1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <linux/rtnetlink.h> 37 #include <linux/netpoll.h> 38 39 #include <net/arp.h> 40 #include <net/route.h> 41 #include <net/sock.h> 42 #include <net/pkt_sched.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 46 #include "hyperv_net.h" 47 48 #define RING_SIZE_MIN 64 49 #define RETRY_US_LO 5000 50 #define RETRY_US_HI 10000 51 #define RETRY_MAX 2000 /* >10 sec */ 52 53 #define LINKCHANGE_INT (2 * HZ) 54 #define VF_TAKEOVER_INT (HZ / 10) 55 56 static unsigned int ring_size __ro_after_init = 128; 57 module_param(ring_size, uint, 0444); 58 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 59 unsigned int netvsc_ring_bytes __ro_after_init; 60 61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 62 NETIF_MSG_LINK | NETIF_MSG_IFUP | 63 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 64 NETIF_MSG_TX_ERR; 65 66 static int debug = -1; 67 module_param(debug, int, 0444); 68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 69 70 static LIST_HEAD(netvsc_dev_list); 71 72 static void netvsc_change_rx_flags(struct net_device *net, int change) 73 { 74 struct net_device_context *ndev_ctx = netdev_priv(net); 75 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 76 int inc; 77 78 if (!vf_netdev) 79 return; 80 81 if (change & IFF_PROMISC) { 82 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 83 dev_set_promiscuity(vf_netdev, inc); 84 } 85 86 if (change & IFF_ALLMULTI) { 87 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 88 dev_set_allmulti(vf_netdev, inc); 89 } 90 } 91 92 static void netvsc_set_rx_mode(struct net_device *net) 93 { 94 struct net_device_context *ndev_ctx = netdev_priv(net); 95 struct net_device *vf_netdev; 96 struct netvsc_device *nvdev; 97 98 rcu_read_lock(); 99 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 100 if (vf_netdev) { 101 dev_uc_sync(vf_netdev, net); 102 dev_mc_sync(vf_netdev, net); 103 } 104 105 nvdev = rcu_dereference(ndev_ctx->nvdev); 106 if (nvdev) 107 rndis_filter_update(nvdev); 108 rcu_read_unlock(); 109 } 110 111 static int netvsc_open(struct net_device *net) 112 { 113 struct net_device_context *ndev_ctx = netdev_priv(net); 114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 116 struct rndis_device *rdev; 117 int ret = 0; 118 119 netif_carrier_off(net); 120 121 /* Open up the device */ 122 ret = rndis_filter_open(nvdev); 123 if (ret != 0) { 124 netdev_err(net, "unable to open device (ret %d).\n", ret); 125 return ret; 126 } 127 128 rdev = nvdev->extension; 129 if (!rdev->link_state) { 130 netif_carrier_on(net); 131 netif_tx_wake_all_queues(net); 132 } 133 134 if (vf_netdev) { 135 /* Setting synthetic device up transparently sets 136 * slave as up. If open fails, then slave will be 137 * still be offline (and not used). 138 */ 139 ret = dev_open(vf_netdev); 140 if (ret) 141 netdev_warn(net, 142 "unable to open slave: %s: %d\n", 143 vf_netdev->name, ret); 144 } 145 return 0; 146 } 147 148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 149 { 150 unsigned int retry = 0; 151 int i; 152 153 /* Ensure pending bytes in ring are read */ 154 for (;;) { 155 u32 aread = 0; 156 157 for (i = 0; i < nvdev->num_chn; i++) { 158 struct vmbus_channel *chn 159 = nvdev->chan_table[i].channel; 160 161 if (!chn) 162 continue; 163 164 /* make sure receive not running now */ 165 napi_synchronize(&nvdev->chan_table[i].napi); 166 167 aread = hv_get_bytes_to_read(&chn->inbound); 168 if (aread) 169 break; 170 171 aread = hv_get_bytes_to_read(&chn->outbound); 172 if (aread) 173 break; 174 } 175 176 if (aread == 0) 177 return 0; 178 179 if (++retry > RETRY_MAX) 180 return -ETIMEDOUT; 181 182 usleep_range(RETRY_US_LO, RETRY_US_HI); 183 } 184 } 185 186 static int netvsc_close(struct net_device *net) 187 { 188 struct net_device_context *net_device_ctx = netdev_priv(net); 189 struct net_device *vf_netdev 190 = rtnl_dereference(net_device_ctx->vf_netdev); 191 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 192 int ret; 193 194 netif_tx_disable(net); 195 196 /* No need to close rndis filter if it is removed already */ 197 if (!nvdev) 198 return 0; 199 200 ret = rndis_filter_close(nvdev); 201 if (ret != 0) { 202 netdev_err(net, "unable to close device (ret %d).\n", ret); 203 return ret; 204 } 205 206 ret = netvsc_wait_until_empty(nvdev); 207 if (ret) 208 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 209 210 if (vf_netdev) 211 dev_close(vf_netdev); 212 213 return ret; 214 } 215 216 static inline void *init_ppi_data(struct rndis_message *msg, 217 u32 ppi_size, u32 pkt_type) 218 { 219 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 220 struct rndis_per_packet_info *ppi; 221 222 rndis_pkt->data_offset += ppi_size; 223 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 224 + rndis_pkt->per_pkt_info_len; 225 226 ppi->size = ppi_size; 227 ppi->type = pkt_type; 228 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 229 230 rndis_pkt->per_pkt_info_len += ppi_size; 231 232 return ppi + 1; 233 } 234 235 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 236 * packets. We can use ethtool to change UDP hash level when necessary. 237 */ 238 static inline u32 netvsc_get_hash( 239 struct sk_buff *skb, 240 const struct net_device_context *ndc) 241 { 242 struct flow_keys flow; 243 u32 hash, pkt_proto = 0; 244 static u32 hashrnd __read_mostly; 245 246 net_get_random_once(&hashrnd, sizeof(hashrnd)); 247 248 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 249 return 0; 250 251 switch (flow.basic.ip_proto) { 252 case IPPROTO_TCP: 253 if (flow.basic.n_proto == htons(ETH_P_IP)) 254 pkt_proto = HV_TCP4_L4HASH; 255 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 256 pkt_proto = HV_TCP6_L4HASH; 257 258 break; 259 260 case IPPROTO_UDP: 261 if (flow.basic.n_proto == htons(ETH_P_IP)) 262 pkt_proto = HV_UDP4_L4HASH; 263 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 264 pkt_proto = HV_UDP6_L4HASH; 265 266 break; 267 } 268 269 if (pkt_proto & ndc->l4_hash) { 270 return skb_get_hash(skb); 271 } else { 272 if (flow.basic.n_proto == htons(ETH_P_IP)) 273 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 274 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 275 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 276 else 277 hash = 0; 278 279 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 280 } 281 282 return hash; 283 } 284 285 static inline int netvsc_get_tx_queue(struct net_device *ndev, 286 struct sk_buff *skb, int old_idx) 287 { 288 const struct net_device_context *ndc = netdev_priv(ndev); 289 struct sock *sk = skb->sk; 290 int q_idx; 291 292 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 293 (VRSS_SEND_TAB_SIZE - 1)]; 294 295 /* If queue index changed record the new value */ 296 if (q_idx != old_idx && 297 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 298 sk_tx_queue_set(sk, q_idx); 299 300 return q_idx; 301 } 302 303 /* 304 * Select queue for transmit. 305 * 306 * If a valid queue has already been assigned, then use that. 307 * Otherwise compute tx queue based on hash and the send table. 308 * 309 * This is basically similar to default (__netdev_pick_tx) with the added step 310 * of using the host send_table when no other queue has been assigned. 311 * 312 * TODO support XPS - but get_xps_queue not exported 313 */ 314 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 315 { 316 int q_idx = sk_tx_queue_get(skb->sk); 317 318 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 319 /* If forwarding a packet, we use the recorded queue when 320 * available for better cache locality. 321 */ 322 if (skb_rx_queue_recorded(skb)) 323 q_idx = skb_get_rx_queue(skb); 324 else 325 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 326 } 327 328 return q_idx; 329 } 330 331 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 332 struct net_device *sb_dev, 333 select_queue_fallback_t fallback) 334 { 335 struct net_device_context *ndc = netdev_priv(ndev); 336 struct net_device *vf_netdev; 337 u16 txq; 338 339 rcu_read_lock(); 340 vf_netdev = rcu_dereference(ndc->vf_netdev); 341 if (vf_netdev) { 342 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 343 344 if (vf_ops->ndo_select_queue) 345 txq = vf_ops->ndo_select_queue(vf_netdev, skb, 346 sb_dev, fallback); 347 else 348 txq = fallback(vf_netdev, skb, NULL); 349 350 /* Record the queue selected by VF so that it can be 351 * used for common case where VF has more queues than 352 * the synthetic device. 353 */ 354 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 355 } else { 356 txq = netvsc_pick_tx(ndev, skb); 357 } 358 rcu_read_unlock(); 359 360 while (unlikely(txq >= ndev->real_num_tx_queues)) 361 txq -= ndev->real_num_tx_queues; 362 363 return txq; 364 } 365 366 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 367 struct hv_page_buffer *pb) 368 { 369 int j = 0; 370 371 /* Deal with compund pages by ignoring unused part 372 * of the page. 373 */ 374 page += (offset >> PAGE_SHIFT); 375 offset &= ~PAGE_MASK; 376 377 while (len > 0) { 378 unsigned long bytes; 379 380 bytes = PAGE_SIZE - offset; 381 if (bytes > len) 382 bytes = len; 383 pb[j].pfn = page_to_pfn(page); 384 pb[j].offset = offset; 385 pb[j].len = bytes; 386 387 offset += bytes; 388 len -= bytes; 389 390 if (offset == PAGE_SIZE && len) { 391 page++; 392 offset = 0; 393 j++; 394 } 395 } 396 397 return j + 1; 398 } 399 400 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 401 struct hv_netvsc_packet *packet, 402 struct hv_page_buffer *pb) 403 { 404 u32 slots_used = 0; 405 char *data = skb->data; 406 int frags = skb_shinfo(skb)->nr_frags; 407 int i; 408 409 /* The packet is laid out thus: 410 * 1. hdr: RNDIS header and PPI 411 * 2. skb linear data 412 * 3. skb fragment data 413 */ 414 slots_used += fill_pg_buf(virt_to_page(hdr), 415 offset_in_page(hdr), 416 len, &pb[slots_used]); 417 418 packet->rmsg_size = len; 419 packet->rmsg_pgcnt = slots_used; 420 421 slots_used += fill_pg_buf(virt_to_page(data), 422 offset_in_page(data), 423 skb_headlen(skb), &pb[slots_used]); 424 425 for (i = 0; i < frags; i++) { 426 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 427 428 slots_used += fill_pg_buf(skb_frag_page(frag), 429 frag->page_offset, 430 skb_frag_size(frag), &pb[slots_used]); 431 } 432 return slots_used; 433 } 434 435 static int count_skb_frag_slots(struct sk_buff *skb) 436 { 437 int i, frags = skb_shinfo(skb)->nr_frags; 438 int pages = 0; 439 440 for (i = 0; i < frags; i++) { 441 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 442 unsigned long size = skb_frag_size(frag); 443 unsigned long offset = frag->page_offset; 444 445 /* Skip unused frames from start of page */ 446 offset &= ~PAGE_MASK; 447 pages += PFN_UP(offset + size); 448 } 449 return pages; 450 } 451 452 static int netvsc_get_slots(struct sk_buff *skb) 453 { 454 char *data = skb->data; 455 unsigned int offset = offset_in_page(data); 456 unsigned int len = skb_headlen(skb); 457 int slots; 458 int frag_slots; 459 460 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 461 frag_slots = count_skb_frag_slots(skb); 462 return slots + frag_slots; 463 } 464 465 static u32 net_checksum_info(struct sk_buff *skb) 466 { 467 if (skb->protocol == htons(ETH_P_IP)) { 468 struct iphdr *ip = ip_hdr(skb); 469 470 if (ip->protocol == IPPROTO_TCP) 471 return TRANSPORT_INFO_IPV4_TCP; 472 else if (ip->protocol == IPPROTO_UDP) 473 return TRANSPORT_INFO_IPV4_UDP; 474 } else { 475 struct ipv6hdr *ip6 = ipv6_hdr(skb); 476 477 if (ip6->nexthdr == IPPROTO_TCP) 478 return TRANSPORT_INFO_IPV6_TCP; 479 else if (ip6->nexthdr == IPPROTO_UDP) 480 return TRANSPORT_INFO_IPV6_UDP; 481 } 482 483 return TRANSPORT_INFO_NOT_IP; 484 } 485 486 /* Send skb on the slave VF device. */ 487 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 488 struct sk_buff *skb) 489 { 490 struct net_device_context *ndev_ctx = netdev_priv(net); 491 unsigned int len = skb->len; 492 int rc; 493 494 skb->dev = vf_netdev; 495 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 496 497 rc = dev_queue_xmit(skb); 498 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 499 struct netvsc_vf_pcpu_stats *pcpu_stats 500 = this_cpu_ptr(ndev_ctx->vf_stats); 501 502 u64_stats_update_begin(&pcpu_stats->syncp); 503 pcpu_stats->tx_packets++; 504 pcpu_stats->tx_bytes += len; 505 u64_stats_update_end(&pcpu_stats->syncp); 506 } else { 507 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 508 } 509 510 return rc; 511 } 512 513 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 514 { 515 struct net_device_context *net_device_ctx = netdev_priv(net); 516 struct hv_netvsc_packet *packet = NULL; 517 int ret; 518 unsigned int num_data_pgs; 519 struct rndis_message *rndis_msg; 520 struct net_device *vf_netdev; 521 u32 rndis_msg_size; 522 u32 hash; 523 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 524 525 /* if VF is present and up then redirect packets 526 * already called with rcu_read_lock_bh 527 */ 528 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 529 if (vf_netdev && netif_running(vf_netdev) && 530 !netpoll_tx_running(net)) 531 return netvsc_vf_xmit(net, vf_netdev, skb); 532 533 /* We will atmost need two pages to describe the rndis 534 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 535 * of pages in a single packet. If skb is scattered around 536 * more pages we try linearizing it. 537 */ 538 539 num_data_pgs = netvsc_get_slots(skb) + 2; 540 541 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 542 ++net_device_ctx->eth_stats.tx_scattered; 543 544 if (skb_linearize(skb)) 545 goto no_memory; 546 547 num_data_pgs = netvsc_get_slots(skb) + 2; 548 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 549 ++net_device_ctx->eth_stats.tx_too_big; 550 goto drop; 551 } 552 } 553 554 /* 555 * Place the rndis header in the skb head room and 556 * the skb->cb will be used for hv_netvsc_packet 557 * structure. 558 */ 559 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 560 if (ret) 561 goto no_memory; 562 563 /* Use the skb control buffer for building up the packet */ 564 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 565 FIELD_SIZEOF(struct sk_buff, cb)); 566 packet = (struct hv_netvsc_packet *)skb->cb; 567 568 packet->q_idx = skb_get_queue_mapping(skb); 569 570 packet->total_data_buflen = skb->len; 571 packet->total_bytes = skb->len; 572 packet->total_packets = 1; 573 574 rndis_msg = (struct rndis_message *)skb->head; 575 576 /* Add the rndis header */ 577 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 578 rndis_msg->msg_len = packet->total_data_buflen; 579 580 rndis_msg->msg.pkt = (struct rndis_packet) { 581 .data_offset = sizeof(struct rndis_packet), 582 .data_len = packet->total_data_buflen, 583 .per_pkt_info_offset = sizeof(struct rndis_packet), 584 }; 585 586 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 587 588 hash = skb_get_hash_raw(skb); 589 if (hash != 0 && net->real_num_tx_queues > 1) { 590 u32 *hash_info; 591 592 rndis_msg_size += NDIS_HASH_PPI_SIZE; 593 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 594 NBL_HASH_VALUE); 595 *hash_info = hash; 596 } 597 598 if (skb_vlan_tag_present(skb)) { 599 struct ndis_pkt_8021q_info *vlan; 600 601 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 602 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 603 IEEE_8021Q_INFO); 604 605 vlan->value = 0; 606 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 607 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 608 VLAN_PRIO_SHIFT; 609 } 610 611 if (skb_is_gso(skb)) { 612 struct ndis_tcp_lso_info *lso_info; 613 614 rndis_msg_size += NDIS_LSO_PPI_SIZE; 615 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 616 TCP_LARGESEND_PKTINFO); 617 618 lso_info->value = 0; 619 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 620 if (skb->protocol == htons(ETH_P_IP)) { 621 lso_info->lso_v2_transmit.ip_version = 622 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 623 ip_hdr(skb)->tot_len = 0; 624 ip_hdr(skb)->check = 0; 625 tcp_hdr(skb)->check = 626 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 627 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 628 } else { 629 lso_info->lso_v2_transmit.ip_version = 630 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 631 ipv6_hdr(skb)->payload_len = 0; 632 tcp_hdr(skb)->check = 633 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 634 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 635 } 636 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 637 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 638 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 639 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 640 struct ndis_tcp_ip_checksum_info *csum_info; 641 642 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 643 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 644 TCPIP_CHKSUM_PKTINFO); 645 646 csum_info->value = 0; 647 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 648 649 if (skb->protocol == htons(ETH_P_IP)) { 650 csum_info->transmit.is_ipv4 = 1; 651 652 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 653 csum_info->transmit.tcp_checksum = 1; 654 else 655 csum_info->transmit.udp_checksum = 1; 656 } else { 657 csum_info->transmit.is_ipv6 = 1; 658 659 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 660 csum_info->transmit.tcp_checksum = 1; 661 else 662 csum_info->transmit.udp_checksum = 1; 663 } 664 } else { 665 /* Can't do offload of this type of checksum */ 666 if (skb_checksum_help(skb)) 667 goto drop; 668 } 669 } 670 671 /* Start filling in the page buffers with the rndis hdr */ 672 rndis_msg->msg_len += rndis_msg_size; 673 packet->total_data_buflen = rndis_msg->msg_len; 674 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 675 skb, packet, pb); 676 677 /* timestamp packet in software */ 678 skb_tx_timestamp(skb); 679 680 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 681 if (likely(ret == 0)) 682 return NETDEV_TX_OK; 683 684 if (ret == -EAGAIN) { 685 ++net_device_ctx->eth_stats.tx_busy; 686 return NETDEV_TX_BUSY; 687 } 688 689 if (ret == -ENOSPC) 690 ++net_device_ctx->eth_stats.tx_no_space; 691 692 drop: 693 dev_kfree_skb_any(skb); 694 net->stats.tx_dropped++; 695 696 return NETDEV_TX_OK; 697 698 no_memory: 699 ++net_device_ctx->eth_stats.tx_no_memory; 700 goto drop; 701 } 702 703 /* 704 * netvsc_linkstatus_callback - Link up/down notification 705 */ 706 void netvsc_linkstatus_callback(struct net_device *net, 707 struct rndis_message *resp) 708 { 709 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 710 struct net_device_context *ndev_ctx = netdev_priv(net); 711 struct netvsc_reconfig *event; 712 unsigned long flags; 713 714 /* Update the physical link speed when changing to another vSwitch */ 715 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 716 u32 speed; 717 718 speed = *(u32 *)((void *)indicate 719 + indicate->status_buf_offset) / 10000; 720 ndev_ctx->speed = speed; 721 return; 722 } 723 724 /* Handle these link change statuses below */ 725 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 726 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 727 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 728 return; 729 730 if (net->reg_state != NETREG_REGISTERED) 731 return; 732 733 event = kzalloc(sizeof(*event), GFP_ATOMIC); 734 if (!event) 735 return; 736 event->event = indicate->status; 737 738 spin_lock_irqsave(&ndev_ctx->lock, flags); 739 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 740 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 741 742 schedule_delayed_work(&ndev_ctx->dwork, 0); 743 } 744 745 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 746 struct napi_struct *napi, 747 const struct ndis_tcp_ip_checksum_info *csum_info, 748 const struct ndis_pkt_8021q_info *vlan, 749 void *data, u32 buflen) 750 { 751 struct sk_buff *skb; 752 753 skb = napi_alloc_skb(napi, buflen); 754 if (!skb) 755 return skb; 756 757 /* 758 * Copy to skb. This copy is needed here since the memory pointed by 759 * hv_netvsc_packet cannot be deallocated 760 */ 761 skb_put_data(skb, data, buflen); 762 763 skb->protocol = eth_type_trans(skb, net); 764 765 /* skb is already created with CHECKSUM_NONE */ 766 skb_checksum_none_assert(skb); 767 768 /* 769 * In Linux, the IP checksum is always checked. 770 * Do L4 checksum offload if enabled and present. 771 */ 772 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 773 if (csum_info->receive.tcp_checksum_succeeded || 774 csum_info->receive.udp_checksum_succeeded) 775 skb->ip_summed = CHECKSUM_UNNECESSARY; 776 } 777 778 if (vlan) { 779 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 780 781 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 782 vlan_tci); 783 } 784 785 return skb; 786 } 787 788 /* 789 * netvsc_recv_callback - Callback when we receive a packet from the 790 * "wire" on the specified device. 791 */ 792 int netvsc_recv_callback(struct net_device *net, 793 struct netvsc_device *net_device, 794 struct vmbus_channel *channel, 795 void *data, u32 len, 796 const struct ndis_tcp_ip_checksum_info *csum_info, 797 const struct ndis_pkt_8021q_info *vlan) 798 { 799 struct net_device_context *net_device_ctx = netdev_priv(net); 800 u16 q_idx = channel->offermsg.offer.sub_channel_index; 801 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; 802 struct sk_buff *skb; 803 struct netvsc_stats *rx_stats; 804 805 if (net->reg_state != NETREG_REGISTERED) 806 return NVSP_STAT_FAIL; 807 808 /* Allocate a skb - TODO direct I/O to pages? */ 809 skb = netvsc_alloc_recv_skb(net, &nvchan->napi, 810 csum_info, vlan, data, len); 811 if (unlikely(!skb)) { 812 ++net_device_ctx->eth_stats.rx_no_memory; 813 rcu_read_unlock(); 814 return NVSP_STAT_FAIL; 815 } 816 817 skb_record_rx_queue(skb, q_idx); 818 819 /* 820 * Even if injecting the packet, record the statistics 821 * on the synthetic device because modifying the VF device 822 * statistics will not work correctly. 823 */ 824 rx_stats = &nvchan->rx_stats; 825 u64_stats_update_begin(&rx_stats->syncp); 826 rx_stats->packets++; 827 rx_stats->bytes += len; 828 829 if (skb->pkt_type == PACKET_BROADCAST) 830 ++rx_stats->broadcast; 831 else if (skb->pkt_type == PACKET_MULTICAST) 832 ++rx_stats->multicast; 833 u64_stats_update_end(&rx_stats->syncp); 834 835 napi_gro_receive(&nvchan->napi, skb); 836 return NVSP_STAT_SUCCESS; 837 } 838 839 static void netvsc_get_drvinfo(struct net_device *net, 840 struct ethtool_drvinfo *info) 841 { 842 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 843 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 844 } 845 846 static void netvsc_get_channels(struct net_device *net, 847 struct ethtool_channels *channel) 848 { 849 struct net_device_context *net_device_ctx = netdev_priv(net); 850 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 851 852 if (nvdev) { 853 channel->max_combined = nvdev->max_chn; 854 channel->combined_count = nvdev->num_chn; 855 } 856 } 857 858 static int netvsc_detach(struct net_device *ndev, 859 struct netvsc_device *nvdev) 860 { 861 struct net_device_context *ndev_ctx = netdev_priv(ndev); 862 struct hv_device *hdev = ndev_ctx->device_ctx; 863 int ret; 864 865 /* Don't try continuing to try and setup sub channels */ 866 if (cancel_work_sync(&nvdev->subchan_work)) 867 nvdev->num_chn = 1; 868 869 /* If device was up (receiving) then shutdown */ 870 if (netif_running(ndev)) { 871 netif_tx_disable(ndev); 872 873 ret = rndis_filter_close(nvdev); 874 if (ret) { 875 netdev_err(ndev, 876 "unable to close device (ret %d).\n", ret); 877 return ret; 878 } 879 880 ret = netvsc_wait_until_empty(nvdev); 881 if (ret) { 882 netdev_err(ndev, 883 "Ring buffer not empty after closing rndis\n"); 884 return ret; 885 } 886 } 887 888 netif_device_detach(ndev); 889 890 rndis_filter_device_remove(hdev, nvdev); 891 892 return 0; 893 } 894 895 static int netvsc_attach(struct net_device *ndev, 896 struct netvsc_device_info *dev_info) 897 { 898 struct net_device_context *ndev_ctx = netdev_priv(ndev); 899 struct hv_device *hdev = ndev_ctx->device_ctx; 900 struct netvsc_device *nvdev; 901 struct rndis_device *rdev; 902 int ret; 903 904 nvdev = rndis_filter_device_add(hdev, dev_info); 905 if (IS_ERR(nvdev)) 906 return PTR_ERR(nvdev); 907 908 if (nvdev->num_chn > 1) { 909 ret = rndis_set_subchannel(ndev, nvdev); 910 911 /* if unavailable, just proceed with one queue */ 912 if (ret) { 913 nvdev->max_chn = 1; 914 nvdev->num_chn = 1; 915 } 916 } 917 918 /* In any case device is now ready */ 919 netif_device_attach(ndev); 920 921 /* Note: enable and attach happen when sub-channels setup */ 922 netif_carrier_off(ndev); 923 924 if (netif_running(ndev)) { 925 ret = rndis_filter_open(nvdev); 926 if (ret) 927 return ret; 928 929 rdev = nvdev->extension; 930 if (!rdev->link_state) 931 netif_carrier_on(ndev); 932 } 933 934 return 0; 935 } 936 937 static int netvsc_set_channels(struct net_device *net, 938 struct ethtool_channels *channels) 939 { 940 struct net_device_context *net_device_ctx = netdev_priv(net); 941 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 942 unsigned int orig, count = channels->combined_count; 943 struct netvsc_device_info device_info; 944 int ret; 945 946 /* We do not support separate count for rx, tx, or other */ 947 if (count == 0 || 948 channels->rx_count || channels->tx_count || channels->other_count) 949 return -EINVAL; 950 951 if (!nvdev || nvdev->destroy) 952 return -ENODEV; 953 954 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 955 return -EINVAL; 956 957 if (count > nvdev->max_chn) 958 return -EINVAL; 959 960 orig = nvdev->num_chn; 961 962 memset(&device_info, 0, sizeof(device_info)); 963 device_info.num_chn = count; 964 device_info.send_sections = nvdev->send_section_cnt; 965 device_info.send_section_size = nvdev->send_section_size; 966 device_info.recv_sections = nvdev->recv_section_cnt; 967 device_info.recv_section_size = nvdev->recv_section_size; 968 969 ret = netvsc_detach(net, nvdev); 970 if (ret) 971 return ret; 972 973 ret = netvsc_attach(net, &device_info); 974 if (ret) { 975 device_info.num_chn = orig; 976 if (netvsc_attach(net, &device_info)) 977 netdev_err(net, "restoring channel setting failed\n"); 978 } 979 980 return ret; 981 } 982 983 static bool 984 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 985 { 986 struct ethtool_link_ksettings diff1 = *cmd; 987 struct ethtool_link_ksettings diff2 = {}; 988 989 diff1.base.speed = 0; 990 diff1.base.duplex = 0; 991 /* advertising and cmd are usually set */ 992 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 993 diff1.base.cmd = 0; 994 /* We set port to PORT_OTHER */ 995 diff2.base.port = PORT_OTHER; 996 997 return !memcmp(&diff1, &diff2, sizeof(diff1)); 998 } 999 1000 static void netvsc_init_settings(struct net_device *dev) 1001 { 1002 struct net_device_context *ndc = netdev_priv(dev); 1003 1004 ndc->l4_hash = HV_DEFAULT_L4HASH; 1005 1006 ndc->speed = SPEED_UNKNOWN; 1007 ndc->duplex = DUPLEX_FULL; 1008 } 1009 1010 static int netvsc_get_link_ksettings(struct net_device *dev, 1011 struct ethtool_link_ksettings *cmd) 1012 { 1013 struct net_device_context *ndc = netdev_priv(dev); 1014 1015 cmd->base.speed = ndc->speed; 1016 cmd->base.duplex = ndc->duplex; 1017 cmd->base.port = PORT_OTHER; 1018 1019 return 0; 1020 } 1021 1022 static int netvsc_set_link_ksettings(struct net_device *dev, 1023 const struct ethtool_link_ksettings *cmd) 1024 { 1025 struct net_device_context *ndc = netdev_priv(dev); 1026 u32 speed; 1027 1028 speed = cmd->base.speed; 1029 if (!ethtool_validate_speed(speed) || 1030 !ethtool_validate_duplex(cmd->base.duplex) || 1031 !netvsc_validate_ethtool_ss_cmd(cmd)) 1032 return -EINVAL; 1033 1034 ndc->speed = speed; 1035 ndc->duplex = cmd->base.duplex; 1036 1037 return 0; 1038 } 1039 1040 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1041 { 1042 struct net_device_context *ndevctx = netdev_priv(ndev); 1043 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1044 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1045 int orig_mtu = ndev->mtu; 1046 struct netvsc_device_info device_info; 1047 int ret = 0; 1048 1049 if (!nvdev || nvdev->destroy) 1050 return -ENODEV; 1051 1052 /* Change MTU of underlying VF netdev first. */ 1053 if (vf_netdev) { 1054 ret = dev_set_mtu(vf_netdev, mtu); 1055 if (ret) 1056 return ret; 1057 } 1058 1059 memset(&device_info, 0, sizeof(device_info)); 1060 device_info.num_chn = nvdev->num_chn; 1061 device_info.send_sections = nvdev->send_section_cnt; 1062 device_info.send_section_size = nvdev->send_section_size; 1063 device_info.recv_sections = nvdev->recv_section_cnt; 1064 device_info.recv_section_size = nvdev->recv_section_size; 1065 1066 ret = netvsc_detach(ndev, nvdev); 1067 if (ret) 1068 goto rollback_vf; 1069 1070 ndev->mtu = mtu; 1071 1072 ret = netvsc_attach(ndev, &device_info); 1073 if (ret) 1074 goto rollback; 1075 1076 return 0; 1077 1078 rollback: 1079 /* Attempt rollback to original MTU */ 1080 ndev->mtu = orig_mtu; 1081 1082 if (netvsc_attach(ndev, &device_info)) 1083 netdev_err(ndev, "restoring mtu failed\n"); 1084 rollback_vf: 1085 if (vf_netdev) 1086 dev_set_mtu(vf_netdev, orig_mtu); 1087 1088 return ret; 1089 } 1090 1091 static void netvsc_get_vf_stats(struct net_device *net, 1092 struct netvsc_vf_pcpu_stats *tot) 1093 { 1094 struct net_device_context *ndev_ctx = netdev_priv(net); 1095 int i; 1096 1097 memset(tot, 0, sizeof(*tot)); 1098 1099 for_each_possible_cpu(i) { 1100 const struct netvsc_vf_pcpu_stats *stats 1101 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1102 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1103 unsigned int start; 1104 1105 do { 1106 start = u64_stats_fetch_begin_irq(&stats->syncp); 1107 rx_packets = stats->rx_packets; 1108 tx_packets = stats->tx_packets; 1109 rx_bytes = stats->rx_bytes; 1110 tx_bytes = stats->tx_bytes; 1111 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1112 1113 tot->rx_packets += rx_packets; 1114 tot->tx_packets += tx_packets; 1115 tot->rx_bytes += rx_bytes; 1116 tot->tx_bytes += tx_bytes; 1117 tot->tx_dropped += stats->tx_dropped; 1118 } 1119 } 1120 1121 static void netvsc_get_pcpu_stats(struct net_device *net, 1122 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1123 { 1124 struct net_device_context *ndev_ctx = netdev_priv(net); 1125 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1126 int i; 1127 1128 /* fetch percpu stats of vf */ 1129 for_each_possible_cpu(i) { 1130 const struct netvsc_vf_pcpu_stats *stats = 1131 per_cpu_ptr(ndev_ctx->vf_stats, i); 1132 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1133 unsigned int start; 1134 1135 do { 1136 start = u64_stats_fetch_begin_irq(&stats->syncp); 1137 this_tot->vf_rx_packets = stats->rx_packets; 1138 this_tot->vf_tx_packets = stats->tx_packets; 1139 this_tot->vf_rx_bytes = stats->rx_bytes; 1140 this_tot->vf_tx_bytes = stats->tx_bytes; 1141 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1142 this_tot->rx_packets = this_tot->vf_rx_packets; 1143 this_tot->tx_packets = this_tot->vf_tx_packets; 1144 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1145 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1146 } 1147 1148 /* fetch percpu stats of netvsc */ 1149 for (i = 0; i < nvdev->num_chn; i++) { 1150 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1151 const struct netvsc_stats *stats; 1152 struct netvsc_ethtool_pcpu_stats *this_tot = 1153 &pcpu_tot[nvchan->channel->target_cpu]; 1154 u64 packets, bytes; 1155 unsigned int start; 1156 1157 stats = &nvchan->tx_stats; 1158 do { 1159 start = u64_stats_fetch_begin_irq(&stats->syncp); 1160 packets = stats->packets; 1161 bytes = stats->bytes; 1162 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1163 1164 this_tot->tx_bytes += bytes; 1165 this_tot->tx_packets += packets; 1166 1167 stats = &nvchan->rx_stats; 1168 do { 1169 start = u64_stats_fetch_begin_irq(&stats->syncp); 1170 packets = stats->packets; 1171 bytes = stats->bytes; 1172 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1173 1174 this_tot->rx_bytes += bytes; 1175 this_tot->rx_packets += packets; 1176 } 1177 } 1178 1179 static void netvsc_get_stats64(struct net_device *net, 1180 struct rtnl_link_stats64 *t) 1181 { 1182 struct net_device_context *ndev_ctx = netdev_priv(net); 1183 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1184 struct netvsc_vf_pcpu_stats vf_tot; 1185 int i; 1186 1187 if (!nvdev) 1188 return; 1189 1190 netdev_stats_to_stats64(t, &net->stats); 1191 1192 netvsc_get_vf_stats(net, &vf_tot); 1193 t->rx_packets += vf_tot.rx_packets; 1194 t->tx_packets += vf_tot.tx_packets; 1195 t->rx_bytes += vf_tot.rx_bytes; 1196 t->tx_bytes += vf_tot.tx_bytes; 1197 t->tx_dropped += vf_tot.tx_dropped; 1198 1199 for (i = 0; i < nvdev->num_chn; i++) { 1200 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1201 const struct netvsc_stats *stats; 1202 u64 packets, bytes, multicast; 1203 unsigned int start; 1204 1205 stats = &nvchan->tx_stats; 1206 do { 1207 start = u64_stats_fetch_begin_irq(&stats->syncp); 1208 packets = stats->packets; 1209 bytes = stats->bytes; 1210 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1211 1212 t->tx_bytes += bytes; 1213 t->tx_packets += packets; 1214 1215 stats = &nvchan->rx_stats; 1216 do { 1217 start = u64_stats_fetch_begin_irq(&stats->syncp); 1218 packets = stats->packets; 1219 bytes = stats->bytes; 1220 multicast = stats->multicast + stats->broadcast; 1221 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1222 1223 t->rx_bytes += bytes; 1224 t->rx_packets += packets; 1225 t->multicast += multicast; 1226 } 1227 } 1228 1229 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1230 { 1231 struct net_device_context *ndc = netdev_priv(ndev); 1232 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1233 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1234 struct sockaddr *addr = p; 1235 int err; 1236 1237 err = eth_prepare_mac_addr_change(ndev, p); 1238 if (err) 1239 return err; 1240 1241 if (!nvdev) 1242 return -ENODEV; 1243 1244 if (vf_netdev) { 1245 err = dev_set_mac_address(vf_netdev, addr); 1246 if (err) 1247 return err; 1248 } 1249 1250 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1251 if (!err) { 1252 eth_commit_mac_addr_change(ndev, p); 1253 } else if (vf_netdev) { 1254 /* rollback change on VF */ 1255 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1256 dev_set_mac_address(vf_netdev, addr); 1257 } 1258 1259 return err; 1260 } 1261 1262 static const struct { 1263 char name[ETH_GSTRING_LEN]; 1264 u16 offset; 1265 } netvsc_stats[] = { 1266 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1267 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1268 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1269 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1270 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1271 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1272 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1273 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1274 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1275 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1276 }, pcpu_stats[] = { 1277 { "cpu%u_rx_packets", 1278 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1279 { "cpu%u_rx_bytes", 1280 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1281 { "cpu%u_tx_packets", 1282 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1283 { "cpu%u_tx_bytes", 1284 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1285 { "cpu%u_vf_rx_packets", 1286 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1287 { "cpu%u_vf_rx_bytes", 1288 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1289 { "cpu%u_vf_tx_packets", 1290 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1291 { "cpu%u_vf_tx_bytes", 1292 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1293 }, vf_stats[] = { 1294 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1295 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1296 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1297 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1298 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1299 }; 1300 1301 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1302 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1303 1304 /* statistics per queue (rx/tx packets/bytes) */ 1305 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1306 1307 /* 4 statistics per queue (rx/tx packets/bytes) */ 1308 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1309 1310 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1311 { 1312 struct net_device_context *ndc = netdev_priv(dev); 1313 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1314 1315 if (!nvdev) 1316 return -ENODEV; 1317 1318 switch (string_set) { 1319 case ETH_SS_STATS: 1320 return NETVSC_GLOBAL_STATS_LEN 1321 + NETVSC_VF_STATS_LEN 1322 + NETVSC_QUEUE_STATS_LEN(nvdev) 1323 + NETVSC_PCPU_STATS_LEN; 1324 default: 1325 return -EINVAL; 1326 } 1327 } 1328 1329 static void netvsc_get_ethtool_stats(struct net_device *dev, 1330 struct ethtool_stats *stats, u64 *data) 1331 { 1332 struct net_device_context *ndc = netdev_priv(dev); 1333 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1334 const void *nds = &ndc->eth_stats; 1335 const struct netvsc_stats *qstats; 1336 struct netvsc_vf_pcpu_stats sum; 1337 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1338 unsigned int start; 1339 u64 packets, bytes; 1340 int i, j, cpu; 1341 1342 if (!nvdev) 1343 return; 1344 1345 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1346 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1347 1348 netvsc_get_vf_stats(dev, &sum); 1349 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1350 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1351 1352 for (j = 0; j < nvdev->num_chn; j++) { 1353 qstats = &nvdev->chan_table[j].tx_stats; 1354 1355 do { 1356 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1357 packets = qstats->packets; 1358 bytes = qstats->bytes; 1359 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1360 data[i++] = packets; 1361 data[i++] = bytes; 1362 1363 qstats = &nvdev->chan_table[j].rx_stats; 1364 do { 1365 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1366 packets = qstats->packets; 1367 bytes = qstats->bytes; 1368 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1369 data[i++] = packets; 1370 data[i++] = bytes; 1371 } 1372 1373 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1374 sizeof(struct netvsc_ethtool_pcpu_stats), 1375 GFP_KERNEL); 1376 netvsc_get_pcpu_stats(dev, pcpu_sum); 1377 for_each_present_cpu(cpu) { 1378 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1379 1380 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1381 data[i++] = *(u64 *)((void *)this_sum 1382 + pcpu_stats[j].offset); 1383 } 1384 kvfree(pcpu_sum); 1385 } 1386 1387 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1388 { 1389 struct net_device_context *ndc = netdev_priv(dev); 1390 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1391 u8 *p = data; 1392 int i, cpu; 1393 1394 if (!nvdev) 1395 return; 1396 1397 switch (stringset) { 1398 case ETH_SS_STATS: 1399 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1400 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1401 p += ETH_GSTRING_LEN; 1402 } 1403 1404 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1405 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1406 p += ETH_GSTRING_LEN; 1407 } 1408 1409 for (i = 0; i < nvdev->num_chn; i++) { 1410 sprintf(p, "tx_queue_%u_packets", i); 1411 p += ETH_GSTRING_LEN; 1412 sprintf(p, "tx_queue_%u_bytes", i); 1413 p += ETH_GSTRING_LEN; 1414 sprintf(p, "rx_queue_%u_packets", i); 1415 p += ETH_GSTRING_LEN; 1416 sprintf(p, "rx_queue_%u_bytes", i); 1417 p += ETH_GSTRING_LEN; 1418 } 1419 1420 for_each_present_cpu(cpu) { 1421 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1422 sprintf(p, pcpu_stats[i].name, cpu); 1423 p += ETH_GSTRING_LEN; 1424 } 1425 } 1426 1427 break; 1428 } 1429 } 1430 1431 static int 1432 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1433 struct ethtool_rxnfc *info) 1434 { 1435 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1436 1437 info->data = RXH_IP_SRC | RXH_IP_DST; 1438 1439 switch (info->flow_type) { 1440 case TCP_V4_FLOW: 1441 if (ndc->l4_hash & HV_TCP4_L4HASH) 1442 info->data |= l4_flag; 1443 1444 break; 1445 1446 case TCP_V6_FLOW: 1447 if (ndc->l4_hash & HV_TCP6_L4HASH) 1448 info->data |= l4_flag; 1449 1450 break; 1451 1452 case UDP_V4_FLOW: 1453 if (ndc->l4_hash & HV_UDP4_L4HASH) 1454 info->data |= l4_flag; 1455 1456 break; 1457 1458 case UDP_V6_FLOW: 1459 if (ndc->l4_hash & HV_UDP6_L4HASH) 1460 info->data |= l4_flag; 1461 1462 break; 1463 1464 case IPV4_FLOW: 1465 case IPV6_FLOW: 1466 break; 1467 default: 1468 info->data = 0; 1469 break; 1470 } 1471 1472 return 0; 1473 } 1474 1475 static int 1476 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1477 u32 *rules) 1478 { 1479 struct net_device_context *ndc = netdev_priv(dev); 1480 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1481 1482 if (!nvdev) 1483 return -ENODEV; 1484 1485 switch (info->cmd) { 1486 case ETHTOOL_GRXRINGS: 1487 info->data = nvdev->num_chn; 1488 return 0; 1489 1490 case ETHTOOL_GRXFH: 1491 return netvsc_get_rss_hash_opts(ndc, info); 1492 } 1493 return -EOPNOTSUPP; 1494 } 1495 1496 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1497 struct ethtool_rxnfc *info) 1498 { 1499 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1500 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1501 switch (info->flow_type) { 1502 case TCP_V4_FLOW: 1503 ndc->l4_hash |= HV_TCP4_L4HASH; 1504 break; 1505 1506 case TCP_V6_FLOW: 1507 ndc->l4_hash |= HV_TCP6_L4HASH; 1508 break; 1509 1510 case UDP_V4_FLOW: 1511 ndc->l4_hash |= HV_UDP4_L4HASH; 1512 break; 1513 1514 case UDP_V6_FLOW: 1515 ndc->l4_hash |= HV_UDP6_L4HASH; 1516 break; 1517 1518 default: 1519 return -EOPNOTSUPP; 1520 } 1521 1522 return 0; 1523 } 1524 1525 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1526 switch (info->flow_type) { 1527 case TCP_V4_FLOW: 1528 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1529 break; 1530 1531 case TCP_V6_FLOW: 1532 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1533 break; 1534 1535 case UDP_V4_FLOW: 1536 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1537 break; 1538 1539 case UDP_V6_FLOW: 1540 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1541 break; 1542 1543 default: 1544 return -EOPNOTSUPP; 1545 } 1546 1547 return 0; 1548 } 1549 1550 return -EOPNOTSUPP; 1551 } 1552 1553 static int 1554 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1555 { 1556 struct net_device_context *ndc = netdev_priv(ndev); 1557 1558 if (info->cmd == ETHTOOL_SRXFH) 1559 return netvsc_set_rss_hash_opts(ndc, info); 1560 1561 return -EOPNOTSUPP; 1562 } 1563 1564 #ifdef CONFIG_NET_POLL_CONTROLLER 1565 static void netvsc_poll_controller(struct net_device *dev) 1566 { 1567 struct net_device_context *ndc = netdev_priv(dev); 1568 struct netvsc_device *ndev; 1569 int i; 1570 1571 rcu_read_lock(); 1572 ndev = rcu_dereference(ndc->nvdev); 1573 if (ndev) { 1574 for (i = 0; i < ndev->num_chn; i++) { 1575 struct netvsc_channel *nvchan = &ndev->chan_table[i]; 1576 1577 napi_schedule(&nvchan->napi); 1578 } 1579 } 1580 rcu_read_unlock(); 1581 } 1582 #endif 1583 1584 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1585 { 1586 return NETVSC_HASH_KEYLEN; 1587 } 1588 1589 static u32 netvsc_rss_indir_size(struct net_device *dev) 1590 { 1591 return ITAB_NUM; 1592 } 1593 1594 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1595 u8 *hfunc) 1596 { 1597 struct net_device_context *ndc = netdev_priv(dev); 1598 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1599 struct rndis_device *rndis_dev; 1600 int i; 1601 1602 if (!ndev) 1603 return -ENODEV; 1604 1605 if (hfunc) 1606 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1607 1608 rndis_dev = ndev->extension; 1609 if (indir) { 1610 for (i = 0; i < ITAB_NUM; i++) 1611 indir[i] = rndis_dev->rx_table[i]; 1612 } 1613 1614 if (key) 1615 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1616 1617 return 0; 1618 } 1619 1620 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1621 const u8 *key, const u8 hfunc) 1622 { 1623 struct net_device_context *ndc = netdev_priv(dev); 1624 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1625 struct rndis_device *rndis_dev; 1626 int i; 1627 1628 if (!ndev) 1629 return -ENODEV; 1630 1631 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1632 return -EOPNOTSUPP; 1633 1634 rndis_dev = ndev->extension; 1635 if (indir) { 1636 for (i = 0; i < ITAB_NUM; i++) 1637 if (indir[i] >= ndev->num_chn) 1638 return -EINVAL; 1639 1640 for (i = 0; i < ITAB_NUM; i++) 1641 rndis_dev->rx_table[i] = indir[i]; 1642 } 1643 1644 if (!key) { 1645 if (!indir) 1646 return 0; 1647 1648 key = rndis_dev->rss_key; 1649 } 1650 1651 return rndis_filter_set_rss_param(rndis_dev, key); 1652 } 1653 1654 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1655 * It does have pre-allocated receive area which is divided into sections. 1656 */ 1657 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1658 struct ethtool_ringparam *ring) 1659 { 1660 u32 max_buf_size; 1661 1662 ring->rx_pending = nvdev->recv_section_cnt; 1663 ring->tx_pending = nvdev->send_section_cnt; 1664 1665 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1666 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1667 else 1668 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1669 1670 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1671 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1672 / nvdev->send_section_size; 1673 } 1674 1675 static void netvsc_get_ringparam(struct net_device *ndev, 1676 struct ethtool_ringparam *ring) 1677 { 1678 struct net_device_context *ndevctx = netdev_priv(ndev); 1679 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1680 1681 if (!nvdev) 1682 return; 1683 1684 __netvsc_get_ringparam(nvdev, ring); 1685 } 1686 1687 static int netvsc_set_ringparam(struct net_device *ndev, 1688 struct ethtool_ringparam *ring) 1689 { 1690 struct net_device_context *ndevctx = netdev_priv(ndev); 1691 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1692 struct netvsc_device_info device_info; 1693 struct ethtool_ringparam orig; 1694 u32 new_tx, new_rx; 1695 int ret = 0; 1696 1697 if (!nvdev || nvdev->destroy) 1698 return -ENODEV; 1699 1700 memset(&orig, 0, sizeof(orig)); 1701 __netvsc_get_ringparam(nvdev, &orig); 1702 1703 new_tx = clamp_t(u32, ring->tx_pending, 1704 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1705 new_rx = clamp_t(u32, ring->rx_pending, 1706 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1707 1708 if (new_tx == orig.tx_pending && 1709 new_rx == orig.rx_pending) 1710 return 0; /* no change */ 1711 1712 memset(&device_info, 0, sizeof(device_info)); 1713 device_info.num_chn = nvdev->num_chn; 1714 device_info.send_sections = new_tx; 1715 device_info.send_section_size = nvdev->send_section_size; 1716 device_info.recv_sections = new_rx; 1717 device_info.recv_section_size = nvdev->recv_section_size; 1718 1719 ret = netvsc_detach(ndev, nvdev); 1720 if (ret) 1721 return ret; 1722 1723 ret = netvsc_attach(ndev, &device_info); 1724 if (ret) { 1725 device_info.send_sections = orig.tx_pending; 1726 device_info.recv_sections = orig.rx_pending; 1727 1728 if (netvsc_attach(ndev, &device_info)) 1729 netdev_err(ndev, "restoring ringparam failed"); 1730 } 1731 1732 return ret; 1733 } 1734 1735 static u32 netvsc_get_msglevel(struct net_device *ndev) 1736 { 1737 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1738 1739 return ndev_ctx->msg_enable; 1740 } 1741 1742 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1743 { 1744 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1745 1746 ndev_ctx->msg_enable = val; 1747 } 1748 1749 static const struct ethtool_ops ethtool_ops = { 1750 .get_drvinfo = netvsc_get_drvinfo, 1751 .get_msglevel = netvsc_get_msglevel, 1752 .set_msglevel = netvsc_set_msglevel, 1753 .get_link = ethtool_op_get_link, 1754 .get_ethtool_stats = netvsc_get_ethtool_stats, 1755 .get_sset_count = netvsc_get_sset_count, 1756 .get_strings = netvsc_get_strings, 1757 .get_channels = netvsc_get_channels, 1758 .set_channels = netvsc_set_channels, 1759 .get_ts_info = ethtool_op_get_ts_info, 1760 .get_rxnfc = netvsc_get_rxnfc, 1761 .set_rxnfc = netvsc_set_rxnfc, 1762 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1763 .get_rxfh_indir_size = netvsc_rss_indir_size, 1764 .get_rxfh = netvsc_get_rxfh, 1765 .set_rxfh = netvsc_set_rxfh, 1766 .get_link_ksettings = netvsc_get_link_ksettings, 1767 .set_link_ksettings = netvsc_set_link_ksettings, 1768 .get_ringparam = netvsc_get_ringparam, 1769 .set_ringparam = netvsc_set_ringparam, 1770 }; 1771 1772 static const struct net_device_ops device_ops = { 1773 .ndo_open = netvsc_open, 1774 .ndo_stop = netvsc_close, 1775 .ndo_start_xmit = netvsc_start_xmit, 1776 .ndo_change_rx_flags = netvsc_change_rx_flags, 1777 .ndo_set_rx_mode = netvsc_set_rx_mode, 1778 .ndo_change_mtu = netvsc_change_mtu, 1779 .ndo_validate_addr = eth_validate_addr, 1780 .ndo_set_mac_address = netvsc_set_mac_addr, 1781 .ndo_select_queue = netvsc_select_queue, 1782 .ndo_get_stats64 = netvsc_get_stats64, 1783 #ifdef CONFIG_NET_POLL_CONTROLLER 1784 .ndo_poll_controller = netvsc_poll_controller, 1785 #endif 1786 }; 1787 1788 /* 1789 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1790 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1791 * present send GARP packet to network peers with netif_notify_peers(). 1792 */ 1793 static void netvsc_link_change(struct work_struct *w) 1794 { 1795 struct net_device_context *ndev_ctx = 1796 container_of(w, struct net_device_context, dwork.work); 1797 struct hv_device *device_obj = ndev_ctx->device_ctx; 1798 struct net_device *net = hv_get_drvdata(device_obj); 1799 struct netvsc_device *net_device; 1800 struct rndis_device *rdev; 1801 struct netvsc_reconfig *event = NULL; 1802 bool notify = false, reschedule = false; 1803 unsigned long flags, next_reconfig, delay; 1804 1805 /* if changes are happening, comeback later */ 1806 if (!rtnl_trylock()) { 1807 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1808 return; 1809 } 1810 1811 net_device = rtnl_dereference(ndev_ctx->nvdev); 1812 if (!net_device) 1813 goto out_unlock; 1814 1815 rdev = net_device->extension; 1816 1817 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1818 if (time_is_after_jiffies(next_reconfig)) { 1819 /* link_watch only sends one notification with current state 1820 * per second, avoid doing reconfig more frequently. Handle 1821 * wrap around. 1822 */ 1823 delay = next_reconfig - jiffies; 1824 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1825 schedule_delayed_work(&ndev_ctx->dwork, delay); 1826 goto out_unlock; 1827 } 1828 ndev_ctx->last_reconfig = jiffies; 1829 1830 spin_lock_irqsave(&ndev_ctx->lock, flags); 1831 if (!list_empty(&ndev_ctx->reconfig_events)) { 1832 event = list_first_entry(&ndev_ctx->reconfig_events, 1833 struct netvsc_reconfig, list); 1834 list_del(&event->list); 1835 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1836 } 1837 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1838 1839 if (!event) 1840 goto out_unlock; 1841 1842 switch (event->event) { 1843 /* Only the following events are possible due to the check in 1844 * netvsc_linkstatus_callback() 1845 */ 1846 case RNDIS_STATUS_MEDIA_CONNECT: 1847 if (rdev->link_state) { 1848 rdev->link_state = false; 1849 netif_carrier_on(net); 1850 netif_tx_wake_all_queues(net); 1851 } else { 1852 notify = true; 1853 } 1854 kfree(event); 1855 break; 1856 case RNDIS_STATUS_MEDIA_DISCONNECT: 1857 if (!rdev->link_state) { 1858 rdev->link_state = true; 1859 netif_carrier_off(net); 1860 netif_tx_stop_all_queues(net); 1861 } 1862 kfree(event); 1863 break; 1864 case RNDIS_STATUS_NETWORK_CHANGE: 1865 /* Only makes sense if carrier is present */ 1866 if (!rdev->link_state) { 1867 rdev->link_state = true; 1868 netif_carrier_off(net); 1869 netif_tx_stop_all_queues(net); 1870 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1871 spin_lock_irqsave(&ndev_ctx->lock, flags); 1872 list_add(&event->list, &ndev_ctx->reconfig_events); 1873 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1874 reschedule = true; 1875 } 1876 break; 1877 } 1878 1879 rtnl_unlock(); 1880 1881 if (notify) 1882 netdev_notify_peers(net); 1883 1884 /* link_watch only sends one notification with current state per 1885 * second, handle next reconfig event in 2 seconds. 1886 */ 1887 if (reschedule) 1888 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1889 1890 return; 1891 1892 out_unlock: 1893 rtnl_unlock(); 1894 } 1895 1896 static struct net_device *get_netvsc_bymac(const u8 *mac) 1897 { 1898 struct net_device_context *ndev_ctx; 1899 1900 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 1901 struct net_device *dev = hv_get_drvdata(ndev_ctx->device_ctx); 1902 1903 if (ether_addr_equal(mac, dev->perm_addr)) 1904 return dev; 1905 } 1906 1907 return NULL; 1908 } 1909 1910 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1911 { 1912 struct net_device_context *net_device_ctx; 1913 struct net_device *dev; 1914 1915 dev = netdev_master_upper_dev_get(vf_netdev); 1916 if (!dev || dev->netdev_ops != &device_ops) 1917 return NULL; /* not a netvsc device */ 1918 1919 net_device_ctx = netdev_priv(dev); 1920 if (!rtnl_dereference(net_device_ctx->nvdev)) 1921 return NULL; /* device is removed */ 1922 1923 return dev; 1924 } 1925 1926 /* Called when VF is injecting data into network stack. 1927 * Change the associated network device from VF to netvsc. 1928 * note: already called with rcu_read_lock 1929 */ 1930 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 1931 { 1932 struct sk_buff *skb = *pskb; 1933 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 1934 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1935 struct netvsc_vf_pcpu_stats *pcpu_stats 1936 = this_cpu_ptr(ndev_ctx->vf_stats); 1937 1938 skb->dev = ndev; 1939 1940 u64_stats_update_begin(&pcpu_stats->syncp); 1941 pcpu_stats->rx_packets++; 1942 pcpu_stats->rx_bytes += skb->len; 1943 u64_stats_update_end(&pcpu_stats->syncp); 1944 1945 return RX_HANDLER_ANOTHER; 1946 } 1947 1948 static int netvsc_vf_join(struct net_device *vf_netdev, 1949 struct net_device *ndev) 1950 { 1951 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1952 int ret; 1953 1954 ret = netdev_rx_handler_register(vf_netdev, 1955 netvsc_vf_handle_frame, ndev); 1956 if (ret != 0) { 1957 netdev_err(vf_netdev, 1958 "can not register netvsc VF receive handler (err = %d)\n", 1959 ret); 1960 goto rx_handler_failed; 1961 } 1962 1963 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 1964 NULL, NULL, NULL); 1965 if (ret != 0) { 1966 netdev_err(vf_netdev, 1967 "can not set master device %s (err = %d)\n", 1968 ndev->name, ret); 1969 goto upper_link_failed; 1970 } 1971 1972 /* set slave flag before open to prevent IPv6 addrconf */ 1973 vf_netdev->flags |= IFF_SLAVE; 1974 1975 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 1976 1977 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 1978 1979 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 1980 return 0; 1981 1982 upper_link_failed: 1983 netdev_rx_handler_unregister(vf_netdev); 1984 rx_handler_failed: 1985 return ret; 1986 } 1987 1988 static void __netvsc_vf_setup(struct net_device *ndev, 1989 struct net_device *vf_netdev) 1990 { 1991 int ret; 1992 1993 /* Align MTU of VF with master */ 1994 ret = dev_set_mtu(vf_netdev, ndev->mtu); 1995 if (ret) 1996 netdev_warn(vf_netdev, 1997 "unable to change mtu to %u\n", ndev->mtu); 1998 1999 /* set multicast etc flags on VF */ 2000 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE); 2001 2002 /* sync address list from ndev to VF */ 2003 netif_addr_lock_bh(ndev); 2004 dev_uc_sync(vf_netdev, ndev); 2005 dev_mc_sync(vf_netdev, ndev); 2006 netif_addr_unlock_bh(ndev); 2007 2008 if (netif_running(ndev)) { 2009 ret = dev_open(vf_netdev); 2010 if (ret) 2011 netdev_warn(vf_netdev, 2012 "unable to open: %d\n", ret); 2013 } 2014 } 2015 2016 /* Setup VF as slave of the synthetic device. 2017 * Runs in workqueue to avoid recursion in netlink callbacks. 2018 */ 2019 static void netvsc_vf_setup(struct work_struct *w) 2020 { 2021 struct net_device_context *ndev_ctx 2022 = container_of(w, struct net_device_context, vf_takeover.work); 2023 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2024 struct net_device *vf_netdev; 2025 2026 if (!rtnl_trylock()) { 2027 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2028 return; 2029 } 2030 2031 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2032 if (vf_netdev) 2033 __netvsc_vf_setup(ndev, vf_netdev); 2034 2035 rtnl_unlock(); 2036 } 2037 2038 static int netvsc_register_vf(struct net_device *vf_netdev) 2039 { 2040 struct net_device *ndev; 2041 struct net_device_context *net_device_ctx; 2042 struct netvsc_device *netvsc_dev; 2043 int ret; 2044 2045 if (vf_netdev->addr_len != ETH_ALEN) 2046 return NOTIFY_DONE; 2047 2048 /* 2049 * We will use the MAC address to locate the synthetic interface to 2050 * associate with the VF interface. If we don't find a matching 2051 * synthetic interface, move on. 2052 */ 2053 ndev = get_netvsc_bymac(vf_netdev->perm_addr); 2054 if (!ndev) 2055 return NOTIFY_DONE; 2056 2057 net_device_ctx = netdev_priv(ndev); 2058 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2059 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2060 return NOTIFY_DONE; 2061 2062 /* if syntihetic interface is a different namespace, 2063 * then move the VF to that namespace; join will be 2064 * done again in that context. 2065 */ 2066 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2067 ret = dev_change_net_namespace(vf_netdev, 2068 dev_net(ndev), "eth%d"); 2069 if (ret) 2070 netdev_err(vf_netdev, 2071 "could not move to same namespace as %s: %d\n", 2072 ndev->name, ret); 2073 else 2074 netdev_info(vf_netdev, 2075 "VF moved to namespace with: %s\n", 2076 ndev->name); 2077 return NOTIFY_DONE; 2078 } 2079 2080 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2081 2082 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2083 return NOTIFY_DONE; 2084 2085 dev_hold(vf_netdev); 2086 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2087 return NOTIFY_OK; 2088 } 2089 2090 /* VF up/down change detected, schedule to change data path */ 2091 static int netvsc_vf_changed(struct net_device *vf_netdev) 2092 { 2093 struct net_device_context *net_device_ctx; 2094 struct netvsc_device *netvsc_dev; 2095 struct net_device *ndev; 2096 bool vf_is_up = netif_running(vf_netdev); 2097 2098 ndev = get_netvsc_byref(vf_netdev); 2099 if (!ndev) 2100 return NOTIFY_DONE; 2101 2102 net_device_ctx = netdev_priv(ndev); 2103 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2104 if (!netvsc_dev) 2105 return NOTIFY_DONE; 2106 2107 netvsc_switch_datapath(ndev, vf_is_up); 2108 netdev_info(ndev, "Data path switched %s VF: %s\n", 2109 vf_is_up ? "to" : "from", vf_netdev->name); 2110 2111 return NOTIFY_OK; 2112 } 2113 2114 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2115 { 2116 struct net_device *ndev; 2117 struct net_device_context *net_device_ctx; 2118 2119 ndev = get_netvsc_byref(vf_netdev); 2120 if (!ndev) 2121 return NOTIFY_DONE; 2122 2123 net_device_ctx = netdev_priv(ndev); 2124 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2125 2126 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2127 2128 netdev_rx_handler_unregister(vf_netdev); 2129 netdev_upper_dev_unlink(vf_netdev, ndev); 2130 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2131 dev_put(vf_netdev); 2132 2133 return NOTIFY_OK; 2134 } 2135 2136 static int netvsc_probe(struct hv_device *dev, 2137 const struct hv_vmbus_device_id *dev_id) 2138 { 2139 struct net_device *net = NULL; 2140 struct net_device_context *net_device_ctx; 2141 struct netvsc_device_info device_info; 2142 struct netvsc_device *nvdev; 2143 int ret = -ENOMEM; 2144 2145 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2146 VRSS_CHANNEL_MAX); 2147 if (!net) 2148 goto no_net; 2149 2150 netif_carrier_off(net); 2151 2152 netvsc_init_settings(net); 2153 2154 net_device_ctx = netdev_priv(net); 2155 net_device_ctx->device_ctx = dev; 2156 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2157 if (netif_msg_probe(net_device_ctx)) 2158 netdev_dbg(net, "netvsc msg_enable: %d\n", 2159 net_device_ctx->msg_enable); 2160 2161 hv_set_drvdata(dev, net); 2162 2163 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2164 2165 spin_lock_init(&net_device_ctx->lock); 2166 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2167 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2168 2169 net_device_ctx->vf_stats 2170 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2171 if (!net_device_ctx->vf_stats) 2172 goto no_stats; 2173 2174 net->netdev_ops = &device_ops; 2175 net->ethtool_ops = ðtool_ops; 2176 SET_NETDEV_DEV(net, &dev->device); 2177 2178 /* We always need headroom for rndis header */ 2179 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2180 2181 /* Initialize the number of queues to be 1, we may change it if more 2182 * channels are offered later. 2183 */ 2184 netif_set_real_num_tx_queues(net, 1); 2185 netif_set_real_num_rx_queues(net, 1); 2186 2187 /* Notify the netvsc driver of the new device */ 2188 memset(&device_info, 0, sizeof(device_info)); 2189 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 2190 device_info.send_sections = NETVSC_DEFAULT_TX; 2191 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE; 2192 device_info.recv_sections = NETVSC_DEFAULT_RX; 2193 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE; 2194 2195 nvdev = rndis_filter_device_add(dev, &device_info); 2196 if (IS_ERR(nvdev)) { 2197 ret = PTR_ERR(nvdev); 2198 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2199 goto rndis_failed; 2200 } 2201 2202 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 2203 2204 if (nvdev->num_chn > 1) 2205 schedule_work(&nvdev->subchan_work); 2206 2207 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2208 net->features = net->hw_features | 2209 NETIF_F_HIGHDMA | NETIF_F_SG | 2210 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2211 net->vlan_features = net->features; 2212 2213 netdev_lockdep_set_classes(net); 2214 2215 /* MTU range: 68 - 1500 or 65521 */ 2216 net->min_mtu = NETVSC_MTU_MIN; 2217 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2218 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2219 else 2220 net->max_mtu = ETH_DATA_LEN; 2221 2222 rtnl_lock(); 2223 ret = register_netdevice(net); 2224 if (ret != 0) { 2225 pr_err("Unable to register netdev.\n"); 2226 goto register_failed; 2227 } 2228 2229 list_add(&net_device_ctx->list, &netvsc_dev_list); 2230 rtnl_unlock(); 2231 return 0; 2232 2233 register_failed: 2234 rtnl_unlock(); 2235 rndis_filter_device_remove(dev, nvdev); 2236 rndis_failed: 2237 free_percpu(net_device_ctx->vf_stats); 2238 no_stats: 2239 hv_set_drvdata(dev, NULL); 2240 free_netdev(net); 2241 no_net: 2242 return ret; 2243 } 2244 2245 static int netvsc_remove(struct hv_device *dev) 2246 { 2247 struct net_device_context *ndev_ctx; 2248 struct net_device *vf_netdev, *net; 2249 struct netvsc_device *nvdev; 2250 2251 net = hv_get_drvdata(dev); 2252 if (net == NULL) { 2253 dev_err(&dev->device, "No net device to remove\n"); 2254 return 0; 2255 } 2256 2257 ndev_ctx = netdev_priv(net); 2258 2259 cancel_delayed_work_sync(&ndev_ctx->dwork); 2260 2261 rcu_read_lock(); 2262 nvdev = rcu_dereference(ndev_ctx->nvdev); 2263 2264 if (nvdev) 2265 cancel_work_sync(&nvdev->subchan_work); 2266 2267 /* 2268 * Call to the vsc driver to let it know that the device is being 2269 * removed. Also blocks mtu and channel changes. 2270 */ 2271 rtnl_lock(); 2272 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2273 if (vf_netdev) 2274 netvsc_unregister_vf(vf_netdev); 2275 2276 if (nvdev) 2277 rndis_filter_device_remove(dev, nvdev); 2278 2279 unregister_netdevice(net); 2280 list_del(&ndev_ctx->list); 2281 2282 rtnl_unlock(); 2283 rcu_read_unlock(); 2284 2285 hv_set_drvdata(dev, NULL); 2286 2287 free_percpu(ndev_ctx->vf_stats); 2288 free_netdev(net); 2289 return 0; 2290 } 2291 2292 static const struct hv_vmbus_device_id id_table[] = { 2293 /* Network guid */ 2294 { HV_NIC_GUID, }, 2295 { }, 2296 }; 2297 2298 MODULE_DEVICE_TABLE(vmbus, id_table); 2299 2300 /* The one and only one */ 2301 static struct hv_driver netvsc_drv = { 2302 .name = KBUILD_MODNAME, 2303 .id_table = id_table, 2304 .probe = netvsc_probe, 2305 .remove = netvsc_remove, 2306 .driver = { 2307 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2308 }, 2309 }; 2310 2311 /* 2312 * On Hyper-V, every VF interface is matched with a corresponding 2313 * synthetic interface. The synthetic interface is presented first 2314 * to the guest. When the corresponding VF instance is registered, 2315 * we will take care of switching the data path. 2316 */ 2317 static int netvsc_netdev_event(struct notifier_block *this, 2318 unsigned long event, void *ptr) 2319 { 2320 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2321 2322 /* Skip our own events */ 2323 if (event_dev->netdev_ops == &device_ops) 2324 return NOTIFY_DONE; 2325 2326 /* Avoid non-Ethernet type devices */ 2327 if (event_dev->type != ARPHRD_ETHER) 2328 return NOTIFY_DONE; 2329 2330 /* Avoid Vlan dev with same MAC registering as VF */ 2331 if (is_vlan_dev(event_dev)) 2332 return NOTIFY_DONE; 2333 2334 /* Avoid Bonding master dev with same MAC registering as VF */ 2335 if ((event_dev->priv_flags & IFF_BONDING) && 2336 (event_dev->flags & IFF_MASTER)) 2337 return NOTIFY_DONE; 2338 2339 switch (event) { 2340 case NETDEV_REGISTER: 2341 return netvsc_register_vf(event_dev); 2342 case NETDEV_UNREGISTER: 2343 return netvsc_unregister_vf(event_dev); 2344 case NETDEV_UP: 2345 case NETDEV_DOWN: 2346 return netvsc_vf_changed(event_dev); 2347 default: 2348 return NOTIFY_DONE; 2349 } 2350 } 2351 2352 static struct notifier_block netvsc_netdev_notifier = { 2353 .notifier_call = netvsc_netdev_event, 2354 }; 2355 2356 static void __exit netvsc_drv_exit(void) 2357 { 2358 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2359 vmbus_driver_unregister(&netvsc_drv); 2360 } 2361 2362 static int __init netvsc_drv_init(void) 2363 { 2364 int ret; 2365 2366 if (ring_size < RING_SIZE_MIN) { 2367 ring_size = RING_SIZE_MIN; 2368 pr_info("Increased ring_size to %u (min allowed)\n", 2369 ring_size); 2370 } 2371 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2372 2373 ret = vmbus_driver_register(&netvsc_drv); 2374 if (ret) 2375 return ret; 2376 2377 register_netdevice_notifier(&netvsc_netdev_notifier); 2378 return 0; 2379 } 2380 2381 MODULE_LICENSE("GPL"); 2382 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2383 2384 module_init(netvsc_drv_init); 2385 module_exit(netvsc_drv_exit); 2386