1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <net/arp.h> 37 #include <net/route.h> 38 #include <net/sock.h> 39 #include <net/pkt_sched.h> 40 #include <net/checksum.h> 41 #include <net/ip6_checksum.h> 42 43 #include "hyperv_net.h" 44 45 #define RING_SIZE_MIN 64 46 #define LINKCHANGE_INT (2 * HZ) 47 48 static int ring_size = 128; 49 module_param(ring_size, int, S_IRUGO); 50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 51 52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 53 NETIF_MSG_LINK | NETIF_MSG_IFUP | 54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 55 NETIF_MSG_TX_ERR; 56 57 static int debug = -1; 58 module_param(debug, int, S_IRUGO); 59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 60 61 static void netvsc_set_multicast_list(struct net_device *net) 62 { 63 struct net_device_context *net_device_ctx = netdev_priv(net); 64 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 65 66 rndis_filter_update(nvdev); 67 } 68 69 static int netvsc_open(struct net_device *net) 70 { 71 struct net_device_context *ndev_ctx = netdev_priv(net); 72 struct netvsc_device *nvdev = ndev_ctx->nvdev; 73 struct rndis_device *rdev; 74 int ret = 0; 75 76 netif_carrier_off(net); 77 78 /* Open up the device */ 79 ret = rndis_filter_open(nvdev); 80 if (ret != 0) { 81 netdev_err(net, "unable to open device (ret %d).\n", ret); 82 return ret; 83 } 84 85 netif_tx_wake_all_queues(net); 86 87 rdev = nvdev->extension; 88 if (!rdev->link_state && !ndev_ctx->datapath) 89 netif_carrier_on(net); 90 91 return ret; 92 } 93 94 static int netvsc_close(struct net_device *net) 95 { 96 struct net_device_context *net_device_ctx = netdev_priv(net); 97 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 98 int ret; 99 u32 aread, i, msec = 10, retry = 0, retry_max = 20; 100 struct vmbus_channel *chn; 101 102 netif_tx_disable(net); 103 104 ret = rndis_filter_close(nvdev); 105 if (ret != 0) { 106 netdev_err(net, "unable to close device (ret %d).\n", ret); 107 return ret; 108 } 109 110 /* Ensure pending bytes in ring are read */ 111 while (true) { 112 aread = 0; 113 for (i = 0; i < nvdev->num_chn; i++) { 114 chn = nvdev->chan_table[i].channel; 115 if (!chn) 116 continue; 117 118 aread = hv_get_bytes_to_read(&chn->inbound); 119 if (aread) 120 break; 121 122 aread = hv_get_bytes_to_read(&chn->outbound); 123 if (aread) 124 break; 125 } 126 127 retry++; 128 if (retry > retry_max || aread == 0) 129 break; 130 131 msleep(msec); 132 133 if (msec < 1000) 134 msec *= 2; 135 } 136 137 if (aread) { 138 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 139 ret = -ETIMEDOUT; 140 } 141 142 return ret; 143 } 144 145 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 146 int pkt_type) 147 { 148 struct rndis_packet *rndis_pkt; 149 struct rndis_per_packet_info *ppi; 150 151 rndis_pkt = &msg->msg.pkt; 152 rndis_pkt->data_offset += ppi_size; 153 154 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 155 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 156 157 ppi->size = ppi_size; 158 ppi->type = pkt_type; 159 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 160 161 rndis_pkt->per_pkt_info_len += ppi_size; 162 163 return ppi; 164 } 165 166 /* Azure hosts don't support non-TCP port numbers in hashing yet. We compute 167 * hash for non-TCP traffic with only IP numbers. 168 */ 169 static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk) 170 { 171 struct flow_keys flow; 172 u32 hash; 173 static u32 hashrnd __read_mostly; 174 175 net_get_random_once(&hashrnd, sizeof(hashrnd)); 176 177 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 178 return 0; 179 180 if (flow.basic.ip_proto == IPPROTO_TCP) { 181 return skb_get_hash(skb); 182 } else { 183 if (flow.basic.n_proto == htons(ETH_P_IP)) 184 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 185 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 186 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 187 else 188 hash = 0; 189 190 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 191 } 192 193 return hash; 194 } 195 196 static inline int netvsc_get_tx_queue(struct net_device *ndev, 197 struct sk_buff *skb, int old_idx) 198 { 199 const struct net_device_context *ndc = netdev_priv(ndev); 200 struct sock *sk = skb->sk; 201 int q_idx; 202 203 q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) & 204 (VRSS_SEND_TAB_SIZE - 1)]; 205 206 /* If queue index changed record the new value */ 207 if (q_idx != old_idx && 208 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 209 sk_tx_queue_set(sk, q_idx); 210 211 return q_idx; 212 } 213 214 /* 215 * Select queue for transmit. 216 * 217 * If a valid queue has already been assigned, then use that. 218 * Otherwise compute tx queue based on hash and the send table. 219 * 220 * This is basically similar to default (__netdev_pick_tx) with the added step 221 * of using the host send_table when no other queue has been assigned. 222 * 223 * TODO support XPS - but get_xps_queue not exported 224 */ 225 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 226 void *accel_priv, select_queue_fallback_t fallback) 227 { 228 unsigned int num_tx_queues = ndev->real_num_tx_queues; 229 int q_idx = sk_tx_queue_get(skb->sk); 230 231 if (q_idx < 0 || skb->ooo_okay) { 232 /* If forwarding a packet, we use the recorded queue when 233 * available for better cache locality. 234 */ 235 if (skb_rx_queue_recorded(skb)) 236 q_idx = skb_get_rx_queue(skb); 237 else 238 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 239 } 240 241 while (unlikely(q_idx >= num_tx_queues)) 242 q_idx -= num_tx_queues; 243 244 return q_idx; 245 } 246 247 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 248 struct hv_page_buffer *pb) 249 { 250 int j = 0; 251 252 /* Deal with compund pages by ignoring unused part 253 * of the page. 254 */ 255 page += (offset >> PAGE_SHIFT); 256 offset &= ~PAGE_MASK; 257 258 while (len > 0) { 259 unsigned long bytes; 260 261 bytes = PAGE_SIZE - offset; 262 if (bytes > len) 263 bytes = len; 264 pb[j].pfn = page_to_pfn(page); 265 pb[j].offset = offset; 266 pb[j].len = bytes; 267 268 offset += bytes; 269 len -= bytes; 270 271 if (offset == PAGE_SIZE && len) { 272 page++; 273 offset = 0; 274 j++; 275 } 276 } 277 278 return j + 1; 279 } 280 281 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 282 struct hv_netvsc_packet *packet, 283 struct hv_page_buffer **page_buf) 284 { 285 struct hv_page_buffer *pb = *page_buf; 286 u32 slots_used = 0; 287 char *data = skb->data; 288 int frags = skb_shinfo(skb)->nr_frags; 289 int i; 290 291 /* The packet is laid out thus: 292 * 1. hdr: RNDIS header and PPI 293 * 2. skb linear data 294 * 3. skb fragment data 295 */ 296 if (hdr != NULL) 297 slots_used += fill_pg_buf(virt_to_page(hdr), 298 offset_in_page(hdr), 299 len, &pb[slots_used]); 300 301 packet->rmsg_size = len; 302 packet->rmsg_pgcnt = slots_used; 303 304 slots_used += fill_pg_buf(virt_to_page(data), 305 offset_in_page(data), 306 skb_headlen(skb), &pb[slots_used]); 307 308 for (i = 0; i < frags; i++) { 309 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 310 311 slots_used += fill_pg_buf(skb_frag_page(frag), 312 frag->page_offset, 313 skb_frag_size(frag), &pb[slots_used]); 314 } 315 return slots_used; 316 } 317 318 static int count_skb_frag_slots(struct sk_buff *skb) 319 { 320 int i, frags = skb_shinfo(skb)->nr_frags; 321 int pages = 0; 322 323 for (i = 0; i < frags; i++) { 324 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 325 unsigned long size = skb_frag_size(frag); 326 unsigned long offset = frag->page_offset; 327 328 /* Skip unused frames from start of page */ 329 offset &= ~PAGE_MASK; 330 pages += PFN_UP(offset + size); 331 } 332 return pages; 333 } 334 335 static int netvsc_get_slots(struct sk_buff *skb) 336 { 337 char *data = skb->data; 338 unsigned int offset = offset_in_page(data); 339 unsigned int len = skb_headlen(skb); 340 int slots; 341 int frag_slots; 342 343 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 344 frag_slots = count_skb_frag_slots(skb); 345 return slots + frag_slots; 346 } 347 348 static u32 net_checksum_info(struct sk_buff *skb) 349 { 350 if (skb->protocol == htons(ETH_P_IP)) { 351 struct iphdr *ip = ip_hdr(skb); 352 353 if (ip->protocol == IPPROTO_TCP) 354 return TRANSPORT_INFO_IPV4_TCP; 355 else if (ip->protocol == IPPROTO_UDP) 356 return TRANSPORT_INFO_IPV4_UDP; 357 } else { 358 struct ipv6hdr *ip6 = ipv6_hdr(skb); 359 360 if (ip6->nexthdr == IPPROTO_TCP) 361 return TRANSPORT_INFO_IPV6_TCP; 362 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) 363 return TRANSPORT_INFO_IPV6_UDP; 364 } 365 366 return TRANSPORT_INFO_NOT_IP; 367 } 368 369 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 370 { 371 struct net_device_context *net_device_ctx = netdev_priv(net); 372 struct hv_netvsc_packet *packet = NULL; 373 int ret; 374 unsigned int num_data_pgs; 375 struct rndis_message *rndis_msg; 376 struct rndis_packet *rndis_pkt; 377 u32 rndis_msg_size; 378 struct rndis_per_packet_info *ppi; 379 u32 hash; 380 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT]; 381 struct hv_page_buffer *pb = page_buf; 382 383 /* We will atmost need two pages to describe the rndis 384 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 385 * of pages in a single packet. If skb is scattered around 386 * more pages we try linearizing it. 387 */ 388 389 num_data_pgs = netvsc_get_slots(skb) + 2; 390 391 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 392 ++net_device_ctx->eth_stats.tx_scattered; 393 394 if (skb_linearize(skb)) 395 goto no_memory; 396 397 num_data_pgs = netvsc_get_slots(skb) + 2; 398 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 399 ++net_device_ctx->eth_stats.tx_too_big; 400 goto drop; 401 } 402 } 403 404 /* 405 * Place the rndis header in the skb head room and 406 * the skb->cb will be used for hv_netvsc_packet 407 * structure. 408 */ 409 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 410 if (ret) 411 goto no_memory; 412 413 /* Use the skb control buffer for building up the packet */ 414 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 415 FIELD_SIZEOF(struct sk_buff, cb)); 416 packet = (struct hv_netvsc_packet *)skb->cb; 417 418 packet->q_idx = skb_get_queue_mapping(skb); 419 420 packet->total_data_buflen = skb->len; 421 packet->total_bytes = skb->len; 422 packet->total_packets = 1; 423 424 rndis_msg = (struct rndis_message *)skb->head; 425 426 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE); 427 428 /* Add the rndis header */ 429 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 430 rndis_msg->msg_len = packet->total_data_buflen; 431 rndis_pkt = &rndis_msg->msg.pkt; 432 rndis_pkt->data_offset = sizeof(struct rndis_packet); 433 rndis_pkt->data_len = packet->total_data_buflen; 434 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 435 436 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 437 438 hash = skb_get_hash_raw(skb); 439 if (hash != 0 && net->real_num_tx_queues > 1) { 440 rndis_msg_size += NDIS_HASH_PPI_SIZE; 441 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 442 NBL_HASH_VALUE); 443 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 444 } 445 446 if (skb_vlan_tag_present(skb)) { 447 struct ndis_pkt_8021q_info *vlan; 448 449 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 450 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 451 IEEE_8021Q_INFO); 452 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + 453 ppi->ppi_offset); 454 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 455 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 456 VLAN_PRIO_SHIFT; 457 } 458 459 if (skb_is_gso(skb)) { 460 struct ndis_tcp_lso_info *lso_info; 461 462 rndis_msg_size += NDIS_LSO_PPI_SIZE; 463 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 464 TCP_LARGESEND_PKTINFO); 465 466 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + 467 ppi->ppi_offset); 468 469 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 470 if (skb->protocol == htons(ETH_P_IP)) { 471 lso_info->lso_v2_transmit.ip_version = 472 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 473 ip_hdr(skb)->tot_len = 0; 474 ip_hdr(skb)->check = 0; 475 tcp_hdr(skb)->check = 476 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 477 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 478 } else { 479 lso_info->lso_v2_transmit.ip_version = 480 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 481 ipv6_hdr(skb)->payload_len = 0; 482 tcp_hdr(skb)->check = 483 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 484 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 485 } 486 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 487 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 488 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 489 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 490 struct ndis_tcp_ip_checksum_info *csum_info; 491 492 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 493 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 494 TCPIP_CHKSUM_PKTINFO); 495 496 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 497 ppi->ppi_offset); 498 499 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 500 501 if (skb->protocol == htons(ETH_P_IP)) { 502 csum_info->transmit.is_ipv4 = 1; 503 504 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 505 csum_info->transmit.tcp_checksum = 1; 506 else 507 csum_info->transmit.udp_checksum = 1; 508 } else { 509 csum_info->transmit.is_ipv6 = 1; 510 511 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 512 csum_info->transmit.tcp_checksum = 1; 513 else 514 csum_info->transmit.udp_checksum = 1; 515 } 516 } else { 517 /* Can't do offload of this type of checksum */ 518 if (skb_checksum_help(skb)) 519 goto drop; 520 } 521 } 522 523 /* Start filling in the page buffers with the rndis hdr */ 524 rndis_msg->msg_len += rndis_msg_size; 525 packet->total_data_buflen = rndis_msg->msg_len; 526 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 527 skb, packet, &pb); 528 529 /* timestamp packet in software */ 530 skb_tx_timestamp(skb); 531 ret = netvsc_send(net_device_ctx->device_ctx, packet, 532 rndis_msg, &pb, skb); 533 if (likely(ret == 0)) 534 return NETDEV_TX_OK; 535 536 if (ret == -EAGAIN) { 537 ++net_device_ctx->eth_stats.tx_busy; 538 return NETDEV_TX_BUSY; 539 } 540 541 if (ret == -ENOSPC) 542 ++net_device_ctx->eth_stats.tx_no_space; 543 544 drop: 545 dev_kfree_skb_any(skb); 546 net->stats.tx_dropped++; 547 548 return NETDEV_TX_OK; 549 550 no_memory: 551 ++net_device_ctx->eth_stats.tx_no_memory; 552 goto drop; 553 } 554 /* 555 * netvsc_linkstatus_callback - Link up/down notification 556 */ 557 void netvsc_linkstatus_callback(struct hv_device *device_obj, 558 struct rndis_message *resp) 559 { 560 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 561 struct net_device *net; 562 struct net_device_context *ndev_ctx; 563 struct netvsc_reconfig *event; 564 unsigned long flags; 565 566 net = hv_get_drvdata(device_obj); 567 568 if (!net) 569 return; 570 571 ndev_ctx = netdev_priv(net); 572 573 /* Update the physical link speed when changing to another vSwitch */ 574 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 575 u32 speed; 576 577 speed = *(u32 *)((void *)indicate + indicate-> 578 status_buf_offset) / 10000; 579 ndev_ctx->speed = speed; 580 return; 581 } 582 583 /* Handle these link change statuses below */ 584 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 585 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 586 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 587 return; 588 589 if (net->reg_state != NETREG_REGISTERED) 590 return; 591 592 event = kzalloc(sizeof(*event), GFP_ATOMIC); 593 if (!event) 594 return; 595 event->event = indicate->status; 596 597 spin_lock_irqsave(&ndev_ctx->lock, flags); 598 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 599 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 600 601 schedule_delayed_work(&ndev_ctx->dwork, 0); 602 } 603 604 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 605 struct napi_struct *napi, 606 const struct ndis_tcp_ip_checksum_info *csum_info, 607 const struct ndis_pkt_8021q_info *vlan, 608 void *data, u32 buflen) 609 { 610 struct sk_buff *skb; 611 612 skb = napi_alloc_skb(napi, buflen); 613 if (!skb) 614 return skb; 615 616 /* 617 * Copy to skb. This copy is needed here since the memory pointed by 618 * hv_netvsc_packet cannot be deallocated 619 */ 620 skb_put_data(skb, data, buflen); 621 622 skb->protocol = eth_type_trans(skb, net); 623 624 /* skb is already created with CHECKSUM_NONE */ 625 skb_checksum_none_assert(skb); 626 627 /* 628 * In Linux, the IP checksum is always checked. 629 * Do L4 checksum offload if enabled and present. 630 */ 631 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 632 if (csum_info->receive.tcp_checksum_succeeded || 633 csum_info->receive.udp_checksum_succeeded) 634 skb->ip_summed = CHECKSUM_UNNECESSARY; 635 } 636 637 if (vlan) { 638 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 639 640 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 641 vlan_tci); 642 } 643 644 return skb; 645 } 646 647 /* 648 * netvsc_recv_callback - Callback when we receive a packet from the 649 * "wire" on the specified device. 650 */ 651 int netvsc_recv_callback(struct net_device *net, 652 struct vmbus_channel *channel, 653 void *data, u32 len, 654 const struct ndis_tcp_ip_checksum_info *csum_info, 655 const struct ndis_pkt_8021q_info *vlan) 656 { 657 struct net_device_context *net_device_ctx = netdev_priv(net); 658 struct netvsc_device *net_device; 659 u16 q_idx = channel->offermsg.offer.sub_channel_index; 660 struct netvsc_channel *nvchan; 661 struct net_device *vf_netdev; 662 struct sk_buff *skb; 663 struct netvsc_stats *rx_stats; 664 665 if (net->reg_state != NETREG_REGISTERED) 666 return NVSP_STAT_FAIL; 667 668 /* 669 * If necessary, inject this packet into the VF interface. 670 * On Hyper-V, multicast and brodcast packets are only delivered 671 * to the synthetic interface (after subjecting these to 672 * policy filters on the host). Deliver these via the VF 673 * interface in the guest. 674 */ 675 rcu_read_lock(); 676 net_device = rcu_dereference(net_device_ctx->nvdev); 677 if (unlikely(!net_device)) 678 goto drop; 679 680 nvchan = &net_device->chan_table[q_idx]; 681 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev); 682 if (vf_netdev && (vf_netdev->flags & IFF_UP)) 683 net = vf_netdev; 684 685 /* Allocate a skb - TODO direct I/O to pages? */ 686 skb = netvsc_alloc_recv_skb(net, &nvchan->napi, 687 csum_info, vlan, data, len); 688 if (unlikely(!skb)) { 689 drop: 690 ++net->stats.rx_dropped; 691 rcu_read_unlock(); 692 return NVSP_STAT_FAIL; 693 } 694 695 if (net != vf_netdev) 696 skb_record_rx_queue(skb, q_idx); 697 698 /* 699 * Even if injecting the packet, record the statistics 700 * on the synthetic device because modifying the VF device 701 * statistics will not work correctly. 702 */ 703 rx_stats = &nvchan->rx_stats; 704 u64_stats_update_begin(&rx_stats->syncp); 705 rx_stats->packets++; 706 rx_stats->bytes += len; 707 708 if (skb->pkt_type == PACKET_BROADCAST) 709 ++rx_stats->broadcast; 710 else if (skb->pkt_type == PACKET_MULTICAST) 711 ++rx_stats->multicast; 712 u64_stats_update_end(&rx_stats->syncp); 713 714 napi_gro_receive(&nvchan->napi, skb); 715 rcu_read_unlock(); 716 717 return 0; 718 } 719 720 static void netvsc_get_drvinfo(struct net_device *net, 721 struct ethtool_drvinfo *info) 722 { 723 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 724 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 725 } 726 727 static void netvsc_get_channels(struct net_device *net, 728 struct ethtool_channels *channel) 729 { 730 struct net_device_context *net_device_ctx = netdev_priv(net); 731 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 732 733 if (nvdev) { 734 channel->max_combined = nvdev->max_chn; 735 channel->combined_count = nvdev->num_chn; 736 } 737 } 738 739 static int netvsc_set_queues(struct net_device *net, struct hv_device *dev, 740 u32 num_chn) 741 { 742 struct netvsc_device_info device_info; 743 int ret; 744 745 memset(&device_info, 0, sizeof(device_info)); 746 device_info.num_chn = num_chn; 747 device_info.ring_size = ring_size; 748 device_info.max_num_vrss_chns = num_chn; 749 750 ret = rndis_filter_device_add(dev, &device_info); 751 if (ret) 752 return ret; 753 754 ret = netif_set_real_num_tx_queues(net, num_chn); 755 if (ret) 756 return ret; 757 758 ret = netif_set_real_num_rx_queues(net, num_chn); 759 760 return ret; 761 } 762 763 static int netvsc_set_channels(struct net_device *net, 764 struct ethtool_channels *channels) 765 { 766 struct net_device_context *net_device_ctx = netdev_priv(net); 767 struct hv_device *dev = net_device_ctx->device_ctx; 768 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 769 unsigned int count = channels->combined_count; 770 bool was_running; 771 int ret; 772 773 /* We do not support separate count for rx, tx, or other */ 774 if (count == 0 || 775 channels->rx_count || channels->tx_count || channels->other_count) 776 return -EINVAL; 777 778 if (count > net->num_tx_queues || count > VRSS_CHANNEL_MAX) 779 return -EINVAL; 780 781 if (!nvdev || nvdev->destroy) 782 return -ENODEV; 783 784 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 785 return -EINVAL; 786 787 if (count > nvdev->max_chn) 788 return -EINVAL; 789 790 was_running = netif_running(net); 791 if (was_running) { 792 ret = netvsc_close(net); 793 if (ret) 794 return ret; 795 } 796 797 rndis_filter_device_remove(dev, nvdev); 798 799 ret = netvsc_set_queues(net, dev, count); 800 if (ret == 0) 801 nvdev->num_chn = count; 802 else 803 netvsc_set_queues(net, dev, nvdev->num_chn); 804 805 if (was_running) 806 ret = netvsc_open(net); 807 808 /* We may have missed link change notifications */ 809 schedule_delayed_work(&net_device_ctx->dwork, 0); 810 811 return ret; 812 } 813 814 static bool 815 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 816 { 817 struct ethtool_link_ksettings diff1 = *cmd; 818 struct ethtool_link_ksettings diff2 = {}; 819 820 diff1.base.speed = 0; 821 diff1.base.duplex = 0; 822 /* advertising and cmd are usually set */ 823 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 824 diff1.base.cmd = 0; 825 /* We set port to PORT_OTHER */ 826 diff2.base.port = PORT_OTHER; 827 828 return !memcmp(&diff1, &diff2, sizeof(diff1)); 829 } 830 831 static void netvsc_init_settings(struct net_device *dev) 832 { 833 struct net_device_context *ndc = netdev_priv(dev); 834 835 ndc->speed = SPEED_UNKNOWN; 836 ndc->duplex = DUPLEX_FULL; 837 } 838 839 static int netvsc_get_link_ksettings(struct net_device *dev, 840 struct ethtool_link_ksettings *cmd) 841 { 842 struct net_device_context *ndc = netdev_priv(dev); 843 844 cmd->base.speed = ndc->speed; 845 cmd->base.duplex = ndc->duplex; 846 cmd->base.port = PORT_OTHER; 847 848 return 0; 849 } 850 851 static int netvsc_set_link_ksettings(struct net_device *dev, 852 const struct ethtool_link_ksettings *cmd) 853 { 854 struct net_device_context *ndc = netdev_priv(dev); 855 u32 speed; 856 857 speed = cmd->base.speed; 858 if (!ethtool_validate_speed(speed) || 859 !ethtool_validate_duplex(cmd->base.duplex) || 860 !netvsc_validate_ethtool_ss_cmd(cmd)) 861 return -EINVAL; 862 863 ndc->speed = speed; 864 ndc->duplex = cmd->base.duplex; 865 866 return 0; 867 } 868 869 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 870 { 871 struct net_device_context *ndevctx = netdev_priv(ndev); 872 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 873 struct hv_device *hdev = ndevctx->device_ctx; 874 struct netvsc_device_info device_info; 875 bool was_running; 876 int ret = 0; 877 878 if (!nvdev || nvdev->destroy) 879 return -ENODEV; 880 881 was_running = netif_running(ndev); 882 if (was_running) { 883 ret = netvsc_close(ndev); 884 if (ret) 885 return ret; 886 } 887 888 memset(&device_info, 0, sizeof(device_info)); 889 device_info.ring_size = ring_size; 890 device_info.num_chn = nvdev->num_chn; 891 device_info.max_num_vrss_chns = nvdev->num_chn; 892 893 rndis_filter_device_remove(hdev, nvdev); 894 895 /* 'nvdev' has been freed in rndis_filter_device_remove() -> 896 * netvsc_device_remove () -> free_netvsc_device(). 897 * We mustn't access it before it's re-created in 898 * rndis_filter_device_add() -> netvsc_device_add(). 899 */ 900 901 ndev->mtu = mtu; 902 903 rndis_filter_device_add(hdev, &device_info); 904 905 if (was_running) 906 ret = netvsc_open(ndev); 907 908 /* We may have missed link change notifications */ 909 schedule_delayed_work(&ndevctx->dwork, 0); 910 911 return ret; 912 } 913 914 static void netvsc_get_stats64(struct net_device *net, 915 struct rtnl_link_stats64 *t) 916 { 917 struct net_device_context *ndev_ctx = netdev_priv(net); 918 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 919 int i; 920 921 if (!nvdev) 922 return; 923 924 for (i = 0; i < nvdev->num_chn; i++) { 925 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 926 const struct netvsc_stats *stats; 927 u64 packets, bytes, multicast; 928 unsigned int start; 929 930 stats = &nvchan->tx_stats; 931 do { 932 start = u64_stats_fetch_begin_irq(&stats->syncp); 933 packets = stats->packets; 934 bytes = stats->bytes; 935 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 936 937 t->tx_bytes += bytes; 938 t->tx_packets += packets; 939 940 stats = &nvchan->rx_stats; 941 do { 942 start = u64_stats_fetch_begin_irq(&stats->syncp); 943 packets = stats->packets; 944 bytes = stats->bytes; 945 multicast = stats->multicast + stats->broadcast; 946 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 947 948 t->rx_bytes += bytes; 949 t->rx_packets += packets; 950 t->multicast += multicast; 951 } 952 953 t->tx_dropped = net->stats.tx_dropped; 954 t->tx_errors = net->stats.tx_errors; 955 956 t->rx_dropped = net->stats.rx_dropped; 957 t->rx_errors = net->stats.rx_errors; 958 } 959 960 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 961 { 962 struct sockaddr *addr = p; 963 char save_adr[ETH_ALEN]; 964 unsigned char save_aatype; 965 int err; 966 967 memcpy(save_adr, ndev->dev_addr, ETH_ALEN); 968 save_aatype = ndev->addr_assign_type; 969 970 err = eth_mac_addr(ndev, p); 971 if (err != 0) 972 return err; 973 974 err = rndis_filter_set_device_mac(ndev, addr->sa_data); 975 if (err != 0) { 976 /* roll back to saved MAC */ 977 memcpy(ndev->dev_addr, save_adr, ETH_ALEN); 978 ndev->addr_assign_type = save_aatype; 979 } 980 981 return err; 982 } 983 984 static const struct { 985 char name[ETH_GSTRING_LEN]; 986 u16 offset; 987 } netvsc_stats[] = { 988 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 989 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 990 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 991 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 992 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 993 }; 994 995 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 996 997 /* 4 statistics per queue (rx/tx packets/bytes) */ 998 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 999 1000 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1001 { 1002 struct net_device_context *ndc = netdev_priv(dev); 1003 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1004 1005 if (!nvdev) 1006 return -ENODEV; 1007 1008 switch (string_set) { 1009 case ETH_SS_STATS: 1010 return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev); 1011 default: 1012 return -EINVAL; 1013 } 1014 } 1015 1016 static void netvsc_get_ethtool_stats(struct net_device *dev, 1017 struct ethtool_stats *stats, u64 *data) 1018 { 1019 struct net_device_context *ndc = netdev_priv(dev); 1020 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1021 const void *nds = &ndc->eth_stats; 1022 const struct netvsc_stats *qstats; 1023 unsigned int start; 1024 u64 packets, bytes; 1025 int i, j; 1026 1027 if (!nvdev) 1028 return; 1029 1030 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1031 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1032 1033 for (j = 0; j < nvdev->num_chn; j++) { 1034 qstats = &nvdev->chan_table[j].tx_stats; 1035 1036 do { 1037 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1038 packets = qstats->packets; 1039 bytes = qstats->bytes; 1040 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1041 data[i++] = packets; 1042 data[i++] = bytes; 1043 1044 qstats = &nvdev->chan_table[j].rx_stats; 1045 do { 1046 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1047 packets = qstats->packets; 1048 bytes = qstats->bytes; 1049 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1050 data[i++] = packets; 1051 data[i++] = bytes; 1052 } 1053 } 1054 1055 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1056 { 1057 struct net_device_context *ndc = netdev_priv(dev); 1058 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1059 u8 *p = data; 1060 int i; 1061 1062 if (!nvdev) 1063 return; 1064 1065 switch (stringset) { 1066 case ETH_SS_STATS: 1067 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1068 memcpy(p + i * ETH_GSTRING_LEN, 1069 netvsc_stats[i].name, ETH_GSTRING_LEN); 1070 1071 p += i * ETH_GSTRING_LEN; 1072 for (i = 0; i < nvdev->num_chn; i++) { 1073 sprintf(p, "tx_queue_%u_packets", i); 1074 p += ETH_GSTRING_LEN; 1075 sprintf(p, "tx_queue_%u_bytes", i); 1076 p += ETH_GSTRING_LEN; 1077 sprintf(p, "rx_queue_%u_packets", i); 1078 p += ETH_GSTRING_LEN; 1079 sprintf(p, "rx_queue_%u_bytes", i); 1080 p += ETH_GSTRING_LEN; 1081 } 1082 1083 break; 1084 } 1085 } 1086 1087 static int 1088 netvsc_get_rss_hash_opts(struct netvsc_device *nvdev, 1089 struct ethtool_rxnfc *info) 1090 { 1091 info->data = RXH_IP_SRC | RXH_IP_DST; 1092 1093 switch (info->flow_type) { 1094 case TCP_V4_FLOW: 1095 case TCP_V6_FLOW: 1096 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 1097 /* fallthrough */ 1098 case UDP_V4_FLOW: 1099 case UDP_V6_FLOW: 1100 case IPV4_FLOW: 1101 case IPV6_FLOW: 1102 break; 1103 default: 1104 info->data = 0; 1105 break; 1106 } 1107 1108 return 0; 1109 } 1110 1111 static int 1112 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1113 u32 *rules) 1114 { 1115 struct net_device_context *ndc = netdev_priv(dev); 1116 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev); 1117 1118 if (!nvdev) 1119 return -ENODEV; 1120 1121 switch (info->cmd) { 1122 case ETHTOOL_GRXRINGS: 1123 info->data = nvdev->num_chn; 1124 return 0; 1125 1126 case ETHTOOL_GRXFH: 1127 return netvsc_get_rss_hash_opts(nvdev, info); 1128 } 1129 return -EOPNOTSUPP; 1130 } 1131 1132 #ifdef CONFIG_NET_POLL_CONTROLLER 1133 static void netvsc_poll_controller(struct net_device *dev) 1134 { 1135 struct net_device_context *ndc = netdev_priv(dev); 1136 struct netvsc_device *ndev; 1137 int i; 1138 1139 rcu_read_lock(); 1140 ndev = rcu_dereference(ndc->nvdev); 1141 if (ndev) { 1142 for (i = 0; i < ndev->num_chn; i++) { 1143 struct netvsc_channel *nvchan = &ndev->chan_table[i]; 1144 1145 napi_schedule(&nvchan->napi); 1146 } 1147 } 1148 rcu_read_unlock(); 1149 } 1150 #endif 1151 1152 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1153 { 1154 return NETVSC_HASH_KEYLEN; 1155 } 1156 1157 static u32 netvsc_rss_indir_size(struct net_device *dev) 1158 { 1159 return ITAB_NUM; 1160 } 1161 1162 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1163 u8 *hfunc) 1164 { 1165 struct net_device_context *ndc = netdev_priv(dev); 1166 struct netvsc_device *ndev = rcu_dereference(ndc->nvdev); 1167 struct rndis_device *rndis_dev; 1168 int i; 1169 1170 if (!ndev) 1171 return -ENODEV; 1172 1173 if (hfunc) 1174 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1175 1176 rndis_dev = ndev->extension; 1177 if (indir) { 1178 for (i = 0; i < ITAB_NUM; i++) 1179 indir[i] = rndis_dev->ind_table[i]; 1180 } 1181 1182 if (key) 1183 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1184 1185 return 0; 1186 } 1187 1188 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1189 const u8 *key, const u8 hfunc) 1190 { 1191 struct net_device_context *ndc = netdev_priv(dev); 1192 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1193 struct rndis_device *rndis_dev; 1194 int i; 1195 1196 if (!ndev) 1197 return -ENODEV; 1198 1199 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1200 return -EOPNOTSUPP; 1201 1202 rndis_dev = ndev->extension; 1203 if (indir) { 1204 for (i = 0; i < ITAB_NUM; i++) 1205 if (indir[i] >= VRSS_CHANNEL_MAX) 1206 return -EINVAL; 1207 1208 for (i = 0; i < ITAB_NUM; i++) 1209 rndis_dev->ind_table[i] = indir[i]; 1210 } 1211 1212 if (!key) { 1213 if (!indir) 1214 return 0; 1215 1216 key = rndis_dev->rss_key; 1217 } 1218 1219 return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn); 1220 } 1221 1222 static const struct ethtool_ops ethtool_ops = { 1223 .get_drvinfo = netvsc_get_drvinfo, 1224 .get_link = ethtool_op_get_link, 1225 .get_ethtool_stats = netvsc_get_ethtool_stats, 1226 .get_sset_count = netvsc_get_sset_count, 1227 .get_strings = netvsc_get_strings, 1228 .get_channels = netvsc_get_channels, 1229 .set_channels = netvsc_set_channels, 1230 .get_ts_info = ethtool_op_get_ts_info, 1231 .get_rxnfc = netvsc_get_rxnfc, 1232 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1233 .get_rxfh_indir_size = netvsc_rss_indir_size, 1234 .get_rxfh = netvsc_get_rxfh, 1235 .set_rxfh = netvsc_set_rxfh, 1236 .get_link_ksettings = netvsc_get_link_ksettings, 1237 .set_link_ksettings = netvsc_set_link_ksettings, 1238 }; 1239 1240 static const struct net_device_ops device_ops = { 1241 .ndo_open = netvsc_open, 1242 .ndo_stop = netvsc_close, 1243 .ndo_start_xmit = netvsc_start_xmit, 1244 .ndo_set_rx_mode = netvsc_set_multicast_list, 1245 .ndo_change_mtu = netvsc_change_mtu, 1246 .ndo_validate_addr = eth_validate_addr, 1247 .ndo_set_mac_address = netvsc_set_mac_addr, 1248 .ndo_select_queue = netvsc_select_queue, 1249 .ndo_get_stats64 = netvsc_get_stats64, 1250 #ifdef CONFIG_NET_POLL_CONTROLLER 1251 .ndo_poll_controller = netvsc_poll_controller, 1252 #endif 1253 }; 1254 1255 /* 1256 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1257 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1258 * present send GARP packet to network peers with netif_notify_peers(). 1259 */ 1260 static void netvsc_link_change(struct work_struct *w) 1261 { 1262 struct net_device_context *ndev_ctx = 1263 container_of(w, struct net_device_context, dwork.work); 1264 struct hv_device *device_obj = ndev_ctx->device_ctx; 1265 struct net_device *net = hv_get_drvdata(device_obj); 1266 struct netvsc_device *net_device; 1267 struct rndis_device *rdev; 1268 struct netvsc_reconfig *event = NULL; 1269 bool notify = false, reschedule = false; 1270 unsigned long flags, next_reconfig, delay; 1271 1272 rtnl_lock(); 1273 net_device = rtnl_dereference(ndev_ctx->nvdev); 1274 if (!net_device) 1275 goto out_unlock; 1276 1277 rdev = net_device->extension; 1278 1279 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1280 if (time_is_after_jiffies(next_reconfig)) { 1281 /* link_watch only sends one notification with current state 1282 * per second, avoid doing reconfig more frequently. Handle 1283 * wrap around. 1284 */ 1285 delay = next_reconfig - jiffies; 1286 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1287 schedule_delayed_work(&ndev_ctx->dwork, delay); 1288 goto out_unlock; 1289 } 1290 ndev_ctx->last_reconfig = jiffies; 1291 1292 spin_lock_irqsave(&ndev_ctx->lock, flags); 1293 if (!list_empty(&ndev_ctx->reconfig_events)) { 1294 event = list_first_entry(&ndev_ctx->reconfig_events, 1295 struct netvsc_reconfig, list); 1296 list_del(&event->list); 1297 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1298 } 1299 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1300 1301 if (!event) 1302 goto out_unlock; 1303 1304 switch (event->event) { 1305 /* Only the following events are possible due to the check in 1306 * netvsc_linkstatus_callback() 1307 */ 1308 case RNDIS_STATUS_MEDIA_CONNECT: 1309 if (rdev->link_state) { 1310 rdev->link_state = false; 1311 if (!ndev_ctx->datapath) 1312 netif_carrier_on(net); 1313 netif_tx_wake_all_queues(net); 1314 } else { 1315 notify = true; 1316 } 1317 kfree(event); 1318 break; 1319 case RNDIS_STATUS_MEDIA_DISCONNECT: 1320 if (!rdev->link_state) { 1321 rdev->link_state = true; 1322 netif_carrier_off(net); 1323 netif_tx_stop_all_queues(net); 1324 } 1325 kfree(event); 1326 break; 1327 case RNDIS_STATUS_NETWORK_CHANGE: 1328 /* Only makes sense if carrier is present */ 1329 if (!rdev->link_state) { 1330 rdev->link_state = true; 1331 netif_carrier_off(net); 1332 netif_tx_stop_all_queues(net); 1333 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1334 spin_lock_irqsave(&ndev_ctx->lock, flags); 1335 list_add(&event->list, &ndev_ctx->reconfig_events); 1336 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1337 reschedule = true; 1338 } 1339 break; 1340 } 1341 1342 rtnl_unlock(); 1343 1344 if (notify) 1345 netdev_notify_peers(net); 1346 1347 /* link_watch only sends one notification with current state per 1348 * second, handle next reconfig event in 2 seconds. 1349 */ 1350 if (reschedule) 1351 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1352 1353 return; 1354 1355 out_unlock: 1356 rtnl_unlock(); 1357 } 1358 1359 static struct net_device *get_netvsc_bymac(const u8 *mac) 1360 { 1361 struct net_device *dev; 1362 1363 ASSERT_RTNL(); 1364 1365 for_each_netdev(&init_net, dev) { 1366 if (dev->netdev_ops != &device_ops) 1367 continue; /* not a netvsc device */ 1368 1369 if (ether_addr_equal(mac, dev->perm_addr)) 1370 return dev; 1371 } 1372 1373 return NULL; 1374 } 1375 1376 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1377 { 1378 struct net_device *dev; 1379 1380 ASSERT_RTNL(); 1381 1382 for_each_netdev(&init_net, dev) { 1383 struct net_device_context *net_device_ctx; 1384 1385 if (dev->netdev_ops != &device_ops) 1386 continue; /* not a netvsc device */ 1387 1388 net_device_ctx = netdev_priv(dev); 1389 if (net_device_ctx->nvdev == NULL) 1390 continue; /* device is removed */ 1391 1392 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev) 1393 return dev; /* a match */ 1394 } 1395 1396 return NULL; 1397 } 1398 1399 static int netvsc_register_vf(struct net_device *vf_netdev) 1400 { 1401 struct net_device *ndev; 1402 struct net_device_context *net_device_ctx; 1403 struct netvsc_device *netvsc_dev; 1404 1405 if (vf_netdev->addr_len != ETH_ALEN) 1406 return NOTIFY_DONE; 1407 1408 /* 1409 * We will use the MAC address to locate the synthetic interface to 1410 * associate with the VF interface. If we don't find a matching 1411 * synthetic interface, move on. 1412 */ 1413 ndev = get_netvsc_bymac(vf_netdev->perm_addr); 1414 if (!ndev) 1415 return NOTIFY_DONE; 1416 1417 net_device_ctx = netdev_priv(ndev); 1418 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1419 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 1420 return NOTIFY_DONE; 1421 1422 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 1423 /* 1424 * Take a reference on the module. 1425 */ 1426 try_module_get(THIS_MODULE); 1427 1428 dev_hold(vf_netdev); 1429 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 1430 return NOTIFY_OK; 1431 } 1432 1433 static int netvsc_vf_up(struct net_device *vf_netdev) 1434 { 1435 struct net_device *ndev; 1436 struct netvsc_device *netvsc_dev; 1437 struct net_device_context *net_device_ctx; 1438 1439 ndev = get_netvsc_byref(vf_netdev); 1440 if (!ndev) 1441 return NOTIFY_DONE; 1442 1443 net_device_ctx = netdev_priv(ndev); 1444 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1445 1446 netdev_info(ndev, "VF up: %s\n", vf_netdev->name); 1447 1448 /* 1449 * Open the device before switching data path. 1450 */ 1451 rndis_filter_open(netvsc_dev); 1452 1453 /* 1454 * notify the host to switch the data path. 1455 */ 1456 netvsc_switch_datapath(ndev, true); 1457 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name); 1458 1459 netif_carrier_off(ndev); 1460 1461 /* Now notify peers through VF device. */ 1462 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev); 1463 1464 return NOTIFY_OK; 1465 } 1466 1467 static int netvsc_vf_down(struct net_device *vf_netdev) 1468 { 1469 struct net_device *ndev; 1470 struct netvsc_device *netvsc_dev; 1471 struct net_device_context *net_device_ctx; 1472 1473 ndev = get_netvsc_byref(vf_netdev); 1474 if (!ndev) 1475 return NOTIFY_DONE; 1476 1477 net_device_ctx = netdev_priv(ndev); 1478 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 1479 1480 netdev_info(ndev, "VF down: %s\n", vf_netdev->name); 1481 netvsc_switch_datapath(ndev, false); 1482 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name); 1483 rndis_filter_close(netvsc_dev); 1484 netif_carrier_on(ndev); 1485 1486 /* Now notify peers through netvsc device. */ 1487 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev); 1488 1489 return NOTIFY_OK; 1490 } 1491 1492 static int netvsc_unregister_vf(struct net_device *vf_netdev) 1493 { 1494 struct net_device *ndev; 1495 struct net_device_context *net_device_ctx; 1496 1497 ndev = get_netvsc_byref(vf_netdev); 1498 if (!ndev) 1499 return NOTIFY_DONE; 1500 1501 net_device_ctx = netdev_priv(ndev); 1502 1503 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1504 1505 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 1506 dev_put(vf_netdev); 1507 module_put(THIS_MODULE); 1508 return NOTIFY_OK; 1509 } 1510 1511 static int netvsc_probe(struct hv_device *dev, 1512 const struct hv_vmbus_device_id *dev_id) 1513 { 1514 struct net_device *net = NULL; 1515 struct net_device_context *net_device_ctx; 1516 struct netvsc_device_info device_info; 1517 struct netvsc_device *nvdev; 1518 int ret; 1519 1520 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1521 VRSS_CHANNEL_MAX); 1522 if (!net) 1523 return -ENOMEM; 1524 1525 netif_carrier_off(net); 1526 1527 netvsc_init_settings(net); 1528 1529 net_device_ctx = netdev_priv(net); 1530 net_device_ctx->device_ctx = dev; 1531 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1532 if (netif_msg_probe(net_device_ctx)) 1533 netdev_dbg(net, "netvsc msg_enable: %d\n", 1534 net_device_ctx->msg_enable); 1535 1536 hv_set_drvdata(dev, net); 1537 1538 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1539 1540 spin_lock_init(&net_device_ctx->lock); 1541 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1542 1543 net->netdev_ops = &device_ops; 1544 net->ethtool_ops = ðtool_ops; 1545 SET_NETDEV_DEV(net, &dev->device); 1546 1547 /* We always need headroom for rndis header */ 1548 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1549 1550 /* Notify the netvsc driver of the new device */ 1551 memset(&device_info, 0, sizeof(device_info)); 1552 device_info.ring_size = ring_size; 1553 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 1554 ret = rndis_filter_device_add(dev, &device_info); 1555 if (ret != 0) { 1556 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 1557 free_netdev(net); 1558 hv_set_drvdata(dev, NULL); 1559 return ret; 1560 } 1561 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 1562 1563 /* hw_features computed in rndis_filter_device_add */ 1564 net->features = net->hw_features | 1565 NETIF_F_HIGHDMA | NETIF_F_SG | 1566 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 1567 net->vlan_features = net->features; 1568 1569 /* RCU not necessary here, device not registered */ 1570 nvdev = net_device_ctx->nvdev; 1571 netif_set_real_num_tx_queues(net, nvdev->num_chn); 1572 netif_set_real_num_rx_queues(net, nvdev->num_chn); 1573 1574 /* MTU range: 68 - 1500 or 65521 */ 1575 net->min_mtu = NETVSC_MTU_MIN; 1576 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 1577 net->max_mtu = NETVSC_MTU - ETH_HLEN; 1578 else 1579 net->max_mtu = ETH_DATA_LEN; 1580 1581 ret = register_netdev(net); 1582 if (ret != 0) { 1583 pr_err("Unable to register netdev.\n"); 1584 rndis_filter_device_remove(dev, nvdev); 1585 free_netdev(net); 1586 } 1587 1588 return ret; 1589 } 1590 1591 static int netvsc_remove(struct hv_device *dev) 1592 { 1593 struct net_device *net; 1594 struct net_device_context *ndev_ctx; 1595 1596 net = hv_get_drvdata(dev); 1597 1598 if (net == NULL) { 1599 dev_err(&dev->device, "No net device to remove\n"); 1600 return 0; 1601 } 1602 1603 ndev_ctx = netdev_priv(net); 1604 1605 netif_device_detach(net); 1606 1607 cancel_delayed_work_sync(&ndev_ctx->dwork); 1608 1609 /* 1610 * Call to the vsc driver to let it know that the device is being 1611 * removed. Also blocks mtu and channel changes. 1612 */ 1613 rtnl_lock(); 1614 rndis_filter_device_remove(dev, ndev_ctx->nvdev); 1615 rtnl_unlock(); 1616 1617 unregister_netdev(net); 1618 1619 hv_set_drvdata(dev, NULL); 1620 1621 free_netdev(net); 1622 return 0; 1623 } 1624 1625 static const struct hv_vmbus_device_id id_table[] = { 1626 /* Network guid */ 1627 { HV_NIC_GUID, }, 1628 { }, 1629 }; 1630 1631 MODULE_DEVICE_TABLE(vmbus, id_table); 1632 1633 /* The one and only one */ 1634 static struct hv_driver netvsc_drv = { 1635 .name = KBUILD_MODNAME, 1636 .id_table = id_table, 1637 .probe = netvsc_probe, 1638 .remove = netvsc_remove, 1639 }; 1640 1641 /* 1642 * On Hyper-V, every VF interface is matched with a corresponding 1643 * synthetic interface. The synthetic interface is presented first 1644 * to the guest. When the corresponding VF instance is registered, 1645 * we will take care of switching the data path. 1646 */ 1647 static int netvsc_netdev_event(struct notifier_block *this, 1648 unsigned long event, void *ptr) 1649 { 1650 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 1651 1652 /* Skip our own events */ 1653 if (event_dev->netdev_ops == &device_ops) 1654 return NOTIFY_DONE; 1655 1656 /* Avoid non-Ethernet type devices */ 1657 if (event_dev->type != ARPHRD_ETHER) 1658 return NOTIFY_DONE; 1659 1660 /* Avoid Vlan dev with same MAC registering as VF */ 1661 if (is_vlan_dev(event_dev)) 1662 return NOTIFY_DONE; 1663 1664 /* Avoid Bonding master dev with same MAC registering as VF */ 1665 if ((event_dev->priv_flags & IFF_BONDING) && 1666 (event_dev->flags & IFF_MASTER)) 1667 return NOTIFY_DONE; 1668 1669 switch (event) { 1670 case NETDEV_REGISTER: 1671 return netvsc_register_vf(event_dev); 1672 case NETDEV_UNREGISTER: 1673 return netvsc_unregister_vf(event_dev); 1674 case NETDEV_UP: 1675 return netvsc_vf_up(event_dev); 1676 case NETDEV_DOWN: 1677 return netvsc_vf_down(event_dev); 1678 default: 1679 return NOTIFY_DONE; 1680 } 1681 } 1682 1683 static struct notifier_block netvsc_netdev_notifier = { 1684 .notifier_call = netvsc_netdev_event, 1685 }; 1686 1687 static void __exit netvsc_drv_exit(void) 1688 { 1689 unregister_netdevice_notifier(&netvsc_netdev_notifier); 1690 vmbus_driver_unregister(&netvsc_drv); 1691 } 1692 1693 static int __init netvsc_drv_init(void) 1694 { 1695 int ret; 1696 1697 if (ring_size < RING_SIZE_MIN) { 1698 ring_size = RING_SIZE_MIN; 1699 pr_info("Increased ring_size to %d (min allowed)\n", 1700 ring_size); 1701 } 1702 ret = vmbus_driver_register(&netvsc_drv); 1703 1704 if (ret) 1705 return ret; 1706 1707 register_netdevice_notifier(&netvsc_netdev_notifier); 1708 return 0; 1709 } 1710 1711 MODULE_LICENSE("GPL"); 1712 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 1713 1714 module_init(netvsc_drv_init); 1715 module_exit(netvsc_drv_exit); 1716