xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision c2a5a45c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30 
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 
38 #include "hyperv_net.h"
39 
40 #define RING_SIZE_MIN	64
41 #define RETRY_US_LO	5000
42 #define RETRY_US_HI	10000
43 #define RETRY_MAX	2000	/* >10 sec */
44 
45 #define LINKCHANGE_INT (2 * HZ)
46 #define VF_TAKEOVER_INT (HZ / 10)
47 
48 static unsigned int ring_size __ro_after_init = 128;
49 module_param(ring_size, uint, 0444);
50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
51 unsigned int netvsc_ring_bytes __ro_after_init;
52 
53 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
54 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
55 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
56 				NETIF_MSG_TX_ERR;
57 
58 static int debug = -1;
59 module_param(debug, int, 0444);
60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61 
62 static LIST_HEAD(netvsc_dev_list);
63 
64 static void netvsc_change_rx_flags(struct net_device *net, int change)
65 {
66 	struct net_device_context *ndev_ctx = netdev_priv(net);
67 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
68 	int inc;
69 
70 	if (!vf_netdev)
71 		return;
72 
73 	if (change & IFF_PROMISC) {
74 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
75 		dev_set_promiscuity(vf_netdev, inc);
76 	}
77 
78 	if (change & IFF_ALLMULTI) {
79 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
80 		dev_set_allmulti(vf_netdev, inc);
81 	}
82 }
83 
84 static void netvsc_set_rx_mode(struct net_device *net)
85 {
86 	struct net_device_context *ndev_ctx = netdev_priv(net);
87 	struct net_device *vf_netdev;
88 	struct netvsc_device *nvdev;
89 
90 	rcu_read_lock();
91 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
92 	if (vf_netdev) {
93 		dev_uc_sync(vf_netdev, net);
94 		dev_mc_sync(vf_netdev, net);
95 	}
96 
97 	nvdev = rcu_dereference(ndev_ctx->nvdev);
98 	if (nvdev)
99 		rndis_filter_update(nvdev);
100 	rcu_read_unlock();
101 }
102 
103 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
104 			     struct net_device *ndev)
105 {
106 	nvscdev->tx_disable = false;
107 	virt_wmb(); /* ensure queue wake up mechanism is on */
108 
109 	netif_tx_wake_all_queues(ndev);
110 }
111 
112 static int netvsc_open(struct net_device *net)
113 {
114 	struct net_device_context *ndev_ctx = netdev_priv(net);
115 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
116 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
117 	struct rndis_device *rdev;
118 	int ret = 0;
119 
120 	netif_carrier_off(net);
121 
122 	/* Open up the device */
123 	ret = rndis_filter_open(nvdev);
124 	if (ret != 0) {
125 		netdev_err(net, "unable to open device (ret %d).\n", ret);
126 		return ret;
127 	}
128 
129 	rdev = nvdev->extension;
130 	if (!rdev->link_state) {
131 		netif_carrier_on(net);
132 		netvsc_tx_enable(nvdev, net);
133 	}
134 
135 	if (vf_netdev) {
136 		/* Setting synthetic device up transparently sets
137 		 * slave as up. If open fails, then slave will be
138 		 * still be offline (and not used).
139 		 */
140 		ret = dev_open(vf_netdev, NULL);
141 		if (ret)
142 			netdev_warn(net,
143 				    "unable to open slave: %s: %d\n",
144 				    vf_netdev->name, ret);
145 	}
146 	return 0;
147 }
148 
149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 {
151 	unsigned int retry = 0;
152 	int i;
153 
154 	/* Ensure pending bytes in ring are read */
155 	for (;;) {
156 		u32 aread = 0;
157 
158 		for (i = 0; i < nvdev->num_chn; i++) {
159 			struct vmbus_channel *chn
160 				= nvdev->chan_table[i].channel;
161 
162 			if (!chn)
163 				continue;
164 
165 			/* make sure receive not running now */
166 			napi_synchronize(&nvdev->chan_table[i].napi);
167 
168 			aread = hv_get_bytes_to_read(&chn->inbound);
169 			if (aread)
170 				break;
171 
172 			aread = hv_get_bytes_to_read(&chn->outbound);
173 			if (aread)
174 				break;
175 		}
176 
177 		if (aread == 0)
178 			return 0;
179 
180 		if (++retry > RETRY_MAX)
181 			return -ETIMEDOUT;
182 
183 		usleep_range(RETRY_US_LO, RETRY_US_HI);
184 	}
185 }
186 
187 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
188 			      struct net_device *ndev)
189 {
190 	if (nvscdev) {
191 		nvscdev->tx_disable = true;
192 		virt_wmb(); /* ensure txq will not wake up after stop */
193 	}
194 
195 	netif_tx_disable(ndev);
196 }
197 
198 static int netvsc_close(struct net_device *net)
199 {
200 	struct net_device_context *net_device_ctx = netdev_priv(net);
201 	struct net_device *vf_netdev
202 		= rtnl_dereference(net_device_ctx->vf_netdev);
203 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
204 	int ret;
205 
206 	netvsc_tx_disable(nvdev, net);
207 
208 	/* No need to close rndis filter if it is removed already */
209 	if (!nvdev)
210 		return 0;
211 
212 	ret = rndis_filter_close(nvdev);
213 	if (ret != 0) {
214 		netdev_err(net, "unable to close device (ret %d).\n", ret);
215 		return ret;
216 	}
217 
218 	ret = netvsc_wait_until_empty(nvdev);
219 	if (ret)
220 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
221 
222 	if (vf_netdev)
223 		dev_close(vf_netdev);
224 
225 	return ret;
226 }
227 
228 static inline void *init_ppi_data(struct rndis_message *msg,
229 				  u32 ppi_size, u32 pkt_type)
230 {
231 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
232 	struct rndis_per_packet_info *ppi;
233 
234 	rndis_pkt->data_offset += ppi_size;
235 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
236 		+ rndis_pkt->per_pkt_info_len;
237 
238 	ppi->size = ppi_size;
239 	ppi->type = pkt_type;
240 	ppi->internal = 0;
241 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
242 
243 	rndis_pkt->per_pkt_info_len += ppi_size;
244 
245 	return ppi + 1;
246 }
247 
248 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
249  * packets. We can use ethtool to change UDP hash level when necessary.
250  */
251 static inline u32 netvsc_get_hash(
252 	struct sk_buff *skb,
253 	const struct net_device_context *ndc)
254 {
255 	struct flow_keys flow;
256 	u32 hash, pkt_proto = 0;
257 	static u32 hashrnd __read_mostly;
258 
259 	net_get_random_once(&hashrnd, sizeof(hashrnd));
260 
261 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
262 		return 0;
263 
264 	switch (flow.basic.ip_proto) {
265 	case IPPROTO_TCP:
266 		if (flow.basic.n_proto == htons(ETH_P_IP))
267 			pkt_proto = HV_TCP4_L4HASH;
268 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
269 			pkt_proto = HV_TCP6_L4HASH;
270 
271 		break;
272 
273 	case IPPROTO_UDP:
274 		if (flow.basic.n_proto == htons(ETH_P_IP))
275 			pkt_proto = HV_UDP4_L4HASH;
276 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
277 			pkt_proto = HV_UDP6_L4HASH;
278 
279 		break;
280 	}
281 
282 	if (pkt_proto & ndc->l4_hash) {
283 		return skb_get_hash(skb);
284 	} else {
285 		if (flow.basic.n_proto == htons(ETH_P_IP))
286 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
287 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
288 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
289 		else
290 			return 0;
291 
292 		__skb_set_sw_hash(skb, hash, false);
293 	}
294 
295 	return hash;
296 }
297 
298 static inline int netvsc_get_tx_queue(struct net_device *ndev,
299 				      struct sk_buff *skb, int old_idx)
300 {
301 	const struct net_device_context *ndc = netdev_priv(ndev);
302 	struct sock *sk = skb->sk;
303 	int q_idx;
304 
305 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
306 			      (VRSS_SEND_TAB_SIZE - 1)];
307 
308 	/* If queue index changed record the new value */
309 	if (q_idx != old_idx &&
310 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
311 		sk_tx_queue_set(sk, q_idx);
312 
313 	return q_idx;
314 }
315 
316 /*
317  * Select queue for transmit.
318  *
319  * If a valid queue has already been assigned, then use that.
320  * Otherwise compute tx queue based on hash and the send table.
321  *
322  * This is basically similar to default (netdev_pick_tx) with the added step
323  * of using the host send_table when no other queue has been assigned.
324  *
325  * TODO support XPS - but get_xps_queue not exported
326  */
327 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
328 {
329 	int q_idx = sk_tx_queue_get(skb->sk);
330 
331 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
332 		/* If forwarding a packet, we use the recorded queue when
333 		 * available for better cache locality.
334 		 */
335 		if (skb_rx_queue_recorded(skb))
336 			q_idx = skb_get_rx_queue(skb);
337 		else
338 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
339 	}
340 
341 	return q_idx;
342 }
343 
344 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
345 			       struct net_device *sb_dev)
346 {
347 	struct net_device_context *ndc = netdev_priv(ndev);
348 	struct net_device *vf_netdev;
349 	u16 txq;
350 
351 	rcu_read_lock();
352 	vf_netdev = rcu_dereference(ndc->vf_netdev);
353 	if (vf_netdev) {
354 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
355 
356 		if (vf_ops->ndo_select_queue)
357 			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
358 		else
359 			txq = netdev_pick_tx(vf_netdev, skb, NULL);
360 
361 		/* Record the queue selected by VF so that it can be
362 		 * used for common case where VF has more queues than
363 		 * the synthetic device.
364 		 */
365 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
366 	} else {
367 		txq = netvsc_pick_tx(ndev, skb);
368 	}
369 	rcu_read_unlock();
370 
371 	while (txq >= ndev->real_num_tx_queues)
372 		txq -= ndev->real_num_tx_queues;
373 
374 	return txq;
375 }
376 
377 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
378 		       struct hv_page_buffer *pb)
379 {
380 	int j = 0;
381 
382 	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
383 	offset = offset & ~HV_HYP_PAGE_MASK;
384 
385 	while (len > 0) {
386 		unsigned long bytes;
387 
388 		bytes = HV_HYP_PAGE_SIZE - offset;
389 		if (bytes > len)
390 			bytes = len;
391 		pb[j].pfn = hvpfn;
392 		pb[j].offset = offset;
393 		pb[j].len = bytes;
394 
395 		offset += bytes;
396 		len -= bytes;
397 
398 		if (offset == HV_HYP_PAGE_SIZE && len) {
399 			hvpfn++;
400 			offset = 0;
401 			j++;
402 		}
403 	}
404 
405 	return j + 1;
406 }
407 
408 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
409 			   struct hv_netvsc_packet *packet,
410 			   struct hv_page_buffer *pb)
411 {
412 	u32 slots_used = 0;
413 	char *data = skb->data;
414 	int frags = skb_shinfo(skb)->nr_frags;
415 	int i;
416 
417 	/* The packet is laid out thus:
418 	 * 1. hdr: RNDIS header and PPI
419 	 * 2. skb linear data
420 	 * 3. skb fragment data
421 	 */
422 	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
423 				  offset_in_hvpage(hdr),
424 				  len,
425 				  &pb[slots_used]);
426 
427 	packet->rmsg_size = len;
428 	packet->rmsg_pgcnt = slots_used;
429 
430 	slots_used += fill_pg_buf(virt_to_hvpfn(data),
431 				  offset_in_hvpage(data),
432 				  skb_headlen(skb),
433 				  &pb[slots_used]);
434 
435 	for (i = 0; i < frags; i++) {
436 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437 
438 		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
439 					  skb_frag_off(frag),
440 					  skb_frag_size(frag),
441 					  &pb[slots_used]);
442 	}
443 	return slots_used;
444 }
445 
446 static int count_skb_frag_slots(struct sk_buff *skb)
447 {
448 	int i, frags = skb_shinfo(skb)->nr_frags;
449 	int pages = 0;
450 
451 	for (i = 0; i < frags; i++) {
452 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
453 		unsigned long size = skb_frag_size(frag);
454 		unsigned long offset = skb_frag_off(frag);
455 
456 		/* Skip unused frames from start of page */
457 		offset &= ~HV_HYP_PAGE_MASK;
458 		pages += HVPFN_UP(offset + size);
459 	}
460 	return pages;
461 }
462 
463 static int netvsc_get_slots(struct sk_buff *skb)
464 {
465 	char *data = skb->data;
466 	unsigned int offset = offset_in_hvpage(data);
467 	unsigned int len = skb_headlen(skb);
468 	int slots;
469 	int frag_slots;
470 
471 	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
472 	frag_slots = count_skb_frag_slots(skb);
473 	return slots + frag_slots;
474 }
475 
476 static u32 net_checksum_info(struct sk_buff *skb)
477 {
478 	if (skb->protocol == htons(ETH_P_IP)) {
479 		struct iphdr *ip = ip_hdr(skb);
480 
481 		if (ip->protocol == IPPROTO_TCP)
482 			return TRANSPORT_INFO_IPV4_TCP;
483 		else if (ip->protocol == IPPROTO_UDP)
484 			return TRANSPORT_INFO_IPV4_UDP;
485 	} else {
486 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
487 
488 		if (ip6->nexthdr == IPPROTO_TCP)
489 			return TRANSPORT_INFO_IPV6_TCP;
490 		else if (ip6->nexthdr == IPPROTO_UDP)
491 			return TRANSPORT_INFO_IPV6_UDP;
492 	}
493 
494 	return TRANSPORT_INFO_NOT_IP;
495 }
496 
497 /* Send skb on the slave VF device. */
498 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
499 			  struct sk_buff *skb)
500 {
501 	struct net_device_context *ndev_ctx = netdev_priv(net);
502 	unsigned int len = skb->len;
503 	int rc;
504 
505 	skb->dev = vf_netdev;
506 	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
507 
508 	rc = dev_queue_xmit(skb);
509 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
510 		struct netvsc_vf_pcpu_stats *pcpu_stats
511 			= this_cpu_ptr(ndev_ctx->vf_stats);
512 
513 		u64_stats_update_begin(&pcpu_stats->syncp);
514 		pcpu_stats->tx_packets++;
515 		pcpu_stats->tx_bytes += len;
516 		u64_stats_update_end(&pcpu_stats->syncp);
517 	} else {
518 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
519 	}
520 
521 	return rc;
522 }
523 
524 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
525 {
526 	struct net_device_context *net_device_ctx = netdev_priv(net);
527 	struct hv_netvsc_packet *packet = NULL;
528 	int ret;
529 	unsigned int num_data_pgs;
530 	struct rndis_message *rndis_msg;
531 	struct net_device *vf_netdev;
532 	u32 rndis_msg_size;
533 	u32 hash;
534 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
535 
536 	/* If VF is present and up then redirect packets to it.
537 	 * Skip the VF if it is marked down or has no carrier.
538 	 * If netpoll is in uses, then VF can not be used either.
539 	 */
540 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
541 	if (vf_netdev && netif_running(vf_netdev) &&
542 	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
543 	    net_device_ctx->data_path_is_vf)
544 		return netvsc_vf_xmit(net, vf_netdev, skb);
545 
546 	/* We will atmost need two pages to describe the rndis
547 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
548 	 * of pages in a single packet. If skb is scattered around
549 	 * more pages we try linearizing it.
550 	 */
551 
552 	num_data_pgs = netvsc_get_slots(skb) + 2;
553 
554 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
555 		++net_device_ctx->eth_stats.tx_scattered;
556 
557 		if (skb_linearize(skb))
558 			goto no_memory;
559 
560 		num_data_pgs = netvsc_get_slots(skb) + 2;
561 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
562 			++net_device_ctx->eth_stats.tx_too_big;
563 			goto drop;
564 		}
565 	}
566 
567 	/*
568 	 * Place the rndis header in the skb head room and
569 	 * the skb->cb will be used for hv_netvsc_packet
570 	 * structure.
571 	 */
572 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
573 	if (ret)
574 		goto no_memory;
575 
576 	/* Use the skb control buffer for building up the packet */
577 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
578 			sizeof_field(struct sk_buff, cb));
579 	packet = (struct hv_netvsc_packet *)skb->cb;
580 
581 	packet->q_idx = skb_get_queue_mapping(skb);
582 
583 	packet->total_data_buflen = skb->len;
584 	packet->total_bytes = skb->len;
585 	packet->total_packets = 1;
586 
587 	rndis_msg = (struct rndis_message *)skb->head;
588 
589 	/* Add the rndis header */
590 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
591 	rndis_msg->msg_len = packet->total_data_buflen;
592 
593 	rndis_msg->msg.pkt = (struct rndis_packet) {
594 		.data_offset = sizeof(struct rndis_packet),
595 		.data_len = packet->total_data_buflen,
596 		.per_pkt_info_offset = sizeof(struct rndis_packet),
597 	};
598 
599 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
600 
601 	hash = skb_get_hash_raw(skb);
602 	if (hash != 0 && net->real_num_tx_queues > 1) {
603 		u32 *hash_info;
604 
605 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
606 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
607 					  NBL_HASH_VALUE);
608 		*hash_info = hash;
609 	}
610 
611 	/* When using AF_PACKET we need to drop VLAN header from
612 	 * the frame and update the SKB to allow the HOST OS
613 	 * to transmit the 802.1Q packet
614 	 */
615 	if (skb->protocol == htons(ETH_P_8021Q)) {
616 		u16 vlan_tci;
617 
618 		skb_reset_mac_header(skb);
619 		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
620 			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
621 				++net_device_ctx->eth_stats.vlan_error;
622 				goto drop;
623 			}
624 
625 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
626 			/* Update the NDIS header pkt lengths */
627 			packet->total_data_buflen -= VLAN_HLEN;
628 			packet->total_bytes -= VLAN_HLEN;
629 			rndis_msg->msg_len = packet->total_data_buflen;
630 			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
631 		}
632 	}
633 
634 	if (skb_vlan_tag_present(skb)) {
635 		struct ndis_pkt_8021q_info *vlan;
636 
637 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
638 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
639 				     IEEE_8021Q_INFO);
640 
641 		vlan->value = 0;
642 		vlan->vlanid = skb_vlan_tag_get_id(skb);
643 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
644 		vlan->pri = skb_vlan_tag_get_prio(skb);
645 	}
646 
647 	if (skb_is_gso(skb)) {
648 		struct ndis_tcp_lso_info *lso_info;
649 
650 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
651 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
652 					 TCP_LARGESEND_PKTINFO);
653 
654 		lso_info->value = 0;
655 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
656 		if (skb->protocol == htons(ETH_P_IP)) {
657 			lso_info->lso_v2_transmit.ip_version =
658 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
659 			ip_hdr(skb)->tot_len = 0;
660 			ip_hdr(skb)->check = 0;
661 			tcp_hdr(skb)->check =
662 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
663 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
664 		} else {
665 			lso_info->lso_v2_transmit.ip_version =
666 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
667 			tcp_v6_gso_csum_prep(skb);
668 		}
669 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
670 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
671 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
672 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
673 			struct ndis_tcp_ip_checksum_info *csum_info;
674 
675 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
676 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
677 						  TCPIP_CHKSUM_PKTINFO);
678 
679 			csum_info->value = 0;
680 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
681 
682 			if (skb->protocol == htons(ETH_P_IP)) {
683 				csum_info->transmit.is_ipv4 = 1;
684 
685 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
686 					csum_info->transmit.tcp_checksum = 1;
687 				else
688 					csum_info->transmit.udp_checksum = 1;
689 			} else {
690 				csum_info->transmit.is_ipv6 = 1;
691 
692 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
693 					csum_info->transmit.tcp_checksum = 1;
694 				else
695 					csum_info->transmit.udp_checksum = 1;
696 			}
697 		} else {
698 			/* Can't do offload of this type of checksum */
699 			if (skb_checksum_help(skb))
700 				goto drop;
701 		}
702 	}
703 
704 	/* Start filling in the page buffers with the rndis hdr */
705 	rndis_msg->msg_len += rndis_msg_size;
706 	packet->total_data_buflen = rndis_msg->msg_len;
707 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
708 					       skb, packet, pb);
709 
710 	/* timestamp packet in software */
711 	skb_tx_timestamp(skb);
712 
713 	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
714 	if (likely(ret == 0))
715 		return NETDEV_TX_OK;
716 
717 	if (ret == -EAGAIN) {
718 		++net_device_ctx->eth_stats.tx_busy;
719 		return NETDEV_TX_BUSY;
720 	}
721 
722 	if (ret == -ENOSPC)
723 		++net_device_ctx->eth_stats.tx_no_space;
724 
725 drop:
726 	dev_kfree_skb_any(skb);
727 	net->stats.tx_dropped++;
728 
729 	return NETDEV_TX_OK;
730 
731 no_memory:
732 	++net_device_ctx->eth_stats.tx_no_memory;
733 	goto drop;
734 }
735 
736 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
737 				     struct net_device *ndev)
738 {
739 	return netvsc_xmit(skb, ndev, false);
740 }
741 
742 /*
743  * netvsc_linkstatus_callback - Link up/down notification
744  */
745 void netvsc_linkstatus_callback(struct net_device *net,
746 				struct rndis_message *resp,
747 				void *data)
748 {
749 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
750 	struct net_device_context *ndev_ctx = netdev_priv(net);
751 	struct netvsc_reconfig *event;
752 	unsigned long flags;
753 
754 	/* Ensure the packet is big enough to access its fields */
755 	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
756 		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
757 			   resp->msg_len);
758 		return;
759 	}
760 
761 	/* Copy the RNDIS indicate status into nvchan->recv_buf */
762 	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
763 
764 	/* Update the physical link speed when changing to another vSwitch */
765 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
766 		u32 speed;
767 
768 		/* Validate status_buf_offset */
769 		if (indicate->status_buflen < sizeof(speed) ||
770 		    indicate->status_buf_offset < sizeof(*indicate) ||
771 		    resp->msg_len - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
772 		    resp->msg_len - RNDIS_HEADER_SIZE - indicate->status_buf_offset
773 				< indicate->status_buflen) {
774 			netdev_err(net, "invalid rndis_indicate_status packet\n");
775 			return;
776 		}
777 
778 		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
779 		ndev_ctx->speed = speed;
780 		return;
781 	}
782 
783 	/* Handle these link change statuses below */
784 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
785 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
786 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
787 		return;
788 
789 	if (net->reg_state != NETREG_REGISTERED)
790 		return;
791 
792 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
793 	if (!event)
794 		return;
795 	event->event = indicate->status;
796 
797 	spin_lock_irqsave(&ndev_ctx->lock, flags);
798 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
799 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
800 
801 	schedule_delayed_work(&ndev_ctx->dwork, 0);
802 }
803 
804 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
805 {
806 	int rc;
807 
808 	skb->queue_mapping = skb_get_rx_queue(skb);
809 	__skb_push(skb, ETH_HLEN);
810 
811 	rc = netvsc_xmit(skb, ndev, true);
812 
813 	if (dev_xmit_complete(rc))
814 		return;
815 
816 	dev_kfree_skb_any(skb);
817 	ndev->stats.tx_dropped++;
818 }
819 
820 static void netvsc_comp_ipcsum(struct sk_buff *skb)
821 {
822 	struct iphdr *iph = (struct iphdr *)skb->data;
823 
824 	iph->check = 0;
825 	iph->check = ip_fast_csum(iph, iph->ihl);
826 }
827 
828 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
829 					     struct netvsc_channel *nvchan,
830 					     struct xdp_buff *xdp)
831 {
832 	struct napi_struct *napi = &nvchan->napi;
833 	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
834 	const struct ndis_tcp_ip_checksum_info *csum_info =
835 						&nvchan->rsc.csum_info;
836 	const u32 *hash_info = &nvchan->rsc.hash_info;
837 	u8 ppi_flags = nvchan->rsc.ppi_flags;
838 	struct sk_buff *skb;
839 	void *xbuf = xdp->data_hard_start;
840 	int i;
841 
842 	if (xbuf) {
843 		unsigned int hdroom = xdp->data - xdp->data_hard_start;
844 		unsigned int xlen = xdp->data_end - xdp->data;
845 		unsigned int frag_size = xdp->frame_sz;
846 
847 		skb = build_skb(xbuf, frag_size);
848 
849 		if (!skb) {
850 			__free_page(virt_to_page(xbuf));
851 			return NULL;
852 		}
853 
854 		skb_reserve(skb, hdroom);
855 		skb_put(skb, xlen);
856 		skb->dev = napi->dev;
857 	} else {
858 		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
859 
860 		if (!skb)
861 			return NULL;
862 
863 		/* Copy to skb. This copy is needed here since the memory
864 		 * pointed by hv_netvsc_packet cannot be deallocated.
865 		 */
866 		for (i = 0; i < nvchan->rsc.cnt; i++)
867 			skb_put_data(skb, nvchan->rsc.data[i],
868 				     nvchan->rsc.len[i]);
869 	}
870 
871 	skb->protocol = eth_type_trans(skb, net);
872 
873 	/* skb is already created with CHECKSUM_NONE */
874 	skb_checksum_none_assert(skb);
875 
876 	/* Incoming packets may have IP header checksum verified by the host.
877 	 * They may not have IP header checksum computed after coalescing.
878 	 * We compute it here if the flags are set, because on Linux, the IP
879 	 * checksum is always checked.
880 	 */
881 	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
882 	    csum_info->receive.ip_checksum_succeeded &&
883 	    skb->protocol == htons(ETH_P_IP)) {
884 		/* Check that there is enough space to hold the IP header. */
885 		if (skb_headlen(skb) < sizeof(struct iphdr)) {
886 			kfree_skb(skb);
887 			return NULL;
888 		}
889 		netvsc_comp_ipcsum(skb);
890 	}
891 
892 	/* Do L4 checksum offload if enabled and present. */
893 	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
894 		if (csum_info->receive.tcp_checksum_succeeded ||
895 		    csum_info->receive.udp_checksum_succeeded)
896 			skb->ip_summed = CHECKSUM_UNNECESSARY;
897 	}
898 
899 	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
900 		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
901 
902 	if (ppi_flags & NVSC_RSC_VLAN) {
903 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
904 			(vlan->cfi ? VLAN_CFI_MASK : 0);
905 
906 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
907 				       vlan_tci);
908 	}
909 
910 	return skb;
911 }
912 
913 /*
914  * netvsc_recv_callback -  Callback when we receive a packet from the
915  * "wire" on the specified device.
916  */
917 int netvsc_recv_callback(struct net_device *net,
918 			 struct netvsc_device *net_device,
919 			 struct netvsc_channel *nvchan)
920 {
921 	struct net_device_context *net_device_ctx = netdev_priv(net);
922 	struct vmbus_channel *channel = nvchan->channel;
923 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
924 	struct sk_buff *skb;
925 	struct netvsc_stats *rx_stats = &nvchan->rx_stats;
926 	struct xdp_buff xdp;
927 	u32 act;
928 
929 	if (net->reg_state != NETREG_REGISTERED)
930 		return NVSP_STAT_FAIL;
931 
932 	act = netvsc_run_xdp(net, nvchan, &xdp);
933 
934 	if (act != XDP_PASS && act != XDP_TX) {
935 		u64_stats_update_begin(&rx_stats->syncp);
936 		rx_stats->xdp_drop++;
937 		u64_stats_update_end(&rx_stats->syncp);
938 
939 		return NVSP_STAT_SUCCESS; /* consumed by XDP */
940 	}
941 
942 	/* Allocate a skb - TODO direct I/O to pages? */
943 	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
944 
945 	if (unlikely(!skb)) {
946 		++net_device_ctx->eth_stats.rx_no_memory;
947 		return NVSP_STAT_FAIL;
948 	}
949 
950 	skb_record_rx_queue(skb, q_idx);
951 
952 	/*
953 	 * Even if injecting the packet, record the statistics
954 	 * on the synthetic device because modifying the VF device
955 	 * statistics will not work correctly.
956 	 */
957 	u64_stats_update_begin(&rx_stats->syncp);
958 	rx_stats->packets++;
959 	rx_stats->bytes += nvchan->rsc.pktlen;
960 
961 	if (skb->pkt_type == PACKET_BROADCAST)
962 		++rx_stats->broadcast;
963 	else if (skb->pkt_type == PACKET_MULTICAST)
964 		++rx_stats->multicast;
965 	u64_stats_update_end(&rx_stats->syncp);
966 
967 	if (act == XDP_TX) {
968 		netvsc_xdp_xmit(skb, net);
969 		return NVSP_STAT_SUCCESS;
970 	}
971 
972 	napi_gro_receive(&nvchan->napi, skb);
973 	return NVSP_STAT_SUCCESS;
974 }
975 
976 static void netvsc_get_drvinfo(struct net_device *net,
977 			       struct ethtool_drvinfo *info)
978 {
979 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
980 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
981 }
982 
983 static void netvsc_get_channels(struct net_device *net,
984 				struct ethtool_channels *channel)
985 {
986 	struct net_device_context *net_device_ctx = netdev_priv(net);
987 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
988 
989 	if (nvdev) {
990 		channel->max_combined	= nvdev->max_chn;
991 		channel->combined_count = nvdev->num_chn;
992 	}
993 }
994 
995 /* Alloc struct netvsc_device_info, and initialize it from either existing
996  * struct netvsc_device, or from default values.
997  */
998 static
999 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1000 {
1001 	struct netvsc_device_info *dev_info;
1002 	struct bpf_prog *prog;
1003 
1004 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1005 
1006 	if (!dev_info)
1007 		return NULL;
1008 
1009 	if (nvdev) {
1010 		ASSERT_RTNL();
1011 
1012 		dev_info->num_chn = nvdev->num_chn;
1013 		dev_info->send_sections = nvdev->send_section_cnt;
1014 		dev_info->send_section_size = nvdev->send_section_size;
1015 		dev_info->recv_sections = nvdev->recv_section_cnt;
1016 		dev_info->recv_section_size = nvdev->recv_section_size;
1017 
1018 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1019 		       NETVSC_HASH_KEYLEN);
1020 
1021 		prog = netvsc_xdp_get(nvdev);
1022 		if (prog) {
1023 			bpf_prog_inc(prog);
1024 			dev_info->bprog = prog;
1025 		}
1026 	} else {
1027 		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1028 		dev_info->send_sections = NETVSC_DEFAULT_TX;
1029 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1030 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
1031 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1032 	}
1033 
1034 	return dev_info;
1035 }
1036 
1037 /* Free struct netvsc_device_info */
1038 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1039 {
1040 	if (dev_info->bprog) {
1041 		ASSERT_RTNL();
1042 		bpf_prog_put(dev_info->bprog);
1043 	}
1044 
1045 	kfree(dev_info);
1046 }
1047 
1048 static int netvsc_detach(struct net_device *ndev,
1049 			 struct netvsc_device *nvdev)
1050 {
1051 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1052 	struct hv_device *hdev = ndev_ctx->device_ctx;
1053 	int ret;
1054 
1055 	/* Don't try continuing to try and setup sub channels */
1056 	if (cancel_work_sync(&nvdev->subchan_work))
1057 		nvdev->num_chn = 1;
1058 
1059 	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1060 
1061 	/* If device was up (receiving) then shutdown */
1062 	if (netif_running(ndev)) {
1063 		netvsc_tx_disable(nvdev, ndev);
1064 
1065 		ret = rndis_filter_close(nvdev);
1066 		if (ret) {
1067 			netdev_err(ndev,
1068 				   "unable to close device (ret %d).\n", ret);
1069 			return ret;
1070 		}
1071 
1072 		ret = netvsc_wait_until_empty(nvdev);
1073 		if (ret) {
1074 			netdev_err(ndev,
1075 				   "Ring buffer not empty after closing rndis\n");
1076 			return ret;
1077 		}
1078 	}
1079 
1080 	netif_device_detach(ndev);
1081 
1082 	rndis_filter_device_remove(hdev, nvdev);
1083 
1084 	return 0;
1085 }
1086 
1087 static int netvsc_attach(struct net_device *ndev,
1088 			 struct netvsc_device_info *dev_info)
1089 {
1090 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1091 	struct hv_device *hdev = ndev_ctx->device_ctx;
1092 	struct netvsc_device *nvdev;
1093 	struct rndis_device *rdev;
1094 	struct bpf_prog *prog;
1095 	int ret = 0;
1096 
1097 	nvdev = rndis_filter_device_add(hdev, dev_info);
1098 	if (IS_ERR(nvdev))
1099 		return PTR_ERR(nvdev);
1100 
1101 	if (nvdev->num_chn > 1) {
1102 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1103 
1104 		/* if unavailable, just proceed with one queue */
1105 		if (ret) {
1106 			nvdev->max_chn = 1;
1107 			nvdev->num_chn = 1;
1108 		}
1109 	}
1110 
1111 	prog = dev_info->bprog;
1112 	if (prog) {
1113 		bpf_prog_inc(prog);
1114 		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1115 		if (ret) {
1116 			bpf_prog_put(prog);
1117 			goto err1;
1118 		}
1119 	}
1120 
1121 	/* In any case device is now ready */
1122 	nvdev->tx_disable = false;
1123 	netif_device_attach(ndev);
1124 
1125 	/* Note: enable and attach happen when sub-channels setup */
1126 	netif_carrier_off(ndev);
1127 
1128 	if (netif_running(ndev)) {
1129 		ret = rndis_filter_open(nvdev);
1130 		if (ret)
1131 			goto err2;
1132 
1133 		rdev = nvdev->extension;
1134 		if (!rdev->link_state)
1135 			netif_carrier_on(ndev);
1136 	}
1137 
1138 	return 0;
1139 
1140 err2:
1141 	netif_device_detach(ndev);
1142 
1143 err1:
1144 	rndis_filter_device_remove(hdev, nvdev);
1145 
1146 	return ret;
1147 }
1148 
1149 static int netvsc_set_channels(struct net_device *net,
1150 			       struct ethtool_channels *channels)
1151 {
1152 	struct net_device_context *net_device_ctx = netdev_priv(net);
1153 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1154 	unsigned int orig, count = channels->combined_count;
1155 	struct netvsc_device_info *device_info;
1156 	int ret;
1157 
1158 	/* We do not support separate count for rx, tx, or other */
1159 	if (count == 0 ||
1160 	    channels->rx_count || channels->tx_count || channels->other_count)
1161 		return -EINVAL;
1162 
1163 	if (!nvdev || nvdev->destroy)
1164 		return -ENODEV;
1165 
1166 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1167 		return -EINVAL;
1168 
1169 	if (count > nvdev->max_chn)
1170 		return -EINVAL;
1171 
1172 	orig = nvdev->num_chn;
1173 
1174 	device_info = netvsc_devinfo_get(nvdev);
1175 
1176 	if (!device_info)
1177 		return -ENOMEM;
1178 
1179 	device_info->num_chn = count;
1180 
1181 	ret = netvsc_detach(net, nvdev);
1182 	if (ret)
1183 		goto out;
1184 
1185 	ret = netvsc_attach(net, device_info);
1186 	if (ret) {
1187 		device_info->num_chn = orig;
1188 		if (netvsc_attach(net, device_info))
1189 			netdev_err(net, "restoring channel setting failed\n");
1190 	}
1191 
1192 out:
1193 	netvsc_devinfo_put(device_info);
1194 	return ret;
1195 }
1196 
1197 static void netvsc_init_settings(struct net_device *dev)
1198 {
1199 	struct net_device_context *ndc = netdev_priv(dev);
1200 
1201 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1202 
1203 	ndc->speed = SPEED_UNKNOWN;
1204 	ndc->duplex = DUPLEX_FULL;
1205 
1206 	dev->features = NETIF_F_LRO;
1207 }
1208 
1209 static int netvsc_get_link_ksettings(struct net_device *dev,
1210 				     struct ethtool_link_ksettings *cmd)
1211 {
1212 	struct net_device_context *ndc = netdev_priv(dev);
1213 	struct net_device *vf_netdev;
1214 
1215 	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1216 
1217 	if (vf_netdev)
1218 		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1219 
1220 	cmd->base.speed = ndc->speed;
1221 	cmd->base.duplex = ndc->duplex;
1222 	cmd->base.port = PORT_OTHER;
1223 
1224 	return 0;
1225 }
1226 
1227 static int netvsc_set_link_ksettings(struct net_device *dev,
1228 				     const struct ethtool_link_ksettings *cmd)
1229 {
1230 	struct net_device_context *ndc = netdev_priv(dev);
1231 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1232 
1233 	if (vf_netdev) {
1234 		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1235 			return -EOPNOTSUPP;
1236 
1237 		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1238 								  cmd);
1239 	}
1240 
1241 	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1242 						  &ndc->speed, &ndc->duplex);
1243 }
1244 
1245 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1246 {
1247 	struct net_device_context *ndevctx = netdev_priv(ndev);
1248 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1249 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1250 	int orig_mtu = ndev->mtu;
1251 	struct netvsc_device_info *device_info;
1252 	int ret = 0;
1253 
1254 	if (!nvdev || nvdev->destroy)
1255 		return -ENODEV;
1256 
1257 	device_info = netvsc_devinfo_get(nvdev);
1258 
1259 	if (!device_info)
1260 		return -ENOMEM;
1261 
1262 	/* Change MTU of underlying VF netdev first. */
1263 	if (vf_netdev) {
1264 		ret = dev_set_mtu(vf_netdev, mtu);
1265 		if (ret)
1266 			goto out;
1267 	}
1268 
1269 	ret = netvsc_detach(ndev, nvdev);
1270 	if (ret)
1271 		goto rollback_vf;
1272 
1273 	ndev->mtu = mtu;
1274 
1275 	ret = netvsc_attach(ndev, device_info);
1276 	if (!ret)
1277 		goto out;
1278 
1279 	/* Attempt rollback to original MTU */
1280 	ndev->mtu = orig_mtu;
1281 
1282 	if (netvsc_attach(ndev, device_info))
1283 		netdev_err(ndev, "restoring mtu failed\n");
1284 rollback_vf:
1285 	if (vf_netdev)
1286 		dev_set_mtu(vf_netdev, orig_mtu);
1287 
1288 out:
1289 	netvsc_devinfo_put(device_info);
1290 	return ret;
1291 }
1292 
1293 static void netvsc_get_vf_stats(struct net_device *net,
1294 				struct netvsc_vf_pcpu_stats *tot)
1295 {
1296 	struct net_device_context *ndev_ctx = netdev_priv(net);
1297 	int i;
1298 
1299 	memset(tot, 0, sizeof(*tot));
1300 
1301 	for_each_possible_cpu(i) {
1302 		const struct netvsc_vf_pcpu_stats *stats
1303 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1304 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1305 		unsigned int start;
1306 
1307 		do {
1308 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1309 			rx_packets = stats->rx_packets;
1310 			tx_packets = stats->tx_packets;
1311 			rx_bytes = stats->rx_bytes;
1312 			tx_bytes = stats->tx_bytes;
1313 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1314 
1315 		tot->rx_packets += rx_packets;
1316 		tot->tx_packets += tx_packets;
1317 		tot->rx_bytes   += rx_bytes;
1318 		tot->tx_bytes   += tx_bytes;
1319 		tot->tx_dropped += stats->tx_dropped;
1320 	}
1321 }
1322 
1323 static void netvsc_get_pcpu_stats(struct net_device *net,
1324 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1325 {
1326 	struct net_device_context *ndev_ctx = netdev_priv(net);
1327 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1328 	int i;
1329 
1330 	/* fetch percpu stats of vf */
1331 	for_each_possible_cpu(i) {
1332 		const struct netvsc_vf_pcpu_stats *stats =
1333 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1334 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1335 		unsigned int start;
1336 
1337 		do {
1338 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1339 			this_tot->vf_rx_packets = stats->rx_packets;
1340 			this_tot->vf_tx_packets = stats->tx_packets;
1341 			this_tot->vf_rx_bytes = stats->rx_bytes;
1342 			this_tot->vf_tx_bytes = stats->tx_bytes;
1343 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1344 		this_tot->rx_packets = this_tot->vf_rx_packets;
1345 		this_tot->tx_packets = this_tot->vf_tx_packets;
1346 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1347 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1348 	}
1349 
1350 	/* fetch percpu stats of netvsc */
1351 	for (i = 0; i < nvdev->num_chn; i++) {
1352 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1353 		const struct netvsc_stats *stats;
1354 		struct netvsc_ethtool_pcpu_stats *this_tot =
1355 			&pcpu_tot[nvchan->channel->target_cpu];
1356 		u64 packets, bytes;
1357 		unsigned int start;
1358 
1359 		stats = &nvchan->tx_stats;
1360 		do {
1361 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1362 			packets = stats->packets;
1363 			bytes = stats->bytes;
1364 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1365 
1366 		this_tot->tx_bytes	+= bytes;
1367 		this_tot->tx_packets	+= packets;
1368 
1369 		stats = &nvchan->rx_stats;
1370 		do {
1371 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1372 			packets = stats->packets;
1373 			bytes = stats->bytes;
1374 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1375 
1376 		this_tot->rx_bytes	+= bytes;
1377 		this_tot->rx_packets	+= packets;
1378 	}
1379 }
1380 
1381 static void netvsc_get_stats64(struct net_device *net,
1382 			       struct rtnl_link_stats64 *t)
1383 {
1384 	struct net_device_context *ndev_ctx = netdev_priv(net);
1385 	struct netvsc_device *nvdev;
1386 	struct netvsc_vf_pcpu_stats vf_tot;
1387 	int i;
1388 
1389 	rcu_read_lock();
1390 
1391 	nvdev = rcu_dereference(ndev_ctx->nvdev);
1392 	if (!nvdev)
1393 		goto out;
1394 
1395 	netdev_stats_to_stats64(t, &net->stats);
1396 
1397 	netvsc_get_vf_stats(net, &vf_tot);
1398 	t->rx_packets += vf_tot.rx_packets;
1399 	t->tx_packets += vf_tot.tx_packets;
1400 	t->rx_bytes   += vf_tot.rx_bytes;
1401 	t->tx_bytes   += vf_tot.tx_bytes;
1402 	t->tx_dropped += vf_tot.tx_dropped;
1403 
1404 	for (i = 0; i < nvdev->num_chn; i++) {
1405 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1406 		const struct netvsc_stats *stats;
1407 		u64 packets, bytes, multicast;
1408 		unsigned int start;
1409 
1410 		stats = &nvchan->tx_stats;
1411 		do {
1412 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1413 			packets = stats->packets;
1414 			bytes = stats->bytes;
1415 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1416 
1417 		t->tx_bytes	+= bytes;
1418 		t->tx_packets	+= packets;
1419 
1420 		stats = &nvchan->rx_stats;
1421 		do {
1422 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1423 			packets = stats->packets;
1424 			bytes = stats->bytes;
1425 			multicast = stats->multicast + stats->broadcast;
1426 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1427 
1428 		t->rx_bytes	+= bytes;
1429 		t->rx_packets	+= packets;
1430 		t->multicast	+= multicast;
1431 	}
1432 out:
1433 	rcu_read_unlock();
1434 }
1435 
1436 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1437 {
1438 	struct net_device_context *ndc = netdev_priv(ndev);
1439 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1440 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1441 	struct sockaddr *addr = p;
1442 	int err;
1443 
1444 	err = eth_prepare_mac_addr_change(ndev, p);
1445 	if (err)
1446 		return err;
1447 
1448 	if (!nvdev)
1449 		return -ENODEV;
1450 
1451 	if (vf_netdev) {
1452 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1453 		if (err)
1454 			return err;
1455 	}
1456 
1457 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1458 	if (!err) {
1459 		eth_commit_mac_addr_change(ndev, p);
1460 	} else if (vf_netdev) {
1461 		/* rollback change on VF */
1462 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1463 		dev_set_mac_address(vf_netdev, addr, NULL);
1464 	}
1465 
1466 	return err;
1467 }
1468 
1469 static const struct {
1470 	char name[ETH_GSTRING_LEN];
1471 	u16 offset;
1472 } netvsc_stats[] = {
1473 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1474 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1475 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1476 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1477 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1478 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1479 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1480 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1481 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1482 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1483 	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1484 }, pcpu_stats[] = {
1485 	{ "cpu%u_rx_packets",
1486 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1487 	{ "cpu%u_rx_bytes",
1488 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1489 	{ "cpu%u_tx_packets",
1490 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1491 	{ "cpu%u_tx_bytes",
1492 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1493 	{ "cpu%u_vf_rx_packets",
1494 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1495 	{ "cpu%u_vf_rx_bytes",
1496 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1497 	{ "cpu%u_vf_tx_packets",
1498 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1499 	{ "cpu%u_vf_tx_bytes",
1500 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1501 }, vf_stats[] = {
1502 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1503 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1504 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1505 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1506 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1507 };
1508 
1509 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1510 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1511 
1512 /* statistics per queue (rx/tx packets/bytes) */
1513 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1514 
1515 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1516 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1517 
1518 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1519 {
1520 	struct net_device_context *ndc = netdev_priv(dev);
1521 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1522 
1523 	if (!nvdev)
1524 		return -ENODEV;
1525 
1526 	switch (string_set) {
1527 	case ETH_SS_STATS:
1528 		return NETVSC_GLOBAL_STATS_LEN
1529 			+ NETVSC_VF_STATS_LEN
1530 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1531 			+ NETVSC_PCPU_STATS_LEN;
1532 	default:
1533 		return -EINVAL;
1534 	}
1535 }
1536 
1537 static void netvsc_get_ethtool_stats(struct net_device *dev,
1538 				     struct ethtool_stats *stats, u64 *data)
1539 {
1540 	struct net_device_context *ndc = netdev_priv(dev);
1541 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1542 	const void *nds = &ndc->eth_stats;
1543 	const struct netvsc_stats *qstats;
1544 	struct netvsc_vf_pcpu_stats sum;
1545 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1546 	unsigned int start;
1547 	u64 packets, bytes;
1548 	u64 xdp_drop;
1549 	int i, j, cpu;
1550 
1551 	if (!nvdev)
1552 		return;
1553 
1554 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1555 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1556 
1557 	netvsc_get_vf_stats(dev, &sum);
1558 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1559 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1560 
1561 	for (j = 0; j < nvdev->num_chn; j++) {
1562 		qstats = &nvdev->chan_table[j].tx_stats;
1563 
1564 		do {
1565 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1566 			packets = qstats->packets;
1567 			bytes = qstats->bytes;
1568 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1569 		data[i++] = packets;
1570 		data[i++] = bytes;
1571 
1572 		qstats = &nvdev->chan_table[j].rx_stats;
1573 		do {
1574 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1575 			packets = qstats->packets;
1576 			bytes = qstats->bytes;
1577 			xdp_drop = qstats->xdp_drop;
1578 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1579 		data[i++] = packets;
1580 		data[i++] = bytes;
1581 		data[i++] = xdp_drop;
1582 	}
1583 
1584 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1585 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1586 				  GFP_KERNEL);
1587 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1588 	for_each_present_cpu(cpu) {
1589 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1590 
1591 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1592 			data[i++] = *(u64 *)((void *)this_sum
1593 					     + pcpu_stats[j].offset);
1594 	}
1595 	kvfree(pcpu_sum);
1596 }
1597 
1598 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1599 {
1600 	struct net_device_context *ndc = netdev_priv(dev);
1601 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1602 	u8 *p = data;
1603 	int i, cpu;
1604 
1605 	if (!nvdev)
1606 		return;
1607 
1608 	switch (stringset) {
1609 	case ETH_SS_STATS:
1610 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1611 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1612 			p += ETH_GSTRING_LEN;
1613 		}
1614 
1615 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1616 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1617 			p += ETH_GSTRING_LEN;
1618 		}
1619 
1620 		for (i = 0; i < nvdev->num_chn; i++) {
1621 			sprintf(p, "tx_queue_%u_packets", i);
1622 			p += ETH_GSTRING_LEN;
1623 			sprintf(p, "tx_queue_%u_bytes", i);
1624 			p += ETH_GSTRING_LEN;
1625 			sprintf(p, "rx_queue_%u_packets", i);
1626 			p += ETH_GSTRING_LEN;
1627 			sprintf(p, "rx_queue_%u_bytes", i);
1628 			p += ETH_GSTRING_LEN;
1629 			sprintf(p, "rx_queue_%u_xdp_drop", i);
1630 			p += ETH_GSTRING_LEN;
1631 		}
1632 
1633 		for_each_present_cpu(cpu) {
1634 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1635 				sprintf(p, pcpu_stats[i].name, cpu);
1636 				p += ETH_GSTRING_LEN;
1637 			}
1638 		}
1639 
1640 		break;
1641 	}
1642 }
1643 
1644 static int
1645 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1646 			 struct ethtool_rxnfc *info)
1647 {
1648 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1649 
1650 	info->data = RXH_IP_SRC | RXH_IP_DST;
1651 
1652 	switch (info->flow_type) {
1653 	case TCP_V4_FLOW:
1654 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1655 			info->data |= l4_flag;
1656 
1657 		break;
1658 
1659 	case TCP_V6_FLOW:
1660 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1661 			info->data |= l4_flag;
1662 
1663 		break;
1664 
1665 	case UDP_V4_FLOW:
1666 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1667 			info->data |= l4_flag;
1668 
1669 		break;
1670 
1671 	case UDP_V6_FLOW:
1672 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1673 			info->data |= l4_flag;
1674 
1675 		break;
1676 
1677 	case IPV4_FLOW:
1678 	case IPV6_FLOW:
1679 		break;
1680 	default:
1681 		info->data = 0;
1682 		break;
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 static int
1689 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1690 		 u32 *rules)
1691 {
1692 	struct net_device_context *ndc = netdev_priv(dev);
1693 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1694 
1695 	if (!nvdev)
1696 		return -ENODEV;
1697 
1698 	switch (info->cmd) {
1699 	case ETHTOOL_GRXRINGS:
1700 		info->data = nvdev->num_chn;
1701 		return 0;
1702 
1703 	case ETHTOOL_GRXFH:
1704 		return netvsc_get_rss_hash_opts(ndc, info);
1705 	}
1706 	return -EOPNOTSUPP;
1707 }
1708 
1709 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1710 				    struct ethtool_rxnfc *info)
1711 {
1712 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1713 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1714 		switch (info->flow_type) {
1715 		case TCP_V4_FLOW:
1716 			ndc->l4_hash |= HV_TCP4_L4HASH;
1717 			break;
1718 
1719 		case TCP_V6_FLOW:
1720 			ndc->l4_hash |= HV_TCP6_L4HASH;
1721 			break;
1722 
1723 		case UDP_V4_FLOW:
1724 			ndc->l4_hash |= HV_UDP4_L4HASH;
1725 			break;
1726 
1727 		case UDP_V6_FLOW:
1728 			ndc->l4_hash |= HV_UDP6_L4HASH;
1729 			break;
1730 
1731 		default:
1732 			return -EOPNOTSUPP;
1733 		}
1734 
1735 		return 0;
1736 	}
1737 
1738 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1739 		switch (info->flow_type) {
1740 		case TCP_V4_FLOW:
1741 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1742 			break;
1743 
1744 		case TCP_V6_FLOW:
1745 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1746 			break;
1747 
1748 		case UDP_V4_FLOW:
1749 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1750 			break;
1751 
1752 		case UDP_V6_FLOW:
1753 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1754 			break;
1755 
1756 		default:
1757 			return -EOPNOTSUPP;
1758 		}
1759 
1760 		return 0;
1761 	}
1762 
1763 	return -EOPNOTSUPP;
1764 }
1765 
1766 static int
1767 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1768 {
1769 	struct net_device_context *ndc = netdev_priv(ndev);
1770 
1771 	if (info->cmd == ETHTOOL_SRXFH)
1772 		return netvsc_set_rss_hash_opts(ndc, info);
1773 
1774 	return -EOPNOTSUPP;
1775 }
1776 
1777 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1778 {
1779 	return NETVSC_HASH_KEYLEN;
1780 }
1781 
1782 static u32 netvsc_rss_indir_size(struct net_device *dev)
1783 {
1784 	return ITAB_NUM;
1785 }
1786 
1787 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1788 			   u8 *hfunc)
1789 {
1790 	struct net_device_context *ndc = netdev_priv(dev);
1791 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1792 	struct rndis_device *rndis_dev;
1793 	int i;
1794 
1795 	if (!ndev)
1796 		return -ENODEV;
1797 
1798 	if (hfunc)
1799 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1800 
1801 	rndis_dev = ndev->extension;
1802 	if (indir) {
1803 		for (i = 0; i < ITAB_NUM; i++)
1804 			indir[i] = ndc->rx_table[i];
1805 	}
1806 
1807 	if (key)
1808 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1809 
1810 	return 0;
1811 }
1812 
1813 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1814 			   const u8 *key, const u8 hfunc)
1815 {
1816 	struct net_device_context *ndc = netdev_priv(dev);
1817 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1818 	struct rndis_device *rndis_dev;
1819 	int i;
1820 
1821 	if (!ndev)
1822 		return -ENODEV;
1823 
1824 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1825 		return -EOPNOTSUPP;
1826 
1827 	rndis_dev = ndev->extension;
1828 	if (indir) {
1829 		for (i = 0; i < ITAB_NUM; i++)
1830 			if (indir[i] >= ndev->num_chn)
1831 				return -EINVAL;
1832 
1833 		for (i = 0; i < ITAB_NUM; i++)
1834 			ndc->rx_table[i] = indir[i];
1835 	}
1836 
1837 	if (!key) {
1838 		if (!indir)
1839 			return 0;
1840 
1841 		key = rndis_dev->rss_key;
1842 	}
1843 
1844 	return rndis_filter_set_rss_param(rndis_dev, key);
1845 }
1846 
1847 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1848  * It does have pre-allocated receive area which is divided into sections.
1849  */
1850 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1851 				   struct ethtool_ringparam *ring)
1852 {
1853 	u32 max_buf_size;
1854 
1855 	ring->rx_pending = nvdev->recv_section_cnt;
1856 	ring->tx_pending = nvdev->send_section_cnt;
1857 
1858 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1859 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1860 	else
1861 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1862 
1863 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1864 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1865 		/ nvdev->send_section_size;
1866 }
1867 
1868 static void netvsc_get_ringparam(struct net_device *ndev,
1869 				 struct ethtool_ringparam *ring)
1870 {
1871 	struct net_device_context *ndevctx = netdev_priv(ndev);
1872 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1873 
1874 	if (!nvdev)
1875 		return;
1876 
1877 	__netvsc_get_ringparam(nvdev, ring);
1878 }
1879 
1880 static int netvsc_set_ringparam(struct net_device *ndev,
1881 				struct ethtool_ringparam *ring)
1882 {
1883 	struct net_device_context *ndevctx = netdev_priv(ndev);
1884 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1885 	struct netvsc_device_info *device_info;
1886 	struct ethtool_ringparam orig;
1887 	u32 new_tx, new_rx;
1888 	int ret = 0;
1889 
1890 	if (!nvdev || nvdev->destroy)
1891 		return -ENODEV;
1892 
1893 	memset(&orig, 0, sizeof(orig));
1894 	__netvsc_get_ringparam(nvdev, &orig);
1895 
1896 	new_tx = clamp_t(u32, ring->tx_pending,
1897 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1898 	new_rx = clamp_t(u32, ring->rx_pending,
1899 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1900 
1901 	if (new_tx == orig.tx_pending &&
1902 	    new_rx == orig.rx_pending)
1903 		return 0;	 /* no change */
1904 
1905 	device_info = netvsc_devinfo_get(nvdev);
1906 
1907 	if (!device_info)
1908 		return -ENOMEM;
1909 
1910 	device_info->send_sections = new_tx;
1911 	device_info->recv_sections = new_rx;
1912 
1913 	ret = netvsc_detach(ndev, nvdev);
1914 	if (ret)
1915 		goto out;
1916 
1917 	ret = netvsc_attach(ndev, device_info);
1918 	if (ret) {
1919 		device_info->send_sections = orig.tx_pending;
1920 		device_info->recv_sections = orig.rx_pending;
1921 
1922 		if (netvsc_attach(ndev, device_info))
1923 			netdev_err(ndev, "restoring ringparam failed");
1924 	}
1925 
1926 out:
1927 	netvsc_devinfo_put(device_info);
1928 	return ret;
1929 }
1930 
1931 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1932 					     netdev_features_t features)
1933 {
1934 	struct net_device_context *ndevctx = netdev_priv(ndev);
1935 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1936 
1937 	if (!nvdev || nvdev->destroy)
1938 		return features;
1939 
1940 	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1941 		features ^= NETIF_F_LRO;
1942 		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1943 	}
1944 
1945 	return features;
1946 }
1947 
1948 static int netvsc_set_features(struct net_device *ndev,
1949 			       netdev_features_t features)
1950 {
1951 	netdev_features_t change = features ^ ndev->features;
1952 	struct net_device_context *ndevctx = netdev_priv(ndev);
1953 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1954 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1955 	struct ndis_offload_params offloads;
1956 	int ret = 0;
1957 
1958 	if (!nvdev || nvdev->destroy)
1959 		return -ENODEV;
1960 
1961 	if (!(change & NETIF_F_LRO))
1962 		goto syncvf;
1963 
1964 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1965 
1966 	if (features & NETIF_F_LRO) {
1967 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1968 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1969 	} else {
1970 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1971 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1972 	}
1973 
1974 	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1975 
1976 	if (ret) {
1977 		features ^= NETIF_F_LRO;
1978 		ndev->features = features;
1979 	}
1980 
1981 syncvf:
1982 	if (!vf_netdev)
1983 		return ret;
1984 
1985 	vf_netdev->wanted_features = features;
1986 	netdev_update_features(vf_netdev);
1987 
1988 	return ret;
1989 }
1990 
1991 static int netvsc_get_regs_len(struct net_device *netdev)
1992 {
1993 	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1994 }
1995 
1996 static void netvsc_get_regs(struct net_device *netdev,
1997 			    struct ethtool_regs *regs, void *p)
1998 {
1999 	struct net_device_context *ndc = netdev_priv(netdev);
2000 	u32 *regs_buff = p;
2001 
2002 	/* increase the version, if buffer format is changed. */
2003 	regs->version = 1;
2004 
2005 	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
2006 }
2007 
2008 static u32 netvsc_get_msglevel(struct net_device *ndev)
2009 {
2010 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2011 
2012 	return ndev_ctx->msg_enable;
2013 }
2014 
2015 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2016 {
2017 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2018 
2019 	ndev_ctx->msg_enable = val;
2020 }
2021 
2022 static const struct ethtool_ops ethtool_ops = {
2023 	.get_drvinfo	= netvsc_get_drvinfo,
2024 	.get_regs_len	= netvsc_get_regs_len,
2025 	.get_regs	= netvsc_get_regs,
2026 	.get_msglevel	= netvsc_get_msglevel,
2027 	.set_msglevel	= netvsc_set_msglevel,
2028 	.get_link	= ethtool_op_get_link,
2029 	.get_ethtool_stats = netvsc_get_ethtool_stats,
2030 	.get_sset_count = netvsc_get_sset_count,
2031 	.get_strings	= netvsc_get_strings,
2032 	.get_channels   = netvsc_get_channels,
2033 	.set_channels   = netvsc_set_channels,
2034 	.get_ts_info	= ethtool_op_get_ts_info,
2035 	.get_rxnfc	= netvsc_get_rxnfc,
2036 	.set_rxnfc	= netvsc_set_rxnfc,
2037 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2038 	.get_rxfh_indir_size = netvsc_rss_indir_size,
2039 	.get_rxfh	= netvsc_get_rxfh,
2040 	.set_rxfh	= netvsc_set_rxfh,
2041 	.get_link_ksettings = netvsc_get_link_ksettings,
2042 	.set_link_ksettings = netvsc_set_link_ksettings,
2043 	.get_ringparam	= netvsc_get_ringparam,
2044 	.set_ringparam	= netvsc_set_ringparam,
2045 };
2046 
2047 static const struct net_device_ops device_ops = {
2048 	.ndo_open =			netvsc_open,
2049 	.ndo_stop =			netvsc_close,
2050 	.ndo_start_xmit =		netvsc_start_xmit,
2051 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2052 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2053 	.ndo_fix_features =		netvsc_fix_features,
2054 	.ndo_set_features =		netvsc_set_features,
2055 	.ndo_change_mtu =		netvsc_change_mtu,
2056 	.ndo_validate_addr =		eth_validate_addr,
2057 	.ndo_set_mac_address =		netvsc_set_mac_addr,
2058 	.ndo_select_queue =		netvsc_select_queue,
2059 	.ndo_get_stats64 =		netvsc_get_stats64,
2060 	.ndo_bpf =			netvsc_bpf,
2061 };
2062 
2063 /*
2064  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2065  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2066  * present send GARP packet to network peers with netif_notify_peers().
2067  */
2068 static void netvsc_link_change(struct work_struct *w)
2069 {
2070 	struct net_device_context *ndev_ctx =
2071 		container_of(w, struct net_device_context, dwork.work);
2072 	struct hv_device *device_obj = ndev_ctx->device_ctx;
2073 	struct net_device *net = hv_get_drvdata(device_obj);
2074 	unsigned long flags, next_reconfig, delay;
2075 	struct netvsc_reconfig *event = NULL;
2076 	struct netvsc_device *net_device;
2077 	struct rndis_device *rdev;
2078 	bool reschedule = false;
2079 
2080 	/* if changes are happening, comeback later */
2081 	if (!rtnl_trylock()) {
2082 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2083 		return;
2084 	}
2085 
2086 	net_device = rtnl_dereference(ndev_ctx->nvdev);
2087 	if (!net_device)
2088 		goto out_unlock;
2089 
2090 	rdev = net_device->extension;
2091 
2092 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2093 	if (time_is_after_jiffies(next_reconfig)) {
2094 		/* link_watch only sends one notification with current state
2095 		 * per second, avoid doing reconfig more frequently. Handle
2096 		 * wrap around.
2097 		 */
2098 		delay = next_reconfig - jiffies;
2099 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2100 		schedule_delayed_work(&ndev_ctx->dwork, delay);
2101 		goto out_unlock;
2102 	}
2103 	ndev_ctx->last_reconfig = jiffies;
2104 
2105 	spin_lock_irqsave(&ndev_ctx->lock, flags);
2106 	if (!list_empty(&ndev_ctx->reconfig_events)) {
2107 		event = list_first_entry(&ndev_ctx->reconfig_events,
2108 					 struct netvsc_reconfig, list);
2109 		list_del(&event->list);
2110 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2111 	}
2112 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2113 
2114 	if (!event)
2115 		goto out_unlock;
2116 
2117 	switch (event->event) {
2118 		/* Only the following events are possible due to the check in
2119 		 * netvsc_linkstatus_callback()
2120 		 */
2121 	case RNDIS_STATUS_MEDIA_CONNECT:
2122 		if (rdev->link_state) {
2123 			rdev->link_state = false;
2124 			netif_carrier_on(net);
2125 			netvsc_tx_enable(net_device, net);
2126 		} else {
2127 			__netdev_notify_peers(net);
2128 		}
2129 		kfree(event);
2130 		break;
2131 	case RNDIS_STATUS_MEDIA_DISCONNECT:
2132 		if (!rdev->link_state) {
2133 			rdev->link_state = true;
2134 			netif_carrier_off(net);
2135 			netvsc_tx_disable(net_device, net);
2136 		}
2137 		kfree(event);
2138 		break;
2139 	case RNDIS_STATUS_NETWORK_CHANGE:
2140 		/* Only makes sense if carrier is present */
2141 		if (!rdev->link_state) {
2142 			rdev->link_state = true;
2143 			netif_carrier_off(net);
2144 			netvsc_tx_disable(net_device, net);
2145 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2146 			spin_lock_irqsave(&ndev_ctx->lock, flags);
2147 			list_add(&event->list, &ndev_ctx->reconfig_events);
2148 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2149 			reschedule = true;
2150 		}
2151 		break;
2152 	}
2153 
2154 	rtnl_unlock();
2155 
2156 	/* link_watch only sends one notification with current state per
2157 	 * second, handle next reconfig event in 2 seconds.
2158 	 */
2159 	if (reschedule)
2160 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2161 
2162 	return;
2163 
2164 out_unlock:
2165 	rtnl_unlock();
2166 }
2167 
2168 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2169 {
2170 	struct net_device_context *net_device_ctx;
2171 	struct net_device *dev;
2172 
2173 	dev = netdev_master_upper_dev_get(vf_netdev);
2174 	if (!dev || dev->netdev_ops != &device_ops)
2175 		return NULL;	/* not a netvsc device */
2176 
2177 	net_device_ctx = netdev_priv(dev);
2178 	if (!rtnl_dereference(net_device_ctx->nvdev))
2179 		return NULL;	/* device is removed */
2180 
2181 	return dev;
2182 }
2183 
2184 /* Called when VF is injecting data into network stack.
2185  * Change the associated network device from VF to netvsc.
2186  * note: already called with rcu_read_lock
2187  */
2188 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2189 {
2190 	struct sk_buff *skb = *pskb;
2191 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2192 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2193 	struct netvsc_vf_pcpu_stats *pcpu_stats
2194 		 = this_cpu_ptr(ndev_ctx->vf_stats);
2195 
2196 	skb = skb_share_check(skb, GFP_ATOMIC);
2197 	if (unlikely(!skb))
2198 		return RX_HANDLER_CONSUMED;
2199 
2200 	*pskb = skb;
2201 
2202 	skb->dev = ndev;
2203 
2204 	u64_stats_update_begin(&pcpu_stats->syncp);
2205 	pcpu_stats->rx_packets++;
2206 	pcpu_stats->rx_bytes += skb->len;
2207 	u64_stats_update_end(&pcpu_stats->syncp);
2208 
2209 	return RX_HANDLER_ANOTHER;
2210 }
2211 
2212 static int netvsc_vf_join(struct net_device *vf_netdev,
2213 			  struct net_device *ndev)
2214 {
2215 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2216 	int ret;
2217 
2218 	ret = netdev_rx_handler_register(vf_netdev,
2219 					 netvsc_vf_handle_frame, ndev);
2220 	if (ret != 0) {
2221 		netdev_err(vf_netdev,
2222 			   "can not register netvsc VF receive handler (err = %d)\n",
2223 			   ret);
2224 		goto rx_handler_failed;
2225 	}
2226 
2227 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2228 					   NULL, NULL, NULL);
2229 	if (ret != 0) {
2230 		netdev_err(vf_netdev,
2231 			   "can not set master device %s (err = %d)\n",
2232 			   ndev->name, ret);
2233 		goto upper_link_failed;
2234 	}
2235 
2236 	/* set slave flag before open to prevent IPv6 addrconf */
2237 	vf_netdev->flags |= IFF_SLAVE;
2238 
2239 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2240 
2241 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2242 
2243 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2244 	return 0;
2245 
2246 upper_link_failed:
2247 	netdev_rx_handler_unregister(vf_netdev);
2248 rx_handler_failed:
2249 	return ret;
2250 }
2251 
2252 static void __netvsc_vf_setup(struct net_device *ndev,
2253 			      struct net_device *vf_netdev)
2254 {
2255 	int ret;
2256 
2257 	/* Align MTU of VF with master */
2258 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2259 	if (ret)
2260 		netdev_warn(vf_netdev,
2261 			    "unable to change mtu to %u\n", ndev->mtu);
2262 
2263 	/* set multicast etc flags on VF */
2264 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2265 
2266 	/* sync address list from ndev to VF */
2267 	netif_addr_lock_bh(ndev);
2268 	dev_uc_sync(vf_netdev, ndev);
2269 	dev_mc_sync(vf_netdev, ndev);
2270 	netif_addr_unlock_bh(ndev);
2271 
2272 	if (netif_running(ndev)) {
2273 		ret = dev_open(vf_netdev, NULL);
2274 		if (ret)
2275 			netdev_warn(vf_netdev,
2276 				    "unable to open: %d\n", ret);
2277 	}
2278 }
2279 
2280 /* Setup VF as slave of the synthetic device.
2281  * Runs in workqueue to avoid recursion in netlink callbacks.
2282  */
2283 static void netvsc_vf_setup(struct work_struct *w)
2284 {
2285 	struct net_device_context *ndev_ctx
2286 		= container_of(w, struct net_device_context, vf_takeover.work);
2287 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2288 	struct net_device *vf_netdev;
2289 
2290 	if (!rtnl_trylock()) {
2291 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2292 		return;
2293 	}
2294 
2295 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2296 	if (vf_netdev)
2297 		__netvsc_vf_setup(ndev, vf_netdev);
2298 
2299 	rtnl_unlock();
2300 }
2301 
2302 /* Find netvsc by VF serial number.
2303  * The PCI hyperv controller records the serial number as the slot kobj name.
2304  */
2305 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2306 {
2307 	struct device *parent = vf_netdev->dev.parent;
2308 	struct net_device_context *ndev_ctx;
2309 	struct pci_dev *pdev;
2310 	u32 serial;
2311 
2312 	if (!parent || !dev_is_pci(parent))
2313 		return NULL; /* not a PCI device */
2314 
2315 	pdev = to_pci_dev(parent);
2316 	if (!pdev->slot) {
2317 		netdev_notice(vf_netdev, "no PCI slot information\n");
2318 		return NULL;
2319 	}
2320 
2321 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2322 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2323 			      pci_slot_name(pdev->slot));
2324 		return NULL;
2325 	}
2326 
2327 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2328 		if (!ndev_ctx->vf_alloc)
2329 			continue;
2330 
2331 		if (ndev_ctx->vf_serial == serial)
2332 			return hv_get_drvdata(ndev_ctx->device_ctx);
2333 	}
2334 
2335 	netdev_notice(vf_netdev,
2336 		      "no netdev found for vf serial:%u\n", serial);
2337 	return NULL;
2338 }
2339 
2340 static int netvsc_register_vf(struct net_device *vf_netdev)
2341 {
2342 	struct net_device_context *net_device_ctx;
2343 	struct netvsc_device *netvsc_dev;
2344 	struct bpf_prog *prog;
2345 	struct net_device *ndev;
2346 	int ret;
2347 
2348 	if (vf_netdev->addr_len != ETH_ALEN)
2349 		return NOTIFY_DONE;
2350 
2351 	ndev = get_netvsc_byslot(vf_netdev);
2352 	if (!ndev)
2353 		return NOTIFY_DONE;
2354 
2355 	net_device_ctx = netdev_priv(ndev);
2356 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2357 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2358 		return NOTIFY_DONE;
2359 
2360 	/* if synthetic interface is a different namespace,
2361 	 * then move the VF to that namespace; join will be
2362 	 * done again in that context.
2363 	 */
2364 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2365 		ret = dev_change_net_namespace(vf_netdev,
2366 					       dev_net(ndev), "eth%d");
2367 		if (ret)
2368 			netdev_err(vf_netdev,
2369 				   "could not move to same namespace as %s: %d\n",
2370 				   ndev->name, ret);
2371 		else
2372 			netdev_info(vf_netdev,
2373 				    "VF moved to namespace with: %s\n",
2374 				    ndev->name);
2375 		return NOTIFY_DONE;
2376 	}
2377 
2378 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2379 
2380 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2381 		return NOTIFY_DONE;
2382 
2383 	dev_hold(vf_netdev);
2384 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2385 
2386 	vf_netdev->wanted_features = ndev->features;
2387 	netdev_update_features(vf_netdev);
2388 
2389 	prog = netvsc_xdp_get(netvsc_dev);
2390 	netvsc_vf_setxdp(vf_netdev, prog);
2391 
2392 	return NOTIFY_OK;
2393 }
2394 
2395 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2396  *
2397  * Typically a UP or DOWN event is followed by a CHANGE event, so
2398  * net_device_ctx->data_path_is_vf is used to cache the current data path
2399  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2400  * message.
2401  *
2402  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2403  * interface, there is only the CHANGE event and no UP or DOWN event.
2404  */
2405 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2406 {
2407 	struct net_device_context *net_device_ctx;
2408 	struct netvsc_device *netvsc_dev;
2409 	struct net_device *ndev;
2410 	bool vf_is_up = false;
2411 
2412 	if (event != NETDEV_GOING_DOWN)
2413 		vf_is_up = netif_running(vf_netdev);
2414 
2415 	ndev = get_netvsc_byref(vf_netdev);
2416 	if (!ndev)
2417 		return NOTIFY_DONE;
2418 
2419 	net_device_ctx = netdev_priv(ndev);
2420 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2421 	if (!netvsc_dev)
2422 		return NOTIFY_DONE;
2423 
2424 	if (net_device_ctx->data_path_is_vf == vf_is_up)
2425 		return NOTIFY_OK;
2426 
2427 	netvsc_switch_datapath(ndev, vf_is_up);
2428 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2429 		    vf_is_up ? "to" : "from", vf_netdev->name);
2430 
2431 	return NOTIFY_OK;
2432 }
2433 
2434 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2435 {
2436 	struct net_device *ndev;
2437 	struct net_device_context *net_device_ctx;
2438 
2439 	ndev = get_netvsc_byref(vf_netdev);
2440 	if (!ndev)
2441 		return NOTIFY_DONE;
2442 
2443 	net_device_ctx = netdev_priv(ndev);
2444 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2445 
2446 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2447 
2448 	netvsc_vf_setxdp(vf_netdev, NULL);
2449 
2450 	netdev_rx_handler_unregister(vf_netdev);
2451 	netdev_upper_dev_unlink(vf_netdev, ndev);
2452 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2453 	dev_put(vf_netdev);
2454 
2455 	return NOTIFY_OK;
2456 }
2457 
2458 static int netvsc_probe(struct hv_device *dev,
2459 			const struct hv_vmbus_device_id *dev_id)
2460 {
2461 	struct net_device *net = NULL;
2462 	struct net_device_context *net_device_ctx;
2463 	struct netvsc_device_info *device_info = NULL;
2464 	struct netvsc_device *nvdev;
2465 	int ret = -ENOMEM;
2466 
2467 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2468 				VRSS_CHANNEL_MAX);
2469 	if (!net)
2470 		goto no_net;
2471 
2472 	netif_carrier_off(net);
2473 
2474 	netvsc_init_settings(net);
2475 
2476 	net_device_ctx = netdev_priv(net);
2477 	net_device_ctx->device_ctx = dev;
2478 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2479 	if (netif_msg_probe(net_device_ctx))
2480 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2481 			   net_device_ctx->msg_enable);
2482 
2483 	hv_set_drvdata(dev, net);
2484 
2485 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2486 
2487 	spin_lock_init(&net_device_ctx->lock);
2488 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2489 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2490 
2491 	net_device_ctx->vf_stats
2492 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2493 	if (!net_device_ctx->vf_stats)
2494 		goto no_stats;
2495 
2496 	net->netdev_ops = &device_ops;
2497 	net->ethtool_ops = &ethtool_ops;
2498 	SET_NETDEV_DEV(net, &dev->device);
2499 
2500 	/* We always need headroom for rndis header */
2501 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2502 
2503 	/* Initialize the number of queues to be 1, we may change it if more
2504 	 * channels are offered later.
2505 	 */
2506 	netif_set_real_num_tx_queues(net, 1);
2507 	netif_set_real_num_rx_queues(net, 1);
2508 
2509 	/* Notify the netvsc driver of the new device */
2510 	device_info = netvsc_devinfo_get(NULL);
2511 
2512 	if (!device_info) {
2513 		ret = -ENOMEM;
2514 		goto devinfo_failed;
2515 	}
2516 
2517 	nvdev = rndis_filter_device_add(dev, device_info);
2518 	if (IS_ERR(nvdev)) {
2519 		ret = PTR_ERR(nvdev);
2520 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2521 		goto rndis_failed;
2522 	}
2523 
2524 	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2525 
2526 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2527 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2528 	 * all subchannels to show up, but that may not happen because
2529 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2530 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2531 	 * the device lock, so all the subchannels can't be processed --
2532 	 * finally netvsc_subchan_work() hangs forever.
2533 	 */
2534 	rtnl_lock();
2535 
2536 	if (nvdev->num_chn > 1)
2537 		schedule_work(&nvdev->subchan_work);
2538 
2539 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2540 	net->features = net->hw_features |
2541 		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2542 		NETIF_F_HW_VLAN_CTAG_RX;
2543 	net->vlan_features = net->features;
2544 
2545 	netdev_lockdep_set_classes(net);
2546 
2547 	/* MTU range: 68 - 1500 or 65521 */
2548 	net->min_mtu = NETVSC_MTU_MIN;
2549 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2550 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2551 	else
2552 		net->max_mtu = ETH_DATA_LEN;
2553 
2554 	nvdev->tx_disable = false;
2555 
2556 	ret = register_netdevice(net);
2557 	if (ret != 0) {
2558 		pr_err("Unable to register netdev.\n");
2559 		goto register_failed;
2560 	}
2561 
2562 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2563 	rtnl_unlock();
2564 
2565 	netvsc_devinfo_put(device_info);
2566 	return 0;
2567 
2568 register_failed:
2569 	rtnl_unlock();
2570 	rndis_filter_device_remove(dev, nvdev);
2571 rndis_failed:
2572 	netvsc_devinfo_put(device_info);
2573 devinfo_failed:
2574 	free_percpu(net_device_ctx->vf_stats);
2575 no_stats:
2576 	hv_set_drvdata(dev, NULL);
2577 	free_netdev(net);
2578 no_net:
2579 	return ret;
2580 }
2581 
2582 static int netvsc_remove(struct hv_device *dev)
2583 {
2584 	struct net_device_context *ndev_ctx;
2585 	struct net_device *vf_netdev, *net;
2586 	struct netvsc_device *nvdev;
2587 
2588 	net = hv_get_drvdata(dev);
2589 	if (net == NULL) {
2590 		dev_err(&dev->device, "No net device to remove\n");
2591 		return 0;
2592 	}
2593 
2594 	ndev_ctx = netdev_priv(net);
2595 
2596 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2597 
2598 	rtnl_lock();
2599 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2600 	if (nvdev) {
2601 		cancel_work_sync(&nvdev->subchan_work);
2602 		netvsc_xdp_set(net, NULL, NULL, nvdev);
2603 	}
2604 
2605 	/*
2606 	 * Call to the vsc driver to let it know that the device is being
2607 	 * removed. Also blocks mtu and channel changes.
2608 	 */
2609 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2610 	if (vf_netdev)
2611 		netvsc_unregister_vf(vf_netdev);
2612 
2613 	if (nvdev)
2614 		rndis_filter_device_remove(dev, nvdev);
2615 
2616 	unregister_netdevice(net);
2617 	list_del(&ndev_ctx->list);
2618 
2619 	rtnl_unlock();
2620 
2621 	hv_set_drvdata(dev, NULL);
2622 
2623 	free_percpu(ndev_ctx->vf_stats);
2624 	free_netdev(net);
2625 	return 0;
2626 }
2627 
2628 static int netvsc_suspend(struct hv_device *dev)
2629 {
2630 	struct net_device_context *ndev_ctx;
2631 	struct netvsc_device *nvdev;
2632 	struct net_device *net;
2633 	int ret;
2634 
2635 	net = hv_get_drvdata(dev);
2636 
2637 	ndev_ctx = netdev_priv(net);
2638 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2639 
2640 	rtnl_lock();
2641 
2642 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2643 	if (nvdev == NULL) {
2644 		ret = -ENODEV;
2645 		goto out;
2646 	}
2647 
2648 	/* Save the current config info */
2649 	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2650 
2651 	ret = netvsc_detach(net, nvdev);
2652 out:
2653 	rtnl_unlock();
2654 
2655 	return ret;
2656 }
2657 
2658 static int netvsc_resume(struct hv_device *dev)
2659 {
2660 	struct net_device *net = hv_get_drvdata(dev);
2661 	struct net_device_context *net_device_ctx;
2662 	struct netvsc_device_info *device_info;
2663 	int ret;
2664 
2665 	rtnl_lock();
2666 
2667 	net_device_ctx = netdev_priv(net);
2668 
2669 	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2670 	 * channel. Later netvsc_netdev_event() will switch the data path to
2671 	 * the VF upon the UP or CHANGE event.
2672 	 */
2673 	net_device_ctx->data_path_is_vf = false;
2674 	device_info = net_device_ctx->saved_netvsc_dev_info;
2675 
2676 	ret = netvsc_attach(net, device_info);
2677 
2678 	netvsc_devinfo_put(device_info);
2679 	net_device_ctx->saved_netvsc_dev_info = NULL;
2680 
2681 	rtnl_unlock();
2682 
2683 	return ret;
2684 }
2685 static const struct hv_vmbus_device_id id_table[] = {
2686 	/* Network guid */
2687 	{ HV_NIC_GUID, },
2688 	{ },
2689 };
2690 
2691 MODULE_DEVICE_TABLE(vmbus, id_table);
2692 
2693 /* The one and only one */
2694 static struct  hv_driver netvsc_drv = {
2695 	.name = KBUILD_MODNAME,
2696 	.id_table = id_table,
2697 	.probe = netvsc_probe,
2698 	.remove = netvsc_remove,
2699 	.suspend = netvsc_suspend,
2700 	.resume = netvsc_resume,
2701 	.driver = {
2702 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2703 	},
2704 };
2705 
2706 /*
2707  * On Hyper-V, every VF interface is matched with a corresponding
2708  * synthetic interface. The synthetic interface is presented first
2709  * to the guest. When the corresponding VF instance is registered,
2710  * we will take care of switching the data path.
2711  */
2712 static int netvsc_netdev_event(struct notifier_block *this,
2713 			       unsigned long event, void *ptr)
2714 {
2715 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2716 
2717 	/* Skip our own events */
2718 	if (event_dev->netdev_ops == &device_ops)
2719 		return NOTIFY_DONE;
2720 
2721 	/* Avoid non-Ethernet type devices */
2722 	if (event_dev->type != ARPHRD_ETHER)
2723 		return NOTIFY_DONE;
2724 
2725 	/* Avoid Vlan dev with same MAC registering as VF */
2726 	if (is_vlan_dev(event_dev))
2727 		return NOTIFY_DONE;
2728 
2729 	/* Avoid Bonding master dev with same MAC registering as VF */
2730 	if ((event_dev->priv_flags & IFF_BONDING) &&
2731 	    (event_dev->flags & IFF_MASTER))
2732 		return NOTIFY_DONE;
2733 
2734 	switch (event) {
2735 	case NETDEV_REGISTER:
2736 		return netvsc_register_vf(event_dev);
2737 	case NETDEV_UNREGISTER:
2738 		return netvsc_unregister_vf(event_dev);
2739 	case NETDEV_UP:
2740 	case NETDEV_DOWN:
2741 	case NETDEV_CHANGE:
2742 	case NETDEV_GOING_DOWN:
2743 		return netvsc_vf_changed(event_dev, event);
2744 	default:
2745 		return NOTIFY_DONE;
2746 	}
2747 }
2748 
2749 static struct notifier_block netvsc_netdev_notifier = {
2750 	.notifier_call = netvsc_netdev_event,
2751 };
2752 
2753 static void __exit netvsc_drv_exit(void)
2754 {
2755 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2756 	vmbus_driver_unregister(&netvsc_drv);
2757 }
2758 
2759 static int __init netvsc_drv_init(void)
2760 {
2761 	int ret;
2762 
2763 	if (ring_size < RING_SIZE_MIN) {
2764 		ring_size = RING_SIZE_MIN;
2765 		pr_info("Increased ring_size to %u (min allowed)\n",
2766 			ring_size);
2767 	}
2768 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2769 
2770 	ret = vmbus_driver_register(&netvsc_drv);
2771 	if (ret)
2772 		return ret;
2773 
2774 	register_netdevice_notifier(&netvsc_netdev_notifier);
2775 	return 0;
2776 }
2777 
2778 MODULE_LICENSE("GPL");
2779 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2780 
2781 module_init(netvsc_drv_init);
2782 module_exit(netvsc_drv_exit);
2783