1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <net/arp.h> 37 #include <net/route.h> 38 #include <net/sock.h> 39 #include <net/pkt_sched.h> 40 41 #include "hyperv_net.h" 42 43 #define RING_SIZE_MIN 64 44 #define LINKCHANGE_INT (2 * HZ) 45 46 static int ring_size = 128; 47 module_param(ring_size, int, S_IRUGO); 48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 49 50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 51 NETIF_MSG_LINK | NETIF_MSG_IFUP | 52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 53 NETIF_MSG_TX_ERR; 54 55 static int debug = -1; 56 module_param(debug, int, S_IRUGO); 57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 58 59 static void do_set_multicast(struct work_struct *w) 60 { 61 struct net_device_context *ndevctx = 62 container_of(w, struct net_device_context, work); 63 struct hv_device *device_obj = ndevctx->device_ctx; 64 struct net_device *ndev = hv_get_drvdata(device_obj); 65 struct netvsc_device *nvdev = ndevctx->nvdev; 66 struct rndis_device *rdev; 67 68 if (!nvdev) 69 return; 70 71 rdev = nvdev->extension; 72 if (rdev == NULL) 73 return; 74 75 if (ndev->flags & IFF_PROMISC) 76 rndis_filter_set_packet_filter(rdev, 77 NDIS_PACKET_TYPE_PROMISCUOUS); 78 else 79 rndis_filter_set_packet_filter(rdev, 80 NDIS_PACKET_TYPE_BROADCAST | 81 NDIS_PACKET_TYPE_ALL_MULTICAST | 82 NDIS_PACKET_TYPE_DIRECTED); 83 } 84 85 static void netvsc_set_multicast_list(struct net_device *net) 86 { 87 struct net_device_context *net_device_ctx = netdev_priv(net); 88 89 schedule_work(&net_device_ctx->work); 90 } 91 92 static int netvsc_open(struct net_device *net) 93 { 94 struct netvsc_device *nvdev = net_device_to_netvsc_device(net); 95 struct rndis_device *rdev; 96 int ret = 0; 97 98 netif_carrier_off(net); 99 100 /* Open up the device */ 101 ret = rndis_filter_open(nvdev); 102 if (ret != 0) { 103 netdev_err(net, "unable to open device (ret %d).\n", ret); 104 return ret; 105 } 106 107 netif_tx_wake_all_queues(net); 108 109 rdev = nvdev->extension; 110 if (!rdev->link_state) 111 netif_carrier_on(net); 112 113 return ret; 114 } 115 116 static int netvsc_close(struct net_device *net) 117 { 118 struct net_device_context *net_device_ctx = netdev_priv(net); 119 struct netvsc_device *nvdev = net_device_ctx->nvdev; 120 int ret; 121 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20; 122 struct vmbus_channel *chn; 123 124 netif_tx_disable(net); 125 126 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */ 127 cancel_work_sync(&net_device_ctx->work); 128 ret = rndis_filter_close(nvdev); 129 if (ret != 0) { 130 netdev_err(net, "unable to close device (ret %d).\n", ret); 131 return ret; 132 } 133 134 /* Ensure pending bytes in ring are read */ 135 while (true) { 136 aread = 0; 137 for (i = 0; i < nvdev->num_chn; i++) { 138 chn = nvdev->chan_table[i].channel; 139 if (!chn) 140 continue; 141 142 hv_get_ringbuffer_availbytes(&chn->inbound, &aread, 143 &awrite); 144 145 if (aread) 146 break; 147 148 hv_get_ringbuffer_availbytes(&chn->outbound, &aread, 149 &awrite); 150 151 if (aread) 152 break; 153 } 154 155 retry++; 156 if (retry > retry_max || aread == 0) 157 break; 158 159 msleep(msec); 160 161 if (msec < 1000) 162 msec *= 2; 163 } 164 165 if (aread) { 166 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 167 ret = -ETIMEDOUT; 168 } 169 170 return ret; 171 } 172 173 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 174 int pkt_type) 175 { 176 struct rndis_packet *rndis_pkt; 177 struct rndis_per_packet_info *ppi; 178 179 rndis_pkt = &msg->msg.pkt; 180 rndis_pkt->data_offset += ppi_size; 181 182 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 183 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 184 185 ppi->size = ppi_size; 186 ppi->type = pkt_type; 187 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 188 189 rndis_pkt->per_pkt_info_len += ppi_size; 190 191 return ppi; 192 } 193 194 /* 195 * Select queue for transmit. 196 * 197 * If a valid queue has already been assigned, then use that. 198 * Otherwise compute tx queue based on hash and the send table. 199 * 200 * This is basically similar to default (__netdev_pick_tx) with the added step 201 * of using the host send_table when no other queue has been assigned. 202 * 203 * TODO support XPS - but get_xps_queue not exported 204 */ 205 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 206 void *accel_priv, select_queue_fallback_t fallback) 207 { 208 struct net_device_context *net_device_ctx = netdev_priv(ndev); 209 struct netvsc_device *nvsc_dev = net_device_ctx->nvdev; 210 struct sock *sk = skb->sk; 211 int q_idx = sk_tx_queue_get(sk); 212 213 if (q_idx < 0 || skb->ooo_okay || 214 q_idx >= ndev->real_num_tx_queues) { 215 u16 hash = __skb_tx_hash(ndev, skb, VRSS_SEND_TAB_SIZE); 216 int new_idx; 217 218 new_idx = nvsc_dev->send_table[hash] 219 % nvsc_dev->num_chn; 220 221 if (q_idx != new_idx && sk && 222 sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 223 sk_tx_queue_set(sk, new_idx); 224 225 q_idx = new_idx; 226 } 227 228 if (unlikely(!nvsc_dev->chan_table[q_idx].channel)) 229 q_idx = 0; 230 231 return q_idx; 232 } 233 234 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 235 struct hv_page_buffer *pb) 236 { 237 int j = 0; 238 239 /* Deal with compund pages by ignoring unused part 240 * of the page. 241 */ 242 page += (offset >> PAGE_SHIFT); 243 offset &= ~PAGE_MASK; 244 245 while (len > 0) { 246 unsigned long bytes; 247 248 bytes = PAGE_SIZE - offset; 249 if (bytes > len) 250 bytes = len; 251 pb[j].pfn = page_to_pfn(page); 252 pb[j].offset = offset; 253 pb[j].len = bytes; 254 255 offset += bytes; 256 len -= bytes; 257 258 if (offset == PAGE_SIZE && len) { 259 page++; 260 offset = 0; 261 j++; 262 } 263 } 264 265 return j + 1; 266 } 267 268 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 269 struct hv_netvsc_packet *packet, 270 struct hv_page_buffer **page_buf) 271 { 272 struct hv_page_buffer *pb = *page_buf; 273 u32 slots_used = 0; 274 char *data = skb->data; 275 int frags = skb_shinfo(skb)->nr_frags; 276 int i; 277 278 /* The packet is laid out thus: 279 * 1. hdr: RNDIS header and PPI 280 * 2. skb linear data 281 * 3. skb fragment data 282 */ 283 if (hdr != NULL) 284 slots_used += fill_pg_buf(virt_to_page(hdr), 285 offset_in_page(hdr), 286 len, &pb[slots_used]); 287 288 packet->rmsg_size = len; 289 packet->rmsg_pgcnt = slots_used; 290 291 slots_used += fill_pg_buf(virt_to_page(data), 292 offset_in_page(data), 293 skb_headlen(skb), &pb[slots_used]); 294 295 for (i = 0; i < frags; i++) { 296 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 297 298 slots_used += fill_pg_buf(skb_frag_page(frag), 299 frag->page_offset, 300 skb_frag_size(frag), &pb[slots_used]); 301 } 302 return slots_used; 303 } 304 305 static int count_skb_frag_slots(struct sk_buff *skb) 306 { 307 int i, frags = skb_shinfo(skb)->nr_frags; 308 int pages = 0; 309 310 for (i = 0; i < frags; i++) { 311 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 312 unsigned long size = skb_frag_size(frag); 313 unsigned long offset = frag->page_offset; 314 315 /* Skip unused frames from start of page */ 316 offset &= ~PAGE_MASK; 317 pages += PFN_UP(offset + size); 318 } 319 return pages; 320 } 321 322 static int netvsc_get_slots(struct sk_buff *skb) 323 { 324 char *data = skb->data; 325 unsigned int offset = offset_in_page(data); 326 unsigned int len = skb_headlen(skb); 327 int slots; 328 int frag_slots; 329 330 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 331 frag_slots = count_skb_frag_slots(skb); 332 return slots + frag_slots; 333 } 334 335 static u32 net_checksum_info(struct sk_buff *skb) 336 { 337 if (skb->protocol == htons(ETH_P_IP)) { 338 struct iphdr *ip = ip_hdr(skb); 339 340 if (ip->protocol == IPPROTO_TCP) 341 return TRANSPORT_INFO_IPV4_TCP; 342 else if (ip->protocol == IPPROTO_UDP) 343 return TRANSPORT_INFO_IPV4_UDP; 344 } else { 345 struct ipv6hdr *ip6 = ipv6_hdr(skb); 346 347 if (ip6->nexthdr == IPPROTO_TCP) 348 return TRANSPORT_INFO_IPV6_TCP; 349 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) 350 return TRANSPORT_INFO_IPV6_UDP; 351 } 352 353 return TRANSPORT_INFO_NOT_IP; 354 } 355 356 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 357 { 358 struct net_device_context *net_device_ctx = netdev_priv(net); 359 struct hv_netvsc_packet *packet = NULL; 360 int ret; 361 unsigned int num_data_pgs; 362 struct rndis_message *rndis_msg; 363 struct rndis_packet *rndis_pkt; 364 u32 rndis_msg_size; 365 struct rndis_per_packet_info *ppi; 366 u32 hash; 367 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT]; 368 struct hv_page_buffer *pb = page_buf; 369 370 /* We will atmost need two pages to describe the rndis 371 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 372 * of pages in a single packet. If skb is scattered around 373 * more pages we try linearizing it. 374 */ 375 376 num_data_pgs = netvsc_get_slots(skb) + 2; 377 378 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 379 ++net_device_ctx->eth_stats.tx_scattered; 380 381 if (skb_linearize(skb)) 382 goto no_memory; 383 384 num_data_pgs = netvsc_get_slots(skb) + 2; 385 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 386 ++net_device_ctx->eth_stats.tx_too_big; 387 goto drop; 388 } 389 } 390 391 /* 392 * Place the rndis header in the skb head room and 393 * the skb->cb will be used for hv_netvsc_packet 394 * structure. 395 */ 396 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 397 if (ret) 398 goto no_memory; 399 400 /* Use the skb control buffer for building up the packet */ 401 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 402 FIELD_SIZEOF(struct sk_buff, cb)); 403 packet = (struct hv_netvsc_packet *)skb->cb; 404 405 packet->q_idx = skb_get_queue_mapping(skb); 406 407 packet->total_data_buflen = skb->len; 408 packet->total_bytes = skb->len; 409 packet->total_packets = 1; 410 411 rndis_msg = (struct rndis_message *)skb->head; 412 413 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE); 414 415 /* Add the rndis header */ 416 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 417 rndis_msg->msg_len = packet->total_data_buflen; 418 rndis_pkt = &rndis_msg->msg.pkt; 419 rndis_pkt->data_offset = sizeof(struct rndis_packet); 420 rndis_pkt->data_len = packet->total_data_buflen; 421 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 422 423 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 424 425 hash = skb_get_hash_raw(skb); 426 if (hash != 0 && net->real_num_tx_queues > 1) { 427 rndis_msg_size += NDIS_HASH_PPI_SIZE; 428 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 429 NBL_HASH_VALUE); 430 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 431 } 432 433 if (skb_vlan_tag_present(skb)) { 434 struct ndis_pkt_8021q_info *vlan; 435 436 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 437 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 438 IEEE_8021Q_INFO); 439 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + 440 ppi->ppi_offset); 441 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 442 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 443 VLAN_PRIO_SHIFT; 444 } 445 446 if (skb_is_gso(skb)) { 447 struct ndis_tcp_lso_info *lso_info; 448 449 rndis_msg_size += NDIS_LSO_PPI_SIZE; 450 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 451 TCP_LARGESEND_PKTINFO); 452 453 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + 454 ppi->ppi_offset); 455 456 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 457 if (skb->protocol == htons(ETH_P_IP)) { 458 lso_info->lso_v2_transmit.ip_version = 459 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 460 ip_hdr(skb)->tot_len = 0; 461 ip_hdr(skb)->check = 0; 462 tcp_hdr(skb)->check = 463 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 464 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 465 } else { 466 lso_info->lso_v2_transmit.ip_version = 467 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 468 ipv6_hdr(skb)->payload_len = 0; 469 tcp_hdr(skb)->check = 470 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 471 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 472 } 473 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 474 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 475 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 476 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 477 struct ndis_tcp_ip_checksum_info *csum_info; 478 479 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 480 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 481 TCPIP_CHKSUM_PKTINFO); 482 483 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 484 ppi->ppi_offset); 485 486 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 487 488 if (skb->protocol == htons(ETH_P_IP)) { 489 csum_info->transmit.is_ipv4 = 1; 490 491 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 492 csum_info->transmit.tcp_checksum = 1; 493 else 494 csum_info->transmit.udp_checksum = 1; 495 } else { 496 csum_info->transmit.is_ipv6 = 1; 497 498 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 499 csum_info->transmit.tcp_checksum = 1; 500 else 501 csum_info->transmit.udp_checksum = 1; 502 } 503 } else { 504 /* Can't do offload of this type of checksum */ 505 if (skb_checksum_help(skb)) 506 goto drop; 507 } 508 } 509 510 /* Start filling in the page buffers with the rndis hdr */ 511 rndis_msg->msg_len += rndis_msg_size; 512 packet->total_data_buflen = rndis_msg->msg_len; 513 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 514 skb, packet, &pb); 515 516 /* timestamp packet in software */ 517 skb_tx_timestamp(skb); 518 ret = netvsc_send(net_device_ctx->device_ctx, packet, 519 rndis_msg, &pb, skb); 520 if (likely(ret == 0)) 521 return NETDEV_TX_OK; 522 523 if (ret == -EAGAIN) { 524 ++net_device_ctx->eth_stats.tx_busy; 525 return NETDEV_TX_BUSY; 526 } 527 528 if (ret == -ENOSPC) 529 ++net_device_ctx->eth_stats.tx_no_space; 530 531 drop: 532 dev_kfree_skb_any(skb); 533 net->stats.tx_dropped++; 534 535 return NETDEV_TX_OK; 536 537 no_memory: 538 ++net_device_ctx->eth_stats.tx_no_memory; 539 goto drop; 540 } 541 /* 542 * netvsc_linkstatus_callback - Link up/down notification 543 */ 544 void netvsc_linkstatus_callback(struct hv_device *device_obj, 545 struct rndis_message *resp) 546 { 547 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 548 struct net_device *net; 549 struct net_device_context *ndev_ctx; 550 struct netvsc_reconfig *event; 551 unsigned long flags; 552 553 net = hv_get_drvdata(device_obj); 554 555 if (!net) 556 return; 557 558 ndev_ctx = netdev_priv(net); 559 560 /* Update the physical link speed when changing to another vSwitch */ 561 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 562 u32 speed; 563 564 speed = *(u32 *)((void *)indicate + indicate-> 565 status_buf_offset) / 10000; 566 ndev_ctx->speed = speed; 567 return; 568 } 569 570 /* Handle these link change statuses below */ 571 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 572 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 573 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 574 return; 575 576 if (net->reg_state != NETREG_REGISTERED) 577 return; 578 579 event = kzalloc(sizeof(*event), GFP_ATOMIC); 580 if (!event) 581 return; 582 event->event = indicate->status; 583 584 spin_lock_irqsave(&ndev_ctx->lock, flags); 585 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 586 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 587 588 schedule_delayed_work(&ndev_ctx->dwork, 0); 589 } 590 591 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 592 const struct ndis_tcp_ip_checksum_info *csum_info, 593 const struct ndis_pkt_8021q_info *vlan, 594 void *data, u32 buflen) 595 { 596 struct sk_buff *skb; 597 598 skb = netdev_alloc_skb_ip_align(net, buflen); 599 if (!skb) 600 return skb; 601 602 /* 603 * Copy to skb. This copy is needed here since the memory pointed by 604 * hv_netvsc_packet cannot be deallocated 605 */ 606 memcpy(skb_put(skb, buflen), data, buflen); 607 608 skb->protocol = eth_type_trans(skb, net); 609 610 /* skb is already created with CHECKSUM_NONE */ 611 skb_checksum_none_assert(skb); 612 613 /* 614 * In Linux, the IP checksum is always checked. 615 * Do L4 checksum offload if enabled and present. 616 */ 617 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 618 if (csum_info->receive.tcp_checksum_succeeded || 619 csum_info->receive.udp_checksum_succeeded) 620 skb->ip_summed = CHECKSUM_UNNECESSARY; 621 } 622 623 if (vlan) { 624 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 625 626 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 627 vlan_tci); 628 } 629 630 return skb; 631 } 632 633 /* 634 * netvsc_recv_callback - Callback when we receive a packet from the 635 * "wire" on the specified device. 636 */ 637 int netvsc_recv_callback(struct net_device *net, 638 struct vmbus_channel *channel, 639 void *data, u32 len, 640 const struct ndis_tcp_ip_checksum_info *csum_info, 641 const struct ndis_pkt_8021q_info *vlan) 642 { 643 struct net_device_context *net_device_ctx = netdev_priv(net); 644 struct netvsc_device *net_device = net_device_ctx->nvdev; 645 struct net_device *vf_netdev; 646 struct sk_buff *skb; 647 struct netvsc_stats *rx_stats; 648 u16 q_idx = channel->offermsg.offer.sub_channel_index; 649 650 651 if (net->reg_state != NETREG_REGISTERED) 652 return NVSP_STAT_FAIL; 653 654 /* 655 * If necessary, inject this packet into the VF interface. 656 * On Hyper-V, multicast and brodcast packets are only delivered 657 * to the synthetic interface (after subjecting these to 658 * policy filters on the host). Deliver these via the VF 659 * interface in the guest. 660 */ 661 rcu_read_lock(); 662 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev); 663 if (vf_netdev && (vf_netdev->flags & IFF_UP)) 664 net = vf_netdev; 665 666 /* Allocate a skb - TODO direct I/O to pages? */ 667 skb = netvsc_alloc_recv_skb(net, csum_info, vlan, data, len); 668 if (unlikely(!skb)) { 669 ++net->stats.rx_dropped; 670 rcu_read_unlock(); 671 return NVSP_STAT_FAIL; 672 } 673 674 if (net != vf_netdev) 675 skb_record_rx_queue(skb, q_idx); 676 677 /* 678 * Even if injecting the packet, record the statistics 679 * on the synthetic device because modifying the VF device 680 * statistics will not work correctly. 681 */ 682 rx_stats = &net_device->chan_table[q_idx].rx_stats; 683 u64_stats_update_begin(&rx_stats->syncp); 684 rx_stats->packets++; 685 rx_stats->bytes += len; 686 687 if (skb->pkt_type == PACKET_BROADCAST) 688 ++rx_stats->broadcast; 689 else if (skb->pkt_type == PACKET_MULTICAST) 690 ++rx_stats->multicast; 691 u64_stats_update_end(&rx_stats->syncp); 692 693 /* 694 * Pass the skb back up. Network stack will deallocate the skb when it 695 * is done. 696 * TODO - use NAPI? 697 */ 698 netif_receive_skb(skb); 699 rcu_read_unlock(); 700 701 return 0; 702 } 703 704 static void netvsc_get_drvinfo(struct net_device *net, 705 struct ethtool_drvinfo *info) 706 { 707 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 708 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 709 } 710 711 static void netvsc_get_channels(struct net_device *net, 712 struct ethtool_channels *channel) 713 { 714 struct net_device_context *net_device_ctx = netdev_priv(net); 715 struct netvsc_device *nvdev = net_device_ctx->nvdev; 716 717 if (nvdev) { 718 channel->max_combined = nvdev->max_chn; 719 channel->combined_count = nvdev->num_chn; 720 } 721 } 722 723 static int netvsc_set_queues(struct net_device *net, struct hv_device *dev, 724 u32 num_chn) 725 { 726 struct netvsc_device_info device_info; 727 int ret; 728 729 memset(&device_info, 0, sizeof(device_info)); 730 device_info.num_chn = num_chn; 731 device_info.ring_size = ring_size; 732 device_info.max_num_vrss_chns = num_chn; 733 734 ret = rndis_filter_device_add(dev, &device_info); 735 if (ret) 736 return ret; 737 738 ret = netif_set_real_num_tx_queues(net, num_chn); 739 if (ret) 740 return ret; 741 742 ret = netif_set_real_num_rx_queues(net, num_chn); 743 744 return ret; 745 } 746 747 static int netvsc_set_channels(struct net_device *net, 748 struct ethtool_channels *channels) 749 { 750 struct net_device_context *net_device_ctx = netdev_priv(net); 751 struct hv_device *dev = net_device_ctx->device_ctx; 752 struct netvsc_device *nvdev = net_device_ctx->nvdev; 753 unsigned int count = channels->combined_count; 754 int ret; 755 756 /* We do not support separate count for rx, tx, or other */ 757 if (count == 0 || 758 channels->rx_count || channels->tx_count || channels->other_count) 759 return -EINVAL; 760 761 if (count > net->num_tx_queues || count > net->num_rx_queues) 762 return -EINVAL; 763 764 if (net_device_ctx->start_remove || !nvdev || nvdev->destroy) 765 return -ENODEV; 766 767 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 768 return -EINVAL; 769 770 if (count > nvdev->max_chn) 771 return -EINVAL; 772 773 ret = netvsc_close(net); 774 if (ret) 775 return ret; 776 777 net_device_ctx->start_remove = true; 778 rndis_filter_device_remove(dev, nvdev); 779 780 ret = netvsc_set_queues(net, dev, count); 781 if (ret == 0) 782 nvdev->num_chn = count; 783 else 784 netvsc_set_queues(net, dev, nvdev->num_chn); 785 786 netvsc_open(net); 787 net_device_ctx->start_remove = false; 788 789 /* We may have missed link change notifications */ 790 schedule_delayed_work(&net_device_ctx->dwork, 0); 791 792 return ret; 793 } 794 795 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd) 796 { 797 struct ethtool_cmd diff1 = *cmd; 798 struct ethtool_cmd diff2 = {}; 799 800 ethtool_cmd_speed_set(&diff1, 0); 801 diff1.duplex = 0; 802 /* advertising and cmd are usually set */ 803 diff1.advertising = 0; 804 diff1.cmd = 0; 805 /* We set port to PORT_OTHER */ 806 diff2.port = PORT_OTHER; 807 808 return !memcmp(&diff1, &diff2, sizeof(diff1)); 809 } 810 811 static void netvsc_init_settings(struct net_device *dev) 812 { 813 struct net_device_context *ndc = netdev_priv(dev); 814 815 ndc->speed = SPEED_UNKNOWN; 816 ndc->duplex = DUPLEX_UNKNOWN; 817 } 818 819 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 820 { 821 struct net_device_context *ndc = netdev_priv(dev); 822 823 ethtool_cmd_speed_set(cmd, ndc->speed); 824 cmd->duplex = ndc->duplex; 825 cmd->port = PORT_OTHER; 826 827 return 0; 828 } 829 830 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 831 { 832 struct net_device_context *ndc = netdev_priv(dev); 833 u32 speed; 834 835 speed = ethtool_cmd_speed(cmd); 836 if (!ethtool_validate_speed(speed) || 837 !ethtool_validate_duplex(cmd->duplex) || 838 !netvsc_validate_ethtool_ss_cmd(cmd)) 839 return -EINVAL; 840 841 ndc->speed = speed; 842 ndc->duplex = cmd->duplex; 843 844 return 0; 845 } 846 847 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 848 { 849 struct net_device_context *ndevctx = netdev_priv(ndev); 850 struct netvsc_device *nvdev = ndevctx->nvdev; 851 struct hv_device *hdev = ndevctx->device_ctx; 852 struct netvsc_device_info device_info; 853 int ret; 854 855 if (ndevctx->start_remove || !nvdev || nvdev->destroy) 856 return -ENODEV; 857 858 ret = netvsc_close(ndev); 859 if (ret) 860 goto out; 861 862 memset(&device_info, 0, sizeof(device_info)); 863 device_info.ring_size = ring_size; 864 device_info.num_chn = nvdev->num_chn; 865 device_info.max_num_vrss_chns = nvdev->num_chn; 866 867 ndevctx->start_remove = true; 868 rndis_filter_device_remove(hdev, nvdev); 869 870 /* 'nvdev' has been freed in rndis_filter_device_remove() -> 871 * netvsc_device_remove () -> free_netvsc_device(). 872 * We mustn't access it before it's re-created in 873 * rndis_filter_device_add() -> netvsc_device_add(). 874 */ 875 876 ndev->mtu = mtu; 877 878 rndis_filter_device_add(hdev, &device_info); 879 880 out: 881 netvsc_open(ndev); 882 ndevctx->start_remove = false; 883 884 /* We may have missed link change notifications */ 885 schedule_delayed_work(&ndevctx->dwork, 0); 886 887 return ret; 888 } 889 890 static void netvsc_get_stats64(struct net_device *net, 891 struct rtnl_link_stats64 *t) 892 { 893 struct net_device_context *ndev_ctx = netdev_priv(net); 894 struct netvsc_device *nvdev = ndev_ctx->nvdev; 895 int i; 896 897 if (!nvdev) 898 return; 899 900 for (i = 0; i < nvdev->num_chn; i++) { 901 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 902 const struct netvsc_stats *stats; 903 u64 packets, bytes, multicast; 904 unsigned int start; 905 906 stats = &nvchan->tx_stats; 907 do { 908 start = u64_stats_fetch_begin_irq(&stats->syncp); 909 packets = stats->packets; 910 bytes = stats->bytes; 911 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 912 913 t->tx_bytes += bytes; 914 t->tx_packets += packets; 915 916 stats = &nvchan->rx_stats; 917 do { 918 start = u64_stats_fetch_begin_irq(&stats->syncp); 919 packets = stats->packets; 920 bytes = stats->bytes; 921 multicast = stats->multicast + stats->broadcast; 922 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 923 924 t->rx_bytes += bytes; 925 t->rx_packets += packets; 926 t->multicast += multicast; 927 } 928 929 t->tx_dropped = net->stats.tx_dropped; 930 t->tx_errors = net->stats.tx_errors; 931 932 t->rx_dropped = net->stats.rx_dropped; 933 t->rx_errors = net->stats.rx_errors; 934 } 935 936 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 937 { 938 struct sockaddr *addr = p; 939 char save_adr[ETH_ALEN]; 940 unsigned char save_aatype; 941 int err; 942 943 memcpy(save_adr, ndev->dev_addr, ETH_ALEN); 944 save_aatype = ndev->addr_assign_type; 945 946 err = eth_mac_addr(ndev, p); 947 if (err != 0) 948 return err; 949 950 err = rndis_filter_set_device_mac(ndev, addr->sa_data); 951 if (err != 0) { 952 /* roll back to saved MAC */ 953 memcpy(ndev->dev_addr, save_adr, ETH_ALEN); 954 ndev->addr_assign_type = save_aatype; 955 } 956 957 return err; 958 } 959 960 static const struct { 961 char name[ETH_GSTRING_LEN]; 962 u16 offset; 963 } netvsc_stats[] = { 964 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 965 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 966 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 967 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 968 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 969 }; 970 971 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 972 973 /* 4 statistics per queue (rx/tx packets/bytes) */ 974 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 975 976 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 977 { 978 struct net_device_context *ndc = netdev_priv(dev); 979 struct netvsc_device *nvdev = ndc->nvdev; 980 981 switch (string_set) { 982 case ETH_SS_STATS: 983 return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev); 984 default: 985 return -EINVAL; 986 } 987 } 988 989 static void netvsc_get_ethtool_stats(struct net_device *dev, 990 struct ethtool_stats *stats, u64 *data) 991 { 992 struct net_device_context *ndc = netdev_priv(dev); 993 struct netvsc_device *nvdev = ndc->nvdev; 994 const void *nds = &ndc->eth_stats; 995 const struct netvsc_stats *qstats; 996 unsigned int start; 997 u64 packets, bytes; 998 int i, j; 999 1000 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1001 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1002 1003 for (j = 0; j < nvdev->num_chn; j++) { 1004 qstats = &nvdev->chan_table[j].tx_stats; 1005 1006 do { 1007 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1008 packets = qstats->packets; 1009 bytes = qstats->bytes; 1010 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1011 data[i++] = packets; 1012 data[i++] = bytes; 1013 1014 qstats = &nvdev->chan_table[j].rx_stats; 1015 do { 1016 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1017 packets = qstats->packets; 1018 bytes = qstats->bytes; 1019 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1020 data[i++] = packets; 1021 data[i++] = bytes; 1022 } 1023 } 1024 1025 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1026 { 1027 struct net_device_context *ndc = netdev_priv(dev); 1028 struct netvsc_device *nvdev = ndc->nvdev; 1029 u8 *p = data; 1030 int i; 1031 1032 switch (stringset) { 1033 case ETH_SS_STATS: 1034 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1035 memcpy(p + i * ETH_GSTRING_LEN, 1036 netvsc_stats[i].name, ETH_GSTRING_LEN); 1037 1038 p += i * ETH_GSTRING_LEN; 1039 for (i = 0; i < nvdev->num_chn; i++) { 1040 sprintf(p, "tx_queue_%u_packets", i); 1041 p += ETH_GSTRING_LEN; 1042 sprintf(p, "tx_queue_%u_bytes", i); 1043 p += ETH_GSTRING_LEN; 1044 sprintf(p, "rx_queue_%u_packets", i); 1045 p += ETH_GSTRING_LEN; 1046 sprintf(p, "rx_queue_%u_bytes", i); 1047 p += ETH_GSTRING_LEN; 1048 } 1049 1050 break; 1051 } 1052 } 1053 1054 static int 1055 netvsc_get_rss_hash_opts(struct netvsc_device *nvdev, 1056 struct ethtool_rxnfc *info) 1057 { 1058 info->data = RXH_IP_SRC | RXH_IP_DST; 1059 1060 switch (info->flow_type) { 1061 case TCP_V4_FLOW: 1062 case TCP_V6_FLOW: 1063 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 1064 /* fallthrough */ 1065 case UDP_V4_FLOW: 1066 case UDP_V6_FLOW: 1067 case IPV4_FLOW: 1068 case IPV6_FLOW: 1069 break; 1070 default: 1071 info->data = 0; 1072 break; 1073 } 1074 1075 return 0; 1076 } 1077 1078 static int 1079 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1080 u32 *rules) 1081 { 1082 struct net_device_context *ndc = netdev_priv(dev); 1083 struct netvsc_device *nvdev = ndc->nvdev; 1084 1085 switch (info->cmd) { 1086 case ETHTOOL_GRXRINGS: 1087 info->data = nvdev->num_chn; 1088 return 0; 1089 1090 case ETHTOOL_GRXFH: 1091 return netvsc_get_rss_hash_opts(nvdev, info); 1092 } 1093 return -EOPNOTSUPP; 1094 } 1095 1096 #ifdef CONFIG_NET_POLL_CONTROLLER 1097 static void netvsc_poll_controller(struct net_device *net) 1098 { 1099 /* As netvsc_start_xmit() works synchronous we don't have to 1100 * trigger anything here. 1101 */ 1102 } 1103 #endif 1104 1105 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1106 { 1107 return NETVSC_HASH_KEYLEN; 1108 } 1109 1110 static u32 netvsc_rss_indir_size(struct net_device *dev) 1111 { 1112 return ITAB_NUM; 1113 } 1114 1115 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1116 u8 *hfunc) 1117 { 1118 struct net_device_context *ndc = netdev_priv(dev); 1119 struct netvsc_device *ndev = ndc->nvdev; 1120 struct rndis_device *rndis_dev = ndev->extension; 1121 int i; 1122 1123 if (hfunc) 1124 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1125 1126 if (indir) { 1127 for (i = 0; i < ITAB_NUM; i++) 1128 indir[i] = rndis_dev->ind_table[i]; 1129 } 1130 1131 if (key) 1132 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1133 1134 return 0; 1135 } 1136 1137 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1138 const u8 *key, const u8 hfunc) 1139 { 1140 struct net_device_context *ndc = netdev_priv(dev); 1141 struct netvsc_device *ndev = ndc->nvdev; 1142 struct rndis_device *rndis_dev = ndev->extension; 1143 int i; 1144 1145 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1146 return -EOPNOTSUPP; 1147 1148 if (indir) { 1149 for (i = 0; i < ITAB_NUM; i++) 1150 if (indir[i] >= dev->num_rx_queues) 1151 return -EINVAL; 1152 1153 for (i = 0; i < ITAB_NUM; i++) 1154 rndis_dev->ind_table[i] = indir[i]; 1155 } 1156 1157 if (!key) { 1158 if (!indir) 1159 return 0; 1160 1161 key = rndis_dev->rss_key; 1162 } 1163 1164 return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn); 1165 } 1166 1167 static const struct ethtool_ops ethtool_ops = { 1168 .get_drvinfo = netvsc_get_drvinfo, 1169 .get_link = ethtool_op_get_link, 1170 .get_ethtool_stats = netvsc_get_ethtool_stats, 1171 .get_sset_count = netvsc_get_sset_count, 1172 .get_strings = netvsc_get_strings, 1173 .get_channels = netvsc_get_channels, 1174 .set_channels = netvsc_set_channels, 1175 .get_ts_info = ethtool_op_get_ts_info, 1176 .get_settings = netvsc_get_settings, 1177 .set_settings = netvsc_set_settings, 1178 .get_rxnfc = netvsc_get_rxnfc, 1179 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1180 .get_rxfh_indir_size = netvsc_rss_indir_size, 1181 .get_rxfh = netvsc_get_rxfh, 1182 .set_rxfh = netvsc_set_rxfh, 1183 }; 1184 1185 static const struct net_device_ops device_ops = { 1186 .ndo_open = netvsc_open, 1187 .ndo_stop = netvsc_close, 1188 .ndo_start_xmit = netvsc_start_xmit, 1189 .ndo_set_rx_mode = netvsc_set_multicast_list, 1190 .ndo_change_mtu = netvsc_change_mtu, 1191 .ndo_validate_addr = eth_validate_addr, 1192 .ndo_set_mac_address = netvsc_set_mac_addr, 1193 .ndo_select_queue = netvsc_select_queue, 1194 .ndo_get_stats64 = netvsc_get_stats64, 1195 #ifdef CONFIG_NET_POLL_CONTROLLER 1196 .ndo_poll_controller = netvsc_poll_controller, 1197 #endif 1198 }; 1199 1200 /* 1201 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1202 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1203 * present send GARP packet to network peers with netif_notify_peers(). 1204 */ 1205 static void netvsc_link_change(struct work_struct *w) 1206 { 1207 struct net_device_context *ndev_ctx = 1208 container_of(w, struct net_device_context, dwork.work); 1209 struct hv_device *device_obj = ndev_ctx->device_ctx; 1210 struct net_device *net = hv_get_drvdata(device_obj); 1211 struct netvsc_device *net_device; 1212 struct rndis_device *rdev; 1213 struct netvsc_reconfig *event = NULL; 1214 bool notify = false, reschedule = false; 1215 unsigned long flags, next_reconfig, delay; 1216 1217 rtnl_lock(); 1218 if (ndev_ctx->start_remove) 1219 goto out_unlock; 1220 1221 net_device = ndev_ctx->nvdev; 1222 rdev = net_device->extension; 1223 1224 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1225 if (time_is_after_jiffies(next_reconfig)) { 1226 /* link_watch only sends one notification with current state 1227 * per second, avoid doing reconfig more frequently. Handle 1228 * wrap around. 1229 */ 1230 delay = next_reconfig - jiffies; 1231 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1232 schedule_delayed_work(&ndev_ctx->dwork, delay); 1233 goto out_unlock; 1234 } 1235 ndev_ctx->last_reconfig = jiffies; 1236 1237 spin_lock_irqsave(&ndev_ctx->lock, flags); 1238 if (!list_empty(&ndev_ctx->reconfig_events)) { 1239 event = list_first_entry(&ndev_ctx->reconfig_events, 1240 struct netvsc_reconfig, list); 1241 list_del(&event->list); 1242 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1243 } 1244 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1245 1246 if (!event) 1247 goto out_unlock; 1248 1249 switch (event->event) { 1250 /* Only the following events are possible due to the check in 1251 * netvsc_linkstatus_callback() 1252 */ 1253 case RNDIS_STATUS_MEDIA_CONNECT: 1254 if (rdev->link_state) { 1255 rdev->link_state = false; 1256 netif_carrier_on(net); 1257 netif_tx_wake_all_queues(net); 1258 } else { 1259 notify = true; 1260 } 1261 kfree(event); 1262 break; 1263 case RNDIS_STATUS_MEDIA_DISCONNECT: 1264 if (!rdev->link_state) { 1265 rdev->link_state = true; 1266 netif_carrier_off(net); 1267 netif_tx_stop_all_queues(net); 1268 } 1269 kfree(event); 1270 break; 1271 case RNDIS_STATUS_NETWORK_CHANGE: 1272 /* Only makes sense if carrier is present */ 1273 if (!rdev->link_state) { 1274 rdev->link_state = true; 1275 netif_carrier_off(net); 1276 netif_tx_stop_all_queues(net); 1277 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1278 spin_lock_irqsave(&ndev_ctx->lock, flags); 1279 list_add(&event->list, &ndev_ctx->reconfig_events); 1280 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1281 reschedule = true; 1282 } 1283 break; 1284 } 1285 1286 rtnl_unlock(); 1287 1288 if (notify) 1289 netdev_notify_peers(net); 1290 1291 /* link_watch only sends one notification with current state per 1292 * second, handle next reconfig event in 2 seconds. 1293 */ 1294 if (reschedule) 1295 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1296 1297 return; 1298 1299 out_unlock: 1300 rtnl_unlock(); 1301 } 1302 1303 static struct net_device *get_netvsc_bymac(const u8 *mac) 1304 { 1305 struct net_device *dev; 1306 1307 ASSERT_RTNL(); 1308 1309 for_each_netdev(&init_net, dev) { 1310 if (dev->netdev_ops != &device_ops) 1311 continue; /* not a netvsc device */ 1312 1313 if (ether_addr_equal(mac, dev->perm_addr)) 1314 return dev; 1315 } 1316 1317 return NULL; 1318 } 1319 1320 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1321 { 1322 struct net_device *dev; 1323 1324 ASSERT_RTNL(); 1325 1326 for_each_netdev(&init_net, dev) { 1327 struct net_device_context *net_device_ctx; 1328 1329 if (dev->netdev_ops != &device_ops) 1330 continue; /* not a netvsc device */ 1331 1332 net_device_ctx = netdev_priv(dev); 1333 if (net_device_ctx->nvdev == NULL) 1334 continue; /* device is removed */ 1335 1336 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev) 1337 return dev; /* a match */ 1338 } 1339 1340 return NULL; 1341 } 1342 1343 static int netvsc_register_vf(struct net_device *vf_netdev) 1344 { 1345 struct net_device *ndev; 1346 struct net_device_context *net_device_ctx; 1347 struct netvsc_device *netvsc_dev; 1348 1349 if (vf_netdev->addr_len != ETH_ALEN) 1350 return NOTIFY_DONE; 1351 1352 /* 1353 * We will use the MAC address to locate the synthetic interface to 1354 * associate with the VF interface. If we don't find a matching 1355 * synthetic interface, move on. 1356 */ 1357 ndev = get_netvsc_bymac(vf_netdev->perm_addr); 1358 if (!ndev) 1359 return NOTIFY_DONE; 1360 1361 net_device_ctx = netdev_priv(ndev); 1362 netvsc_dev = net_device_ctx->nvdev; 1363 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 1364 return NOTIFY_DONE; 1365 1366 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 1367 /* 1368 * Take a reference on the module. 1369 */ 1370 try_module_get(THIS_MODULE); 1371 1372 dev_hold(vf_netdev); 1373 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 1374 return NOTIFY_OK; 1375 } 1376 1377 static int netvsc_vf_up(struct net_device *vf_netdev) 1378 { 1379 struct net_device *ndev; 1380 struct netvsc_device *netvsc_dev; 1381 struct net_device_context *net_device_ctx; 1382 1383 ndev = get_netvsc_byref(vf_netdev); 1384 if (!ndev) 1385 return NOTIFY_DONE; 1386 1387 net_device_ctx = netdev_priv(ndev); 1388 netvsc_dev = net_device_ctx->nvdev; 1389 1390 netdev_info(ndev, "VF up: %s\n", vf_netdev->name); 1391 1392 /* 1393 * Open the device before switching data path. 1394 */ 1395 rndis_filter_open(netvsc_dev); 1396 1397 /* 1398 * notify the host to switch the data path. 1399 */ 1400 netvsc_switch_datapath(ndev, true); 1401 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name); 1402 1403 netif_carrier_off(ndev); 1404 1405 /* Now notify peers through VF device. */ 1406 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev); 1407 1408 return NOTIFY_OK; 1409 } 1410 1411 static int netvsc_vf_down(struct net_device *vf_netdev) 1412 { 1413 struct net_device *ndev; 1414 struct netvsc_device *netvsc_dev; 1415 struct net_device_context *net_device_ctx; 1416 1417 ndev = get_netvsc_byref(vf_netdev); 1418 if (!ndev) 1419 return NOTIFY_DONE; 1420 1421 net_device_ctx = netdev_priv(ndev); 1422 netvsc_dev = net_device_ctx->nvdev; 1423 1424 netdev_info(ndev, "VF down: %s\n", vf_netdev->name); 1425 netvsc_switch_datapath(ndev, false); 1426 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name); 1427 rndis_filter_close(netvsc_dev); 1428 netif_carrier_on(ndev); 1429 1430 /* Now notify peers through netvsc device. */ 1431 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev); 1432 1433 return NOTIFY_OK; 1434 } 1435 1436 static int netvsc_unregister_vf(struct net_device *vf_netdev) 1437 { 1438 struct net_device *ndev; 1439 struct net_device_context *net_device_ctx; 1440 1441 ndev = get_netvsc_byref(vf_netdev); 1442 if (!ndev) 1443 return NOTIFY_DONE; 1444 1445 net_device_ctx = netdev_priv(ndev); 1446 1447 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1448 1449 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 1450 dev_put(vf_netdev); 1451 module_put(THIS_MODULE); 1452 return NOTIFY_OK; 1453 } 1454 1455 static int netvsc_probe(struct hv_device *dev, 1456 const struct hv_vmbus_device_id *dev_id) 1457 { 1458 struct net_device *net = NULL; 1459 struct net_device_context *net_device_ctx; 1460 struct netvsc_device_info device_info; 1461 struct netvsc_device *nvdev; 1462 int ret; 1463 1464 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1465 VRSS_CHANNEL_MAX); 1466 if (!net) 1467 return -ENOMEM; 1468 1469 netif_carrier_off(net); 1470 1471 netvsc_init_settings(net); 1472 1473 net_device_ctx = netdev_priv(net); 1474 net_device_ctx->device_ctx = dev; 1475 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1476 if (netif_msg_probe(net_device_ctx)) 1477 netdev_dbg(net, "netvsc msg_enable: %d\n", 1478 net_device_ctx->msg_enable); 1479 1480 hv_set_drvdata(dev, net); 1481 1482 net_device_ctx->start_remove = false; 1483 1484 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1485 INIT_WORK(&net_device_ctx->work, do_set_multicast); 1486 1487 spin_lock_init(&net_device_ctx->lock); 1488 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1489 1490 net->netdev_ops = &device_ops; 1491 net->ethtool_ops = ðtool_ops; 1492 SET_NETDEV_DEV(net, &dev->device); 1493 1494 /* We always need headroom for rndis header */ 1495 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1496 1497 /* Notify the netvsc driver of the new device */ 1498 memset(&device_info, 0, sizeof(device_info)); 1499 device_info.ring_size = ring_size; 1500 device_info.max_num_vrss_chns = min_t(u32, VRSS_CHANNEL_DEFAULT, 1501 num_online_cpus()); 1502 ret = rndis_filter_device_add(dev, &device_info); 1503 if (ret != 0) { 1504 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 1505 free_netdev(net); 1506 hv_set_drvdata(dev, NULL); 1507 return ret; 1508 } 1509 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 1510 1511 /* hw_features computed in rndis_filter_device_add */ 1512 net->features = net->hw_features | 1513 NETIF_F_HIGHDMA | NETIF_F_SG | 1514 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 1515 net->vlan_features = net->features; 1516 1517 nvdev = net_device_ctx->nvdev; 1518 netif_set_real_num_tx_queues(net, nvdev->num_chn); 1519 netif_set_real_num_rx_queues(net, nvdev->num_chn); 1520 1521 /* MTU range: 68 - 1500 or 65521 */ 1522 net->min_mtu = NETVSC_MTU_MIN; 1523 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 1524 net->max_mtu = NETVSC_MTU - ETH_HLEN; 1525 else 1526 net->max_mtu = ETH_DATA_LEN; 1527 1528 ret = register_netdev(net); 1529 if (ret != 0) { 1530 pr_err("Unable to register netdev.\n"); 1531 rndis_filter_device_remove(dev, nvdev); 1532 free_netdev(net); 1533 } 1534 1535 return ret; 1536 } 1537 1538 static int netvsc_remove(struct hv_device *dev) 1539 { 1540 struct net_device *net; 1541 struct net_device_context *ndev_ctx; 1542 1543 net = hv_get_drvdata(dev); 1544 1545 if (net == NULL) { 1546 dev_err(&dev->device, "No net device to remove\n"); 1547 return 0; 1548 } 1549 1550 ndev_ctx = netdev_priv(net); 1551 1552 /* Avoid racing with netvsc_change_mtu()/netvsc_set_channels() 1553 * removing the device. 1554 */ 1555 rtnl_lock(); 1556 ndev_ctx->start_remove = true; 1557 rtnl_unlock(); 1558 1559 cancel_delayed_work_sync(&ndev_ctx->dwork); 1560 cancel_work_sync(&ndev_ctx->work); 1561 1562 /* Stop outbound asap */ 1563 netif_tx_disable(net); 1564 1565 unregister_netdev(net); 1566 1567 /* 1568 * Call to the vsc driver to let it know that the device is being 1569 * removed 1570 */ 1571 rndis_filter_device_remove(dev, ndev_ctx->nvdev); 1572 1573 hv_set_drvdata(dev, NULL); 1574 1575 free_netdev(net); 1576 return 0; 1577 } 1578 1579 static const struct hv_vmbus_device_id id_table[] = { 1580 /* Network guid */ 1581 { HV_NIC_GUID, }, 1582 { }, 1583 }; 1584 1585 MODULE_DEVICE_TABLE(vmbus, id_table); 1586 1587 /* The one and only one */ 1588 static struct hv_driver netvsc_drv = { 1589 .name = KBUILD_MODNAME, 1590 .id_table = id_table, 1591 .probe = netvsc_probe, 1592 .remove = netvsc_remove, 1593 }; 1594 1595 /* 1596 * On Hyper-V, every VF interface is matched with a corresponding 1597 * synthetic interface. The synthetic interface is presented first 1598 * to the guest. When the corresponding VF instance is registered, 1599 * we will take care of switching the data path. 1600 */ 1601 static int netvsc_netdev_event(struct notifier_block *this, 1602 unsigned long event, void *ptr) 1603 { 1604 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 1605 1606 /* Skip our own events */ 1607 if (event_dev->netdev_ops == &device_ops) 1608 return NOTIFY_DONE; 1609 1610 /* Avoid non-Ethernet type devices */ 1611 if (event_dev->type != ARPHRD_ETHER) 1612 return NOTIFY_DONE; 1613 1614 /* Avoid Vlan dev with same MAC registering as VF */ 1615 if (is_vlan_dev(event_dev)) 1616 return NOTIFY_DONE; 1617 1618 /* Avoid Bonding master dev with same MAC registering as VF */ 1619 if ((event_dev->priv_flags & IFF_BONDING) && 1620 (event_dev->flags & IFF_MASTER)) 1621 return NOTIFY_DONE; 1622 1623 switch (event) { 1624 case NETDEV_REGISTER: 1625 return netvsc_register_vf(event_dev); 1626 case NETDEV_UNREGISTER: 1627 return netvsc_unregister_vf(event_dev); 1628 case NETDEV_UP: 1629 return netvsc_vf_up(event_dev); 1630 case NETDEV_DOWN: 1631 return netvsc_vf_down(event_dev); 1632 default: 1633 return NOTIFY_DONE; 1634 } 1635 } 1636 1637 static struct notifier_block netvsc_netdev_notifier = { 1638 .notifier_call = netvsc_netdev_event, 1639 }; 1640 1641 static void __exit netvsc_drv_exit(void) 1642 { 1643 unregister_netdevice_notifier(&netvsc_netdev_notifier); 1644 vmbus_driver_unregister(&netvsc_drv); 1645 } 1646 1647 static int __init netvsc_drv_init(void) 1648 { 1649 int ret; 1650 1651 if (ring_size < RING_SIZE_MIN) { 1652 ring_size = RING_SIZE_MIN; 1653 pr_info("Increased ring_size to %d (min allowed)\n", 1654 ring_size); 1655 } 1656 ret = vmbus_driver_register(&netvsc_drv); 1657 1658 if (ret) 1659 return ret; 1660 1661 register_netdevice_notifier(&netvsc_netdev_notifier); 1662 return 0; 1663 } 1664 1665 MODULE_LICENSE("GPL"); 1666 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 1667 1668 module_init(netvsc_drv_init); 1669 module_exit(netvsc_drv_exit); 1670