1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/delay.h> 18 #include <linux/netdevice.h> 19 #include <linux/inetdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 #include <linux/if_vlan.h> 24 #include <linux/in.h> 25 #include <linux/slab.h> 26 #include <linux/rtnetlink.h> 27 #include <linux/netpoll.h> 28 #include <linux/bpf.h> 29 30 #include <net/arp.h> 31 #include <net/route.h> 32 #include <net/sock.h> 33 #include <net/pkt_sched.h> 34 #include <net/checksum.h> 35 #include <net/ip6_checksum.h> 36 37 #include "hyperv_net.h" 38 39 #define RING_SIZE_MIN 64 40 #define RETRY_US_LO 5000 41 #define RETRY_US_HI 10000 42 #define RETRY_MAX 2000 /* >10 sec */ 43 44 #define LINKCHANGE_INT (2 * HZ) 45 #define VF_TAKEOVER_INT (HZ / 10) 46 47 static unsigned int ring_size __ro_after_init = 128; 48 module_param(ring_size, uint, 0444); 49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 50 unsigned int netvsc_ring_bytes __ro_after_init; 51 52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 53 NETIF_MSG_LINK | NETIF_MSG_IFUP | 54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 55 NETIF_MSG_TX_ERR; 56 57 static int debug = -1; 58 module_param(debug, int, 0444); 59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 60 61 static LIST_HEAD(netvsc_dev_list); 62 63 static void netvsc_change_rx_flags(struct net_device *net, int change) 64 { 65 struct net_device_context *ndev_ctx = netdev_priv(net); 66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 67 int inc; 68 69 if (!vf_netdev) 70 return; 71 72 if (change & IFF_PROMISC) { 73 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 74 dev_set_promiscuity(vf_netdev, inc); 75 } 76 77 if (change & IFF_ALLMULTI) { 78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 79 dev_set_allmulti(vf_netdev, inc); 80 } 81 } 82 83 static void netvsc_set_rx_mode(struct net_device *net) 84 { 85 struct net_device_context *ndev_ctx = netdev_priv(net); 86 struct net_device *vf_netdev; 87 struct netvsc_device *nvdev; 88 89 rcu_read_lock(); 90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 91 if (vf_netdev) { 92 dev_uc_sync(vf_netdev, net); 93 dev_mc_sync(vf_netdev, net); 94 } 95 96 nvdev = rcu_dereference(ndev_ctx->nvdev); 97 if (nvdev) 98 rndis_filter_update(nvdev); 99 rcu_read_unlock(); 100 } 101 102 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 103 struct net_device *ndev) 104 { 105 nvscdev->tx_disable = false; 106 virt_wmb(); /* ensure queue wake up mechanism is on */ 107 108 netif_tx_wake_all_queues(ndev); 109 } 110 111 static int netvsc_open(struct net_device *net) 112 { 113 struct net_device_context *ndev_ctx = netdev_priv(net); 114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 116 struct rndis_device *rdev; 117 int ret = 0; 118 119 netif_carrier_off(net); 120 121 /* Open up the device */ 122 ret = rndis_filter_open(nvdev); 123 if (ret != 0) { 124 netdev_err(net, "unable to open device (ret %d).\n", ret); 125 return ret; 126 } 127 128 rdev = nvdev->extension; 129 if (!rdev->link_state) { 130 netif_carrier_on(net); 131 netvsc_tx_enable(nvdev, net); 132 } 133 134 if (vf_netdev) { 135 /* Setting synthetic device up transparently sets 136 * slave as up. If open fails, then slave will be 137 * still be offline (and not used). 138 */ 139 ret = dev_open(vf_netdev, NULL); 140 if (ret) 141 netdev_warn(net, 142 "unable to open slave: %s: %d\n", 143 vf_netdev->name, ret); 144 } 145 return 0; 146 } 147 148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 149 { 150 unsigned int retry = 0; 151 int i; 152 153 /* Ensure pending bytes in ring are read */ 154 for (;;) { 155 u32 aread = 0; 156 157 for (i = 0; i < nvdev->num_chn; i++) { 158 struct vmbus_channel *chn 159 = nvdev->chan_table[i].channel; 160 161 if (!chn) 162 continue; 163 164 /* make sure receive not running now */ 165 napi_synchronize(&nvdev->chan_table[i].napi); 166 167 aread = hv_get_bytes_to_read(&chn->inbound); 168 if (aread) 169 break; 170 171 aread = hv_get_bytes_to_read(&chn->outbound); 172 if (aread) 173 break; 174 } 175 176 if (aread == 0) 177 return 0; 178 179 if (++retry > RETRY_MAX) 180 return -ETIMEDOUT; 181 182 usleep_range(RETRY_US_LO, RETRY_US_HI); 183 } 184 } 185 186 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 187 struct net_device *ndev) 188 { 189 if (nvscdev) { 190 nvscdev->tx_disable = true; 191 virt_wmb(); /* ensure txq will not wake up after stop */ 192 } 193 194 netif_tx_disable(ndev); 195 } 196 197 static int netvsc_close(struct net_device *net) 198 { 199 struct net_device_context *net_device_ctx = netdev_priv(net); 200 struct net_device *vf_netdev 201 = rtnl_dereference(net_device_ctx->vf_netdev); 202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 203 int ret; 204 205 netvsc_tx_disable(nvdev, net); 206 207 /* No need to close rndis filter if it is removed already */ 208 if (!nvdev) 209 return 0; 210 211 ret = rndis_filter_close(nvdev); 212 if (ret != 0) { 213 netdev_err(net, "unable to close device (ret %d).\n", ret); 214 return ret; 215 } 216 217 ret = netvsc_wait_until_empty(nvdev); 218 if (ret) 219 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 220 221 if (vf_netdev) 222 dev_close(vf_netdev); 223 224 return ret; 225 } 226 227 static inline void *init_ppi_data(struct rndis_message *msg, 228 u32 ppi_size, u32 pkt_type) 229 { 230 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 231 struct rndis_per_packet_info *ppi; 232 233 rndis_pkt->data_offset += ppi_size; 234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 235 + rndis_pkt->per_pkt_info_len; 236 237 ppi->size = ppi_size; 238 ppi->type = pkt_type; 239 ppi->internal = 0; 240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 241 242 rndis_pkt->per_pkt_info_len += ppi_size; 243 244 return ppi + 1; 245 } 246 247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 248 * packets. We can use ethtool to change UDP hash level when necessary. 249 */ 250 static inline u32 netvsc_get_hash( 251 struct sk_buff *skb, 252 const struct net_device_context *ndc) 253 { 254 struct flow_keys flow; 255 u32 hash, pkt_proto = 0; 256 static u32 hashrnd __read_mostly; 257 258 net_get_random_once(&hashrnd, sizeof(hashrnd)); 259 260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 261 return 0; 262 263 switch (flow.basic.ip_proto) { 264 case IPPROTO_TCP: 265 if (flow.basic.n_proto == htons(ETH_P_IP)) 266 pkt_proto = HV_TCP4_L4HASH; 267 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 268 pkt_proto = HV_TCP6_L4HASH; 269 270 break; 271 272 case IPPROTO_UDP: 273 if (flow.basic.n_proto == htons(ETH_P_IP)) 274 pkt_proto = HV_UDP4_L4HASH; 275 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 276 pkt_proto = HV_UDP6_L4HASH; 277 278 break; 279 } 280 281 if (pkt_proto & ndc->l4_hash) { 282 return skb_get_hash(skb); 283 } else { 284 if (flow.basic.n_proto == htons(ETH_P_IP)) 285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 286 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 288 else 289 return 0; 290 291 __skb_set_sw_hash(skb, hash, false); 292 } 293 294 return hash; 295 } 296 297 static inline int netvsc_get_tx_queue(struct net_device *ndev, 298 struct sk_buff *skb, int old_idx) 299 { 300 const struct net_device_context *ndc = netdev_priv(ndev); 301 struct sock *sk = skb->sk; 302 int q_idx; 303 304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 305 (VRSS_SEND_TAB_SIZE - 1)]; 306 307 /* If queue index changed record the new value */ 308 if (q_idx != old_idx && 309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 310 sk_tx_queue_set(sk, q_idx); 311 312 return q_idx; 313 } 314 315 /* 316 * Select queue for transmit. 317 * 318 * If a valid queue has already been assigned, then use that. 319 * Otherwise compute tx queue based on hash and the send table. 320 * 321 * This is basically similar to default (netdev_pick_tx) with the added step 322 * of using the host send_table when no other queue has been assigned. 323 * 324 * TODO support XPS - but get_xps_queue not exported 325 */ 326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 327 { 328 int q_idx = sk_tx_queue_get(skb->sk); 329 330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 331 /* If forwarding a packet, we use the recorded queue when 332 * available for better cache locality. 333 */ 334 if (skb_rx_queue_recorded(skb)) 335 q_idx = skb_get_rx_queue(skb); 336 else 337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 338 } 339 340 return q_idx; 341 } 342 343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 344 struct net_device *sb_dev) 345 { 346 struct net_device_context *ndc = netdev_priv(ndev); 347 struct net_device *vf_netdev; 348 u16 txq; 349 350 rcu_read_lock(); 351 vf_netdev = rcu_dereference(ndc->vf_netdev); 352 if (vf_netdev) { 353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 354 355 if (vf_ops->ndo_select_queue) 356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 357 else 358 txq = netdev_pick_tx(vf_netdev, skb, NULL); 359 360 /* Record the queue selected by VF so that it can be 361 * used for common case where VF has more queues than 362 * the synthetic device. 363 */ 364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 365 } else { 366 txq = netvsc_pick_tx(ndev, skb); 367 } 368 rcu_read_unlock(); 369 370 while (unlikely(txq >= ndev->real_num_tx_queues)) 371 txq -= ndev->real_num_tx_queues; 372 373 return txq; 374 } 375 376 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 377 struct hv_page_buffer *pb) 378 { 379 int j = 0; 380 381 /* Deal with compound pages by ignoring unused part 382 * of the page. 383 */ 384 page += (offset >> PAGE_SHIFT); 385 offset &= ~PAGE_MASK; 386 387 while (len > 0) { 388 unsigned long bytes; 389 390 bytes = PAGE_SIZE - offset; 391 if (bytes > len) 392 bytes = len; 393 pb[j].pfn = page_to_pfn(page); 394 pb[j].offset = offset; 395 pb[j].len = bytes; 396 397 offset += bytes; 398 len -= bytes; 399 400 if (offset == PAGE_SIZE && len) { 401 page++; 402 offset = 0; 403 j++; 404 } 405 } 406 407 return j + 1; 408 } 409 410 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 411 struct hv_netvsc_packet *packet, 412 struct hv_page_buffer *pb) 413 { 414 u32 slots_used = 0; 415 char *data = skb->data; 416 int frags = skb_shinfo(skb)->nr_frags; 417 int i; 418 419 /* The packet is laid out thus: 420 * 1. hdr: RNDIS header and PPI 421 * 2. skb linear data 422 * 3. skb fragment data 423 */ 424 slots_used += fill_pg_buf(virt_to_page(hdr), 425 offset_in_page(hdr), 426 len, &pb[slots_used]); 427 428 packet->rmsg_size = len; 429 packet->rmsg_pgcnt = slots_used; 430 431 slots_used += fill_pg_buf(virt_to_page(data), 432 offset_in_page(data), 433 skb_headlen(skb), &pb[slots_used]); 434 435 for (i = 0; i < frags; i++) { 436 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 437 438 slots_used += fill_pg_buf(skb_frag_page(frag), 439 skb_frag_off(frag), 440 skb_frag_size(frag), &pb[slots_used]); 441 } 442 return slots_used; 443 } 444 445 static int count_skb_frag_slots(struct sk_buff *skb) 446 { 447 int i, frags = skb_shinfo(skb)->nr_frags; 448 int pages = 0; 449 450 for (i = 0; i < frags; i++) { 451 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 452 unsigned long size = skb_frag_size(frag); 453 unsigned long offset = skb_frag_off(frag); 454 455 /* Skip unused frames from start of page */ 456 offset &= ~PAGE_MASK; 457 pages += PFN_UP(offset + size); 458 } 459 return pages; 460 } 461 462 static int netvsc_get_slots(struct sk_buff *skb) 463 { 464 char *data = skb->data; 465 unsigned int offset = offset_in_page(data); 466 unsigned int len = skb_headlen(skb); 467 int slots; 468 int frag_slots; 469 470 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 471 frag_slots = count_skb_frag_slots(skb); 472 return slots + frag_slots; 473 } 474 475 static u32 net_checksum_info(struct sk_buff *skb) 476 { 477 if (skb->protocol == htons(ETH_P_IP)) { 478 struct iphdr *ip = ip_hdr(skb); 479 480 if (ip->protocol == IPPROTO_TCP) 481 return TRANSPORT_INFO_IPV4_TCP; 482 else if (ip->protocol == IPPROTO_UDP) 483 return TRANSPORT_INFO_IPV4_UDP; 484 } else { 485 struct ipv6hdr *ip6 = ipv6_hdr(skb); 486 487 if (ip6->nexthdr == IPPROTO_TCP) 488 return TRANSPORT_INFO_IPV6_TCP; 489 else if (ip6->nexthdr == IPPROTO_UDP) 490 return TRANSPORT_INFO_IPV6_UDP; 491 } 492 493 return TRANSPORT_INFO_NOT_IP; 494 } 495 496 /* Send skb on the slave VF device. */ 497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 498 struct sk_buff *skb) 499 { 500 struct net_device_context *ndev_ctx = netdev_priv(net); 501 unsigned int len = skb->len; 502 int rc; 503 504 skb->dev = vf_netdev; 505 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 506 507 rc = dev_queue_xmit(skb); 508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 509 struct netvsc_vf_pcpu_stats *pcpu_stats 510 = this_cpu_ptr(ndev_ctx->vf_stats); 511 512 u64_stats_update_begin(&pcpu_stats->syncp); 513 pcpu_stats->tx_packets++; 514 pcpu_stats->tx_bytes += len; 515 u64_stats_update_end(&pcpu_stats->syncp); 516 } else { 517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 518 } 519 520 return rc; 521 } 522 523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 524 { 525 struct net_device_context *net_device_ctx = netdev_priv(net); 526 struct hv_netvsc_packet *packet = NULL; 527 int ret; 528 unsigned int num_data_pgs; 529 struct rndis_message *rndis_msg; 530 struct net_device *vf_netdev; 531 u32 rndis_msg_size; 532 u32 hash; 533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 534 535 /* if VF is present and up then redirect packets 536 * already called with rcu_read_lock_bh 537 */ 538 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 539 if (vf_netdev && netif_running(vf_netdev) && 540 !netpoll_tx_running(net)) 541 return netvsc_vf_xmit(net, vf_netdev, skb); 542 543 /* We will atmost need two pages to describe the rndis 544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 545 * of pages in a single packet. If skb is scattered around 546 * more pages we try linearizing it. 547 */ 548 549 num_data_pgs = netvsc_get_slots(skb) + 2; 550 551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 552 ++net_device_ctx->eth_stats.tx_scattered; 553 554 if (skb_linearize(skb)) 555 goto no_memory; 556 557 num_data_pgs = netvsc_get_slots(skb) + 2; 558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 559 ++net_device_ctx->eth_stats.tx_too_big; 560 goto drop; 561 } 562 } 563 564 /* 565 * Place the rndis header in the skb head room and 566 * the skb->cb will be used for hv_netvsc_packet 567 * structure. 568 */ 569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 570 if (ret) 571 goto no_memory; 572 573 /* Use the skb control buffer for building up the packet */ 574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 575 sizeof_field(struct sk_buff, cb)); 576 packet = (struct hv_netvsc_packet *)skb->cb; 577 578 packet->q_idx = skb_get_queue_mapping(skb); 579 580 packet->total_data_buflen = skb->len; 581 packet->total_bytes = skb->len; 582 packet->total_packets = 1; 583 584 rndis_msg = (struct rndis_message *)skb->head; 585 586 /* Add the rndis header */ 587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 588 rndis_msg->msg_len = packet->total_data_buflen; 589 590 rndis_msg->msg.pkt = (struct rndis_packet) { 591 .data_offset = sizeof(struct rndis_packet), 592 .data_len = packet->total_data_buflen, 593 .per_pkt_info_offset = sizeof(struct rndis_packet), 594 }; 595 596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 597 598 hash = skb_get_hash_raw(skb); 599 if (hash != 0 && net->real_num_tx_queues > 1) { 600 u32 *hash_info; 601 602 rndis_msg_size += NDIS_HASH_PPI_SIZE; 603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 604 NBL_HASH_VALUE); 605 *hash_info = hash; 606 } 607 608 /* When using AF_PACKET we need to drop VLAN header from 609 * the frame and update the SKB to allow the HOST OS 610 * to transmit the 802.1Q packet 611 */ 612 if (skb->protocol == htons(ETH_P_8021Q)) { 613 u16 vlan_tci; 614 615 skb_reset_mac_header(skb); 616 if (eth_type_vlan(eth_hdr(skb)->h_proto)) { 617 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { 618 ++net_device_ctx->eth_stats.vlan_error; 619 goto drop; 620 } 621 622 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 623 /* Update the NDIS header pkt lengths */ 624 packet->total_data_buflen -= VLAN_HLEN; 625 packet->total_bytes -= VLAN_HLEN; 626 rndis_msg->msg_len = packet->total_data_buflen; 627 rndis_msg->msg.pkt.data_len = packet->total_data_buflen; 628 } 629 } 630 631 if (skb_vlan_tag_present(skb)) { 632 struct ndis_pkt_8021q_info *vlan; 633 634 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 635 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 636 IEEE_8021Q_INFO); 637 638 vlan->value = 0; 639 vlan->vlanid = skb_vlan_tag_get_id(skb); 640 vlan->cfi = skb_vlan_tag_get_cfi(skb); 641 vlan->pri = skb_vlan_tag_get_prio(skb); 642 } 643 644 if (skb_is_gso(skb)) { 645 struct ndis_tcp_lso_info *lso_info; 646 647 rndis_msg_size += NDIS_LSO_PPI_SIZE; 648 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 649 TCP_LARGESEND_PKTINFO); 650 651 lso_info->value = 0; 652 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 653 if (skb->protocol == htons(ETH_P_IP)) { 654 lso_info->lso_v2_transmit.ip_version = 655 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 656 ip_hdr(skb)->tot_len = 0; 657 ip_hdr(skb)->check = 0; 658 tcp_hdr(skb)->check = 659 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 660 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 661 } else { 662 lso_info->lso_v2_transmit.ip_version = 663 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 664 tcp_v6_gso_csum_prep(skb); 665 } 666 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 667 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 668 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 669 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 670 struct ndis_tcp_ip_checksum_info *csum_info; 671 672 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 673 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 674 TCPIP_CHKSUM_PKTINFO); 675 676 csum_info->value = 0; 677 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 678 679 if (skb->protocol == htons(ETH_P_IP)) { 680 csum_info->transmit.is_ipv4 = 1; 681 682 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 683 csum_info->transmit.tcp_checksum = 1; 684 else 685 csum_info->transmit.udp_checksum = 1; 686 } else { 687 csum_info->transmit.is_ipv6 = 1; 688 689 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 690 csum_info->transmit.tcp_checksum = 1; 691 else 692 csum_info->transmit.udp_checksum = 1; 693 } 694 } else { 695 /* Can't do offload of this type of checksum */ 696 if (skb_checksum_help(skb)) 697 goto drop; 698 } 699 } 700 701 /* Start filling in the page buffers with the rndis hdr */ 702 rndis_msg->msg_len += rndis_msg_size; 703 packet->total_data_buflen = rndis_msg->msg_len; 704 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 705 skb, packet, pb); 706 707 /* timestamp packet in software */ 708 skb_tx_timestamp(skb); 709 710 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 711 if (likely(ret == 0)) 712 return NETDEV_TX_OK; 713 714 if (ret == -EAGAIN) { 715 ++net_device_ctx->eth_stats.tx_busy; 716 return NETDEV_TX_BUSY; 717 } 718 719 if (ret == -ENOSPC) 720 ++net_device_ctx->eth_stats.tx_no_space; 721 722 drop: 723 dev_kfree_skb_any(skb); 724 net->stats.tx_dropped++; 725 726 return NETDEV_TX_OK; 727 728 no_memory: 729 ++net_device_ctx->eth_stats.tx_no_memory; 730 goto drop; 731 } 732 733 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 734 struct net_device *ndev) 735 { 736 return netvsc_xmit(skb, ndev, false); 737 } 738 739 /* 740 * netvsc_linkstatus_callback - Link up/down notification 741 */ 742 void netvsc_linkstatus_callback(struct net_device *net, 743 struct rndis_message *resp) 744 { 745 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 746 struct net_device_context *ndev_ctx = netdev_priv(net); 747 struct netvsc_reconfig *event; 748 unsigned long flags; 749 750 /* Update the physical link speed when changing to another vSwitch */ 751 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 752 u32 speed; 753 754 speed = *(u32 *)((void *)indicate 755 + indicate->status_buf_offset) / 10000; 756 ndev_ctx->speed = speed; 757 return; 758 } 759 760 /* Handle these link change statuses below */ 761 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 762 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 763 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 764 return; 765 766 if (net->reg_state != NETREG_REGISTERED) 767 return; 768 769 event = kzalloc(sizeof(*event), GFP_ATOMIC); 770 if (!event) 771 return; 772 event->event = indicate->status; 773 774 spin_lock_irqsave(&ndev_ctx->lock, flags); 775 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 776 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 777 778 schedule_delayed_work(&ndev_ctx->dwork, 0); 779 } 780 781 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 782 { 783 int rc; 784 785 skb->queue_mapping = skb_get_rx_queue(skb); 786 __skb_push(skb, ETH_HLEN); 787 788 rc = netvsc_xmit(skb, ndev, true); 789 790 if (dev_xmit_complete(rc)) 791 return; 792 793 dev_kfree_skb_any(skb); 794 ndev->stats.tx_dropped++; 795 } 796 797 static void netvsc_comp_ipcsum(struct sk_buff *skb) 798 { 799 struct iphdr *iph = (struct iphdr *)skb->data; 800 801 iph->check = 0; 802 iph->check = ip_fast_csum(iph, iph->ihl); 803 } 804 805 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 806 struct netvsc_channel *nvchan, 807 struct xdp_buff *xdp) 808 { 809 struct napi_struct *napi = &nvchan->napi; 810 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 811 const struct ndis_tcp_ip_checksum_info *csum_info = 812 nvchan->rsc.csum_info; 813 const u32 *hash_info = nvchan->rsc.hash_info; 814 struct sk_buff *skb; 815 void *xbuf = xdp->data_hard_start; 816 int i; 817 818 if (xbuf) { 819 unsigned int hdroom = xdp->data - xdp->data_hard_start; 820 unsigned int xlen = xdp->data_end - xdp->data; 821 unsigned int frag_size = xdp->frame_sz; 822 823 skb = build_skb(xbuf, frag_size); 824 825 if (!skb) { 826 __free_page(virt_to_page(xbuf)); 827 return NULL; 828 } 829 830 skb_reserve(skb, hdroom); 831 skb_put(skb, xlen); 832 skb->dev = napi->dev; 833 } else { 834 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 835 836 if (!skb) 837 return NULL; 838 839 /* Copy to skb. This copy is needed here since the memory 840 * pointed by hv_netvsc_packet cannot be deallocated. 841 */ 842 for (i = 0; i < nvchan->rsc.cnt; i++) 843 skb_put_data(skb, nvchan->rsc.data[i], 844 nvchan->rsc.len[i]); 845 } 846 847 skb->protocol = eth_type_trans(skb, net); 848 849 /* skb is already created with CHECKSUM_NONE */ 850 skb_checksum_none_assert(skb); 851 852 /* Incoming packets may have IP header checksum verified by the host. 853 * They may not have IP header checksum computed after coalescing. 854 * We compute it here if the flags are set, because on Linux, the IP 855 * checksum is always checked. 856 */ 857 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 858 csum_info->receive.ip_checksum_succeeded && 859 skb->protocol == htons(ETH_P_IP)) 860 netvsc_comp_ipcsum(skb); 861 862 /* Do L4 checksum offload if enabled and present. */ 863 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 864 if (csum_info->receive.tcp_checksum_succeeded || 865 csum_info->receive.udp_checksum_succeeded) 866 skb->ip_summed = CHECKSUM_UNNECESSARY; 867 } 868 869 if (hash_info && (net->features & NETIF_F_RXHASH)) 870 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 871 872 if (vlan) { 873 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 874 (vlan->cfi ? VLAN_CFI_MASK : 0); 875 876 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 877 vlan_tci); 878 } 879 880 return skb; 881 } 882 883 /* 884 * netvsc_recv_callback - Callback when we receive a packet from the 885 * "wire" on the specified device. 886 */ 887 int netvsc_recv_callback(struct net_device *net, 888 struct netvsc_device *net_device, 889 struct netvsc_channel *nvchan) 890 { 891 struct net_device_context *net_device_ctx = netdev_priv(net); 892 struct vmbus_channel *channel = nvchan->channel; 893 u16 q_idx = channel->offermsg.offer.sub_channel_index; 894 struct sk_buff *skb; 895 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 896 struct xdp_buff xdp; 897 u32 act; 898 899 if (net->reg_state != NETREG_REGISTERED) 900 return NVSP_STAT_FAIL; 901 902 act = netvsc_run_xdp(net, nvchan, &xdp); 903 904 if (act != XDP_PASS && act != XDP_TX) { 905 u64_stats_update_begin(&rx_stats->syncp); 906 rx_stats->xdp_drop++; 907 u64_stats_update_end(&rx_stats->syncp); 908 909 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 910 } 911 912 /* Allocate a skb - TODO direct I/O to pages? */ 913 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 914 915 if (unlikely(!skb)) { 916 ++net_device_ctx->eth_stats.rx_no_memory; 917 return NVSP_STAT_FAIL; 918 } 919 920 skb_record_rx_queue(skb, q_idx); 921 922 /* 923 * Even if injecting the packet, record the statistics 924 * on the synthetic device because modifying the VF device 925 * statistics will not work correctly. 926 */ 927 u64_stats_update_begin(&rx_stats->syncp); 928 rx_stats->packets++; 929 rx_stats->bytes += nvchan->rsc.pktlen; 930 931 if (skb->pkt_type == PACKET_BROADCAST) 932 ++rx_stats->broadcast; 933 else if (skb->pkt_type == PACKET_MULTICAST) 934 ++rx_stats->multicast; 935 u64_stats_update_end(&rx_stats->syncp); 936 937 if (act == XDP_TX) { 938 netvsc_xdp_xmit(skb, net); 939 return NVSP_STAT_SUCCESS; 940 } 941 942 napi_gro_receive(&nvchan->napi, skb); 943 return NVSP_STAT_SUCCESS; 944 } 945 946 static void netvsc_get_drvinfo(struct net_device *net, 947 struct ethtool_drvinfo *info) 948 { 949 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 950 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 951 } 952 953 static void netvsc_get_channels(struct net_device *net, 954 struct ethtool_channels *channel) 955 { 956 struct net_device_context *net_device_ctx = netdev_priv(net); 957 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 958 959 if (nvdev) { 960 channel->max_combined = nvdev->max_chn; 961 channel->combined_count = nvdev->num_chn; 962 } 963 } 964 965 /* Alloc struct netvsc_device_info, and initialize it from either existing 966 * struct netvsc_device, or from default values. 967 */ 968 static 969 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 970 { 971 struct netvsc_device_info *dev_info; 972 struct bpf_prog *prog; 973 974 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 975 976 if (!dev_info) 977 return NULL; 978 979 if (nvdev) { 980 ASSERT_RTNL(); 981 982 dev_info->num_chn = nvdev->num_chn; 983 dev_info->send_sections = nvdev->send_section_cnt; 984 dev_info->send_section_size = nvdev->send_section_size; 985 dev_info->recv_sections = nvdev->recv_section_cnt; 986 dev_info->recv_section_size = nvdev->recv_section_size; 987 988 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 989 NETVSC_HASH_KEYLEN); 990 991 prog = netvsc_xdp_get(nvdev); 992 if (prog) { 993 bpf_prog_inc(prog); 994 dev_info->bprog = prog; 995 } 996 } else { 997 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 998 dev_info->send_sections = NETVSC_DEFAULT_TX; 999 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 1000 dev_info->recv_sections = NETVSC_DEFAULT_RX; 1001 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 1002 } 1003 1004 return dev_info; 1005 } 1006 1007 /* Free struct netvsc_device_info */ 1008 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 1009 { 1010 if (dev_info->bprog) { 1011 ASSERT_RTNL(); 1012 bpf_prog_put(dev_info->bprog); 1013 } 1014 1015 kfree(dev_info); 1016 } 1017 1018 static int netvsc_detach(struct net_device *ndev, 1019 struct netvsc_device *nvdev) 1020 { 1021 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1022 struct hv_device *hdev = ndev_ctx->device_ctx; 1023 int ret; 1024 1025 /* Don't try continuing to try and setup sub channels */ 1026 if (cancel_work_sync(&nvdev->subchan_work)) 1027 nvdev->num_chn = 1; 1028 1029 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1030 1031 /* If device was up (receiving) then shutdown */ 1032 if (netif_running(ndev)) { 1033 netvsc_tx_disable(nvdev, ndev); 1034 1035 ret = rndis_filter_close(nvdev); 1036 if (ret) { 1037 netdev_err(ndev, 1038 "unable to close device (ret %d).\n", ret); 1039 return ret; 1040 } 1041 1042 ret = netvsc_wait_until_empty(nvdev); 1043 if (ret) { 1044 netdev_err(ndev, 1045 "Ring buffer not empty after closing rndis\n"); 1046 return ret; 1047 } 1048 } 1049 1050 netif_device_detach(ndev); 1051 1052 rndis_filter_device_remove(hdev, nvdev); 1053 1054 return 0; 1055 } 1056 1057 static int netvsc_attach(struct net_device *ndev, 1058 struct netvsc_device_info *dev_info) 1059 { 1060 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1061 struct hv_device *hdev = ndev_ctx->device_ctx; 1062 struct netvsc_device *nvdev; 1063 struct rndis_device *rdev; 1064 struct bpf_prog *prog; 1065 int ret = 0; 1066 1067 nvdev = rndis_filter_device_add(hdev, dev_info); 1068 if (IS_ERR(nvdev)) 1069 return PTR_ERR(nvdev); 1070 1071 if (nvdev->num_chn > 1) { 1072 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1073 1074 /* if unavailable, just proceed with one queue */ 1075 if (ret) { 1076 nvdev->max_chn = 1; 1077 nvdev->num_chn = 1; 1078 } 1079 } 1080 1081 prog = dev_info->bprog; 1082 if (prog) { 1083 bpf_prog_inc(prog); 1084 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1085 if (ret) { 1086 bpf_prog_put(prog); 1087 goto err1; 1088 } 1089 } 1090 1091 /* In any case device is now ready */ 1092 nvdev->tx_disable = false; 1093 netif_device_attach(ndev); 1094 1095 /* Note: enable and attach happen when sub-channels setup */ 1096 netif_carrier_off(ndev); 1097 1098 if (netif_running(ndev)) { 1099 ret = rndis_filter_open(nvdev); 1100 if (ret) 1101 goto err2; 1102 1103 rdev = nvdev->extension; 1104 if (!rdev->link_state) 1105 netif_carrier_on(ndev); 1106 } 1107 1108 return 0; 1109 1110 err2: 1111 netif_device_detach(ndev); 1112 1113 err1: 1114 rndis_filter_device_remove(hdev, nvdev); 1115 1116 return ret; 1117 } 1118 1119 static int netvsc_set_channels(struct net_device *net, 1120 struct ethtool_channels *channels) 1121 { 1122 struct net_device_context *net_device_ctx = netdev_priv(net); 1123 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1124 unsigned int orig, count = channels->combined_count; 1125 struct netvsc_device_info *device_info; 1126 int ret; 1127 1128 /* We do not support separate count for rx, tx, or other */ 1129 if (count == 0 || 1130 channels->rx_count || channels->tx_count || channels->other_count) 1131 return -EINVAL; 1132 1133 if (!nvdev || nvdev->destroy) 1134 return -ENODEV; 1135 1136 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1137 return -EINVAL; 1138 1139 if (count > nvdev->max_chn) 1140 return -EINVAL; 1141 1142 orig = nvdev->num_chn; 1143 1144 device_info = netvsc_devinfo_get(nvdev); 1145 1146 if (!device_info) 1147 return -ENOMEM; 1148 1149 device_info->num_chn = count; 1150 1151 ret = netvsc_detach(net, nvdev); 1152 if (ret) 1153 goto out; 1154 1155 ret = netvsc_attach(net, device_info); 1156 if (ret) { 1157 device_info->num_chn = orig; 1158 if (netvsc_attach(net, device_info)) 1159 netdev_err(net, "restoring channel setting failed\n"); 1160 } 1161 1162 out: 1163 netvsc_devinfo_put(device_info); 1164 return ret; 1165 } 1166 1167 static void netvsc_init_settings(struct net_device *dev) 1168 { 1169 struct net_device_context *ndc = netdev_priv(dev); 1170 1171 ndc->l4_hash = HV_DEFAULT_L4HASH; 1172 1173 ndc->speed = SPEED_UNKNOWN; 1174 ndc->duplex = DUPLEX_FULL; 1175 1176 dev->features = NETIF_F_LRO; 1177 } 1178 1179 static int netvsc_get_link_ksettings(struct net_device *dev, 1180 struct ethtool_link_ksettings *cmd) 1181 { 1182 struct net_device_context *ndc = netdev_priv(dev); 1183 struct net_device *vf_netdev; 1184 1185 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1186 1187 if (vf_netdev) 1188 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1189 1190 cmd->base.speed = ndc->speed; 1191 cmd->base.duplex = ndc->duplex; 1192 cmd->base.port = PORT_OTHER; 1193 1194 return 0; 1195 } 1196 1197 static int netvsc_set_link_ksettings(struct net_device *dev, 1198 const struct ethtool_link_ksettings *cmd) 1199 { 1200 struct net_device_context *ndc = netdev_priv(dev); 1201 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1202 1203 if (vf_netdev) { 1204 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1205 return -EOPNOTSUPP; 1206 1207 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1208 cmd); 1209 } 1210 1211 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1212 &ndc->speed, &ndc->duplex); 1213 } 1214 1215 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1216 { 1217 struct net_device_context *ndevctx = netdev_priv(ndev); 1218 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1219 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1220 int orig_mtu = ndev->mtu; 1221 struct netvsc_device_info *device_info; 1222 int ret = 0; 1223 1224 if (!nvdev || nvdev->destroy) 1225 return -ENODEV; 1226 1227 device_info = netvsc_devinfo_get(nvdev); 1228 1229 if (!device_info) 1230 return -ENOMEM; 1231 1232 /* Change MTU of underlying VF netdev first. */ 1233 if (vf_netdev) { 1234 ret = dev_set_mtu(vf_netdev, mtu); 1235 if (ret) 1236 goto out; 1237 } 1238 1239 ret = netvsc_detach(ndev, nvdev); 1240 if (ret) 1241 goto rollback_vf; 1242 1243 ndev->mtu = mtu; 1244 1245 ret = netvsc_attach(ndev, device_info); 1246 if (!ret) 1247 goto out; 1248 1249 /* Attempt rollback to original MTU */ 1250 ndev->mtu = orig_mtu; 1251 1252 if (netvsc_attach(ndev, device_info)) 1253 netdev_err(ndev, "restoring mtu failed\n"); 1254 rollback_vf: 1255 if (vf_netdev) 1256 dev_set_mtu(vf_netdev, orig_mtu); 1257 1258 out: 1259 netvsc_devinfo_put(device_info); 1260 return ret; 1261 } 1262 1263 static void netvsc_get_vf_stats(struct net_device *net, 1264 struct netvsc_vf_pcpu_stats *tot) 1265 { 1266 struct net_device_context *ndev_ctx = netdev_priv(net); 1267 int i; 1268 1269 memset(tot, 0, sizeof(*tot)); 1270 1271 for_each_possible_cpu(i) { 1272 const struct netvsc_vf_pcpu_stats *stats 1273 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1274 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1275 unsigned int start; 1276 1277 do { 1278 start = u64_stats_fetch_begin_irq(&stats->syncp); 1279 rx_packets = stats->rx_packets; 1280 tx_packets = stats->tx_packets; 1281 rx_bytes = stats->rx_bytes; 1282 tx_bytes = stats->tx_bytes; 1283 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1284 1285 tot->rx_packets += rx_packets; 1286 tot->tx_packets += tx_packets; 1287 tot->rx_bytes += rx_bytes; 1288 tot->tx_bytes += tx_bytes; 1289 tot->tx_dropped += stats->tx_dropped; 1290 } 1291 } 1292 1293 static void netvsc_get_pcpu_stats(struct net_device *net, 1294 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1295 { 1296 struct net_device_context *ndev_ctx = netdev_priv(net); 1297 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1298 int i; 1299 1300 /* fetch percpu stats of vf */ 1301 for_each_possible_cpu(i) { 1302 const struct netvsc_vf_pcpu_stats *stats = 1303 per_cpu_ptr(ndev_ctx->vf_stats, i); 1304 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1305 unsigned int start; 1306 1307 do { 1308 start = u64_stats_fetch_begin_irq(&stats->syncp); 1309 this_tot->vf_rx_packets = stats->rx_packets; 1310 this_tot->vf_tx_packets = stats->tx_packets; 1311 this_tot->vf_rx_bytes = stats->rx_bytes; 1312 this_tot->vf_tx_bytes = stats->tx_bytes; 1313 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1314 this_tot->rx_packets = this_tot->vf_rx_packets; 1315 this_tot->tx_packets = this_tot->vf_tx_packets; 1316 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1317 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1318 } 1319 1320 /* fetch percpu stats of netvsc */ 1321 for (i = 0; i < nvdev->num_chn; i++) { 1322 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1323 const struct netvsc_stats *stats; 1324 struct netvsc_ethtool_pcpu_stats *this_tot = 1325 &pcpu_tot[nvchan->channel->target_cpu]; 1326 u64 packets, bytes; 1327 unsigned int start; 1328 1329 stats = &nvchan->tx_stats; 1330 do { 1331 start = u64_stats_fetch_begin_irq(&stats->syncp); 1332 packets = stats->packets; 1333 bytes = stats->bytes; 1334 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1335 1336 this_tot->tx_bytes += bytes; 1337 this_tot->tx_packets += packets; 1338 1339 stats = &nvchan->rx_stats; 1340 do { 1341 start = u64_stats_fetch_begin_irq(&stats->syncp); 1342 packets = stats->packets; 1343 bytes = stats->bytes; 1344 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1345 1346 this_tot->rx_bytes += bytes; 1347 this_tot->rx_packets += packets; 1348 } 1349 } 1350 1351 static void netvsc_get_stats64(struct net_device *net, 1352 struct rtnl_link_stats64 *t) 1353 { 1354 struct net_device_context *ndev_ctx = netdev_priv(net); 1355 struct netvsc_device *nvdev; 1356 struct netvsc_vf_pcpu_stats vf_tot; 1357 int i; 1358 1359 rcu_read_lock(); 1360 1361 nvdev = rcu_dereference(ndev_ctx->nvdev); 1362 if (!nvdev) 1363 goto out; 1364 1365 netdev_stats_to_stats64(t, &net->stats); 1366 1367 netvsc_get_vf_stats(net, &vf_tot); 1368 t->rx_packets += vf_tot.rx_packets; 1369 t->tx_packets += vf_tot.tx_packets; 1370 t->rx_bytes += vf_tot.rx_bytes; 1371 t->tx_bytes += vf_tot.tx_bytes; 1372 t->tx_dropped += vf_tot.tx_dropped; 1373 1374 for (i = 0; i < nvdev->num_chn; i++) { 1375 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1376 const struct netvsc_stats *stats; 1377 u64 packets, bytes, multicast; 1378 unsigned int start; 1379 1380 stats = &nvchan->tx_stats; 1381 do { 1382 start = u64_stats_fetch_begin_irq(&stats->syncp); 1383 packets = stats->packets; 1384 bytes = stats->bytes; 1385 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1386 1387 t->tx_bytes += bytes; 1388 t->tx_packets += packets; 1389 1390 stats = &nvchan->rx_stats; 1391 do { 1392 start = u64_stats_fetch_begin_irq(&stats->syncp); 1393 packets = stats->packets; 1394 bytes = stats->bytes; 1395 multicast = stats->multicast + stats->broadcast; 1396 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1397 1398 t->rx_bytes += bytes; 1399 t->rx_packets += packets; 1400 t->multicast += multicast; 1401 } 1402 out: 1403 rcu_read_unlock(); 1404 } 1405 1406 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1407 { 1408 struct net_device_context *ndc = netdev_priv(ndev); 1409 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1410 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1411 struct sockaddr *addr = p; 1412 int err; 1413 1414 err = eth_prepare_mac_addr_change(ndev, p); 1415 if (err) 1416 return err; 1417 1418 if (!nvdev) 1419 return -ENODEV; 1420 1421 if (vf_netdev) { 1422 err = dev_set_mac_address(vf_netdev, addr, NULL); 1423 if (err) 1424 return err; 1425 } 1426 1427 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1428 if (!err) { 1429 eth_commit_mac_addr_change(ndev, p); 1430 } else if (vf_netdev) { 1431 /* rollback change on VF */ 1432 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1433 dev_set_mac_address(vf_netdev, addr, NULL); 1434 } 1435 1436 return err; 1437 } 1438 1439 static const struct { 1440 char name[ETH_GSTRING_LEN]; 1441 u16 offset; 1442 } netvsc_stats[] = { 1443 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1444 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1445 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1446 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1447 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1448 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1449 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1450 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1451 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1452 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1453 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, 1454 }, pcpu_stats[] = { 1455 { "cpu%u_rx_packets", 1456 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1457 { "cpu%u_rx_bytes", 1458 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1459 { "cpu%u_tx_packets", 1460 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1461 { "cpu%u_tx_bytes", 1462 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1463 { "cpu%u_vf_rx_packets", 1464 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1465 { "cpu%u_vf_rx_bytes", 1466 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1467 { "cpu%u_vf_tx_packets", 1468 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1469 { "cpu%u_vf_tx_bytes", 1470 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1471 }, vf_stats[] = { 1472 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1473 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1474 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1475 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1476 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1477 }; 1478 1479 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1480 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1481 1482 /* statistics per queue (rx/tx packets/bytes) */ 1483 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1484 1485 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1486 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1487 1488 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1489 { 1490 struct net_device_context *ndc = netdev_priv(dev); 1491 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1492 1493 if (!nvdev) 1494 return -ENODEV; 1495 1496 switch (string_set) { 1497 case ETH_SS_STATS: 1498 return NETVSC_GLOBAL_STATS_LEN 1499 + NETVSC_VF_STATS_LEN 1500 + NETVSC_QUEUE_STATS_LEN(nvdev) 1501 + NETVSC_PCPU_STATS_LEN; 1502 default: 1503 return -EINVAL; 1504 } 1505 } 1506 1507 static void netvsc_get_ethtool_stats(struct net_device *dev, 1508 struct ethtool_stats *stats, u64 *data) 1509 { 1510 struct net_device_context *ndc = netdev_priv(dev); 1511 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1512 const void *nds = &ndc->eth_stats; 1513 const struct netvsc_stats *qstats; 1514 struct netvsc_vf_pcpu_stats sum; 1515 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1516 unsigned int start; 1517 u64 packets, bytes; 1518 u64 xdp_drop; 1519 int i, j, cpu; 1520 1521 if (!nvdev) 1522 return; 1523 1524 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1525 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1526 1527 netvsc_get_vf_stats(dev, &sum); 1528 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1529 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1530 1531 for (j = 0; j < nvdev->num_chn; j++) { 1532 qstats = &nvdev->chan_table[j].tx_stats; 1533 1534 do { 1535 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1536 packets = qstats->packets; 1537 bytes = qstats->bytes; 1538 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1539 data[i++] = packets; 1540 data[i++] = bytes; 1541 1542 qstats = &nvdev->chan_table[j].rx_stats; 1543 do { 1544 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1545 packets = qstats->packets; 1546 bytes = qstats->bytes; 1547 xdp_drop = qstats->xdp_drop; 1548 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1549 data[i++] = packets; 1550 data[i++] = bytes; 1551 data[i++] = xdp_drop; 1552 } 1553 1554 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1555 sizeof(struct netvsc_ethtool_pcpu_stats), 1556 GFP_KERNEL); 1557 netvsc_get_pcpu_stats(dev, pcpu_sum); 1558 for_each_present_cpu(cpu) { 1559 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1560 1561 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1562 data[i++] = *(u64 *)((void *)this_sum 1563 + pcpu_stats[j].offset); 1564 } 1565 kvfree(pcpu_sum); 1566 } 1567 1568 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1569 { 1570 struct net_device_context *ndc = netdev_priv(dev); 1571 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1572 u8 *p = data; 1573 int i, cpu; 1574 1575 if (!nvdev) 1576 return; 1577 1578 switch (stringset) { 1579 case ETH_SS_STATS: 1580 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1581 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1582 p += ETH_GSTRING_LEN; 1583 } 1584 1585 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1586 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1587 p += ETH_GSTRING_LEN; 1588 } 1589 1590 for (i = 0; i < nvdev->num_chn; i++) { 1591 sprintf(p, "tx_queue_%u_packets", i); 1592 p += ETH_GSTRING_LEN; 1593 sprintf(p, "tx_queue_%u_bytes", i); 1594 p += ETH_GSTRING_LEN; 1595 sprintf(p, "rx_queue_%u_packets", i); 1596 p += ETH_GSTRING_LEN; 1597 sprintf(p, "rx_queue_%u_bytes", i); 1598 p += ETH_GSTRING_LEN; 1599 sprintf(p, "rx_queue_%u_xdp_drop", i); 1600 p += ETH_GSTRING_LEN; 1601 } 1602 1603 for_each_present_cpu(cpu) { 1604 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1605 sprintf(p, pcpu_stats[i].name, cpu); 1606 p += ETH_GSTRING_LEN; 1607 } 1608 } 1609 1610 break; 1611 } 1612 } 1613 1614 static int 1615 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1616 struct ethtool_rxnfc *info) 1617 { 1618 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1619 1620 info->data = RXH_IP_SRC | RXH_IP_DST; 1621 1622 switch (info->flow_type) { 1623 case TCP_V4_FLOW: 1624 if (ndc->l4_hash & HV_TCP4_L4HASH) 1625 info->data |= l4_flag; 1626 1627 break; 1628 1629 case TCP_V6_FLOW: 1630 if (ndc->l4_hash & HV_TCP6_L4HASH) 1631 info->data |= l4_flag; 1632 1633 break; 1634 1635 case UDP_V4_FLOW: 1636 if (ndc->l4_hash & HV_UDP4_L4HASH) 1637 info->data |= l4_flag; 1638 1639 break; 1640 1641 case UDP_V6_FLOW: 1642 if (ndc->l4_hash & HV_UDP6_L4HASH) 1643 info->data |= l4_flag; 1644 1645 break; 1646 1647 case IPV4_FLOW: 1648 case IPV6_FLOW: 1649 break; 1650 default: 1651 info->data = 0; 1652 break; 1653 } 1654 1655 return 0; 1656 } 1657 1658 static int 1659 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1660 u32 *rules) 1661 { 1662 struct net_device_context *ndc = netdev_priv(dev); 1663 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1664 1665 if (!nvdev) 1666 return -ENODEV; 1667 1668 switch (info->cmd) { 1669 case ETHTOOL_GRXRINGS: 1670 info->data = nvdev->num_chn; 1671 return 0; 1672 1673 case ETHTOOL_GRXFH: 1674 return netvsc_get_rss_hash_opts(ndc, info); 1675 } 1676 return -EOPNOTSUPP; 1677 } 1678 1679 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1680 struct ethtool_rxnfc *info) 1681 { 1682 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1683 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1684 switch (info->flow_type) { 1685 case TCP_V4_FLOW: 1686 ndc->l4_hash |= HV_TCP4_L4HASH; 1687 break; 1688 1689 case TCP_V6_FLOW: 1690 ndc->l4_hash |= HV_TCP6_L4HASH; 1691 break; 1692 1693 case UDP_V4_FLOW: 1694 ndc->l4_hash |= HV_UDP4_L4HASH; 1695 break; 1696 1697 case UDP_V6_FLOW: 1698 ndc->l4_hash |= HV_UDP6_L4HASH; 1699 break; 1700 1701 default: 1702 return -EOPNOTSUPP; 1703 } 1704 1705 return 0; 1706 } 1707 1708 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1709 switch (info->flow_type) { 1710 case TCP_V4_FLOW: 1711 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1712 break; 1713 1714 case TCP_V6_FLOW: 1715 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1716 break; 1717 1718 case UDP_V4_FLOW: 1719 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1720 break; 1721 1722 case UDP_V6_FLOW: 1723 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1724 break; 1725 1726 default: 1727 return -EOPNOTSUPP; 1728 } 1729 1730 return 0; 1731 } 1732 1733 return -EOPNOTSUPP; 1734 } 1735 1736 static int 1737 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1738 { 1739 struct net_device_context *ndc = netdev_priv(ndev); 1740 1741 if (info->cmd == ETHTOOL_SRXFH) 1742 return netvsc_set_rss_hash_opts(ndc, info); 1743 1744 return -EOPNOTSUPP; 1745 } 1746 1747 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1748 { 1749 return NETVSC_HASH_KEYLEN; 1750 } 1751 1752 static u32 netvsc_rss_indir_size(struct net_device *dev) 1753 { 1754 return ITAB_NUM; 1755 } 1756 1757 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1758 u8 *hfunc) 1759 { 1760 struct net_device_context *ndc = netdev_priv(dev); 1761 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1762 struct rndis_device *rndis_dev; 1763 int i; 1764 1765 if (!ndev) 1766 return -ENODEV; 1767 1768 if (hfunc) 1769 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1770 1771 rndis_dev = ndev->extension; 1772 if (indir) { 1773 for (i = 0; i < ITAB_NUM; i++) 1774 indir[i] = ndc->rx_table[i]; 1775 } 1776 1777 if (key) 1778 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1779 1780 return 0; 1781 } 1782 1783 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1784 const u8 *key, const u8 hfunc) 1785 { 1786 struct net_device_context *ndc = netdev_priv(dev); 1787 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1788 struct rndis_device *rndis_dev; 1789 int i; 1790 1791 if (!ndev) 1792 return -ENODEV; 1793 1794 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1795 return -EOPNOTSUPP; 1796 1797 rndis_dev = ndev->extension; 1798 if (indir) { 1799 for (i = 0; i < ITAB_NUM; i++) 1800 if (indir[i] >= ndev->num_chn) 1801 return -EINVAL; 1802 1803 for (i = 0; i < ITAB_NUM; i++) 1804 ndc->rx_table[i] = indir[i]; 1805 } 1806 1807 if (!key) { 1808 if (!indir) 1809 return 0; 1810 1811 key = rndis_dev->rss_key; 1812 } 1813 1814 return rndis_filter_set_rss_param(rndis_dev, key); 1815 } 1816 1817 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1818 * It does have pre-allocated receive area which is divided into sections. 1819 */ 1820 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1821 struct ethtool_ringparam *ring) 1822 { 1823 u32 max_buf_size; 1824 1825 ring->rx_pending = nvdev->recv_section_cnt; 1826 ring->tx_pending = nvdev->send_section_cnt; 1827 1828 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1829 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1830 else 1831 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1832 1833 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1834 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1835 / nvdev->send_section_size; 1836 } 1837 1838 static void netvsc_get_ringparam(struct net_device *ndev, 1839 struct ethtool_ringparam *ring) 1840 { 1841 struct net_device_context *ndevctx = netdev_priv(ndev); 1842 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1843 1844 if (!nvdev) 1845 return; 1846 1847 __netvsc_get_ringparam(nvdev, ring); 1848 } 1849 1850 static int netvsc_set_ringparam(struct net_device *ndev, 1851 struct ethtool_ringparam *ring) 1852 { 1853 struct net_device_context *ndevctx = netdev_priv(ndev); 1854 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1855 struct netvsc_device_info *device_info; 1856 struct ethtool_ringparam orig; 1857 u32 new_tx, new_rx; 1858 int ret = 0; 1859 1860 if (!nvdev || nvdev->destroy) 1861 return -ENODEV; 1862 1863 memset(&orig, 0, sizeof(orig)); 1864 __netvsc_get_ringparam(nvdev, &orig); 1865 1866 new_tx = clamp_t(u32, ring->tx_pending, 1867 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1868 new_rx = clamp_t(u32, ring->rx_pending, 1869 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1870 1871 if (new_tx == orig.tx_pending && 1872 new_rx == orig.rx_pending) 1873 return 0; /* no change */ 1874 1875 device_info = netvsc_devinfo_get(nvdev); 1876 1877 if (!device_info) 1878 return -ENOMEM; 1879 1880 device_info->send_sections = new_tx; 1881 device_info->recv_sections = new_rx; 1882 1883 ret = netvsc_detach(ndev, nvdev); 1884 if (ret) 1885 goto out; 1886 1887 ret = netvsc_attach(ndev, device_info); 1888 if (ret) { 1889 device_info->send_sections = orig.tx_pending; 1890 device_info->recv_sections = orig.rx_pending; 1891 1892 if (netvsc_attach(ndev, device_info)) 1893 netdev_err(ndev, "restoring ringparam failed"); 1894 } 1895 1896 out: 1897 netvsc_devinfo_put(device_info); 1898 return ret; 1899 } 1900 1901 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1902 netdev_features_t features) 1903 { 1904 struct net_device_context *ndevctx = netdev_priv(ndev); 1905 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1906 1907 if (!nvdev || nvdev->destroy) 1908 return features; 1909 1910 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1911 features ^= NETIF_F_LRO; 1912 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1913 } 1914 1915 return features; 1916 } 1917 1918 static int netvsc_set_features(struct net_device *ndev, 1919 netdev_features_t features) 1920 { 1921 netdev_features_t change = features ^ ndev->features; 1922 struct net_device_context *ndevctx = netdev_priv(ndev); 1923 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1924 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1925 struct ndis_offload_params offloads; 1926 int ret = 0; 1927 1928 if (!nvdev || nvdev->destroy) 1929 return -ENODEV; 1930 1931 if (!(change & NETIF_F_LRO)) 1932 goto syncvf; 1933 1934 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1935 1936 if (features & NETIF_F_LRO) { 1937 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1938 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1939 } else { 1940 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1941 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1942 } 1943 1944 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1945 1946 if (ret) { 1947 features ^= NETIF_F_LRO; 1948 ndev->features = features; 1949 } 1950 1951 syncvf: 1952 if (!vf_netdev) 1953 return ret; 1954 1955 vf_netdev->wanted_features = features; 1956 netdev_update_features(vf_netdev); 1957 1958 return ret; 1959 } 1960 1961 static int netvsc_get_regs_len(struct net_device *netdev) 1962 { 1963 return VRSS_SEND_TAB_SIZE * sizeof(u32); 1964 } 1965 1966 static void netvsc_get_regs(struct net_device *netdev, 1967 struct ethtool_regs *regs, void *p) 1968 { 1969 struct net_device_context *ndc = netdev_priv(netdev); 1970 u32 *regs_buff = p; 1971 1972 /* increase the version, if buffer format is changed. */ 1973 regs->version = 1; 1974 1975 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); 1976 } 1977 1978 static u32 netvsc_get_msglevel(struct net_device *ndev) 1979 { 1980 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1981 1982 return ndev_ctx->msg_enable; 1983 } 1984 1985 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1986 { 1987 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1988 1989 ndev_ctx->msg_enable = val; 1990 } 1991 1992 static const struct ethtool_ops ethtool_ops = { 1993 .get_drvinfo = netvsc_get_drvinfo, 1994 .get_regs_len = netvsc_get_regs_len, 1995 .get_regs = netvsc_get_regs, 1996 .get_msglevel = netvsc_get_msglevel, 1997 .set_msglevel = netvsc_set_msglevel, 1998 .get_link = ethtool_op_get_link, 1999 .get_ethtool_stats = netvsc_get_ethtool_stats, 2000 .get_sset_count = netvsc_get_sset_count, 2001 .get_strings = netvsc_get_strings, 2002 .get_channels = netvsc_get_channels, 2003 .set_channels = netvsc_set_channels, 2004 .get_ts_info = ethtool_op_get_ts_info, 2005 .get_rxnfc = netvsc_get_rxnfc, 2006 .set_rxnfc = netvsc_set_rxnfc, 2007 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 2008 .get_rxfh_indir_size = netvsc_rss_indir_size, 2009 .get_rxfh = netvsc_get_rxfh, 2010 .set_rxfh = netvsc_set_rxfh, 2011 .get_link_ksettings = netvsc_get_link_ksettings, 2012 .set_link_ksettings = netvsc_set_link_ksettings, 2013 .get_ringparam = netvsc_get_ringparam, 2014 .set_ringparam = netvsc_set_ringparam, 2015 }; 2016 2017 static const struct net_device_ops device_ops = { 2018 .ndo_open = netvsc_open, 2019 .ndo_stop = netvsc_close, 2020 .ndo_start_xmit = netvsc_start_xmit, 2021 .ndo_change_rx_flags = netvsc_change_rx_flags, 2022 .ndo_set_rx_mode = netvsc_set_rx_mode, 2023 .ndo_fix_features = netvsc_fix_features, 2024 .ndo_set_features = netvsc_set_features, 2025 .ndo_change_mtu = netvsc_change_mtu, 2026 .ndo_validate_addr = eth_validate_addr, 2027 .ndo_set_mac_address = netvsc_set_mac_addr, 2028 .ndo_select_queue = netvsc_select_queue, 2029 .ndo_get_stats64 = netvsc_get_stats64, 2030 .ndo_bpf = netvsc_bpf, 2031 }; 2032 2033 /* 2034 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2035 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2036 * present send GARP packet to network peers with netif_notify_peers(). 2037 */ 2038 static void netvsc_link_change(struct work_struct *w) 2039 { 2040 struct net_device_context *ndev_ctx = 2041 container_of(w, struct net_device_context, dwork.work); 2042 struct hv_device *device_obj = ndev_ctx->device_ctx; 2043 struct net_device *net = hv_get_drvdata(device_obj); 2044 struct netvsc_device *net_device; 2045 struct rndis_device *rdev; 2046 struct netvsc_reconfig *event = NULL; 2047 bool notify = false, reschedule = false; 2048 unsigned long flags, next_reconfig, delay; 2049 2050 /* if changes are happening, comeback later */ 2051 if (!rtnl_trylock()) { 2052 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2053 return; 2054 } 2055 2056 net_device = rtnl_dereference(ndev_ctx->nvdev); 2057 if (!net_device) 2058 goto out_unlock; 2059 2060 rdev = net_device->extension; 2061 2062 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2063 if (time_is_after_jiffies(next_reconfig)) { 2064 /* link_watch only sends one notification with current state 2065 * per second, avoid doing reconfig more frequently. Handle 2066 * wrap around. 2067 */ 2068 delay = next_reconfig - jiffies; 2069 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2070 schedule_delayed_work(&ndev_ctx->dwork, delay); 2071 goto out_unlock; 2072 } 2073 ndev_ctx->last_reconfig = jiffies; 2074 2075 spin_lock_irqsave(&ndev_ctx->lock, flags); 2076 if (!list_empty(&ndev_ctx->reconfig_events)) { 2077 event = list_first_entry(&ndev_ctx->reconfig_events, 2078 struct netvsc_reconfig, list); 2079 list_del(&event->list); 2080 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2081 } 2082 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2083 2084 if (!event) 2085 goto out_unlock; 2086 2087 switch (event->event) { 2088 /* Only the following events are possible due to the check in 2089 * netvsc_linkstatus_callback() 2090 */ 2091 case RNDIS_STATUS_MEDIA_CONNECT: 2092 if (rdev->link_state) { 2093 rdev->link_state = false; 2094 netif_carrier_on(net); 2095 netvsc_tx_enable(net_device, net); 2096 } else { 2097 notify = true; 2098 } 2099 kfree(event); 2100 break; 2101 case RNDIS_STATUS_MEDIA_DISCONNECT: 2102 if (!rdev->link_state) { 2103 rdev->link_state = true; 2104 netif_carrier_off(net); 2105 netvsc_tx_disable(net_device, net); 2106 } 2107 kfree(event); 2108 break; 2109 case RNDIS_STATUS_NETWORK_CHANGE: 2110 /* Only makes sense if carrier is present */ 2111 if (!rdev->link_state) { 2112 rdev->link_state = true; 2113 netif_carrier_off(net); 2114 netvsc_tx_disable(net_device, net); 2115 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2116 spin_lock_irqsave(&ndev_ctx->lock, flags); 2117 list_add(&event->list, &ndev_ctx->reconfig_events); 2118 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2119 reschedule = true; 2120 } 2121 break; 2122 } 2123 2124 rtnl_unlock(); 2125 2126 if (notify) 2127 netdev_notify_peers(net); 2128 2129 /* link_watch only sends one notification with current state per 2130 * second, handle next reconfig event in 2 seconds. 2131 */ 2132 if (reschedule) 2133 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2134 2135 return; 2136 2137 out_unlock: 2138 rtnl_unlock(); 2139 } 2140 2141 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2142 { 2143 struct net_device_context *net_device_ctx; 2144 struct net_device *dev; 2145 2146 dev = netdev_master_upper_dev_get(vf_netdev); 2147 if (!dev || dev->netdev_ops != &device_ops) 2148 return NULL; /* not a netvsc device */ 2149 2150 net_device_ctx = netdev_priv(dev); 2151 if (!rtnl_dereference(net_device_ctx->nvdev)) 2152 return NULL; /* device is removed */ 2153 2154 return dev; 2155 } 2156 2157 /* Called when VF is injecting data into network stack. 2158 * Change the associated network device from VF to netvsc. 2159 * note: already called with rcu_read_lock 2160 */ 2161 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2162 { 2163 struct sk_buff *skb = *pskb; 2164 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2165 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2166 struct netvsc_vf_pcpu_stats *pcpu_stats 2167 = this_cpu_ptr(ndev_ctx->vf_stats); 2168 2169 skb = skb_share_check(skb, GFP_ATOMIC); 2170 if (unlikely(!skb)) 2171 return RX_HANDLER_CONSUMED; 2172 2173 *pskb = skb; 2174 2175 skb->dev = ndev; 2176 2177 u64_stats_update_begin(&pcpu_stats->syncp); 2178 pcpu_stats->rx_packets++; 2179 pcpu_stats->rx_bytes += skb->len; 2180 u64_stats_update_end(&pcpu_stats->syncp); 2181 2182 return RX_HANDLER_ANOTHER; 2183 } 2184 2185 static int netvsc_vf_join(struct net_device *vf_netdev, 2186 struct net_device *ndev) 2187 { 2188 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2189 int ret; 2190 2191 ret = netdev_rx_handler_register(vf_netdev, 2192 netvsc_vf_handle_frame, ndev); 2193 if (ret != 0) { 2194 netdev_err(vf_netdev, 2195 "can not register netvsc VF receive handler (err = %d)\n", 2196 ret); 2197 goto rx_handler_failed; 2198 } 2199 2200 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2201 NULL, NULL, NULL); 2202 if (ret != 0) { 2203 netdev_err(vf_netdev, 2204 "can not set master device %s (err = %d)\n", 2205 ndev->name, ret); 2206 goto upper_link_failed; 2207 } 2208 2209 /* set slave flag before open to prevent IPv6 addrconf */ 2210 vf_netdev->flags |= IFF_SLAVE; 2211 2212 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2213 2214 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2215 2216 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2217 return 0; 2218 2219 upper_link_failed: 2220 netdev_rx_handler_unregister(vf_netdev); 2221 rx_handler_failed: 2222 return ret; 2223 } 2224 2225 static void __netvsc_vf_setup(struct net_device *ndev, 2226 struct net_device *vf_netdev) 2227 { 2228 int ret; 2229 2230 /* Align MTU of VF with master */ 2231 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2232 if (ret) 2233 netdev_warn(vf_netdev, 2234 "unable to change mtu to %u\n", ndev->mtu); 2235 2236 /* set multicast etc flags on VF */ 2237 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2238 2239 /* sync address list from ndev to VF */ 2240 netif_addr_lock_bh(ndev); 2241 dev_uc_sync(vf_netdev, ndev); 2242 dev_mc_sync(vf_netdev, ndev); 2243 netif_addr_unlock_bh(ndev); 2244 2245 if (netif_running(ndev)) { 2246 ret = dev_open(vf_netdev, NULL); 2247 if (ret) 2248 netdev_warn(vf_netdev, 2249 "unable to open: %d\n", ret); 2250 } 2251 } 2252 2253 /* Setup VF as slave of the synthetic device. 2254 * Runs in workqueue to avoid recursion in netlink callbacks. 2255 */ 2256 static void netvsc_vf_setup(struct work_struct *w) 2257 { 2258 struct net_device_context *ndev_ctx 2259 = container_of(w, struct net_device_context, vf_takeover.work); 2260 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2261 struct net_device *vf_netdev; 2262 2263 if (!rtnl_trylock()) { 2264 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2265 return; 2266 } 2267 2268 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2269 if (vf_netdev) 2270 __netvsc_vf_setup(ndev, vf_netdev); 2271 2272 rtnl_unlock(); 2273 } 2274 2275 /* Find netvsc by VF serial number. 2276 * The PCI hyperv controller records the serial number as the slot kobj name. 2277 */ 2278 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2279 { 2280 struct device *parent = vf_netdev->dev.parent; 2281 struct net_device_context *ndev_ctx; 2282 struct pci_dev *pdev; 2283 u32 serial; 2284 2285 if (!parent || !dev_is_pci(parent)) 2286 return NULL; /* not a PCI device */ 2287 2288 pdev = to_pci_dev(parent); 2289 if (!pdev->slot) { 2290 netdev_notice(vf_netdev, "no PCI slot information\n"); 2291 return NULL; 2292 } 2293 2294 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2295 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2296 pci_slot_name(pdev->slot)); 2297 return NULL; 2298 } 2299 2300 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2301 if (!ndev_ctx->vf_alloc) 2302 continue; 2303 2304 if (ndev_ctx->vf_serial == serial) 2305 return hv_get_drvdata(ndev_ctx->device_ctx); 2306 } 2307 2308 netdev_notice(vf_netdev, 2309 "no netdev found for vf serial:%u\n", serial); 2310 return NULL; 2311 } 2312 2313 static int netvsc_register_vf(struct net_device *vf_netdev) 2314 { 2315 struct net_device_context *net_device_ctx; 2316 struct netvsc_device *netvsc_dev; 2317 struct bpf_prog *prog; 2318 struct net_device *ndev; 2319 int ret; 2320 2321 if (vf_netdev->addr_len != ETH_ALEN) 2322 return NOTIFY_DONE; 2323 2324 ndev = get_netvsc_byslot(vf_netdev); 2325 if (!ndev) 2326 return NOTIFY_DONE; 2327 2328 net_device_ctx = netdev_priv(ndev); 2329 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2330 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2331 return NOTIFY_DONE; 2332 2333 /* if synthetic interface is a different namespace, 2334 * then move the VF to that namespace; join will be 2335 * done again in that context. 2336 */ 2337 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2338 ret = dev_change_net_namespace(vf_netdev, 2339 dev_net(ndev), "eth%d"); 2340 if (ret) 2341 netdev_err(vf_netdev, 2342 "could not move to same namespace as %s: %d\n", 2343 ndev->name, ret); 2344 else 2345 netdev_info(vf_netdev, 2346 "VF moved to namespace with: %s\n", 2347 ndev->name); 2348 return NOTIFY_DONE; 2349 } 2350 2351 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2352 2353 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2354 return NOTIFY_DONE; 2355 2356 dev_hold(vf_netdev); 2357 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2358 2359 vf_netdev->wanted_features = ndev->features; 2360 netdev_update_features(vf_netdev); 2361 2362 prog = netvsc_xdp_get(netvsc_dev); 2363 netvsc_vf_setxdp(vf_netdev, prog); 2364 2365 return NOTIFY_OK; 2366 } 2367 2368 /* VF up/down change detected, schedule to change data path */ 2369 static int netvsc_vf_changed(struct net_device *vf_netdev) 2370 { 2371 struct net_device_context *net_device_ctx; 2372 struct netvsc_device *netvsc_dev; 2373 struct net_device *ndev; 2374 bool vf_is_up = netif_running(vf_netdev); 2375 2376 ndev = get_netvsc_byref(vf_netdev); 2377 if (!ndev) 2378 return NOTIFY_DONE; 2379 2380 net_device_ctx = netdev_priv(ndev); 2381 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2382 if (!netvsc_dev) 2383 return NOTIFY_DONE; 2384 2385 netvsc_switch_datapath(ndev, vf_is_up); 2386 netdev_info(ndev, "Data path switched %s VF: %s\n", 2387 vf_is_up ? "to" : "from", vf_netdev->name); 2388 2389 return NOTIFY_OK; 2390 } 2391 2392 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2393 { 2394 struct net_device *ndev; 2395 struct net_device_context *net_device_ctx; 2396 2397 ndev = get_netvsc_byref(vf_netdev); 2398 if (!ndev) 2399 return NOTIFY_DONE; 2400 2401 net_device_ctx = netdev_priv(ndev); 2402 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2403 2404 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2405 2406 netvsc_vf_setxdp(vf_netdev, NULL); 2407 2408 netdev_rx_handler_unregister(vf_netdev); 2409 netdev_upper_dev_unlink(vf_netdev, ndev); 2410 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2411 dev_put(vf_netdev); 2412 2413 return NOTIFY_OK; 2414 } 2415 2416 static int netvsc_probe(struct hv_device *dev, 2417 const struct hv_vmbus_device_id *dev_id) 2418 { 2419 struct net_device *net = NULL; 2420 struct net_device_context *net_device_ctx; 2421 struct netvsc_device_info *device_info = NULL; 2422 struct netvsc_device *nvdev; 2423 int ret = -ENOMEM; 2424 2425 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2426 VRSS_CHANNEL_MAX); 2427 if (!net) 2428 goto no_net; 2429 2430 netif_carrier_off(net); 2431 2432 netvsc_init_settings(net); 2433 2434 net_device_ctx = netdev_priv(net); 2435 net_device_ctx->device_ctx = dev; 2436 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2437 if (netif_msg_probe(net_device_ctx)) 2438 netdev_dbg(net, "netvsc msg_enable: %d\n", 2439 net_device_ctx->msg_enable); 2440 2441 hv_set_drvdata(dev, net); 2442 2443 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2444 2445 spin_lock_init(&net_device_ctx->lock); 2446 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2447 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2448 2449 net_device_ctx->vf_stats 2450 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2451 if (!net_device_ctx->vf_stats) 2452 goto no_stats; 2453 2454 net->netdev_ops = &device_ops; 2455 net->ethtool_ops = ðtool_ops; 2456 SET_NETDEV_DEV(net, &dev->device); 2457 2458 /* We always need headroom for rndis header */ 2459 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2460 2461 /* Initialize the number of queues to be 1, we may change it if more 2462 * channels are offered later. 2463 */ 2464 netif_set_real_num_tx_queues(net, 1); 2465 netif_set_real_num_rx_queues(net, 1); 2466 2467 /* Notify the netvsc driver of the new device */ 2468 device_info = netvsc_devinfo_get(NULL); 2469 2470 if (!device_info) { 2471 ret = -ENOMEM; 2472 goto devinfo_failed; 2473 } 2474 2475 nvdev = rndis_filter_device_add(dev, device_info); 2476 if (IS_ERR(nvdev)) { 2477 ret = PTR_ERR(nvdev); 2478 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2479 goto rndis_failed; 2480 } 2481 2482 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2483 2484 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2485 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2486 * all subchannels to show up, but that may not happen because 2487 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2488 * -> ... -> device_add() -> ... -> __device_attach() can't get 2489 * the device lock, so all the subchannels can't be processed -- 2490 * finally netvsc_subchan_work() hangs forever. 2491 */ 2492 rtnl_lock(); 2493 2494 if (nvdev->num_chn > 1) 2495 schedule_work(&nvdev->subchan_work); 2496 2497 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2498 net->features = net->hw_features | 2499 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2500 NETIF_F_HW_VLAN_CTAG_RX; 2501 net->vlan_features = net->features; 2502 2503 netdev_lockdep_set_classes(net); 2504 2505 /* MTU range: 68 - 1500 or 65521 */ 2506 net->min_mtu = NETVSC_MTU_MIN; 2507 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2508 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2509 else 2510 net->max_mtu = ETH_DATA_LEN; 2511 2512 nvdev->tx_disable = false; 2513 2514 ret = register_netdevice(net); 2515 if (ret != 0) { 2516 pr_err("Unable to register netdev.\n"); 2517 goto register_failed; 2518 } 2519 2520 list_add(&net_device_ctx->list, &netvsc_dev_list); 2521 rtnl_unlock(); 2522 2523 netvsc_devinfo_put(device_info); 2524 return 0; 2525 2526 register_failed: 2527 rtnl_unlock(); 2528 rndis_filter_device_remove(dev, nvdev); 2529 rndis_failed: 2530 netvsc_devinfo_put(device_info); 2531 devinfo_failed: 2532 free_percpu(net_device_ctx->vf_stats); 2533 no_stats: 2534 hv_set_drvdata(dev, NULL); 2535 free_netdev(net); 2536 no_net: 2537 return ret; 2538 } 2539 2540 static int netvsc_remove(struct hv_device *dev) 2541 { 2542 struct net_device_context *ndev_ctx; 2543 struct net_device *vf_netdev, *net; 2544 struct netvsc_device *nvdev; 2545 2546 net = hv_get_drvdata(dev); 2547 if (net == NULL) { 2548 dev_err(&dev->device, "No net device to remove\n"); 2549 return 0; 2550 } 2551 2552 ndev_ctx = netdev_priv(net); 2553 2554 cancel_delayed_work_sync(&ndev_ctx->dwork); 2555 2556 rtnl_lock(); 2557 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2558 if (nvdev) { 2559 cancel_work_sync(&nvdev->subchan_work); 2560 netvsc_xdp_set(net, NULL, NULL, nvdev); 2561 } 2562 2563 /* 2564 * Call to the vsc driver to let it know that the device is being 2565 * removed. Also blocks mtu and channel changes. 2566 */ 2567 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2568 if (vf_netdev) 2569 netvsc_unregister_vf(vf_netdev); 2570 2571 if (nvdev) 2572 rndis_filter_device_remove(dev, nvdev); 2573 2574 unregister_netdevice(net); 2575 list_del(&ndev_ctx->list); 2576 2577 rtnl_unlock(); 2578 2579 hv_set_drvdata(dev, NULL); 2580 2581 free_percpu(ndev_ctx->vf_stats); 2582 free_netdev(net); 2583 return 0; 2584 } 2585 2586 static int netvsc_suspend(struct hv_device *dev) 2587 { 2588 struct net_device_context *ndev_ctx; 2589 struct net_device *vf_netdev, *net; 2590 struct netvsc_device *nvdev; 2591 int ret; 2592 2593 net = hv_get_drvdata(dev); 2594 2595 ndev_ctx = netdev_priv(net); 2596 cancel_delayed_work_sync(&ndev_ctx->dwork); 2597 2598 rtnl_lock(); 2599 2600 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2601 if (nvdev == NULL) { 2602 ret = -ENODEV; 2603 goto out; 2604 } 2605 2606 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2607 if (vf_netdev) 2608 netvsc_unregister_vf(vf_netdev); 2609 2610 /* Save the current config info */ 2611 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2612 2613 ret = netvsc_detach(net, nvdev); 2614 out: 2615 rtnl_unlock(); 2616 2617 return ret; 2618 } 2619 2620 static int netvsc_resume(struct hv_device *dev) 2621 { 2622 struct net_device *net = hv_get_drvdata(dev); 2623 struct net_device_context *net_device_ctx; 2624 struct netvsc_device_info *device_info; 2625 int ret; 2626 2627 rtnl_lock(); 2628 2629 net_device_ctx = netdev_priv(net); 2630 device_info = net_device_ctx->saved_netvsc_dev_info; 2631 2632 ret = netvsc_attach(net, device_info); 2633 2634 netvsc_devinfo_put(device_info); 2635 net_device_ctx->saved_netvsc_dev_info = NULL; 2636 2637 rtnl_unlock(); 2638 2639 return ret; 2640 } 2641 static const struct hv_vmbus_device_id id_table[] = { 2642 /* Network guid */ 2643 { HV_NIC_GUID, }, 2644 { }, 2645 }; 2646 2647 MODULE_DEVICE_TABLE(vmbus, id_table); 2648 2649 /* The one and only one */ 2650 static struct hv_driver netvsc_drv = { 2651 .name = KBUILD_MODNAME, 2652 .id_table = id_table, 2653 .probe = netvsc_probe, 2654 .remove = netvsc_remove, 2655 .suspend = netvsc_suspend, 2656 .resume = netvsc_resume, 2657 .driver = { 2658 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2659 }, 2660 }; 2661 2662 /* 2663 * On Hyper-V, every VF interface is matched with a corresponding 2664 * synthetic interface. The synthetic interface is presented first 2665 * to the guest. When the corresponding VF instance is registered, 2666 * we will take care of switching the data path. 2667 */ 2668 static int netvsc_netdev_event(struct notifier_block *this, 2669 unsigned long event, void *ptr) 2670 { 2671 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2672 2673 /* Skip our own events */ 2674 if (event_dev->netdev_ops == &device_ops) 2675 return NOTIFY_DONE; 2676 2677 /* Avoid non-Ethernet type devices */ 2678 if (event_dev->type != ARPHRD_ETHER) 2679 return NOTIFY_DONE; 2680 2681 /* Avoid Vlan dev with same MAC registering as VF */ 2682 if (is_vlan_dev(event_dev)) 2683 return NOTIFY_DONE; 2684 2685 /* Avoid Bonding master dev with same MAC registering as VF */ 2686 if ((event_dev->priv_flags & IFF_BONDING) && 2687 (event_dev->flags & IFF_MASTER)) 2688 return NOTIFY_DONE; 2689 2690 switch (event) { 2691 case NETDEV_REGISTER: 2692 return netvsc_register_vf(event_dev); 2693 case NETDEV_UNREGISTER: 2694 return netvsc_unregister_vf(event_dev); 2695 case NETDEV_UP: 2696 case NETDEV_DOWN: 2697 return netvsc_vf_changed(event_dev); 2698 default: 2699 return NOTIFY_DONE; 2700 } 2701 } 2702 2703 static struct notifier_block netvsc_netdev_notifier = { 2704 .notifier_call = netvsc_netdev_event, 2705 }; 2706 2707 static void __exit netvsc_drv_exit(void) 2708 { 2709 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2710 vmbus_driver_unregister(&netvsc_drv); 2711 } 2712 2713 static int __init netvsc_drv_init(void) 2714 { 2715 int ret; 2716 2717 if (ring_size < RING_SIZE_MIN) { 2718 ring_size = RING_SIZE_MIN; 2719 pr_info("Increased ring_size to %u (min allowed)\n", 2720 ring_size); 2721 } 2722 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2723 2724 ret = vmbus_driver_register(&netvsc_drv); 2725 if (ret) 2726 return ret; 2727 2728 register_netdevice_notifier(&netvsc_netdev_notifier); 2729 return 0; 2730 } 2731 2732 MODULE_LICENSE("GPL"); 2733 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2734 2735 module_init(netvsc_drv_init); 2736 module_exit(netvsc_drv_exit); 2737