 vlan->cfi = skb_vlan_tag_get_cfi(skb); 610 vlan->pri = skb_vlan_tag_get_prio(skb); 611 } 612 613 if (skb_is_gso(skb)) { 614 struct ndis_tcp_lso_info *lso_info; 615 616 rndis_msg_size += NDIS_LSO_PPI_SIZE; 617 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 618 TCP_LARGESEND_PKTINFO); 619 620 lso_info->value = 0; 621 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 622 if (skb->protocol == htons(ETH_P_IP)) { 623 lso_info->lso_v2_transmit.ip_version = 624 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 625 ip_hdr(skb)->tot_len = 0; 626 ip_hdr(skb)->check = 0; 627 tcp_hdr(skb)->check = 628 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 629 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 630 } else { 631 lso_info->lso_v2_transmit.ip_version = 632 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 633 ipv6_hdr(skb)->payload_len = 0; 634 tcp_hdr(skb)->check = 635 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 636 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 637 } 638 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 639 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 640 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 641 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 642 struct ndis_tcp_ip_checksum_info *csum_info; 643 644 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 645 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 646 TCPIP_CHKSUM_PKTINFO); 647 648 csum_info->value = 0; 649 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 650 651 if (skb->protocol == htons(ETH_P_IP)) { 652 csum_info->transmit.is_ipv4 = 1; 653 654 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 655 csum_info->transmit.tcp_checksum = 1; 656 else 657 csum_info->transmit.udp_checksum = 1; 658 } else { 659 csum_info->transmit.is_ipv6 = 1; 660 661 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 662 csum_info->transmit.tcp_checksum = 1; 663 else 664 csum_info->transmit.udp_checksum = 1; 665 } 666 } else { 667 /* Can't do offload of this type of checksum */ 668 if (skb_checksum_help(skb)) 669 goto drop; 670 } 671 } 672 673 /* Start filling in the page buffers with the rndis hdr */ 674 rndis_msg->msg_len += rndis_msg_size; 675 packet->total_data_buflen = rndis_msg->msg_len; 676 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 677 skb, packet, pb); 678 679 /* timestamp packet in software */ 680 skb_tx_timestamp(skb); 681 682 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 683 if (likely(ret == 0)) 684 return NETDEV_TX_OK; 685 686 if (ret == -EAGAIN) { 687 ++net_device_ctx->eth_stats.tx_busy; 688 return NETDEV_TX_BUSY; 689 } 690 691 if (ret == -ENOSPC) 692 ++net_device_ctx->eth_stats.tx_no_space; 693 694 drop: 695 dev_kfree_skb_any(skb); 696 net->stats.tx_dropped++; 697 698 return NETDEV_TX_OK; 699 700 no_memory: 701 ++net_device_ctx->eth_stats.tx_no_memory; 702 goto drop; 703 } 704 705 /* 706 * netvsc_linkstatus_callback - Link up/down notification 707 */ 708 void netvsc_linkstatus_callback(struct net_device *net, 709 struct rndis_message *resp) 710 { 711 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 712 struct net_device_context *ndev_ctx = netdev_priv(net); 713 struct netvsc_reconfig *event; 714 unsigned long flags; 715 716 /* Update the physical link speed when changing to another vSwitch */ 717 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 718 u32 speed; 719 720 speed = *(u32 *)((void *)indicate 721 + indicate->status_buf_offset) / 10000; 722 ndev_ctx->speed = speed; 723 return; 724 } 725 726 /* Handle these link change statuses below */ 727 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 728 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 729 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 730 return; 731 732 if (net->reg_state != NETREG_REGISTERED) 733 return; 734 735 event = kzalloc(sizeof(*event), GFP_ATOMIC); 736 if (!event) 737 return; 738 event->event = indicate->status; 739 740 spin_lock_irqsave(&ndev_ctx->lock, flags); 741 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 742 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 743 744 schedule_delayed_work(&ndev_ctx->dwork, 0); 745 } 746 747 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 748 struct netvsc_channel *nvchan) 749 { 750 struct napi_struct *napi = &nvchan->napi; 751 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 752 const struct ndis_tcp_ip_checksum_info *csum_info = 753 nvchan->rsc.csum_info; 754 struct sk_buff *skb; 755 int i; 756 757 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 758 if (!skb) 759 return skb; 760 761 /* 762 * Copy to skb. This copy is needed here since the memory pointed by 763 * hv_netvsc_packet cannot be deallocated 764 */ 765 for (i = 0; i < nvchan->rsc.cnt; i++) 766 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]); 767 768 skb->protocol = eth_type_trans(skb, net); 769 770 /* skb is already created with CHECKSUM_NONE */ 771 skb_checksum_none_assert(skb); 772 773 /* 774 * In Linux, the IP checksum is always checked. 775 * Do L4 checksum offload if enabled and present. 776 */ 777 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 778 if (csum_info->receive.tcp_checksum_succeeded || 779 csum_info->receive.udp_checksum_succeeded) 780 skb->ip_summed = CHECKSUM_UNNECESSARY; 781 } 782 783 if (vlan) { 784 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 785 (vlan->cfi ? VLAN_CFI_MASK : 0); 786 787 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 788 vlan_tci); 789 } 790 791 return skb; 792 } 793 794 /* 795 * netvsc_recv_callback - Callback when we receive a packet from the 796 * "wire" on the specified device. 797 */ 798 int netvsc_recv_callback(struct net_device *net, 799 struct netvsc_device *net_device, 800 struct netvsc_channel *nvchan) 801 { 802 struct net_device_context *net_device_ctx = netdev_priv(net); 803 struct vmbus_channel *channel = nvchan->channel; 804 u16 q_idx = channel->offermsg.offer.sub_channel_index; 805 struct sk_buff *skb; 806 struct netvsc_stats *rx_stats; 807 808 if (net->reg_state != NETREG_REGISTERED) 809 return NVSP_STAT_FAIL; 810 811 /* Allocate a skb - TODO direct I/O to pages? */ 812 skb = netvsc_alloc_recv_skb(net, nvchan); 813 814 if (unlikely(!skb)) { 815 ++net_device_ctx->eth_stats.rx_no_memory; 816 rcu_read_unlock(); 817 return NVSP_STAT_FAIL; 818 } 819 820 skb_record_rx_queue(skb, q_idx); 821 822 /* 823 * Even if injecting the packet, record the statistics 824 * on the synthetic device because modifying the VF device 825 * statistics will not work correctly. 826 */ 827 rx_stats = &nvchan->rx_stats; 828 u64_stats_update_begin(&rx_stats->syncp); 829 rx_stats->packets++; 830 rx_stats->bytes += nvchan->rsc.pktlen; 831 832 if (skb->pkt_type == PACKET_BROADCAST) 833 ++rx_stats->broadcast; 834 else if (skb->pkt_type == PACKET_MULTICAST) 835 ++rx_stats->multicast; 836 u64_stats_update_end(&rx_stats->syncp); 837 838 napi_gro_receive(&nvchan->napi, skb); 839 return NVSP_STAT_SUCCESS; 840 } 841 842 static void netvsc_get_drvinfo(struct net_device *net, 843 struct ethtool_drvinfo *info) 844 { 845 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 846 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 847 } 848 849 static void netvsc_get_channels(struct net_device *net, 850 struct ethtool_channels *channel) 851 { 852 struct net_device_context *net_device_ctx = netdev_priv(net); 853 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 854 855 if (nvdev) { 856 channel->max_combined = nvdev->max_chn; 857 channel->combined_count = nvdev->num_chn; 858 } 859 } 860 861 static int netvsc_detach(struct net_device *ndev, 862 struct netvsc_device *nvdev) 863 { 864 struct net_device_context *ndev_ctx = netdev_priv(ndev); 865 struct hv_device *hdev = ndev_ctx->device_ctx; 866 int ret; 867 868 /* Don't try continuing to try and setup sub channels */ 869 if (cancel_work_sync(&nvdev->subchan_work)) 870 nvdev->num_chn = 1; 871 872 /* If device was up (receiving) then shutdown */ 873 if (netif_running(ndev)) { 874 netif_tx_disable(ndev); 875 876 ret = rndis_filter_close(nvdev); 877 if (ret) { 878 netdev_err(ndev, 879 "unable to close device (ret %d).\n", ret); 880 return ret; 881 } 882 883 ret = netvsc_wait_until_empty(nvdev); 884 if (ret) { 885 netdev_err(ndev, 886 "Ring buffer not empty after closing rndis\n"); 887 return ret; 888 } 889 } 890 891 netif_device_detach(ndev); 892 893 rndis_filter_device_remove(hdev, nvdev); 894 895 return 0; 896 } 897 898 static int netvsc_attach(struct net_device *ndev, 899 struct netvsc_device_info *dev_info) 900 { 901 struct net_device_context *ndev_ctx = netdev_priv(ndev); 902 struct hv_device *hdev = ndev_ctx->device_ctx; 903 struct netvsc_device *nvdev; 904 struct rndis_device *rdev; 905 int ret; 906 907 nvdev = rndis_filter_device_add(hdev, dev_info); 908 if (IS_ERR(nvdev)) 909 return PTR_ERR(nvdev); 910 911 if (nvdev->num_chn > 1) { 912 ret = rndis_set_subchannel(ndev, nvdev); 913 914 /* if unavailable, just proceed with one queue */ 915 if (ret) { 916 nvdev->max_chn = 1; 917 nvdev->num_chn = 1; 918 } 919 } 920 921 /* In any case device is now ready */ 922 netif_device_attach(ndev); 923 924 /* Note: enable and attach happen when sub-channels setup */ 925 netif_carrier_off(ndev); 926 927 if (netif_running(ndev)) { 928 ret = rndis_filter_open(nvdev); 929 if (ret) 930 return ret; 931 932 rdev = nvdev->extension; 933 if (!rdev->link_state) 934 netif_carrier_on(ndev); 935 } 936 937 return 0; 938 } 939 940 static int netvsc_set_channels(struct net_device *net, 941 struct ethtool_channels *channels) 942 { 943 struct net_device_context *net_device_ctx = netdev_priv(net); 944 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 945 unsigned int orig, count = channels->combined_count; 946 struct netvsc_device_info device_info; 947 int ret; 948 949 /* We do not support separate count for rx, tx, or other */ 950 if (count == 0 || 951 channels->rx_count || channels->tx_count || channels->other_count) 952 return -EINVAL; 953 954 if (!nvdev || nvdev->destroy) 955 return -ENODEV; 956 957 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 958 return -EINVAL; 959 960 if (count > nvdev->max_chn) 961 return -EINVAL; 962 963 orig = nvdev->num_chn; 964 965 memset(&device_info, 0, sizeof(device_info)); 966 device_info.num_chn = count; 967 device_info.send_sections = nvdev->send_section_cnt; 968 device_info.send_section_size = nvdev->send_section_size; 969 device_info.recv_sections = nvdev->recv_section_cnt; 970 device_info.recv_section_size = nvdev->recv_section_size; 971 972 ret = netvsc_detach(net, nvdev); 973 if (ret) 974 return ret; 975 976 ret = netvsc_attach(net, &device_info); 977 if (ret) { 978 device_info.num_chn = orig; 979 if (netvsc_attach(net, &device_info)) 980 netdev_err(net, "restoring channel setting failed\n"); 981 } 982 983 return ret; 984 } 985 986 static bool 987 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 988 { 989 struct ethtool_link_ksettings diff1 = *cmd; 990 struct ethtool_link_ksettings diff2 = {}; 991 992 diff1.base.speed = 0; 993 diff1.base.duplex = 0; 994 /* advertising and cmd are usually set */ 995 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 996 diff1.base.cmd = 0; 997 /* We set port to PORT_OTHER */ 998 diff2.base.port = PORT_OTHER; 999 1000 return !memcmp(&diff1, &diff2, sizeof(diff1)); 1001 } 1002 1003 static void netvsc_init_settings(struct net_device *dev) 1004 { 1005 struct net_device_context *ndc = netdev_priv(dev); 1006 1007 ndc->l4_hash = HV_DEFAULT_L4HASH; 1008 1009 ndc->speed = SPEED_UNKNOWN; 1010 ndc->duplex = DUPLEX_FULL; 1011 1012 dev->features = NETIF_F_LRO; 1013 } 1014 1015 static int netvsc_get_link_ksettings(struct net_device *dev, 1016 struct ethtool_link_ksettings *cmd) 1017 { 1018 struct net_device_context *ndc = netdev_priv(dev); 1019 1020 cmd->base.speed = ndc->speed; 1021 cmd->base.duplex = ndc->duplex; 1022 cmd->base.port = PORT_OTHER; 1023 1024 return 0; 1025 } 1026 1027 static int netvsc_set_link_ksettings(struct net_device *dev, 1028 const struct ethtool_link_ksettings *cmd) 1029 { 1030 struct net_device_context *ndc = netdev_priv(dev); 1031 u32 speed; 1032 1033 speed = cmd->base.speed; 1034 if (!ethtool_validate_speed(speed) || 1035 !ethtool_validate_duplex(cmd->base.duplex) || 1036 !netvsc_validate_ethtool_ss_cmd(cmd)) 1037 return -EINVAL; 1038 1039 ndc->speed = speed; 1040 ndc->duplex = cmd->base.duplex; 1041 1042 return 0; 1043 } 1044 1045 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1046 { 1047 struct net_device_context *ndevctx = netdev_priv(ndev); 1048 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1049 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1050 int orig_mtu = ndev->mtu; 1051 struct netvsc_device_info device_info; 1052 int ret = 0; 1053 1054 if (!nvdev || nvdev->destroy) 1055 return -ENODEV; 1056 1057 /* Change MTU of underlying VF netdev first. */ 1058 if (vf_netdev) { 1059 ret = dev_set_mtu(vf_netdev, mtu); 1060 if (ret) 1061 return ret; 1062 } 1063 1064 memset(&device_info, 0, sizeof(device_info)); 1065 device_info.num_chn = nvdev->num_chn; 1066 device_info.send_sections = nvdev->send_section_cnt; 1067 device_info.send_section_size = nvdev->send_section_size; 1068 device_info.recv_sections = nvdev->recv_section_cnt; 1069 device_info.recv_section_size = nvdev->recv_section_size; 1070 1071 ret = netvsc_detach(ndev, nvdev); 1072 if (ret) 1073 goto rollback_vf; 1074 1075 ndev->mtu = mtu; 1076 1077 ret = netvsc_attach(ndev, &device_info); 1078 if (ret) 1079 goto rollback; 1080 1081 return 0; 1082 1083 rollback: 1084 /* Attempt rollback to original MTU */ 1085 ndev->mtu = orig_mtu; 1086 1087 if (netvsc_attach(ndev, &device_info)) 1088 netdev_err(ndev, "restoring mtu failed\n"); 1089 rollback_vf: 1090 if (vf_netdev) 1091 dev_set_mtu(vf_netdev, orig_mtu); 1092 1093 return ret; 1094 } 1095 1096 static void netvsc_get_vf_stats(struct net_device *net, 1097 struct netvsc_vf_pcpu_stats *tot) 1098 { 1099 struct net_device_context *ndev_ctx = netdev_priv(net); 1100 int i; 1101 1102 memset(tot, 0, sizeof(*tot)); 1103 1104 for_each_possible_cpu(i) { 1105 const struct netvsc_vf_pcpu_stats *stats 1106 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1107 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1108 unsigned int start; 1109 1110 do { 1111 start = u64_stats_fetch_begin_irq(&stats->syncp); 1112 rx_packets = stats->rx_packets; 1113 tx_packets = stats->tx_packets; 1114 rx_bytes = stats->rx_bytes; 1115 tx_bytes = stats->tx_bytes; 1116 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1117 1118 tot->rx_packets += rx_packets; 1119 tot->tx_packets += tx_packets; 1120 tot->rx_bytes += rx_bytes; 1121 tot->tx_bytes += tx_bytes; 1122 tot->tx_dropped += stats->tx_dropped; 1123 } 1124 } 1125 1126 static void netvsc_get_pcpu_stats(struct net_device *net, 1127 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1128 { 1129 struct net_device_context *ndev_ctx = netdev_priv(net); 1130 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1131 int i; 1132 1133 /* fetch percpu stats of vf */ 1134 for_each_possible_cpu(i) { 1135 const struct netvsc_vf_pcpu_stats *stats = 1136 per_cpu_ptr(ndev_ctx->vf_stats, i); 1137 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1138 unsigned int start; 1139 1140 do { 1141 start = u64_stats_fetch_begin_irq(&stats->syncp); 1142 this_tot->vf_rx_packets = stats->rx_packets; 1143 this_tot->vf_tx_packets = stats->tx_packets; 1144 this_tot->vf_rx_bytes = stats->rx_bytes; 1145 this_tot->vf_tx_bytes = stats->tx_bytes; 1146 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1147 this_tot->rx_packets = this_tot->vf_rx_packets; 1148 this_tot->tx_packets = this_tot->vf_tx_packets; 1149 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1150 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1151 } 1152 1153 /* fetch percpu stats of netvsc */ 1154 for (i = 0; i < nvdev->num_chn; i++) { 1155 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1156 const struct netvsc_stats *stats; 1157 struct netvsc_ethtool_pcpu_stats *this_tot = 1158 &pcpu_tot[nvchan->channel->target_cpu]; 1159 u64 packets, bytes; 1160 unsigned int start; 1161 1162 stats = &nvchan->tx_stats; 1163 do { 1164 start = u64_stats_fetch_begin_irq(&stats->syncp); 1165 packets = stats->packets; 1166 bytes = stats->bytes; 1167 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1168 1169 this_tot->tx_bytes += bytes; 1170 this_tot->tx_packets += packets; 1171 1172 stats = &nvchan->rx_stats; 1173 do { 1174 start = u64_stats_fetch_begin_irq(&stats->syncp); 1175 packets = stats->packets; 1176 bytes = stats->bytes; 1177 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1178 1179 this_tot->rx_bytes += bytes; 1180 this_tot->rx_packets += packets; 1181 } 1182 } 1183 1184 static void netvsc_get_stats64(struct net_device *net, 1185 struct rtnl_link_stats64 *t) 1186 { 1187 struct net_device_context *ndev_ctx = netdev_priv(net); 1188 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1189 struct netvsc_vf_pcpu_stats vf_tot; 1190 int i; 1191 1192 if (!nvdev) 1193 return; 1194 1195 netdev_stats_to_stats64(t, &net->stats); 1196 1197 netvsc_get_vf_stats(net, &vf_tot); 1198 t->rx_packets += vf_tot.rx_packets; 1199 t->tx_packets += vf_tot.tx_packets; 1200 t->rx_bytes += vf_tot.rx_bytes; 1201 t->tx_bytes += vf_tot.tx_bytes; 1202 t->tx_dropped += vf_tot.tx_dropped; 1203 1204 for (i = 0; i < nvdev->num_chn; i++) { 1205 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1206 const struct netvsc_stats *stats; 1207 u64 packets, bytes, multicast; 1208 unsigned int start; 1209 1210 stats = &nvchan->tx_stats; 1211 do { 1212 start = u64_stats_fetch_begin_irq(&stats->syncp); 1213 packets = stats->packets; 1214 bytes = stats->bytes; 1215 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1216 1217 t->tx_bytes += bytes; 1218 t->tx_packets += packets; 1219 1220 stats = &nvchan->rx_stats; 1221 do { 1222 start = u64_stats_fetch_begin_irq(&stats->syncp); 1223 packets = stats->packets; 1224 bytes = stats->bytes; 1225 multicast = stats->multicast + stats->broadcast; 1226 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1227 1228 t->rx_bytes += bytes; 1229 t->rx_packets += packets; 1230 t->multicast += multicast; 1231 } 1232 } 1233 1234 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1235 { 1236 struct net_device_context *ndc = netdev_priv(ndev); 1237 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1238 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1239 struct sockaddr *addr = p; 1240 int err; 1241 1242 err = eth_prepare_mac_addr_change(ndev, p); 1243 if (err) 1244 return err; 1245 1246 if (!nvdev) 1247 return -ENODEV; 1248 1249 if (vf_netdev) { 1250 err = dev_set_mac_address(vf_netdev, addr, NULL); 1251 if (err) 1252 return err; 1253 } 1254 1255 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1256 if (!err) { 1257 eth_commit_mac_addr_change(ndev, p); 1258 } else if (vf_netdev) { 1259 /* rollback change on VF */ 1260 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1261 dev_set_mac_address(vf_netdev, addr, NULL); 1262 } 1263 1264 return err; 1265 } 1266 1267 static const struct { 1268 char name[ETH_GSTRING_LEN]; 1269 u16 offset; 1270 } netvsc_stats[] = { 1271 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1272 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1273 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1274 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1275 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1276 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1277 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1278 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1279 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1280 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1281 }, pcpu_stats[] = { 1282 { "cpu%u_rx_packets", 1283 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1284 { "cpu%u_rx_bytes", 1285 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1286 { "cpu%u_tx_packets", 1287 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1288 { "cpu%u_tx_bytes", 1289 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1290 { "cpu%u_vf_rx_packets", 1291 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1292 { "cpu%u_vf_rx_bytes", 1293 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1294 { "cpu%u_vf_tx_packets", 1295 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1296 { "cpu%u_vf_tx_bytes", 1297 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1298 }, vf_stats[] = { 1299 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1300 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1301 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1302 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1303 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1304 }; 1305 1306 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1307 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1308 1309 /* statistics per queue (rx/tx packets/bytes) */ 1310 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1311 1312 /* 4 statistics per queue (rx/tx packets/bytes) */ 1313 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1314 1315 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1316 { 1317 struct net_device_context *ndc = netdev_priv(dev); 1318 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1319 1320 if (!nvdev) 1321 return -ENODEV; 1322 1323 switch (string_set) { 1324 case ETH_SS_STATS: 1325 return NETVSC_GLOBAL_STATS_LEN 1326 + NETVSC_VF_STATS_LEN 1327 + NETVSC_QUEUE_STATS_LEN(nvdev) 1328 + NETVSC_PCPU_STATS_LEN; 1329 default: 1330 return -EINVAL; 1331 } 1332 } 1333 1334 static void netvsc_get_ethtool_stats(struct net_device *dev, 1335 struct ethtool_stats *stats, u64 *data) 1336 { 1337 struct net_device_context *ndc = netdev_priv(dev); 1338 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1339 const void *nds = &ndc->eth_stats; 1340 const struct netvsc_stats *qstats; 1341 struct netvsc_vf_pcpu_stats sum; 1342 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1343 unsigned int start; 1344 u64 packets, bytes; 1345 int i, j, cpu; 1346 1347 if (!nvdev) 1348 return; 1349 1350 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1351 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1352 1353 netvsc_get_vf_stats(dev, &sum); 1354 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1355 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1356 1357 for (j = 0; j < nvdev->num_chn; j++) { 1358 qstats = &nvdev->chan_table[j].tx_stats; 1359 1360 do { 1361 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1362 packets = qstats->packets; 1363 bytes = qstats->bytes; 1364 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1365 data[i++] = packets; 1366 data[i++] = bytes; 1367 1368 qstats = &nvdev->chan_table[j].rx_stats; 1369 do { 1370 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1371 packets = qstats->packets; 1372 bytes = qstats->bytes; 1373 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1374 data[i++] = packets; 1375 data[i++] = bytes; 1376 } 1377 1378 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1379 sizeof(struct netvsc_ethtool_pcpu_stats), 1380 GFP_KERNEL); 1381 netvsc_get_pcpu_stats(dev, pcpu_sum); 1382 for_each_present_cpu(cpu) { 1383 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1384 1385 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1386 data[i++] = *(u64 *)((void *)this_sum 1387 + pcpu_stats[j].offset); 1388 } 1389 kvfree(pcpu_sum); 1390 } 1391 1392 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1393 { 1394 struct net_device_context *ndc = netdev_priv(dev); 1395 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1396 u8 *p = data; 1397 int i, cpu; 1398 1399 if (!nvdev) 1400 return; 1401 1402 switch (stringset) { 1403 case ETH_SS_STATS: 1404 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1405 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1406 p += ETH_GSTRING_LEN; 1407 } 1408 1409 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1410 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1411 p += ETH_GSTRING_LEN; 1412 } 1413 1414 for (i = 0; i < nvdev->num_chn; i++) { 1415 sprintf(p, "tx_queue_%u_packets", i); 1416 p += ETH_GSTRING_LEN; 1417 sprintf(p, "tx_queue_%u_bytes", i); 1418 p += ETH_GSTRING_LEN; 1419 sprintf(p, "rx_queue_%u_packets", i); 1420 p += ETH_GSTRING_LEN; 1421 sprintf(p, "rx_queue_%u_bytes", i); 1422 p += ETH_GSTRING_LEN; 1423 } 1424 1425 for_each_present_cpu(cpu) { 1426 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1427 sprintf(p, pcpu_stats[i].name, cpu); 1428 p += ETH_GSTRING_LEN; 1429 } 1430 } 1431 1432 break; 1433 } 1434 } 1435 1436 static int 1437 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1438 struct ethtool_rxnfc *info) 1439 { 1440 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1441 1442 info->data = RXH_IP_SRC | RXH_IP_DST; 1443 1444 switch (info->flow_type) { 1445 case TCP_V4_FLOW: 1446 if (ndc->l4_hash & HV_TCP4_L4HASH) 1447 info->data |= l4_flag; 1448 1449 break; 1450 1451 case TCP_V6_FLOW: 1452 if (ndc->l4_hash & HV_TCP6_L4HASH) 1453 info->data |= l4_flag; 1454 1455 break; 1456 1457 case UDP_V4_FLOW: 1458 if (ndc->l4_hash & HV_UDP4_L4HASH) 1459 info->data |= l4_flag; 1460 1461 break; 1462 1463 case UDP_V6_FLOW: 1464 if (ndc->l4_hash & HV_UDP6_L4HASH) 1465 info->data |= l4_flag; 1466 1467 break; 1468 1469 case IPV4_FLOW: 1470 case IPV6_FLOW: 1471 break; 1472 default: 1473 info->data = 0; 1474 break; 1475 } 1476 1477 return 0; 1478 } 1479 1480 static int 1481 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1482 u32 *rules) 1483 { 1484 struct net_device_context *ndc = netdev_priv(dev); 1485 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1486 1487 if (!nvdev) 1488 return -ENODEV; 1489 1490 switch (info->cmd) { 1491 case ETHTOOL_GRXRINGS: 1492 info->data = nvdev->num_chn; 1493 return 0; 1494 1495 case ETHTOOL_GRXFH: 1496 return netvsc_get_rss_hash_opts(ndc, info); 1497 } 1498 return -EOPNOTSUPP; 1499 } 1500 1501 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1502 struct ethtool_rxnfc *info) 1503 { 1504 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1505 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1506 switch (info->flow_type) { 1507 case TCP_V4_FLOW: 1508 ndc->l4_hash |= HV_TCP4_L4HASH; 1509 break; 1510 1511 case TCP_V6_FLOW: 1512 ndc->l4_hash |= HV_TCP6_L4HASH; 1513 break; 1514 1515 case UDP_V4_FLOW: 1516 ndc->l4_hash |= HV_UDP4_L4HASH; 1517 break; 1518 1519 case UDP_V6_FLOW: 1520 ndc->l4_hash |= HV_UDP6_L4HASH; 1521 break; 1522 1523 default: 1524 return -EOPNOTSUPP; 1525 } 1526 1527 return 0; 1528 } 1529 1530 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1531 switch (info->flow_type) { 1532 case TCP_V4_FLOW: 1533 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1534 break; 1535 1536 case TCP_V6_FLOW: 1537 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1538 break; 1539 1540 case UDP_V4_FLOW: 1541 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1542 break; 1543 1544 case UDP_V6_FLOW: 1545 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1546 break; 1547 1548 default: 1549 return -EOPNOTSUPP; 1550 } 1551 1552 return 0; 1553 } 1554 1555 return -EOPNOTSUPP; 1556 } 1557 1558 static int 1559 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1560 { 1561 struct net_device_context *ndc = netdev_priv(ndev); 1562 1563 if (info->cmd == ETHTOOL_SRXFH) 1564 return netvsc_set_rss_hash_opts(ndc, info); 1565 1566 return -EOPNOTSUPP; 1567 } 1568 1569 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1570 { 1571 return NETVSC_HASH_KEYLEN; 1572 } 1573 1574 static u32 netvsc_rss_indir_size(struct net_device *dev) 1575 { 1576 return ITAB_NUM; 1577 } 1578 1579 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1580 u8 *hfunc) 1581 { 1582 struct net_device_context *ndc = netdev_priv(dev); 1583 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1584 struct rndis_device *rndis_dev; 1585 int i; 1586 1587 if (!ndev) 1588 return -ENODEV; 1589 1590 if (hfunc) 1591 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1592 1593 rndis_dev = ndev->extension; 1594 if (indir) { 1595 for (i = 0; i < ITAB_NUM; i++) 1596 indir[i] = rndis_dev->rx_table[i]; 1597 } 1598 1599 if (key) 1600 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1601 1602 return 0; 1603 } 1604 1605 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1606 const u8 *key, const u8 hfunc) 1607 { 1608 struct net_device_context *ndc = netdev_priv(dev); 1609 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1610 struct rndis_device *rndis_dev; 1611 int i; 1612 1613 if (!ndev) 1614 return -ENODEV; 1615 1616 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1617 return -EOPNOTSUPP; 1618 1619 rndis_dev = ndev->extension; 1620 if (indir) { 1621 for (i = 0; i < ITAB_NUM; i++) 1622 if (indir[i] >= ndev->num_chn) 1623 return -EINVAL; 1624 1625 for (i = 0; i < ITAB_NUM; i++) 1626 rndis_dev->rx_table[i] = indir[i]; 1627 } 1628 1629 if (!key) { 1630 if (!indir) 1631 return 0; 1632 1633 key = rndis_dev->rss_key; 1634 } 1635 1636 return rndis_filter_set_rss_param(rndis_dev, key); 1637 } 1638 1639 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1640 * It does have pre-allocated receive area which is divided into sections. 1641 */ 1642 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1643 struct ethtool_ringparam *ring) 1644 { 1645 u32 max_buf_size; 1646 1647 ring->rx_pending = nvdev->recv_section_cnt; 1648 ring->tx_pending = nvdev->send_section_cnt; 1649 1650 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1651 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1652 else 1653 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1654 1655 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1656 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1657 / nvdev->send_section_size; 1658 } 1659 1660 static void netvsc_get_ringparam(struct net_device *ndev, 1661 struct ethtool_ringparam *ring) 1662 { 1663 struct net_device_context *ndevctx = netdev_priv(ndev); 1664 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1665 1666 if (!nvdev) 1667 return; 1668 1669 __netvsc_get_ringparam(nvdev, ring); 1670 } 1671 1672 static int netvsc_set_ringparam(struct net_device *ndev, 1673 struct ethtool_ringparam *ring) 1674 { 1675 struct net_device_context *ndevctx = netdev_priv(ndev); 1676 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1677 struct netvsc_device_info device_info; 1678 struct ethtool_ringparam orig; 1679 u32 new_tx, new_rx; 1680 int ret = 0; 1681 1682 if (!nvdev || nvdev->destroy) 1683 return -ENODEV; 1684 1685 memset(&orig, 0, sizeof(orig)); 1686 __netvsc_get_ringparam(nvdev, &orig); 1687 1688 new_tx = clamp_t(u32, ring->tx_pending, 1689 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1690 new_rx = clamp_t(u32, ring->rx_pending, 1691 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1692 1693 if (new_tx == orig.tx_pending && 1694 new_rx == orig.rx_pending) 1695 return 0; /* no change */ 1696 1697 memset(&device_info, 0, sizeof(device_info)); 1698 device_info.num_chn = nvdev->num_chn; 1699 device_info.send_sections = new_tx; 1700 device_info.send_section_size = nvdev->send_section_size; 1701 device_info.recv_sections = new_rx; 1702 device_info.recv_section_size = nvdev->recv_section_size; 1703 1704 ret = netvsc_detach(ndev, nvdev); 1705 if (ret) 1706 return ret; 1707 1708 ret = netvsc_attach(ndev, &device_info); 1709 if (ret) { 1710 device_info.send_sections = orig.tx_pending; 1711 device_info.recv_sections = orig.rx_pending; 1712 1713 if (netvsc_attach(ndev, &device_info)) 1714 netdev_err(ndev, "restoring ringparam failed"); 1715 } 1716 1717 return ret; 1718 } 1719 1720 static int netvsc_set_features(struct net_device *ndev, 1721 netdev_features_t features) 1722 { 1723 netdev_features_t change = features ^ ndev->features; 1724 struct net_device_context *ndevctx = netdev_priv(ndev); 1725 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1726 struct ndis_offload_params offloads; 1727 1728 if (!nvdev || nvdev->destroy) 1729 return -ENODEV; 1730 1731 if (!(change & NETIF_F_LRO)) 1732 return 0; 1733 1734 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1735 1736 if (features & NETIF_F_LRO) { 1737 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1738 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1739 } else { 1740 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1741 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1742 } 1743 1744 return rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1745 } 1746 1747 static u32 netvsc_get_msglevel(struct net_device *ndev) 1748 { 1749 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1750 1751 return ndev_ctx->msg_enable; 1752 } 1753 1754 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1755 { 1756 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1757 1758 ndev_ctx->msg_enable = val; 1759 } 1760 1761 static const struct ethtool_ops ethtool_ops = { 1762 .get_drvinfo = netvsc_get_drvinfo, 1763 .get_msglevel = netvsc_get_msglevel, 1764 .set_msglevel = netvsc_set_msglevel, 1765 .get_link = ethtool_op_get_link, 1766 .get_ethtool_stats = netvsc_get_ethtool_stats, 1767 .get_sset_count = netvsc_get_sset_count, 1768 .get_strings = netvsc_get_strings, 1769 .get_channels = netvsc_get_channels, 1770 .set_channels = netvsc_set_channels, 1771 .get_ts_info = ethtool_op_get_ts_info, 1772 .get_rxnfc = netvsc_get_rxnfc, 1773 .set_rxnfc = netvsc_set_rxnfc, 1774 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1775 .get_rxfh_indir_size = netvsc_rss_indir_size, 1776 .get_rxfh = netvsc_get_rxfh, 1777 .set_rxfh = netvsc_set_rxfh, 1778 .get_link_ksettings = netvsc_get_link_ksettings, 1779 .set_link_ksettings = netvsc_set_link_ksettings, 1780 .get_ringparam = netvsc_get_ringparam, 1781 .set_ringparam = netvsc_set_ringparam, 1782 }; 1783 1784 static const struct net_device_ops device_ops = { 1785 .ndo_open = netvsc_open, 1786 .ndo_stop = netvsc_close, 1787 .ndo_start_xmit = netvsc_start_xmit, 1788 .ndo_change_rx_flags = netvsc_change_rx_flags, 1789 .ndo_set_rx_mode = netvsc_set_rx_mode, 1790 .ndo_set_features = netvsc_set_features, 1791 .ndo_change_mtu = netvsc_change_mtu, 1792 .ndo_validate_addr = eth_validate_addr, 1793 .ndo_set_mac_address = netvsc_set_mac_addr, 1794 .ndo_select_queue = netvsc_select_queue, 1795 .ndo_get_stats64 = netvsc_get_stats64, 1796 }; 1797 1798 /* 1799 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1800 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1801 * present send GARP packet to network peers with netif_notify_peers(). 1802 */ 1803 static void netvsc_link_change(struct work_struct *w) 1804 { 1805 struct net_device_context *ndev_ctx = 1806 container_of(w, struct net_device_context, dwork.work); 1807 struct hv_device *device_obj = ndev_ctx->device_ctx; 1808 struct net_device *net = hv_get_drvdata(device_obj); 1809 struct netvsc_device *net_device; 1810 struct rndis_device *rdev; 1811 struct netvsc_reconfig *event = NULL; 1812 bool notify = false, reschedule = false; 1813 unsigned long flags, next_reconfig, delay; 1814 1815 /* if changes are happening, comeback later */ 1816 if (!rtnl_trylock()) { 1817 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1818 return; 1819 } 1820 1821 net_device = rtnl_dereference(ndev_ctx->nvdev); 1822 if (!net_device) 1823 goto out_unlock; 1824 1825 rdev = net_device->extension; 1826 1827 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1828 if (time_is_after_jiffies(next_reconfig)) { 1829 /* link_watch only sends one notification with current state 1830 * per second, avoid doing reconfig more frequently. Handle 1831 * wrap around. 1832 */ 1833 delay = next_reconfig - jiffies; 1834 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1835 schedule_delayed_work(&ndev_ctx->dwork, delay); 1836 goto out_unlock; 1837 } 1838 ndev_ctx->last_reconfig = jiffies; 1839 1840 spin_lock_irqsave(&ndev_ctx->lock, flags); 1841 if (!list_empty(&ndev_ctx->reconfig_events)) { 1842 event = list_first_entry(&ndev_ctx->reconfig_events, 1843 struct netvsc_reconfig, list); 1844 list_del(&event->list); 1845 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1846 } 1847 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1848 1849 if (!event) 1850 goto out_unlock; 1851 1852 switch (event->event) { 1853 /* Only the following events are possible due to the check in 1854 * netvsc_linkstatus_callback() 1855 */ 1856 case RNDIS_STATUS_MEDIA_CONNECT: 1857 if (rdev->link_state) { 1858 rdev->link_state = false; 1859 netif_carrier_on(net); 1860 netif_tx_wake_all_queues(net); 1861 } else { 1862 notify = true; 1863 } 1864 kfree(event); 1865 break; 1866 case RNDIS_STATUS_MEDIA_DISCONNECT: 1867 if (!rdev->link_state) { 1868 rdev->link_state = true; 1869 netif_carrier_off(net); 1870 netif_tx_stop_all_queues(net); 1871 } 1872 kfree(event); 1873 break; 1874 case RNDIS_STATUS_NETWORK_CHANGE: 1875 /* Only makes sense if carrier is present */ 1876 if (!rdev->link_state) { 1877 rdev->link_state = true; 1878 netif_carrier_off(net); 1879 netif_tx_stop_all_queues(net); 1880 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1881 spin_lock_irqsave(&ndev_ctx->lock, flags); 1882 list_add(&event->list, &ndev_ctx->reconfig_events); 1883 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1884 reschedule = true; 1885 } 1886 break; 1887 } 1888 1889 rtnl_unlock(); 1890 1891 if (notify) 1892 netdev_notify_peers(net); 1893 1894 /* link_watch only sends one notification with current state per 1895 * second, handle next reconfig event in 2 seconds. 1896 */ 1897 if (reschedule) 1898 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1899 1900 return; 1901 1902 out_unlock: 1903 rtnl_unlock(); 1904 } 1905 1906 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1907 { 1908 struct net_device_context *net_device_ctx; 1909 struct net_device *dev; 1910 1911 dev = netdev_master_upper_dev_get(vf_netdev); 1912 if (!dev || dev->netdev_ops != &device_ops) 1913 return NULL; /* not a netvsc device */ 1914 1915 net_device_ctx = netdev_priv(dev); 1916 if (!rtnl_dereference(net_device_ctx->nvdev)) 1917 return NULL; /* device is removed */ 1918 1919 return dev; 1920 } 1921 1922 /* Called when VF is injecting data into network stack. 1923 * Change the associated network device from VF to netvsc. 1924 * note: already called with rcu_read_lock 1925 */ 1926 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 1927 { 1928 struct sk_buff *skb = *pskb; 1929 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 1930 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1931 struct netvsc_vf_pcpu_stats *pcpu_stats 1932 = this_cpu_ptr(ndev_ctx->vf_stats); 1933 1934 skb->dev = ndev; 1935 1936 u64_stats_update_begin(&pcpu_stats->syncp); 1937 pcpu_stats->rx_packets++; 1938 pcpu_stats->rx_bytes += skb->len; 1939 u64_stats_update_end(&pcpu_stats->syncp); 1940 1941 return RX_HANDLER_ANOTHER; 1942 } 1943 1944 static int netvsc_vf_join(struct net_device *vf_netdev, 1945 struct net_device *ndev) 1946 { 1947 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1948 int ret; 1949 1950 ret = netdev_rx_handler_register(vf_netdev, 1951 netvsc_vf_handle_frame, ndev); 1952 if (ret != 0) { 1953 netdev_err(vf_netdev, 1954 "can not register netvsc VF receive handler (err = %d)\n", 1955 ret); 1956 goto rx_handler_failed; 1957 } 1958 1959 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 1960 NULL, NULL, NULL); 1961 if (ret != 0) { 1962 netdev_err(vf_netdev, 1963 "can not set master device %s (err = %d)\n", 1964 ndev->name, ret); 1965 goto upper_link_failed; 1966 } 1967 1968 /* set slave flag before open to prevent IPv6 addrconf */ 1969 vf_netdev->flags |= IFF_SLAVE; 1970 1971 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 1972 1973 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 1974 1975 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 1976 return 0; 1977 1978 upper_link_failed: 1979 netdev_rx_handler_unregister(vf_netdev); 1980 rx_handler_failed: 1981 return ret; 1982 } 1983 1984 static void __netvsc_vf_setup(struct net_device *ndev, 1985 struct net_device *vf_netdev) 1986 { 1987 int ret; 1988 1989 /* Align MTU of VF with master */ 1990 ret = dev_set_mtu(vf_netdev, ndev->mtu); 1991 if (ret) 1992 netdev_warn(vf_netdev, 1993 "unable to change mtu to %u\n", ndev->mtu); 1994 1995 /* set multicast etc flags on VF */ 1996 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 1997 1998 /* sync address list from ndev to VF */ 1999 netif_addr_lock_bh(ndev); 2000 dev_uc_sync(vf_netdev, ndev); 2001 dev_mc_sync(vf_netdev, ndev); 2002 netif_addr_unlock_bh(ndev); 2003 2004 if (netif_running(ndev)) { 2005 ret = dev_open(vf_netdev, NULL); 2006 if (ret) 2007 netdev_warn(vf_netdev, 2008 "unable to open: %d\n", ret); 2009 } 2010 } 2011 2012 /* Setup VF as slave of the synthetic device. 2013 * Runs in workqueue to avoid recursion in netlink callbacks. 2014 */ 2015 static void netvsc_vf_setup(struct work_struct *w) 2016 { 2017 struct net_device_context *ndev_ctx 2018 = container_of(w, struct net_device_context, vf_takeover.work); 2019 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2020 struct net_device *vf_netdev; 2021 2022 if (!rtnl_trylock()) { 2023 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2024 return; 2025 } 2026 2027 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2028 if (vf_netdev) 2029 __netvsc_vf_setup(ndev, vf_netdev); 2030 2031 rtnl_unlock(); 2032 } 2033 2034 /* Find netvsc by VF serial number. 2035 * The PCI hyperv controller records the serial number as the slot kobj name. 2036 */ 2037 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2038 { 2039 struct device *parent = vf_netdev->dev.parent; 2040 struct net_device_context *ndev_ctx; 2041 struct pci_dev *pdev; 2042 u32 serial; 2043 2044 if (!parent || !dev_is_pci(parent)) 2045 return NULL; /* not a PCI device */ 2046 2047 pdev = to_pci_dev(parent); 2048 if (!pdev->slot) { 2049 netdev_notice(vf_netdev, "no PCI slot information\n"); 2050 return NULL; 2051 } 2052 2053 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2054 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2055 pci_slot_name(pdev->slot)); 2056 return NULL; 2057 } 2058 2059 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2060 if (!ndev_ctx->vf_alloc) 2061 continue; 2062 2063 if (ndev_ctx->vf_serial == serial) 2064 return hv_get_drvdata(ndev_ctx->device_ctx); 2065 } 2066 2067 netdev_notice(vf_netdev, 2068 "no netdev found for vf serial:%u\n", serial); 2069 return NULL; 2070 } 2071 2072 static int netvsc_register_vf(struct net_device *vf_netdev) 2073 { 2074 struct net_device_context *net_device_ctx; 2075 struct netvsc_device *netvsc_dev; 2076 struct net_device *ndev; 2077 int ret; 2078 2079 if (vf_netdev->addr_len != ETH_ALEN) 2080 return NOTIFY_DONE; 2081 2082 ndev = get_netvsc_byslot(vf_netdev); 2083 if (!ndev) 2084 return NOTIFY_DONE; 2085 2086 net_device_ctx = netdev_priv(ndev); 2087 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2088 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2089 return NOTIFY_DONE; 2090 2091 /* if syntihetic interface is a different namespace, 2092 * then move the VF to that namespace; join will be 2093 * done again in that context. 2094 */ 2095 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2096 ret = dev_change_net_namespace(vf_netdev, 2097 dev_net(ndev), "eth%d"); 2098 if (ret) 2099 netdev_err(vf_netdev, 2100 "could not move to same namespace as %s: %d\n", 2101 ndev->name, ret); 2102 else 2103 netdev_info(vf_netdev, 2104 "VF moved to namespace with: %s\n", 2105 ndev->name); 2106 return NOTIFY_DONE; 2107 } 2108 2109 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2110 2111 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2112 return NOTIFY_DONE; 2113 2114 dev_hold(vf_netdev); 2115 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2116 return NOTIFY_OK; 2117 } 2118 2119 /* VF up/down change detected, schedule to change data path */ 2120 static int netvsc_vf_changed(struct net_device *vf_netdev) 2121 { 2122 struct net_device_context *net_device_ctx; 2123 struct netvsc_device *netvsc_dev; 2124 struct net_device *ndev; 2125 bool vf_is_up = netif_running(vf_netdev); 2126 2127 ndev = get_netvsc_byref(vf_netdev); 2128 if (!ndev) 2129 return NOTIFY_DONE; 2130 2131 net_device_ctx = netdev_priv(ndev); 2132 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2133 if (!netvsc_dev) 2134 return NOTIFY_DONE; 2135 2136 netvsc_switch_datapath(ndev, vf_is_up); 2137 netdev_info(ndev, "Data path switched %s VF: %s\n", 2138 vf_is_up ? "to" : "from", vf_netdev->name); 2139 2140 return NOTIFY_OK; 2141 } 2142 2143 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2144 { 2145 struct net_device *ndev; 2146 struct net_device_context *net_device_ctx; 2147 2148 ndev = get_netvsc_byref(vf_netdev); 2149 if (!ndev) 2150 return NOTIFY_DONE; 2151 2152 net_device_ctx = netdev_priv(ndev); 2153 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2154 2155 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2156 2157 netdev_rx_handler_unregister(vf_netdev); 2158 netdev_upper_dev_unlink(vf_netdev, ndev); 2159 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2160 dev_put(vf_netdev); 2161 2162 return NOTIFY_OK; 2163 } 2164 2165 static int netvsc_probe(struct hv_device *dev, 2166 const struct hv_vmbus_device_id *dev_id) 2167 { 2168 struct net_device *net = NULL; 2169 struct net_device_context *net_device_ctx; 2170 struct netvsc_device_info device_info; 2171 struct netvsc_device *nvdev; 2172 int ret = -ENOMEM; 2173 2174 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2175 VRSS_CHANNEL_MAX); 2176 if (!net) 2177 goto no_net; 2178 2179 netif_carrier_off(net); 2180 2181 netvsc_init_settings(net); 2182 2183 net_device_ctx = netdev_priv(net); 2184 net_device_ctx->device_ctx = dev; 2185 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2186 if (netif_msg_probe(net_device_ctx)) 2187 netdev_dbg(net, "netvsc msg_enable: %d\n", 2188 net_device_ctx->msg_enable); 2189 2190 hv_set_drvdata(dev, net); 2191 2192 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2193 2194 spin_lock_init(&net_device_ctx->lock); 2195 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2196 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2197 2198 net_device_ctx->vf_stats 2199 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2200 if (!net_device_ctx->vf_stats) 2201 goto no_stats; 2202 2203 net->netdev_ops = &device_ops; 2204 net->ethtool_ops = ðtool_ops; 2205 SET_NETDEV_DEV(net, &dev->device); 2206 2207 /* We always need headroom for rndis header */ 2208 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2209 2210 /* Initialize the number of queues to be 1, we may change it if more 2211 * channels are offered later. 2212 */ 2213 netif_set_real_num_tx_queues(net, 1); 2214 netif_set_real_num_rx_queues(net, 1); 2215 2216 /* Notify the netvsc driver of the new device */ 2217 memset(&device_info, 0, sizeof(device_info)); 2218 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 2219 device_info.send_sections = NETVSC_DEFAULT_TX; 2220 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE; 2221 device_info.recv_sections = NETVSC_DEFAULT_RX; 2222 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE; 2223 2224 nvdev = rndis_filter_device_add(dev, &device_info); 2225 if (IS_ERR(nvdev)) { 2226 ret = PTR_ERR(nvdev); 2227 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2228 goto rndis_failed; 2229 } 2230 2231 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 2232 2233 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2234 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2235 * all subchannels to show up, but that may not happen because 2236 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2237 * -> ... -> device_add() -> ... -> __device_attach() can't get 2238 * the device lock, so all the subchannels can't be processed -- 2239 * finally netvsc_subchan_work() hangs for ever. 2240 */ 2241 rtnl_lock(); 2242 2243 if (nvdev->num_chn > 1) 2244 schedule_work(&nvdev->subchan_work); 2245 2246 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2247 net->features = net->hw_features | 2248 NETIF_F_HIGHDMA | NETIF_F_SG | 2249 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2250 net->vlan_features = net->features; 2251 2252 netdev_lockdep_set_classes(net); 2253 2254 /* MTU range: 68 - 1500 or 65521 */ 2255 net->min_mtu = NETVSC_MTU_MIN; 2256 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2257 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2258 else 2259 net->max_mtu = ETH_DATA_LEN; 2260 2261 ret = register_netdevice(net); 2262 if (ret != 0) { 2263 pr_err("Unable to register netdev.\n"); 2264 goto register_failed; 2265 } 2266 2267 list_add(&net_device_ctx->list, &netvsc_dev_list); 2268 rtnl_unlock(); 2269 return 0; 2270 2271 register_failed: 2272 rtnl_unlock(); 2273 rndis_filter_device_remove(dev, nvdev); 2274 rndis_failed: 2275 free_percpu(net_device_ctx->vf_stats); 2276 no_stats: 2277 hv_set_drvdata(dev, NULL); 2278 free_netdev(net); 2279 no_net: 2280 return ret; 2281 } 2282 2283 static int netvsc_remove(struct hv_device *dev) 2284 { 2285 struct net_device_context *ndev_ctx; 2286 struct net_device *vf_netdev, *net; 2287 struct netvsc_device *nvdev; 2288 2289 net = hv_get_drvdata(dev); 2290 if (net == NULL) { 2291 dev_err(&dev->device, "No net device to remove\n"); 2292 return 0; 2293 } 2294 2295 ndev_ctx = netdev_priv(net); 2296 2297 cancel_delayed_work_sync(&ndev_ctx->dwork); 2298 2299 rtnl_lock(); 2300 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2301 if (nvdev) 2302 cancel_work_sync(&nvdev->subchan_work); 2303 2304 /* 2305 * Call to the vsc driver to let it know that the device is being 2306 * removed. Also blocks mtu and channel changes. 2307 */ 2308 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2309 if (vf_netdev) 2310 netvsc_unregister_vf(vf_netdev); 2311 2312 if (nvdev) 2313 rndis_filter_device_remove(dev, nvdev); 2314 2315 unregister_netdevice(net); 2316 list_del(&ndev_ctx->list); 2317 2318 rtnl_unlock(); 2319 2320 hv_set_drvdata(dev, NULL); 2321 2322 free_percpu(ndev_ctx->vf_stats); 2323 free_netdev(net); 2324 return 0; 2325 } 2326 2327 static const struct hv_vmbus_device_id id_table[] = { 2328 /* Network guid */ 2329 { HV_NIC_GUID, }, 2330 { }, 2331 }; 2332 2333 MODULE_DEVICE_TABLE(vmbus, id_table); 2334 2335 /* The one and only one */ 2336 static struct hv_driver netvsc_drv = { 2337 .name = KBUILD_MODNAME, 2338 .id_table = id_table, 2339 .probe = netvsc_probe, 2340 .remove = netvsc_remove, 2341 .driver = { 2342 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2343 }, 2344 }; 2345 2346 /* 2347 * On Hyper-V, every VF interface is matched with a corresponding 2348 * synthetic interface. The synthetic interface is presented first 2349 * to the guest. When the corresponding VF instance is registered, 2350 * we will take care of switching the data path. 2351 */ 2352 static int netvsc_netdev_event(struct notifier_block *this, 2353 unsigned long event, void *ptr) 2354 { 2355 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2356 2357 /* Skip our own events */ 2358 if (event_dev->netdev_ops == &device_ops) 2359 return NOTIFY_DONE; 2360 2361 /* Avoid non-Ethernet type devices */ 2362 if (event_dev->type != ARPHRD_ETHER) 2363 return NOTIFY_DONE; 2364 2365 /* Avoid Vlan dev with same MAC registering as VF */ 2366 if (is_vlan_dev(event_dev)) 2367 return NOTIFY_DONE; 2368 2369 /* Avoid Bonding master dev with same MAC registering as VF */ 2370 if ((event_dev->priv_flags & IFF_BONDING) && 2371 (event_dev->flags & IFF_MASTER)) 2372 return NOTIFY_DONE; 2373 2374 switch (event) { 2375 case NETDEV_REGISTER: 2376 return netvsc_register_vf(event_dev); 2377 case NETDEV_UNREGISTER: 2378 return netvsc_unregister_vf(event_dev); 2379 case NETDEV_UP: 2380 case NETDEV_DOWN: 2381 return netvsc_vf_changed(event_dev); 2382 default: 2383 return NOTIFY_DONE; 2384 } 2385 } 2386 2387 static struct notifier_block netvsc_netdev_notifier = { 2388 .notifier_call = netvsc_netdev_event, 2389 }; 2390 2391 static void __exit netvsc_drv_exit(void) 2392 { 2393 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2394 vmbus_driver_unregister(&netvsc_drv); 2395 } 2396 2397 static int __init netvsc_drv_init(void) 2398 { 2399 int ret; 2400 2401 if (ring_size < RING_SIZE_MIN) { 2402 ring_size = RING_SIZE_MIN; 2403 pr_info("Increased ring_size to %u (min allowed)\n", 2404 ring_size); 2405 } 2406 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2407 2408 ret = vmbus_driver_register(&netvsc_drv); 2409 if (ret) 2410 return ret; 2411 2412 register_netdevice_notifier(&netvsc_netdev_notifier); 2413 return 0; 2414 } 2415 2416 MODULE_LICENSE("GPL"); 2417 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2418 2419 module_init(netvsc_drv_init); 2420 module_exit(netvsc_drv_exit); 2421