1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/ethtool.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/device.h> 17 #include <linux/io.h> 18 #include <linux/delay.h> 19 #include <linux/netdevice.h> 20 #include <linux/inetdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/pci.h> 23 #include <linux/skbuff.h> 24 #include <linux/if_vlan.h> 25 #include <linux/in.h> 26 #include <linux/slab.h> 27 #include <linux/rtnetlink.h> 28 #include <linux/netpoll.h> 29 #include <linux/bpf.h> 30 31 #include <net/arp.h> 32 #include <net/route.h> 33 #include <net/sock.h> 34 #include <net/pkt_sched.h> 35 #include <net/checksum.h> 36 #include <net/ip6_checksum.h> 37 38 #include "hyperv_net.h" 39 40 #define RING_SIZE_MIN 64 41 #define RETRY_US_LO 5000 42 #define RETRY_US_HI 10000 43 #define RETRY_MAX 2000 /* >10 sec */ 44 45 #define LINKCHANGE_INT (2 * HZ) 46 #define VF_TAKEOVER_INT (HZ / 10) 47 48 static unsigned int ring_size __ro_after_init = 128; 49 module_param(ring_size, uint, 0444); 50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 51 unsigned int netvsc_ring_bytes __ro_after_init; 52 53 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 54 NETIF_MSG_LINK | NETIF_MSG_IFUP | 55 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 56 NETIF_MSG_TX_ERR; 57 58 static int debug = -1; 59 module_param(debug, int, 0444); 60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 61 62 static LIST_HEAD(netvsc_dev_list); 63 64 static void netvsc_change_rx_flags(struct net_device *net, int change) 65 { 66 struct net_device_context *ndev_ctx = netdev_priv(net); 67 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 68 int inc; 69 70 if (!vf_netdev) 71 return; 72 73 if (change & IFF_PROMISC) { 74 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 75 dev_set_promiscuity(vf_netdev, inc); 76 } 77 78 if (change & IFF_ALLMULTI) { 79 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 80 dev_set_allmulti(vf_netdev, inc); 81 } 82 } 83 84 static void netvsc_set_rx_mode(struct net_device *net) 85 { 86 struct net_device_context *ndev_ctx = netdev_priv(net); 87 struct net_device *vf_netdev; 88 struct netvsc_device *nvdev; 89 90 rcu_read_lock(); 91 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 92 if (vf_netdev) { 93 dev_uc_sync(vf_netdev, net); 94 dev_mc_sync(vf_netdev, net); 95 } 96 97 nvdev = rcu_dereference(ndev_ctx->nvdev); 98 if (nvdev) 99 rndis_filter_update(nvdev); 100 rcu_read_unlock(); 101 } 102 103 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 104 struct net_device *ndev) 105 { 106 nvscdev->tx_disable = false; 107 virt_wmb(); /* ensure queue wake up mechanism is on */ 108 109 netif_tx_wake_all_queues(ndev); 110 } 111 112 static int netvsc_open(struct net_device *net) 113 { 114 struct net_device_context *ndev_ctx = netdev_priv(net); 115 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 116 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 117 struct rndis_device *rdev; 118 int ret = 0; 119 120 netif_carrier_off(net); 121 122 /* Open up the device */ 123 ret = rndis_filter_open(nvdev); 124 if (ret != 0) { 125 netdev_err(net, "unable to open device (ret %d).\n", ret); 126 return ret; 127 } 128 129 rdev = nvdev->extension; 130 if (!rdev->link_state) { 131 netif_carrier_on(net); 132 netvsc_tx_enable(nvdev, net); 133 } 134 135 if (vf_netdev) { 136 /* Setting synthetic device up transparently sets 137 * slave as up. If open fails, then slave will be 138 * still be offline (and not used). 139 */ 140 ret = dev_open(vf_netdev, NULL); 141 if (ret) 142 netdev_warn(net, 143 "unable to open slave: %s: %d\n", 144 vf_netdev->name, ret); 145 } 146 return 0; 147 } 148 149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 150 { 151 unsigned int retry = 0; 152 int i; 153 154 /* Ensure pending bytes in ring are read */ 155 for (;;) { 156 u32 aread = 0; 157 158 for (i = 0; i < nvdev->num_chn; i++) { 159 struct vmbus_channel *chn 160 = nvdev->chan_table[i].channel; 161 162 if (!chn) 163 continue; 164 165 /* make sure receive not running now */ 166 napi_synchronize(&nvdev->chan_table[i].napi); 167 168 aread = hv_get_bytes_to_read(&chn->inbound); 169 if (aread) 170 break; 171 172 aread = hv_get_bytes_to_read(&chn->outbound); 173 if (aread) 174 break; 175 } 176 177 if (aread == 0) 178 return 0; 179 180 if (++retry > RETRY_MAX) 181 return -ETIMEDOUT; 182 183 usleep_range(RETRY_US_LO, RETRY_US_HI); 184 } 185 } 186 187 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 188 struct net_device *ndev) 189 { 190 if (nvscdev) { 191 nvscdev->tx_disable = true; 192 virt_wmb(); /* ensure txq will not wake up after stop */ 193 } 194 195 netif_tx_disable(ndev); 196 } 197 198 static int netvsc_close(struct net_device *net) 199 { 200 struct net_device_context *net_device_ctx = netdev_priv(net); 201 struct net_device *vf_netdev 202 = rtnl_dereference(net_device_ctx->vf_netdev); 203 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 204 int ret; 205 206 netvsc_tx_disable(nvdev, net); 207 208 /* No need to close rndis filter if it is removed already */ 209 if (!nvdev) 210 return 0; 211 212 ret = rndis_filter_close(nvdev); 213 if (ret != 0) { 214 netdev_err(net, "unable to close device (ret %d).\n", ret); 215 return ret; 216 } 217 218 ret = netvsc_wait_until_empty(nvdev); 219 if (ret) 220 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 221 222 if (vf_netdev) 223 dev_close(vf_netdev); 224 225 return ret; 226 } 227 228 static inline void *init_ppi_data(struct rndis_message *msg, 229 u32 ppi_size, u32 pkt_type) 230 { 231 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 232 struct rndis_per_packet_info *ppi; 233 234 rndis_pkt->data_offset += ppi_size; 235 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 236 + rndis_pkt->per_pkt_info_len; 237 238 ppi->size = ppi_size; 239 ppi->type = pkt_type; 240 ppi->internal = 0; 241 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 242 243 rndis_pkt->per_pkt_info_len += ppi_size; 244 245 return ppi + 1; 246 } 247 248 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 249 * packets. We can use ethtool to change UDP hash level when necessary. 250 */ 251 static inline u32 netvsc_get_hash( 252 struct sk_buff *skb, 253 const struct net_device_context *ndc) 254 { 255 struct flow_keys flow; 256 u32 hash, pkt_proto = 0; 257 static u32 hashrnd __read_mostly; 258 259 net_get_random_once(&hashrnd, sizeof(hashrnd)); 260 261 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 262 return 0; 263 264 switch (flow.basic.ip_proto) { 265 case IPPROTO_TCP: 266 if (flow.basic.n_proto == htons(ETH_P_IP)) 267 pkt_proto = HV_TCP4_L4HASH; 268 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 269 pkt_proto = HV_TCP6_L4HASH; 270 271 break; 272 273 case IPPROTO_UDP: 274 if (flow.basic.n_proto == htons(ETH_P_IP)) 275 pkt_proto = HV_UDP4_L4HASH; 276 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 277 pkt_proto = HV_UDP6_L4HASH; 278 279 break; 280 } 281 282 if (pkt_proto & ndc->l4_hash) { 283 return skb_get_hash(skb); 284 } else { 285 if (flow.basic.n_proto == htons(ETH_P_IP)) 286 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 287 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 288 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 289 else 290 return 0; 291 292 __skb_set_sw_hash(skb, hash, false); 293 } 294 295 return hash; 296 } 297 298 static inline int netvsc_get_tx_queue(struct net_device *ndev, 299 struct sk_buff *skb, int old_idx) 300 { 301 const struct net_device_context *ndc = netdev_priv(ndev); 302 struct sock *sk = skb->sk; 303 int q_idx; 304 305 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 306 (VRSS_SEND_TAB_SIZE - 1)]; 307 308 /* If queue index changed record the new value */ 309 if (q_idx != old_idx && 310 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 311 sk_tx_queue_set(sk, q_idx); 312 313 return q_idx; 314 } 315 316 /* 317 * Select queue for transmit. 318 * 319 * If a valid queue has already been assigned, then use that. 320 * Otherwise compute tx queue based on hash and the send table. 321 * 322 * This is basically similar to default (netdev_pick_tx) with the added step 323 * of using the host send_table when no other queue has been assigned. 324 * 325 * TODO support XPS - but get_xps_queue not exported 326 */ 327 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 328 { 329 int q_idx = sk_tx_queue_get(skb->sk); 330 331 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 332 /* If forwarding a packet, we use the recorded queue when 333 * available for better cache locality. 334 */ 335 if (skb_rx_queue_recorded(skb)) 336 q_idx = skb_get_rx_queue(skb); 337 else 338 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 339 } 340 341 return q_idx; 342 } 343 344 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 345 struct net_device *sb_dev) 346 { 347 struct net_device_context *ndc = netdev_priv(ndev); 348 struct net_device *vf_netdev; 349 u16 txq; 350 351 rcu_read_lock(); 352 vf_netdev = rcu_dereference(ndc->vf_netdev); 353 if (vf_netdev) { 354 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 355 356 if (vf_ops->ndo_select_queue) 357 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 358 else 359 txq = netdev_pick_tx(vf_netdev, skb, NULL); 360 361 /* Record the queue selected by VF so that it can be 362 * used for common case where VF has more queues than 363 * the synthetic device. 364 */ 365 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 366 } else { 367 txq = netvsc_pick_tx(ndev, skb); 368 } 369 rcu_read_unlock(); 370 371 while (txq >= ndev->real_num_tx_queues) 372 txq -= ndev->real_num_tx_queues; 373 374 return txq; 375 } 376 377 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len, 378 struct hv_page_buffer *pb) 379 { 380 int j = 0; 381 382 hvpfn += offset >> HV_HYP_PAGE_SHIFT; 383 offset = offset & ~HV_HYP_PAGE_MASK; 384 385 while (len > 0) { 386 unsigned long bytes; 387 388 bytes = HV_HYP_PAGE_SIZE - offset; 389 if (bytes > len) 390 bytes = len; 391 pb[j].pfn = hvpfn; 392 pb[j].offset = offset; 393 pb[j].len = bytes; 394 395 offset += bytes; 396 len -= bytes; 397 398 if (offset == HV_HYP_PAGE_SIZE && len) { 399 hvpfn++; 400 offset = 0; 401 j++; 402 } 403 } 404 405 return j + 1; 406 } 407 408 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 409 struct hv_netvsc_packet *packet, 410 struct hv_page_buffer *pb) 411 { 412 u32 slots_used = 0; 413 char *data = skb->data; 414 int frags = skb_shinfo(skb)->nr_frags; 415 int i; 416 417 /* The packet is laid out thus: 418 * 1. hdr: RNDIS header and PPI 419 * 2. skb linear data 420 * 3. skb fragment data 421 */ 422 slots_used += fill_pg_buf(virt_to_hvpfn(hdr), 423 offset_in_hvpage(hdr), 424 len, 425 &pb[slots_used]); 426 427 packet->rmsg_size = len; 428 packet->rmsg_pgcnt = slots_used; 429 430 slots_used += fill_pg_buf(virt_to_hvpfn(data), 431 offset_in_hvpage(data), 432 skb_headlen(skb), 433 &pb[slots_used]); 434 435 for (i = 0; i < frags; i++) { 436 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 437 438 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)), 439 skb_frag_off(frag), 440 skb_frag_size(frag), 441 &pb[slots_used]); 442 } 443 return slots_used; 444 } 445 446 static int count_skb_frag_slots(struct sk_buff *skb) 447 { 448 int i, frags = skb_shinfo(skb)->nr_frags; 449 int pages = 0; 450 451 for (i = 0; i < frags; i++) { 452 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 453 unsigned long size = skb_frag_size(frag); 454 unsigned long offset = skb_frag_off(frag); 455 456 /* Skip unused frames from start of page */ 457 offset &= ~HV_HYP_PAGE_MASK; 458 pages += HVPFN_UP(offset + size); 459 } 460 return pages; 461 } 462 463 static int netvsc_get_slots(struct sk_buff *skb) 464 { 465 char *data = skb->data; 466 unsigned int offset = offset_in_hvpage(data); 467 unsigned int len = skb_headlen(skb); 468 int slots; 469 int frag_slots; 470 471 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE); 472 frag_slots = count_skb_frag_slots(skb); 473 return slots + frag_slots; 474 } 475 476 static u32 net_checksum_info(struct sk_buff *skb) 477 { 478 if (skb->protocol == htons(ETH_P_IP)) { 479 struct iphdr *ip = ip_hdr(skb); 480 481 if (ip->protocol == IPPROTO_TCP) 482 return TRANSPORT_INFO_IPV4_TCP; 483 else if (ip->protocol == IPPROTO_UDP) 484 return TRANSPORT_INFO_IPV4_UDP; 485 } else { 486 struct ipv6hdr *ip6 = ipv6_hdr(skb); 487 488 if (ip6->nexthdr == IPPROTO_TCP) 489 return TRANSPORT_INFO_IPV6_TCP; 490 else if (ip6->nexthdr == IPPROTO_UDP) 491 return TRANSPORT_INFO_IPV6_UDP; 492 } 493 494 return TRANSPORT_INFO_NOT_IP; 495 } 496 497 /* Send skb on the slave VF device. */ 498 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 499 struct sk_buff *skb) 500 { 501 struct net_device_context *ndev_ctx = netdev_priv(net); 502 unsigned int len = skb->len; 503 int rc; 504 505 skb->dev = vf_netdev; 506 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping); 507 508 rc = dev_queue_xmit(skb); 509 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 510 struct netvsc_vf_pcpu_stats *pcpu_stats 511 = this_cpu_ptr(ndev_ctx->vf_stats); 512 513 u64_stats_update_begin(&pcpu_stats->syncp); 514 pcpu_stats->tx_packets++; 515 pcpu_stats->tx_bytes += len; 516 u64_stats_update_end(&pcpu_stats->syncp); 517 } else { 518 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 519 } 520 521 return rc; 522 } 523 524 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 525 { 526 struct net_device_context *net_device_ctx = netdev_priv(net); 527 struct hv_netvsc_packet *packet = NULL; 528 int ret; 529 unsigned int num_data_pgs; 530 struct rndis_message *rndis_msg; 531 struct net_device *vf_netdev; 532 u32 rndis_msg_size; 533 u32 hash; 534 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 535 536 /* If VF is present and up then redirect packets to it. 537 * Skip the VF if it is marked down or has no carrier. 538 * If netpoll is in uses, then VF can not be used either. 539 */ 540 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 541 if (vf_netdev && netif_running(vf_netdev) && 542 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) && 543 net_device_ctx->data_path_is_vf) 544 return netvsc_vf_xmit(net, vf_netdev, skb); 545 546 /* We will atmost need two pages to describe the rndis 547 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 548 * of pages in a single packet. If skb is scattered around 549 * more pages we try linearizing it. 550 */ 551 552 num_data_pgs = netvsc_get_slots(skb) + 2; 553 554 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 555 ++net_device_ctx->eth_stats.tx_scattered; 556 557 if (skb_linearize(skb)) 558 goto no_memory; 559 560 num_data_pgs = netvsc_get_slots(skb) + 2; 561 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 562 ++net_device_ctx->eth_stats.tx_too_big; 563 goto drop; 564 } 565 } 566 567 /* 568 * Place the rndis header in the skb head room and 569 * the skb->cb will be used for hv_netvsc_packet 570 * structure. 571 */ 572 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 573 if (ret) 574 goto no_memory; 575 576 /* Use the skb control buffer for building up the packet */ 577 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 578 sizeof_field(struct sk_buff, cb)); 579 packet = (struct hv_netvsc_packet *)skb->cb; 580 581 packet->q_idx = skb_get_queue_mapping(skb); 582 583 packet->total_data_buflen = skb->len; 584 packet->total_bytes = skb->len; 585 packet->total_packets = 1; 586 587 rndis_msg = (struct rndis_message *)skb->head; 588 589 /* Add the rndis header */ 590 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 591 rndis_msg->msg_len = packet->total_data_buflen; 592 593 rndis_msg->msg.pkt = (struct rndis_packet) { 594 .data_offset = sizeof(struct rndis_packet), 595 .data_len = packet->total_data_buflen, 596 .per_pkt_info_offset = sizeof(struct rndis_packet), 597 }; 598 599 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 600 601 hash = skb_get_hash_raw(skb); 602 if (hash != 0 && net->real_num_tx_queues > 1) { 603 u32 *hash_info; 604 605 rndis_msg_size += NDIS_HASH_PPI_SIZE; 606 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 607 NBL_HASH_VALUE); 608 *hash_info = hash; 609 } 610 611 /* When using AF_PACKET we need to drop VLAN header from 612 * the frame and update the SKB to allow the HOST OS 613 * to transmit the 802.1Q packet 614 */ 615 if (skb->protocol == htons(ETH_P_8021Q)) { 616 u16 vlan_tci; 617 618 skb_reset_mac_header(skb); 619 if (eth_type_vlan(eth_hdr(skb)->h_proto)) { 620 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { 621 ++net_device_ctx->eth_stats.vlan_error; 622 goto drop; 623 } 624 625 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 626 /* Update the NDIS header pkt lengths */ 627 packet->total_data_buflen -= VLAN_HLEN; 628 packet->total_bytes -= VLAN_HLEN; 629 rndis_msg->msg_len = packet->total_data_buflen; 630 rndis_msg->msg.pkt.data_len = packet->total_data_buflen; 631 } 632 } 633 634 if (skb_vlan_tag_present(skb)) { 635 struct ndis_pkt_8021q_info *vlan; 636 637 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 638 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 639 IEEE_8021Q_INFO); 640 641 vlan->value = 0; 642 vlan->vlanid = skb_vlan_tag_get_id(skb); 643 vlan->cfi = skb_vlan_tag_get_cfi(skb); 644 vlan->pri = skb_vlan_tag_get_prio(skb); 645 } 646 647 if (skb_is_gso(skb)) { 648 struct ndis_tcp_lso_info *lso_info; 649 650 rndis_msg_size += NDIS_LSO_PPI_SIZE; 651 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 652 TCP_LARGESEND_PKTINFO); 653 654 lso_info->value = 0; 655 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 656 if (skb->protocol == htons(ETH_P_IP)) { 657 lso_info->lso_v2_transmit.ip_version = 658 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 659 ip_hdr(skb)->tot_len = 0; 660 ip_hdr(skb)->check = 0; 661 tcp_hdr(skb)->check = 662 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 663 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 664 } else { 665 lso_info->lso_v2_transmit.ip_version = 666 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 667 tcp_v6_gso_csum_prep(skb); 668 } 669 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 670 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 671 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 672 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 673 struct ndis_tcp_ip_checksum_info *csum_info; 674 675 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 676 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 677 TCPIP_CHKSUM_PKTINFO); 678 679 csum_info->value = 0; 680 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 681 682 if (skb->protocol == htons(ETH_P_IP)) { 683 csum_info->transmit.is_ipv4 = 1; 684 685 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 686 csum_info->transmit.tcp_checksum = 1; 687 else 688 csum_info->transmit.udp_checksum = 1; 689 } else { 690 csum_info->transmit.is_ipv6 = 1; 691 692 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 693 csum_info->transmit.tcp_checksum = 1; 694 else 695 csum_info->transmit.udp_checksum = 1; 696 } 697 } else { 698 /* Can't do offload of this type of checksum */ 699 if (skb_checksum_help(skb)) 700 goto drop; 701 } 702 } 703 704 /* Start filling in the page buffers with the rndis hdr */ 705 rndis_msg->msg_len += rndis_msg_size; 706 packet->total_data_buflen = rndis_msg->msg_len; 707 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 708 skb, packet, pb); 709 710 /* timestamp packet in software */ 711 skb_tx_timestamp(skb); 712 713 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 714 if (likely(ret == 0)) 715 return NETDEV_TX_OK; 716 717 if (ret == -EAGAIN) { 718 ++net_device_ctx->eth_stats.tx_busy; 719 return NETDEV_TX_BUSY; 720 } 721 722 if (ret == -ENOSPC) 723 ++net_device_ctx->eth_stats.tx_no_space; 724 725 drop: 726 dev_kfree_skb_any(skb); 727 net->stats.tx_dropped++; 728 729 return NETDEV_TX_OK; 730 731 no_memory: 732 ++net_device_ctx->eth_stats.tx_no_memory; 733 goto drop; 734 } 735 736 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 737 struct net_device *ndev) 738 { 739 return netvsc_xmit(skb, ndev, false); 740 } 741 742 /* 743 * netvsc_linkstatus_callback - Link up/down notification 744 */ 745 void netvsc_linkstatus_callback(struct net_device *net, 746 struct rndis_message *resp, 747 void *data) 748 { 749 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 750 struct net_device_context *ndev_ctx = netdev_priv(net); 751 struct netvsc_reconfig *event; 752 unsigned long flags; 753 754 /* Ensure the packet is big enough to access its fields */ 755 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) { 756 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n", 757 resp->msg_len); 758 return; 759 } 760 761 /* Copy the RNDIS indicate status into nvchan->recv_buf */ 762 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate)); 763 764 /* Update the physical link speed when changing to another vSwitch */ 765 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 766 u32 speed; 767 768 /* Validate status_buf_offset */ 769 if (indicate->status_buflen < sizeof(speed) || 770 indicate->status_buf_offset < sizeof(*indicate) || 771 resp->msg_len - RNDIS_HEADER_SIZE < indicate->status_buf_offset || 772 resp->msg_len - RNDIS_HEADER_SIZE - indicate->status_buf_offset 773 < indicate->status_buflen) { 774 netdev_err(net, "invalid rndis_indicate_status packet\n"); 775 return; 776 } 777 778 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000; 779 ndev_ctx->speed = speed; 780 return; 781 } 782 783 /* Handle these link change statuses below */ 784 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 785 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 786 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 787 return; 788 789 if (net->reg_state != NETREG_REGISTERED) 790 return; 791 792 event = kzalloc(sizeof(*event), GFP_ATOMIC); 793 if (!event) 794 return; 795 event->event = indicate->status; 796 797 spin_lock_irqsave(&ndev_ctx->lock, flags); 798 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 799 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 800 801 schedule_delayed_work(&ndev_ctx->dwork, 0); 802 } 803 804 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 805 { 806 int rc; 807 808 skb->queue_mapping = skb_get_rx_queue(skb); 809 __skb_push(skb, ETH_HLEN); 810 811 rc = netvsc_xmit(skb, ndev, true); 812 813 if (dev_xmit_complete(rc)) 814 return; 815 816 dev_kfree_skb_any(skb); 817 ndev->stats.tx_dropped++; 818 } 819 820 static void netvsc_comp_ipcsum(struct sk_buff *skb) 821 { 822 struct iphdr *iph = (struct iphdr *)skb->data; 823 824 iph->check = 0; 825 iph->check = ip_fast_csum(iph, iph->ihl); 826 } 827 828 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 829 struct netvsc_channel *nvchan, 830 struct xdp_buff *xdp) 831 { 832 struct napi_struct *napi = &nvchan->napi; 833 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan; 834 const struct ndis_tcp_ip_checksum_info *csum_info = 835 &nvchan->rsc.csum_info; 836 const u32 *hash_info = &nvchan->rsc.hash_info; 837 u8 ppi_flags = nvchan->rsc.ppi_flags; 838 struct sk_buff *skb; 839 void *xbuf = xdp->data_hard_start; 840 int i; 841 842 if (xbuf) { 843 unsigned int hdroom = xdp->data - xdp->data_hard_start; 844 unsigned int xlen = xdp->data_end - xdp->data; 845 unsigned int frag_size = xdp->frame_sz; 846 847 skb = build_skb(xbuf, frag_size); 848 849 if (!skb) { 850 __free_page(virt_to_page(xbuf)); 851 return NULL; 852 } 853 854 skb_reserve(skb, hdroom); 855 skb_put(skb, xlen); 856 skb->dev = napi->dev; 857 } else { 858 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 859 860 if (!skb) 861 return NULL; 862 863 /* Copy to skb. This copy is needed here since the memory 864 * pointed by hv_netvsc_packet cannot be deallocated. 865 */ 866 for (i = 0; i < nvchan->rsc.cnt; i++) 867 skb_put_data(skb, nvchan->rsc.data[i], 868 nvchan->rsc.len[i]); 869 } 870 871 skb->protocol = eth_type_trans(skb, net); 872 873 /* skb is already created with CHECKSUM_NONE */ 874 skb_checksum_none_assert(skb); 875 876 /* Incoming packets may have IP header checksum verified by the host. 877 * They may not have IP header checksum computed after coalescing. 878 * We compute it here if the flags are set, because on Linux, the IP 879 * checksum is always checked. 880 */ 881 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid && 882 csum_info->receive.ip_checksum_succeeded && 883 skb->protocol == htons(ETH_P_IP)) { 884 /* Check that there is enough space to hold the IP header. */ 885 if (skb_headlen(skb) < sizeof(struct iphdr)) { 886 kfree_skb(skb); 887 return NULL; 888 } 889 netvsc_comp_ipcsum(skb); 890 } 891 892 /* Do L4 checksum offload if enabled and present. */ 893 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) { 894 if (csum_info->receive.tcp_checksum_succeeded || 895 csum_info->receive.udp_checksum_succeeded) 896 skb->ip_summed = CHECKSUM_UNNECESSARY; 897 } 898 899 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH)) 900 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 901 902 if (ppi_flags & NVSC_RSC_VLAN) { 903 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 904 (vlan->cfi ? VLAN_CFI_MASK : 0); 905 906 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 907 vlan_tci); 908 } 909 910 return skb; 911 } 912 913 /* 914 * netvsc_recv_callback - Callback when we receive a packet from the 915 * "wire" on the specified device. 916 */ 917 int netvsc_recv_callback(struct net_device *net, 918 struct netvsc_device *net_device, 919 struct netvsc_channel *nvchan) 920 { 921 struct net_device_context *net_device_ctx = netdev_priv(net); 922 struct vmbus_channel *channel = nvchan->channel; 923 u16 q_idx = channel->offermsg.offer.sub_channel_index; 924 struct sk_buff *skb; 925 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 926 struct xdp_buff xdp; 927 u32 act; 928 929 if (net->reg_state != NETREG_REGISTERED) 930 return NVSP_STAT_FAIL; 931 932 act = netvsc_run_xdp(net, nvchan, &xdp); 933 934 if (act != XDP_PASS && act != XDP_TX) { 935 u64_stats_update_begin(&rx_stats->syncp); 936 rx_stats->xdp_drop++; 937 u64_stats_update_end(&rx_stats->syncp); 938 939 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 940 } 941 942 /* Allocate a skb - TODO direct I/O to pages? */ 943 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 944 945 if (unlikely(!skb)) { 946 ++net_device_ctx->eth_stats.rx_no_memory; 947 return NVSP_STAT_FAIL; 948 } 949 950 skb_record_rx_queue(skb, q_idx); 951 952 /* 953 * Even if injecting the packet, record the statistics 954 * on the synthetic device because modifying the VF device 955 * statistics will not work correctly. 956 */ 957 u64_stats_update_begin(&rx_stats->syncp); 958 rx_stats->packets++; 959 rx_stats->bytes += nvchan->rsc.pktlen; 960 961 if (skb->pkt_type == PACKET_BROADCAST) 962 ++rx_stats->broadcast; 963 else if (skb->pkt_type == PACKET_MULTICAST) 964 ++rx_stats->multicast; 965 u64_stats_update_end(&rx_stats->syncp); 966 967 if (act == XDP_TX) { 968 netvsc_xdp_xmit(skb, net); 969 return NVSP_STAT_SUCCESS; 970 } 971 972 napi_gro_receive(&nvchan->napi, skb); 973 return NVSP_STAT_SUCCESS; 974 } 975 976 static void netvsc_get_drvinfo(struct net_device *net, 977 struct ethtool_drvinfo *info) 978 { 979 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 980 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 981 } 982 983 static void netvsc_get_channels(struct net_device *net, 984 struct ethtool_channels *channel) 985 { 986 struct net_device_context *net_device_ctx = netdev_priv(net); 987 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 988 989 if (nvdev) { 990 channel->max_combined = nvdev->max_chn; 991 channel->combined_count = nvdev->num_chn; 992 } 993 } 994 995 /* Alloc struct netvsc_device_info, and initialize it from either existing 996 * struct netvsc_device, or from default values. 997 */ 998 static 999 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 1000 { 1001 struct netvsc_device_info *dev_info; 1002 struct bpf_prog *prog; 1003 1004 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 1005 1006 if (!dev_info) 1007 return NULL; 1008 1009 if (nvdev) { 1010 ASSERT_RTNL(); 1011 1012 dev_info->num_chn = nvdev->num_chn; 1013 dev_info->send_sections = nvdev->send_section_cnt; 1014 dev_info->send_section_size = nvdev->send_section_size; 1015 dev_info->recv_sections = nvdev->recv_section_cnt; 1016 dev_info->recv_section_size = nvdev->recv_section_size; 1017 1018 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 1019 NETVSC_HASH_KEYLEN); 1020 1021 prog = netvsc_xdp_get(nvdev); 1022 if (prog) { 1023 bpf_prog_inc(prog); 1024 dev_info->bprog = prog; 1025 } 1026 } else { 1027 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 1028 dev_info->send_sections = NETVSC_DEFAULT_TX; 1029 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 1030 dev_info->recv_sections = NETVSC_DEFAULT_RX; 1031 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 1032 } 1033 1034 return dev_info; 1035 } 1036 1037 /* Free struct netvsc_device_info */ 1038 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 1039 { 1040 if (dev_info->bprog) { 1041 ASSERT_RTNL(); 1042 bpf_prog_put(dev_info->bprog); 1043 } 1044 1045 kfree(dev_info); 1046 } 1047 1048 static int netvsc_detach(struct net_device *ndev, 1049 struct netvsc_device *nvdev) 1050 { 1051 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1052 struct hv_device *hdev = ndev_ctx->device_ctx; 1053 int ret; 1054 1055 /* Don't try continuing to try and setup sub channels */ 1056 if (cancel_work_sync(&nvdev->subchan_work)) 1057 nvdev->num_chn = 1; 1058 1059 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1060 1061 /* If device was up (receiving) then shutdown */ 1062 if (netif_running(ndev)) { 1063 netvsc_tx_disable(nvdev, ndev); 1064 1065 ret = rndis_filter_close(nvdev); 1066 if (ret) { 1067 netdev_err(ndev, 1068 "unable to close device (ret %d).\n", ret); 1069 return ret; 1070 } 1071 1072 ret = netvsc_wait_until_empty(nvdev); 1073 if (ret) { 1074 netdev_err(ndev, 1075 "Ring buffer not empty after closing rndis\n"); 1076 return ret; 1077 } 1078 } 1079 1080 netif_device_detach(ndev); 1081 1082 rndis_filter_device_remove(hdev, nvdev); 1083 1084 return 0; 1085 } 1086 1087 static int netvsc_attach(struct net_device *ndev, 1088 struct netvsc_device_info *dev_info) 1089 { 1090 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1091 struct hv_device *hdev = ndev_ctx->device_ctx; 1092 struct netvsc_device *nvdev; 1093 struct rndis_device *rdev; 1094 struct bpf_prog *prog; 1095 int ret = 0; 1096 1097 nvdev = rndis_filter_device_add(hdev, dev_info); 1098 if (IS_ERR(nvdev)) 1099 return PTR_ERR(nvdev); 1100 1101 if (nvdev->num_chn > 1) { 1102 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1103 1104 /* if unavailable, just proceed with one queue */ 1105 if (ret) { 1106 nvdev->max_chn = 1; 1107 nvdev->num_chn = 1; 1108 } 1109 } 1110 1111 prog = dev_info->bprog; 1112 if (prog) { 1113 bpf_prog_inc(prog); 1114 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1115 if (ret) { 1116 bpf_prog_put(prog); 1117 goto err1; 1118 } 1119 } 1120 1121 /* In any case device is now ready */ 1122 nvdev->tx_disable = false; 1123 netif_device_attach(ndev); 1124 1125 /* Note: enable and attach happen when sub-channels setup */ 1126 netif_carrier_off(ndev); 1127 1128 if (netif_running(ndev)) { 1129 ret = rndis_filter_open(nvdev); 1130 if (ret) 1131 goto err2; 1132 1133 rdev = nvdev->extension; 1134 if (!rdev->link_state) 1135 netif_carrier_on(ndev); 1136 } 1137 1138 return 0; 1139 1140 err2: 1141 netif_device_detach(ndev); 1142 1143 err1: 1144 rndis_filter_device_remove(hdev, nvdev); 1145 1146 return ret; 1147 } 1148 1149 static int netvsc_set_channels(struct net_device *net, 1150 struct ethtool_channels *channels) 1151 { 1152 struct net_device_context *net_device_ctx = netdev_priv(net); 1153 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1154 unsigned int orig, count = channels->combined_count; 1155 struct netvsc_device_info *device_info; 1156 int ret; 1157 1158 /* We do not support separate count for rx, tx, or other */ 1159 if (count == 0 || 1160 channels->rx_count || channels->tx_count || channels->other_count) 1161 return -EINVAL; 1162 1163 if (!nvdev || nvdev->destroy) 1164 return -ENODEV; 1165 1166 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1167 return -EINVAL; 1168 1169 if (count > nvdev->max_chn) 1170 return -EINVAL; 1171 1172 orig = nvdev->num_chn; 1173 1174 device_info = netvsc_devinfo_get(nvdev); 1175 1176 if (!device_info) 1177 return -ENOMEM; 1178 1179 device_info->num_chn = count; 1180 1181 ret = netvsc_detach(net, nvdev); 1182 if (ret) 1183 goto out; 1184 1185 ret = netvsc_attach(net, device_info); 1186 if (ret) { 1187 device_info->num_chn = orig; 1188 if (netvsc_attach(net, device_info)) 1189 netdev_err(net, "restoring channel setting failed\n"); 1190 } 1191 1192 out: 1193 netvsc_devinfo_put(device_info); 1194 return ret; 1195 } 1196 1197 static void netvsc_init_settings(struct net_device *dev) 1198 { 1199 struct net_device_context *ndc = netdev_priv(dev); 1200 1201 ndc->l4_hash = HV_DEFAULT_L4HASH; 1202 1203 ndc->speed = SPEED_UNKNOWN; 1204 ndc->duplex = DUPLEX_FULL; 1205 1206 dev->features = NETIF_F_LRO; 1207 } 1208 1209 static int netvsc_get_link_ksettings(struct net_device *dev, 1210 struct ethtool_link_ksettings *cmd) 1211 { 1212 struct net_device_context *ndc = netdev_priv(dev); 1213 struct net_device *vf_netdev; 1214 1215 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1216 1217 if (vf_netdev) 1218 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1219 1220 cmd->base.speed = ndc->speed; 1221 cmd->base.duplex = ndc->duplex; 1222 cmd->base.port = PORT_OTHER; 1223 1224 return 0; 1225 } 1226 1227 static int netvsc_set_link_ksettings(struct net_device *dev, 1228 const struct ethtool_link_ksettings *cmd) 1229 { 1230 struct net_device_context *ndc = netdev_priv(dev); 1231 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1232 1233 if (vf_netdev) { 1234 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1235 return -EOPNOTSUPP; 1236 1237 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1238 cmd); 1239 } 1240 1241 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1242 &ndc->speed, &ndc->duplex); 1243 } 1244 1245 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1246 { 1247 struct net_device_context *ndevctx = netdev_priv(ndev); 1248 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1249 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1250 int orig_mtu = ndev->mtu; 1251 struct netvsc_device_info *device_info; 1252 int ret = 0; 1253 1254 if (!nvdev || nvdev->destroy) 1255 return -ENODEV; 1256 1257 device_info = netvsc_devinfo_get(nvdev); 1258 1259 if (!device_info) 1260 return -ENOMEM; 1261 1262 /* Change MTU of underlying VF netdev first. */ 1263 if (vf_netdev) { 1264 ret = dev_set_mtu(vf_netdev, mtu); 1265 if (ret) 1266 goto out; 1267 } 1268 1269 ret = netvsc_detach(ndev, nvdev); 1270 if (ret) 1271 goto rollback_vf; 1272 1273 ndev->mtu = mtu; 1274 1275 ret = netvsc_attach(ndev, device_info); 1276 if (!ret) 1277 goto out; 1278 1279 /* Attempt rollback to original MTU */ 1280 ndev->mtu = orig_mtu; 1281 1282 if (netvsc_attach(ndev, device_info)) 1283 netdev_err(ndev, "restoring mtu failed\n"); 1284 rollback_vf: 1285 if (vf_netdev) 1286 dev_set_mtu(vf_netdev, orig_mtu); 1287 1288 out: 1289 netvsc_devinfo_put(device_info); 1290 return ret; 1291 } 1292 1293 static void netvsc_get_vf_stats(struct net_device *net, 1294 struct netvsc_vf_pcpu_stats *tot) 1295 { 1296 struct net_device_context *ndev_ctx = netdev_priv(net); 1297 int i; 1298 1299 memset(tot, 0, sizeof(*tot)); 1300 1301 for_each_possible_cpu(i) { 1302 const struct netvsc_vf_pcpu_stats *stats 1303 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1304 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1305 unsigned int start; 1306 1307 do { 1308 start = u64_stats_fetch_begin_irq(&stats->syncp); 1309 rx_packets = stats->rx_packets; 1310 tx_packets = stats->tx_packets; 1311 rx_bytes = stats->rx_bytes; 1312 tx_bytes = stats->tx_bytes; 1313 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1314 1315 tot->rx_packets += rx_packets; 1316 tot->tx_packets += tx_packets; 1317 tot->rx_bytes += rx_bytes; 1318 tot->tx_bytes += tx_bytes; 1319 tot->tx_dropped += stats->tx_dropped; 1320 } 1321 } 1322 1323 static void netvsc_get_pcpu_stats(struct net_device *net, 1324 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1325 { 1326 struct net_device_context *ndev_ctx = netdev_priv(net); 1327 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1328 int i; 1329 1330 /* fetch percpu stats of vf */ 1331 for_each_possible_cpu(i) { 1332 const struct netvsc_vf_pcpu_stats *stats = 1333 per_cpu_ptr(ndev_ctx->vf_stats, i); 1334 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1335 unsigned int start; 1336 1337 do { 1338 start = u64_stats_fetch_begin_irq(&stats->syncp); 1339 this_tot->vf_rx_packets = stats->rx_packets; 1340 this_tot->vf_tx_packets = stats->tx_packets; 1341 this_tot->vf_rx_bytes = stats->rx_bytes; 1342 this_tot->vf_tx_bytes = stats->tx_bytes; 1343 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1344 this_tot->rx_packets = this_tot->vf_rx_packets; 1345 this_tot->tx_packets = this_tot->vf_tx_packets; 1346 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1347 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1348 } 1349 1350 /* fetch percpu stats of netvsc */ 1351 for (i = 0; i < nvdev->num_chn; i++) { 1352 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1353 const struct netvsc_stats *stats; 1354 struct netvsc_ethtool_pcpu_stats *this_tot = 1355 &pcpu_tot[nvchan->channel->target_cpu]; 1356 u64 packets, bytes; 1357 unsigned int start; 1358 1359 stats = &nvchan->tx_stats; 1360 do { 1361 start = u64_stats_fetch_begin_irq(&stats->syncp); 1362 packets = stats->packets; 1363 bytes = stats->bytes; 1364 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1365 1366 this_tot->tx_bytes += bytes; 1367 this_tot->tx_packets += packets; 1368 1369 stats = &nvchan->rx_stats; 1370 do { 1371 start = u64_stats_fetch_begin_irq(&stats->syncp); 1372 packets = stats->packets; 1373 bytes = stats->bytes; 1374 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1375 1376 this_tot->rx_bytes += bytes; 1377 this_tot->rx_packets += packets; 1378 } 1379 } 1380 1381 static void netvsc_get_stats64(struct net_device *net, 1382 struct rtnl_link_stats64 *t) 1383 { 1384 struct net_device_context *ndev_ctx = netdev_priv(net); 1385 struct netvsc_device *nvdev; 1386 struct netvsc_vf_pcpu_stats vf_tot; 1387 int i; 1388 1389 rcu_read_lock(); 1390 1391 nvdev = rcu_dereference(ndev_ctx->nvdev); 1392 if (!nvdev) 1393 goto out; 1394 1395 netdev_stats_to_stats64(t, &net->stats); 1396 1397 netvsc_get_vf_stats(net, &vf_tot); 1398 t->rx_packets += vf_tot.rx_packets; 1399 t->tx_packets += vf_tot.tx_packets; 1400 t->rx_bytes += vf_tot.rx_bytes; 1401 t->tx_bytes += vf_tot.tx_bytes; 1402 t->tx_dropped += vf_tot.tx_dropped; 1403 1404 for (i = 0; i < nvdev->num_chn; i++) { 1405 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1406 const struct netvsc_stats *stats; 1407 u64 packets, bytes, multicast; 1408 unsigned int start; 1409 1410 stats = &nvchan->tx_stats; 1411 do { 1412 start = u64_stats_fetch_begin_irq(&stats->syncp); 1413 packets = stats->packets; 1414 bytes = stats->bytes; 1415 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1416 1417 t->tx_bytes += bytes; 1418 t->tx_packets += packets; 1419 1420 stats = &nvchan->rx_stats; 1421 do { 1422 start = u64_stats_fetch_begin_irq(&stats->syncp); 1423 packets = stats->packets; 1424 bytes = stats->bytes; 1425 multicast = stats->multicast + stats->broadcast; 1426 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1427 1428 t->rx_bytes += bytes; 1429 t->rx_packets += packets; 1430 t->multicast += multicast; 1431 } 1432 out: 1433 rcu_read_unlock(); 1434 } 1435 1436 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1437 { 1438 struct net_device_context *ndc = netdev_priv(ndev); 1439 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1440 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1441 struct sockaddr *addr = p; 1442 int err; 1443 1444 err = eth_prepare_mac_addr_change(ndev, p); 1445 if (err) 1446 return err; 1447 1448 if (!nvdev) 1449 return -ENODEV; 1450 1451 if (vf_netdev) { 1452 err = dev_set_mac_address(vf_netdev, addr, NULL); 1453 if (err) 1454 return err; 1455 } 1456 1457 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1458 if (!err) { 1459 eth_commit_mac_addr_change(ndev, p); 1460 } else if (vf_netdev) { 1461 /* rollback change on VF */ 1462 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1463 dev_set_mac_address(vf_netdev, addr, NULL); 1464 } 1465 1466 return err; 1467 } 1468 1469 static const struct { 1470 char name[ETH_GSTRING_LEN]; 1471 u16 offset; 1472 } netvsc_stats[] = { 1473 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1474 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1475 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1476 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1477 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1478 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1479 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1480 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1481 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1482 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1483 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, 1484 }, pcpu_stats[] = { 1485 { "cpu%u_rx_packets", 1486 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1487 { "cpu%u_rx_bytes", 1488 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1489 { "cpu%u_tx_packets", 1490 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1491 { "cpu%u_tx_bytes", 1492 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1493 { "cpu%u_vf_rx_packets", 1494 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1495 { "cpu%u_vf_rx_bytes", 1496 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1497 { "cpu%u_vf_tx_packets", 1498 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1499 { "cpu%u_vf_tx_bytes", 1500 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1501 }, vf_stats[] = { 1502 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1503 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1504 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1505 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1506 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1507 }; 1508 1509 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1510 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1511 1512 /* statistics per queue (rx/tx packets/bytes) */ 1513 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1514 1515 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1516 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1517 1518 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1519 { 1520 struct net_device_context *ndc = netdev_priv(dev); 1521 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1522 1523 if (!nvdev) 1524 return -ENODEV; 1525 1526 switch (string_set) { 1527 case ETH_SS_STATS: 1528 return NETVSC_GLOBAL_STATS_LEN 1529 + NETVSC_VF_STATS_LEN 1530 + NETVSC_QUEUE_STATS_LEN(nvdev) 1531 + NETVSC_PCPU_STATS_LEN; 1532 default: 1533 return -EINVAL; 1534 } 1535 } 1536 1537 static void netvsc_get_ethtool_stats(struct net_device *dev, 1538 struct ethtool_stats *stats, u64 *data) 1539 { 1540 struct net_device_context *ndc = netdev_priv(dev); 1541 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1542 const void *nds = &ndc->eth_stats; 1543 const struct netvsc_stats *qstats; 1544 struct netvsc_vf_pcpu_stats sum; 1545 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1546 unsigned int start; 1547 u64 packets, bytes; 1548 u64 xdp_drop; 1549 int i, j, cpu; 1550 1551 if (!nvdev) 1552 return; 1553 1554 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1555 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1556 1557 netvsc_get_vf_stats(dev, &sum); 1558 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1559 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1560 1561 for (j = 0; j < nvdev->num_chn; j++) { 1562 qstats = &nvdev->chan_table[j].tx_stats; 1563 1564 do { 1565 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1566 packets = qstats->packets; 1567 bytes = qstats->bytes; 1568 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1569 data[i++] = packets; 1570 data[i++] = bytes; 1571 1572 qstats = &nvdev->chan_table[j].rx_stats; 1573 do { 1574 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1575 packets = qstats->packets; 1576 bytes = qstats->bytes; 1577 xdp_drop = qstats->xdp_drop; 1578 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1579 data[i++] = packets; 1580 data[i++] = bytes; 1581 data[i++] = xdp_drop; 1582 } 1583 1584 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1585 sizeof(struct netvsc_ethtool_pcpu_stats), 1586 GFP_KERNEL); 1587 netvsc_get_pcpu_stats(dev, pcpu_sum); 1588 for_each_present_cpu(cpu) { 1589 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1590 1591 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1592 data[i++] = *(u64 *)((void *)this_sum 1593 + pcpu_stats[j].offset); 1594 } 1595 kvfree(pcpu_sum); 1596 } 1597 1598 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1599 { 1600 struct net_device_context *ndc = netdev_priv(dev); 1601 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1602 u8 *p = data; 1603 int i, cpu; 1604 1605 if (!nvdev) 1606 return; 1607 1608 switch (stringset) { 1609 case ETH_SS_STATS: 1610 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1611 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1612 p += ETH_GSTRING_LEN; 1613 } 1614 1615 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1616 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1617 p += ETH_GSTRING_LEN; 1618 } 1619 1620 for (i = 0; i < nvdev->num_chn; i++) { 1621 sprintf(p, "tx_queue_%u_packets", i); 1622 p += ETH_GSTRING_LEN; 1623 sprintf(p, "tx_queue_%u_bytes", i); 1624 p += ETH_GSTRING_LEN; 1625 sprintf(p, "rx_queue_%u_packets", i); 1626 p += ETH_GSTRING_LEN; 1627 sprintf(p, "rx_queue_%u_bytes", i); 1628 p += ETH_GSTRING_LEN; 1629 sprintf(p, "rx_queue_%u_xdp_drop", i); 1630 p += ETH_GSTRING_LEN; 1631 } 1632 1633 for_each_present_cpu(cpu) { 1634 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1635 sprintf(p, pcpu_stats[i].name, cpu); 1636 p += ETH_GSTRING_LEN; 1637 } 1638 } 1639 1640 break; 1641 } 1642 } 1643 1644 static int 1645 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1646 struct ethtool_rxnfc *info) 1647 { 1648 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1649 1650 info->data = RXH_IP_SRC | RXH_IP_DST; 1651 1652 switch (info->flow_type) { 1653 case TCP_V4_FLOW: 1654 if (ndc->l4_hash & HV_TCP4_L4HASH) 1655 info->data |= l4_flag; 1656 1657 break; 1658 1659 case TCP_V6_FLOW: 1660 if (ndc->l4_hash & HV_TCP6_L4HASH) 1661 info->data |= l4_flag; 1662 1663 break; 1664 1665 case UDP_V4_FLOW: 1666 if (ndc->l4_hash & HV_UDP4_L4HASH) 1667 info->data |= l4_flag; 1668 1669 break; 1670 1671 case UDP_V6_FLOW: 1672 if (ndc->l4_hash & HV_UDP6_L4HASH) 1673 info->data |= l4_flag; 1674 1675 break; 1676 1677 case IPV4_FLOW: 1678 case IPV6_FLOW: 1679 break; 1680 default: 1681 info->data = 0; 1682 break; 1683 } 1684 1685 return 0; 1686 } 1687 1688 static int 1689 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1690 u32 *rules) 1691 { 1692 struct net_device_context *ndc = netdev_priv(dev); 1693 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1694 1695 if (!nvdev) 1696 return -ENODEV; 1697 1698 switch (info->cmd) { 1699 case ETHTOOL_GRXRINGS: 1700 info->data = nvdev->num_chn; 1701 return 0; 1702 1703 case ETHTOOL_GRXFH: 1704 return netvsc_get_rss_hash_opts(ndc, info); 1705 } 1706 return -EOPNOTSUPP; 1707 } 1708 1709 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1710 struct ethtool_rxnfc *info) 1711 { 1712 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1713 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1714 switch (info->flow_type) { 1715 case TCP_V4_FLOW: 1716 ndc->l4_hash |= HV_TCP4_L4HASH; 1717 break; 1718 1719 case TCP_V6_FLOW: 1720 ndc->l4_hash |= HV_TCP6_L4HASH; 1721 break; 1722 1723 case UDP_V4_FLOW: 1724 ndc->l4_hash |= HV_UDP4_L4HASH; 1725 break; 1726 1727 case UDP_V6_FLOW: 1728 ndc->l4_hash |= HV_UDP6_L4HASH; 1729 break; 1730 1731 default: 1732 return -EOPNOTSUPP; 1733 } 1734 1735 return 0; 1736 } 1737 1738 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1739 switch (info->flow_type) { 1740 case TCP_V4_FLOW: 1741 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1742 break; 1743 1744 case TCP_V6_FLOW: 1745 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1746 break; 1747 1748 case UDP_V4_FLOW: 1749 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1750 break; 1751 1752 case UDP_V6_FLOW: 1753 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1754 break; 1755 1756 default: 1757 return -EOPNOTSUPP; 1758 } 1759 1760 return 0; 1761 } 1762 1763 return -EOPNOTSUPP; 1764 } 1765 1766 static int 1767 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1768 { 1769 struct net_device_context *ndc = netdev_priv(ndev); 1770 1771 if (info->cmd == ETHTOOL_SRXFH) 1772 return netvsc_set_rss_hash_opts(ndc, info); 1773 1774 return -EOPNOTSUPP; 1775 } 1776 1777 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1778 { 1779 return NETVSC_HASH_KEYLEN; 1780 } 1781 1782 static u32 netvsc_rss_indir_size(struct net_device *dev) 1783 { 1784 return ITAB_NUM; 1785 } 1786 1787 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1788 u8 *hfunc) 1789 { 1790 struct net_device_context *ndc = netdev_priv(dev); 1791 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1792 struct rndis_device *rndis_dev; 1793 int i; 1794 1795 if (!ndev) 1796 return -ENODEV; 1797 1798 if (hfunc) 1799 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1800 1801 rndis_dev = ndev->extension; 1802 if (indir) { 1803 for (i = 0; i < ITAB_NUM; i++) 1804 indir[i] = ndc->rx_table[i]; 1805 } 1806 1807 if (key) 1808 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1809 1810 return 0; 1811 } 1812 1813 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1814 const u8 *key, const u8 hfunc) 1815 { 1816 struct net_device_context *ndc = netdev_priv(dev); 1817 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1818 struct rndis_device *rndis_dev; 1819 int i; 1820 1821 if (!ndev) 1822 return -ENODEV; 1823 1824 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1825 return -EOPNOTSUPP; 1826 1827 rndis_dev = ndev->extension; 1828 if (indir) { 1829 for (i = 0; i < ITAB_NUM; i++) 1830 if (indir[i] >= ndev->num_chn) 1831 return -EINVAL; 1832 1833 for (i = 0; i < ITAB_NUM; i++) 1834 ndc->rx_table[i] = indir[i]; 1835 } 1836 1837 if (!key) { 1838 if (!indir) 1839 return 0; 1840 1841 key = rndis_dev->rss_key; 1842 } 1843 1844 return rndis_filter_set_rss_param(rndis_dev, key); 1845 } 1846 1847 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1848 * It does have pre-allocated receive area which is divided into sections. 1849 */ 1850 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1851 struct ethtool_ringparam *ring) 1852 { 1853 u32 max_buf_size; 1854 1855 ring->rx_pending = nvdev->recv_section_cnt; 1856 ring->tx_pending = nvdev->send_section_cnt; 1857 1858 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1859 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1860 else 1861 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1862 1863 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1864 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1865 / nvdev->send_section_size; 1866 } 1867 1868 static void netvsc_get_ringparam(struct net_device *ndev, 1869 struct ethtool_ringparam *ring) 1870 { 1871 struct net_device_context *ndevctx = netdev_priv(ndev); 1872 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1873 1874 if (!nvdev) 1875 return; 1876 1877 __netvsc_get_ringparam(nvdev, ring); 1878 } 1879 1880 static int netvsc_set_ringparam(struct net_device *ndev, 1881 struct ethtool_ringparam *ring) 1882 { 1883 struct net_device_context *ndevctx = netdev_priv(ndev); 1884 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1885 struct netvsc_device_info *device_info; 1886 struct ethtool_ringparam orig; 1887 u32 new_tx, new_rx; 1888 int ret = 0; 1889 1890 if (!nvdev || nvdev->destroy) 1891 return -ENODEV; 1892 1893 memset(&orig, 0, sizeof(orig)); 1894 __netvsc_get_ringparam(nvdev, &orig); 1895 1896 new_tx = clamp_t(u32, ring->tx_pending, 1897 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1898 new_rx = clamp_t(u32, ring->rx_pending, 1899 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1900 1901 if (new_tx == orig.tx_pending && 1902 new_rx == orig.rx_pending) 1903 return 0; /* no change */ 1904 1905 device_info = netvsc_devinfo_get(nvdev); 1906 1907 if (!device_info) 1908 return -ENOMEM; 1909 1910 device_info->send_sections = new_tx; 1911 device_info->recv_sections = new_rx; 1912 1913 ret = netvsc_detach(ndev, nvdev); 1914 if (ret) 1915 goto out; 1916 1917 ret = netvsc_attach(ndev, device_info); 1918 if (ret) { 1919 device_info->send_sections = orig.tx_pending; 1920 device_info->recv_sections = orig.rx_pending; 1921 1922 if (netvsc_attach(ndev, device_info)) 1923 netdev_err(ndev, "restoring ringparam failed"); 1924 } 1925 1926 out: 1927 netvsc_devinfo_put(device_info); 1928 return ret; 1929 } 1930 1931 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1932 netdev_features_t features) 1933 { 1934 struct net_device_context *ndevctx = netdev_priv(ndev); 1935 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1936 1937 if (!nvdev || nvdev->destroy) 1938 return features; 1939 1940 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1941 features ^= NETIF_F_LRO; 1942 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1943 } 1944 1945 return features; 1946 } 1947 1948 static int netvsc_set_features(struct net_device *ndev, 1949 netdev_features_t features) 1950 { 1951 netdev_features_t change = features ^ ndev->features; 1952 struct net_device_context *ndevctx = netdev_priv(ndev); 1953 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1954 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1955 struct ndis_offload_params offloads; 1956 int ret = 0; 1957 1958 if (!nvdev || nvdev->destroy) 1959 return -ENODEV; 1960 1961 if (!(change & NETIF_F_LRO)) 1962 goto syncvf; 1963 1964 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1965 1966 if (features & NETIF_F_LRO) { 1967 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1968 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1969 } else { 1970 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1971 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1972 } 1973 1974 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1975 1976 if (ret) { 1977 features ^= NETIF_F_LRO; 1978 ndev->features = features; 1979 } 1980 1981 syncvf: 1982 if (!vf_netdev) 1983 return ret; 1984 1985 vf_netdev->wanted_features = features; 1986 netdev_update_features(vf_netdev); 1987 1988 return ret; 1989 } 1990 1991 static int netvsc_get_regs_len(struct net_device *netdev) 1992 { 1993 return VRSS_SEND_TAB_SIZE * sizeof(u32); 1994 } 1995 1996 static void netvsc_get_regs(struct net_device *netdev, 1997 struct ethtool_regs *regs, void *p) 1998 { 1999 struct net_device_context *ndc = netdev_priv(netdev); 2000 u32 *regs_buff = p; 2001 2002 /* increase the version, if buffer format is changed. */ 2003 regs->version = 1; 2004 2005 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); 2006 } 2007 2008 static u32 netvsc_get_msglevel(struct net_device *ndev) 2009 { 2010 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2011 2012 return ndev_ctx->msg_enable; 2013 } 2014 2015 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 2016 { 2017 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2018 2019 ndev_ctx->msg_enable = val; 2020 } 2021 2022 static const struct ethtool_ops ethtool_ops = { 2023 .get_drvinfo = netvsc_get_drvinfo, 2024 .get_regs_len = netvsc_get_regs_len, 2025 .get_regs = netvsc_get_regs, 2026 .get_msglevel = netvsc_get_msglevel, 2027 .set_msglevel = netvsc_set_msglevel, 2028 .get_link = ethtool_op_get_link, 2029 .get_ethtool_stats = netvsc_get_ethtool_stats, 2030 .get_sset_count = netvsc_get_sset_count, 2031 .get_strings = netvsc_get_strings, 2032 .get_channels = netvsc_get_channels, 2033 .set_channels = netvsc_set_channels, 2034 .get_ts_info = ethtool_op_get_ts_info, 2035 .get_rxnfc = netvsc_get_rxnfc, 2036 .set_rxnfc = netvsc_set_rxnfc, 2037 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 2038 .get_rxfh_indir_size = netvsc_rss_indir_size, 2039 .get_rxfh = netvsc_get_rxfh, 2040 .set_rxfh = netvsc_set_rxfh, 2041 .get_link_ksettings = netvsc_get_link_ksettings, 2042 .set_link_ksettings = netvsc_set_link_ksettings, 2043 .get_ringparam = netvsc_get_ringparam, 2044 .set_ringparam = netvsc_set_ringparam, 2045 }; 2046 2047 static const struct net_device_ops device_ops = { 2048 .ndo_open = netvsc_open, 2049 .ndo_stop = netvsc_close, 2050 .ndo_start_xmit = netvsc_start_xmit, 2051 .ndo_change_rx_flags = netvsc_change_rx_flags, 2052 .ndo_set_rx_mode = netvsc_set_rx_mode, 2053 .ndo_fix_features = netvsc_fix_features, 2054 .ndo_set_features = netvsc_set_features, 2055 .ndo_change_mtu = netvsc_change_mtu, 2056 .ndo_validate_addr = eth_validate_addr, 2057 .ndo_set_mac_address = netvsc_set_mac_addr, 2058 .ndo_select_queue = netvsc_select_queue, 2059 .ndo_get_stats64 = netvsc_get_stats64, 2060 .ndo_bpf = netvsc_bpf, 2061 }; 2062 2063 /* 2064 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2065 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2066 * present send GARP packet to network peers with netif_notify_peers(). 2067 */ 2068 static void netvsc_link_change(struct work_struct *w) 2069 { 2070 struct net_device_context *ndev_ctx = 2071 container_of(w, struct net_device_context, dwork.work); 2072 struct hv_device *device_obj = ndev_ctx->device_ctx; 2073 struct net_device *net = hv_get_drvdata(device_obj); 2074 unsigned long flags, next_reconfig, delay; 2075 struct netvsc_reconfig *event = NULL; 2076 struct netvsc_device *net_device; 2077 struct rndis_device *rdev; 2078 bool reschedule = false; 2079 2080 /* if changes are happening, comeback later */ 2081 if (!rtnl_trylock()) { 2082 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2083 return; 2084 } 2085 2086 net_device = rtnl_dereference(ndev_ctx->nvdev); 2087 if (!net_device) 2088 goto out_unlock; 2089 2090 rdev = net_device->extension; 2091 2092 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2093 if (time_is_after_jiffies(next_reconfig)) { 2094 /* link_watch only sends one notification with current state 2095 * per second, avoid doing reconfig more frequently. Handle 2096 * wrap around. 2097 */ 2098 delay = next_reconfig - jiffies; 2099 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2100 schedule_delayed_work(&ndev_ctx->dwork, delay); 2101 goto out_unlock; 2102 } 2103 ndev_ctx->last_reconfig = jiffies; 2104 2105 spin_lock_irqsave(&ndev_ctx->lock, flags); 2106 if (!list_empty(&ndev_ctx->reconfig_events)) { 2107 event = list_first_entry(&ndev_ctx->reconfig_events, 2108 struct netvsc_reconfig, list); 2109 list_del(&event->list); 2110 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2111 } 2112 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2113 2114 if (!event) 2115 goto out_unlock; 2116 2117 switch (event->event) { 2118 /* Only the following events are possible due to the check in 2119 * netvsc_linkstatus_callback() 2120 */ 2121 case RNDIS_STATUS_MEDIA_CONNECT: 2122 if (rdev->link_state) { 2123 rdev->link_state = false; 2124 netif_carrier_on(net); 2125 netvsc_tx_enable(net_device, net); 2126 } else { 2127 __netdev_notify_peers(net); 2128 } 2129 kfree(event); 2130 break; 2131 case RNDIS_STATUS_MEDIA_DISCONNECT: 2132 if (!rdev->link_state) { 2133 rdev->link_state = true; 2134 netif_carrier_off(net); 2135 netvsc_tx_disable(net_device, net); 2136 } 2137 kfree(event); 2138 break; 2139 case RNDIS_STATUS_NETWORK_CHANGE: 2140 /* Only makes sense if carrier is present */ 2141 if (!rdev->link_state) { 2142 rdev->link_state = true; 2143 netif_carrier_off(net); 2144 netvsc_tx_disable(net_device, net); 2145 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2146 spin_lock_irqsave(&ndev_ctx->lock, flags); 2147 list_add(&event->list, &ndev_ctx->reconfig_events); 2148 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2149 reschedule = true; 2150 } 2151 break; 2152 } 2153 2154 rtnl_unlock(); 2155 2156 /* link_watch only sends one notification with current state per 2157 * second, handle next reconfig event in 2 seconds. 2158 */ 2159 if (reschedule) 2160 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2161 2162 return; 2163 2164 out_unlock: 2165 rtnl_unlock(); 2166 } 2167 2168 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2169 { 2170 struct net_device_context *net_device_ctx; 2171 struct net_device *dev; 2172 2173 dev = netdev_master_upper_dev_get(vf_netdev); 2174 if (!dev || dev->netdev_ops != &device_ops) 2175 return NULL; /* not a netvsc device */ 2176 2177 net_device_ctx = netdev_priv(dev); 2178 if (!rtnl_dereference(net_device_ctx->nvdev)) 2179 return NULL; /* device is removed */ 2180 2181 return dev; 2182 } 2183 2184 /* Called when VF is injecting data into network stack. 2185 * Change the associated network device from VF to netvsc. 2186 * note: already called with rcu_read_lock 2187 */ 2188 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2189 { 2190 struct sk_buff *skb = *pskb; 2191 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2192 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2193 struct netvsc_vf_pcpu_stats *pcpu_stats 2194 = this_cpu_ptr(ndev_ctx->vf_stats); 2195 2196 skb = skb_share_check(skb, GFP_ATOMIC); 2197 if (unlikely(!skb)) 2198 return RX_HANDLER_CONSUMED; 2199 2200 *pskb = skb; 2201 2202 skb->dev = ndev; 2203 2204 u64_stats_update_begin(&pcpu_stats->syncp); 2205 pcpu_stats->rx_packets++; 2206 pcpu_stats->rx_bytes += skb->len; 2207 u64_stats_update_end(&pcpu_stats->syncp); 2208 2209 return RX_HANDLER_ANOTHER; 2210 } 2211 2212 static int netvsc_vf_join(struct net_device *vf_netdev, 2213 struct net_device *ndev) 2214 { 2215 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2216 int ret; 2217 2218 ret = netdev_rx_handler_register(vf_netdev, 2219 netvsc_vf_handle_frame, ndev); 2220 if (ret != 0) { 2221 netdev_err(vf_netdev, 2222 "can not register netvsc VF receive handler (err = %d)\n", 2223 ret); 2224 goto rx_handler_failed; 2225 } 2226 2227 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2228 NULL, NULL, NULL); 2229 if (ret != 0) { 2230 netdev_err(vf_netdev, 2231 "can not set master device %s (err = %d)\n", 2232 ndev->name, ret); 2233 goto upper_link_failed; 2234 } 2235 2236 /* set slave flag before open to prevent IPv6 addrconf */ 2237 vf_netdev->flags |= IFF_SLAVE; 2238 2239 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2240 2241 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2242 2243 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2244 return 0; 2245 2246 upper_link_failed: 2247 netdev_rx_handler_unregister(vf_netdev); 2248 rx_handler_failed: 2249 return ret; 2250 } 2251 2252 static void __netvsc_vf_setup(struct net_device *ndev, 2253 struct net_device *vf_netdev) 2254 { 2255 int ret; 2256 2257 /* Align MTU of VF with master */ 2258 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2259 if (ret) 2260 netdev_warn(vf_netdev, 2261 "unable to change mtu to %u\n", ndev->mtu); 2262 2263 /* set multicast etc flags on VF */ 2264 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2265 2266 /* sync address list from ndev to VF */ 2267 netif_addr_lock_bh(ndev); 2268 dev_uc_sync(vf_netdev, ndev); 2269 dev_mc_sync(vf_netdev, ndev); 2270 netif_addr_unlock_bh(ndev); 2271 2272 if (netif_running(ndev)) { 2273 ret = dev_open(vf_netdev, NULL); 2274 if (ret) 2275 netdev_warn(vf_netdev, 2276 "unable to open: %d\n", ret); 2277 } 2278 } 2279 2280 /* Setup VF as slave of the synthetic device. 2281 * Runs in workqueue to avoid recursion in netlink callbacks. 2282 */ 2283 static void netvsc_vf_setup(struct work_struct *w) 2284 { 2285 struct net_device_context *ndev_ctx 2286 = container_of(w, struct net_device_context, vf_takeover.work); 2287 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2288 struct net_device *vf_netdev; 2289 2290 if (!rtnl_trylock()) { 2291 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2292 return; 2293 } 2294 2295 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2296 if (vf_netdev) 2297 __netvsc_vf_setup(ndev, vf_netdev); 2298 2299 rtnl_unlock(); 2300 } 2301 2302 /* Find netvsc by VF serial number. 2303 * The PCI hyperv controller records the serial number as the slot kobj name. 2304 */ 2305 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2306 { 2307 struct device *parent = vf_netdev->dev.parent; 2308 struct net_device_context *ndev_ctx; 2309 struct pci_dev *pdev; 2310 u32 serial; 2311 2312 if (!parent || !dev_is_pci(parent)) 2313 return NULL; /* not a PCI device */ 2314 2315 pdev = to_pci_dev(parent); 2316 if (!pdev->slot) { 2317 netdev_notice(vf_netdev, "no PCI slot information\n"); 2318 return NULL; 2319 } 2320 2321 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2322 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2323 pci_slot_name(pdev->slot)); 2324 return NULL; 2325 } 2326 2327 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2328 if (!ndev_ctx->vf_alloc) 2329 continue; 2330 2331 if (ndev_ctx->vf_serial == serial) 2332 return hv_get_drvdata(ndev_ctx->device_ctx); 2333 } 2334 2335 netdev_notice(vf_netdev, 2336 "no netdev found for vf serial:%u\n", serial); 2337 return NULL; 2338 } 2339 2340 static int netvsc_register_vf(struct net_device *vf_netdev) 2341 { 2342 struct net_device_context *net_device_ctx; 2343 struct netvsc_device *netvsc_dev; 2344 struct bpf_prog *prog; 2345 struct net_device *ndev; 2346 int ret; 2347 2348 if (vf_netdev->addr_len != ETH_ALEN) 2349 return NOTIFY_DONE; 2350 2351 ndev = get_netvsc_byslot(vf_netdev); 2352 if (!ndev) 2353 return NOTIFY_DONE; 2354 2355 net_device_ctx = netdev_priv(ndev); 2356 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2357 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2358 return NOTIFY_DONE; 2359 2360 /* if synthetic interface is a different namespace, 2361 * then move the VF to that namespace; join will be 2362 * done again in that context. 2363 */ 2364 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2365 ret = dev_change_net_namespace(vf_netdev, 2366 dev_net(ndev), "eth%d"); 2367 if (ret) 2368 netdev_err(vf_netdev, 2369 "could not move to same namespace as %s: %d\n", 2370 ndev->name, ret); 2371 else 2372 netdev_info(vf_netdev, 2373 "VF moved to namespace with: %s\n", 2374 ndev->name); 2375 return NOTIFY_DONE; 2376 } 2377 2378 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2379 2380 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2381 return NOTIFY_DONE; 2382 2383 dev_hold(vf_netdev); 2384 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2385 2386 vf_netdev->wanted_features = ndev->features; 2387 netdev_update_features(vf_netdev); 2388 2389 prog = netvsc_xdp_get(netvsc_dev); 2390 netvsc_vf_setxdp(vf_netdev, prog); 2391 2392 return NOTIFY_OK; 2393 } 2394 2395 /* Change the data path when VF UP/DOWN/CHANGE are detected. 2396 * 2397 * Typically a UP or DOWN event is followed by a CHANGE event, so 2398 * net_device_ctx->data_path_is_vf is used to cache the current data path 2399 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate 2400 * message. 2401 * 2402 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network 2403 * interface, there is only the CHANGE event and no UP or DOWN event. 2404 */ 2405 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event) 2406 { 2407 struct net_device_context *net_device_ctx; 2408 struct netvsc_device *netvsc_dev; 2409 struct net_device *ndev; 2410 bool vf_is_up = false; 2411 2412 if (event != NETDEV_GOING_DOWN) 2413 vf_is_up = netif_running(vf_netdev); 2414 2415 ndev = get_netvsc_byref(vf_netdev); 2416 if (!ndev) 2417 return NOTIFY_DONE; 2418 2419 net_device_ctx = netdev_priv(ndev); 2420 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2421 if (!netvsc_dev) 2422 return NOTIFY_DONE; 2423 2424 if (net_device_ctx->data_path_is_vf == vf_is_up) 2425 return NOTIFY_OK; 2426 2427 netvsc_switch_datapath(ndev, vf_is_up); 2428 netdev_info(ndev, "Data path switched %s VF: %s\n", 2429 vf_is_up ? "to" : "from", vf_netdev->name); 2430 2431 return NOTIFY_OK; 2432 } 2433 2434 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2435 { 2436 struct net_device *ndev; 2437 struct net_device_context *net_device_ctx; 2438 2439 ndev = get_netvsc_byref(vf_netdev); 2440 if (!ndev) 2441 return NOTIFY_DONE; 2442 2443 net_device_ctx = netdev_priv(ndev); 2444 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2445 2446 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2447 2448 netvsc_vf_setxdp(vf_netdev, NULL); 2449 2450 netdev_rx_handler_unregister(vf_netdev); 2451 netdev_upper_dev_unlink(vf_netdev, ndev); 2452 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2453 dev_put(vf_netdev); 2454 2455 return NOTIFY_OK; 2456 } 2457 2458 static int netvsc_probe(struct hv_device *dev, 2459 const struct hv_vmbus_device_id *dev_id) 2460 { 2461 struct net_device *net = NULL; 2462 struct net_device_context *net_device_ctx; 2463 struct netvsc_device_info *device_info = NULL; 2464 struct netvsc_device *nvdev; 2465 int ret = -ENOMEM; 2466 2467 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2468 VRSS_CHANNEL_MAX); 2469 if (!net) 2470 goto no_net; 2471 2472 netif_carrier_off(net); 2473 2474 netvsc_init_settings(net); 2475 2476 net_device_ctx = netdev_priv(net); 2477 net_device_ctx->device_ctx = dev; 2478 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2479 if (netif_msg_probe(net_device_ctx)) 2480 netdev_dbg(net, "netvsc msg_enable: %d\n", 2481 net_device_ctx->msg_enable); 2482 2483 hv_set_drvdata(dev, net); 2484 2485 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2486 2487 spin_lock_init(&net_device_ctx->lock); 2488 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2489 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2490 2491 net_device_ctx->vf_stats 2492 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2493 if (!net_device_ctx->vf_stats) 2494 goto no_stats; 2495 2496 net->netdev_ops = &device_ops; 2497 net->ethtool_ops = ðtool_ops; 2498 SET_NETDEV_DEV(net, &dev->device); 2499 2500 /* We always need headroom for rndis header */ 2501 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2502 2503 /* Initialize the number of queues to be 1, we may change it if more 2504 * channels are offered later. 2505 */ 2506 netif_set_real_num_tx_queues(net, 1); 2507 netif_set_real_num_rx_queues(net, 1); 2508 2509 /* Notify the netvsc driver of the new device */ 2510 device_info = netvsc_devinfo_get(NULL); 2511 2512 if (!device_info) { 2513 ret = -ENOMEM; 2514 goto devinfo_failed; 2515 } 2516 2517 nvdev = rndis_filter_device_add(dev, device_info); 2518 if (IS_ERR(nvdev)) { 2519 ret = PTR_ERR(nvdev); 2520 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2521 goto rndis_failed; 2522 } 2523 2524 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2525 2526 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2527 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2528 * all subchannels to show up, but that may not happen because 2529 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2530 * -> ... -> device_add() -> ... -> __device_attach() can't get 2531 * the device lock, so all the subchannels can't be processed -- 2532 * finally netvsc_subchan_work() hangs forever. 2533 */ 2534 rtnl_lock(); 2535 2536 if (nvdev->num_chn > 1) 2537 schedule_work(&nvdev->subchan_work); 2538 2539 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2540 net->features = net->hw_features | 2541 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2542 NETIF_F_HW_VLAN_CTAG_RX; 2543 net->vlan_features = net->features; 2544 2545 netdev_lockdep_set_classes(net); 2546 2547 /* MTU range: 68 - 1500 or 65521 */ 2548 net->min_mtu = NETVSC_MTU_MIN; 2549 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2550 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2551 else 2552 net->max_mtu = ETH_DATA_LEN; 2553 2554 nvdev->tx_disable = false; 2555 2556 ret = register_netdevice(net); 2557 if (ret != 0) { 2558 pr_err("Unable to register netdev.\n"); 2559 goto register_failed; 2560 } 2561 2562 list_add(&net_device_ctx->list, &netvsc_dev_list); 2563 rtnl_unlock(); 2564 2565 netvsc_devinfo_put(device_info); 2566 return 0; 2567 2568 register_failed: 2569 rtnl_unlock(); 2570 rndis_filter_device_remove(dev, nvdev); 2571 rndis_failed: 2572 netvsc_devinfo_put(device_info); 2573 devinfo_failed: 2574 free_percpu(net_device_ctx->vf_stats); 2575 no_stats: 2576 hv_set_drvdata(dev, NULL); 2577 free_netdev(net); 2578 no_net: 2579 return ret; 2580 } 2581 2582 static int netvsc_remove(struct hv_device *dev) 2583 { 2584 struct net_device_context *ndev_ctx; 2585 struct net_device *vf_netdev, *net; 2586 struct netvsc_device *nvdev; 2587 2588 net = hv_get_drvdata(dev); 2589 if (net == NULL) { 2590 dev_err(&dev->device, "No net device to remove\n"); 2591 return 0; 2592 } 2593 2594 ndev_ctx = netdev_priv(net); 2595 2596 cancel_delayed_work_sync(&ndev_ctx->dwork); 2597 2598 rtnl_lock(); 2599 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2600 if (nvdev) { 2601 cancel_work_sync(&nvdev->subchan_work); 2602 netvsc_xdp_set(net, NULL, NULL, nvdev); 2603 } 2604 2605 /* 2606 * Call to the vsc driver to let it know that the device is being 2607 * removed. Also blocks mtu and channel changes. 2608 */ 2609 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2610 if (vf_netdev) 2611 netvsc_unregister_vf(vf_netdev); 2612 2613 if (nvdev) 2614 rndis_filter_device_remove(dev, nvdev); 2615 2616 unregister_netdevice(net); 2617 list_del(&ndev_ctx->list); 2618 2619 rtnl_unlock(); 2620 2621 hv_set_drvdata(dev, NULL); 2622 2623 free_percpu(ndev_ctx->vf_stats); 2624 free_netdev(net); 2625 return 0; 2626 } 2627 2628 static int netvsc_suspend(struct hv_device *dev) 2629 { 2630 struct net_device_context *ndev_ctx; 2631 struct netvsc_device *nvdev; 2632 struct net_device *net; 2633 int ret; 2634 2635 net = hv_get_drvdata(dev); 2636 2637 ndev_ctx = netdev_priv(net); 2638 cancel_delayed_work_sync(&ndev_ctx->dwork); 2639 2640 rtnl_lock(); 2641 2642 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2643 if (nvdev == NULL) { 2644 ret = -ENODEV; 2645 goto out; 2646 } 2647 2648 /* Save the current config info */ 2649 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2650 2651 ret = netvsc_detach(net, nvdev); 2652 out: 2653 rtnl_unlock(); 2654 2655 return ret; 2656 } 2657 2658 static int netvsc_resume(struct hv_device *dev) 2659 { 2660 struct net_device *net = hv_get_drvdata(dev); 2661 struct net_device_context *net_device_ctx; 2662 struct netvsc_device_info *device_info; 2663 int ret; 2664 2665 rtnl_lock(); 2666 2667 net_device_ctx = netdev_priv(net); 2668 2669 /* Reset the data path to the netvsc NIC before re-opening the vmbus 2670 * channel. Later netvsc_netdev_event() will switch the data path to 2671 * the VF upon the UP or CHANGE event. 2672 */ 2673 net_device_ctx->data_path_is_vf = false; 2674 device_info = net_device_ctx->saved_netvsc_dev_info; 2675 2676 ret = netvsc_attach(net, device_info); 2677 2678 netvsc_devinfo_put(device_info); 2679 net_device_ctx->saved_netvsc_dev_info = NULL; 2680 2681 rtnl_unlock(); 2682 2683 return ret; 2684 } 2685 static const struct hv_vmbus_device_id id_table[] = { 2686 /* Network guid */ 2687 { HV_NIC_GUID, }, 2688 { }, 2689 }; 2690 2691 MODULE_DEVICE_TABLE(vmbus, id_table); 2692 2693 /* The one and only one */ 2694 static struct hv_driver netvsc_drv = { 2695 .name = KBUILD_MODNAME, 2696 .id_table = id_table, 2697 .probe = netvsc_probe, 2698 .remove = netvsc_remove, 2699 .suspend = netvsc_suspend, 2700 .resume = netvsc_resume, 2701 .driver = { 2702 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2703 }, 2704 }; 2705 2706 /* 2707 * On Hyper-V, every VF interface is matched with a corresponding 2708 * synthetic interface. The synthetic interface is presented first 2709 * to the guest. When the corresponding VF instance is registered, 2710 * we will take care of switching the data path. 2711 */ 2712 static int netvsc_netdev_event(struct notifier_block *this, 2713 unsigned long event, void *ptr) 2714 { 2715 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2716 2717 /* Skip our own events */ 2718 if (event_dev->netdev_ops == &device_ops) 2719 return NOTIFY_DONE; 2720 2721 /* Avoid non-Ethernet type devices */ 2722 if (event_dev->type != ARPHRD_ETHER) 2723 return NOTIFY_DONE; 2724 2725 /* Avoid Vlan dev with same MAC registering as VF */ 2726 if (is_vlan_dev(event_dev)) 2727 return NOTIFY_DONE; 2728 2729 /* Avoid Bonding master dev with same MAC registering as VF */ 2730 if ((event_dev->priv_flags & IFF_BONDING) && 2731 (event_dev->flags & IFF_MASTER)) 2732 return NOTIFY_DONE; 2733 2734 switch (event) { 2735 case NETDEV_REGISTER: 2736 return netvsc_register_vf(event_dev); 2737 case NETDEV_UNREGISTER: 2738 return netvsc_unregister_vf(event_dev); 2739 case NETDEV_UP: 2740 case NETDEV_DOWN: 2741 case NETDEV_CHANGE: 2742 case NETDEV_GOING_DOWN: 2743 return netvsc_vf_changed(event_dev, event); 2744 default: 2745 return NOTIFY_DONE; 2746 } 2747 } 2748 2749 static struct notifier_block netvsc_netdev_notifier = { 2750 .notifier_call = netvsc_netdev_event, 2751 }; 2752 2753 static void __exit netvsc_drv_exit(void) 2754 { 2755 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2756 vmbus_driver_unregister(&netvsc_drv); 2757 } 2758 2759 static int __init netvsc_drv_init(void) 2760 { 2761 int ret; 2762 2763 if (ring_size < RING_SIZE_MIN) { 2764 ring_size = RING_SIZE_MIN; 2765 pr_info("Increased ring_size to %u (min allowed)\n", 2766 ring_size); 2767 } 2768 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2769 2770 ret = vmbus_driver_register(&netvsc_drv); 2771 if (ret) 2772 return ret; 2773 2774 register_netdevice_notifier(&netvsc_netdev_notifier); 2775 return 0; 2776 } 2777 2778 MODULE_LICENSE("GPL"); 2779 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2780 2781 module_init(netvsc_drv_init); 2782 module_exit(netvsc_drv_exit); 2783