1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/pci.h> 33 #include <linux/skbuff.h> 34 #include <linux/if_vlan.h> 35 #include <linux/in.h> 36 #include <linux/slab.h> 37 #include <linux/rtnetlink.h> 38 #include <linux/netpoll.h> 39 40 #include <net/arp.h> 41 #include <net/route.h> 42 #include <net/sock.h> 43 #include <net/pkt_sched.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 47 #include "hyperv_net.h" 48 49 #define RING_SIZE_MIN 64 50 #define RETRY_US_LO 5000 51 #define RETRY_US_HI 10000 52 #define RETRY_MAX 2000 /* >10 sec */ 53 54 #define LINKCHANGE_INT (2 * HZ) 55 #define VF_TAKEOVER_INT (HZ / 10) 56 57 static unsigned int ring_size __ro_after_init = 128; 58 module_param(ring_size, uint, 0444); 59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 60 unsigned int netvsc_ring_bytes __ro_after_init; 61 62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 63 NETIF_MSG_LINK | NETIF_MSG_IFUP | 64 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 65 NETIF_MSG_TX_ERR; 66 67 static int debug = -1; 68 module_param(debug, int, 0444); 69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 70 71 static LIST_HEAD(netvsc_dev_list); 72 73 static void netvsc_change_rx_flags(struct net_device *net, int change) 74 { 75 struct net_device_context *ndev_ctx = netdev_priv(net); 76 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 77 int inc; 78 79 if (!vf_netdev) 80 return; 81 82 if (change & IFF_PROMISC) { 83 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 84 dev_set_promiscuity(vf_netdev, inc); 85 } 86 87 if (change & IFF_ALLMULTI) { 88 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 89 dev_set_allmulti(vf_netdev, inc); 90 } 91 } 92 93 static void netvsc_set_rx_mode(struct net_device *net) 94 { 95 struct net_device_context *ndev_ctx = netdev_priv(net); 96 struct net_device *vf_netdev; 97 struct netvsc_device *nvdev; 98 99 rcu_read_lock(); 100 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 101 if (vf_netdev) { 102 dev_uc_sync(vf_netdev, net); 103 dev_mc_sync(vf_netdev, net); 104 } 105 106 nvdev = rcu_dereference(ndev_ctx->nvdev); 107 if (nvdev) 108 rndis_filter_update(nvdev); 109 rcu_read_unlock(); 110 } 111 112 static int netvsc_open(struct net_device *net) 113 { 114 struct net_device_context *ndev_ctx = netdev_priv(net); 115 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 116 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 117 struct rndis_device *rdev; 118 int ret = 0; 119 120 netif_carrier_off(net); 121 122 /* Open up the device */ 123 ret = rndis_filter_open(nvdev); 124 if (ret != 0) { 125 netdev_err(net, "unable to open device (ret %d).\n", ret); 126 return ret; 127 } 128 129 rdev = nvdev->extension; 130 if (!rdev->link_state) { 131 netif_carrier_on(net); 132 netif_tx_wake_all_queues(net); 133 } 134 135 if (vf_netdev) { 136 /* Setting synthetic device up transparently sets 137 * slave as up. If open fails, then slave will be 138 * still be offline (and not used). 139 */ 140 ret = dev_open(vf_netdev); 141 if (ret) 142 netdev_warn(net, 143 "unable to open slave: %s: %d\n", 144 vf_netdev->name, ret); 145 } 146 return 0; 147 } 148 149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 150 { 151 unsigned int retry = 0; 152 int i; 153 154 /* Ensure pending bytes in ring are read */ 155 for (;;) { 156 u32 aread = 0; 157 158 for (i = 0; i < nvdev->num_chn; i++) { 159 struct vmbus_channel *chn 160 = nvdev->chan_table[i].channel; 161 162 if (!chn) 163 continue; 164 165 /* make sure receive not running now */ 166 napi_synchronize(&nvdev->chan_table[i].napi); 167 168 aread = hv_get_bytes_to_read(&chn->inbound); 169 if (aread) 170 break; 171 172 aread = hv_get_bytes_to_read(&chn->outbound); 173 if (aread) 174 break; 175 } 176 177 if (aread == 0) 178 return 0; 179 180 if (++retry > RETRY_MAX) 181 return -ETIMEDOUT; 182 183 usleep_range(RETRY_US_LO, RETRY_US_HI); 184 } 185 } 186 187 static int netvsc_close(struct net_device *net) 188 { 189 struct net_device_context *net_device_ctx = netdev_priv(net); 190 struct net_device *vf_netdev 191 = rtnl_dereference(net_device_ctx->vf_netdev); 192 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 193 int ret; 194 195 netif_tx_disable(net); 196 197 /* No need to close rndis filter if it is removed already */ 198 if (!nvdev) 199 return 0; 200 201 ret = rndis_filter_close(nvdev); 202 if (ret != 0) { 203 netdev_err(net, "unable to close device (ret %d).\n", ret); 204 return ret; 205 } 206 207 ret = netvsc_wait_until_empty(nvdev); 208 if (ret) 209 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 210 211 if (vf_netdev) 212 dev_close(vf_netdev); 213 214 return ret; 215 } 216 217 static inline void *init_ppi_data(struct rndis_message *msg, 218 u32 ppi_size, u32 pkt_type) 219 { 220 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 221 struct rndis_per_packet_info *ppi; 222 223 rndis_pkt->data_offset += ppi_size; 224 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 225 + rndis_pkt->per_pkt_info_len; 226 227 ppi->size = ppi_size; 228 ppi->type = pkt_type; 229 ppi->internal = 0; 230 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 231 232 rndis_pkt->per_pkt_info_len += ppi_size; 233 234 return ppi + 1; 235 } 236 237 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 238 * packets. We can use ethtool to change UDP hash level when necessary. 239 */ 240 static inline u32 netvsc_get_hash( 241 struct sk_buff *skb, 242 const struct net_device_context *ndc) 243 { 244 struct flow_keys flow; 245 u32 hash, pkt_proto = 0; 246 static u32 hashrnd __read_mostly; 247 248 net_get_random_once(&hashrnd, sizeof(hashrnd)); 249 250 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 251 return 0; 252 253 switch (flow.basic.ip_proto) { 254 case IPPROTO_TCP: 255 if (flow.basic.n_proto == htons(ETH_P_IP)) 256 pkt_proto = HV_TCP4_L4HASH; 257 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 258 pkt_proto = HV_TCP6_L4HASH; 259 260 break; 261 262 case IPPROTO_UDP: 263 if (flow.basic.n_proto == htons(ETH_P_IP)) 264 pkt_proto = HV_UDP4_L4HASH; 265 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 266 pkt_proto = HV_UDP6_L4HASH; 267 268 break; 269 } 270 271 if (pkt_proto & ndc->l4_hash) { 272 return skb_get_hash(skb); 273 } else { 274 if (flow.basic.n_proto == htons(ETH_P_IP)) 275 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 276 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 277 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 278 else 279 hash = 0; 280 281 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 282 } 283 284 return hash; 285 } 286 287 static inline int netvsc_get_tx_queue(struct net_device *ndev, 288 struct sk_buff *skb, int old_idx) 289 { 290 const struct net_device_context *ndc = netdev_priv(ndev); 291 struct sock *sk = skb->sk; 292 int q_idx; 293 294 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 295 (VRSS_SEND_TAB_SIZE - 1)]; 296 297 /* If queue index changed record the new value */ 298 if (q_idx != old_idx && 299 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 300 sk_tx_queue_set(sk, q_idx); 301 302 return q_idx; 303 } 304 305 /* 306 * Select queue for transmit. 307 * 308 * If a valid queue has already been assigned, then use that. 309 * Otherwise compute tx queue based on hash and the send table. 310 * 311 * This is basically similar to default (__netdev_pick_tx) with the added step 312 * of using the host send_table when no other queue has been assigned. 313 * 314 * TODO support XPS - but get_xps_queue not exported 315 */ 316 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 317 { 318 int q_idx = sk_tx_queue_get(skb->sk); 319 320 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 321 /* If forwarding a packet, we use the recorded queue when 322 * available for better cache locality. 323 */ 324 if (skb_rx_queue_recorded(skb)) 325 q_idx = skb_get_rx_queue(skb); 326 else 327 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 328 } 329 330 return q_idx; 331 } 332 333 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 334 struct net_device *sb_dev, 335 select_queue_fallback_t fallback) 336 { 337 struct net_device_context *ndc = netdev_priv(ndev); 338 struct net_device *vf_netdev; 339 u16 txq; 340 341 rcu_read_lock(); 342 vf_netdev = rcu_dereference(ndc->vf_netdev); 343 if (vf_netdev) { 344 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 345 346 if (vf_ops->ndo_select_queue) 347 txq = vf_ops->ndo_select_queue(vf_netdev, skb, 348 sb_dev, fallback); 349 else 350 txq = fallback(vf_netdev, skb, NULL); 351 352 /* Record the queue selected by VF so that it can be 353 * used for common case where VF has more queues than 354 * the synthetic device. 355 */ 356 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 357 } else { 358 txq = netvsc_pick_tx(ndev, skb); 359 } 360 rcu_read_unlock(); 361 362 while (unlikely(txq >= ndev->real_num_tx_queues)) 363 txq -= ndev->real_num_tx_queues; 364 365 return txq; 366 } 367 368 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 369 struct hv_page_buffer *pb) 370 { 371 int j = 0; 372 373 /* Deal with compund pages by ignoring unused part 374 * of the page. 375 */ 376 page += (offset >> PAGE_SHIFT); 377 offset &= ~PAGE_MASK; 378 379 while (len > 0) { 380 unsigned long bytes; 381 382 bytes = PAGE_SIZE - offset; 383 if (bytes > len) 384 bytes = len; 385 pb[j].pfn = page_to_pfn(page); 386 pb[j].offset = offset; 387 pb[j].len = bytes; 388 389 offset += bytes; 390 len -= bytes; 391 392 if (offset == PAGE_SIZE && len) { 393 page++; 394 offset = 0; 395 j++; 396 } 397 } 398 399 return j + 1; 400 } 401 402 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 403 struct hv_netvsc_packet *packet, 404 struct hv_page_buffer *pb) 405 { 406 u32 slots_used = 0; 407 char *data = skb->data; 408 int frags = skb_shinfo(skb)->nr_frags; 409 int i; 410 411 /* The packet is laid out thus: 412 * 1. hdr: RNDIS header and PPI 413 * 2. skb linear data 414 * 3. skb fragment data 415 */ 416 slots_used += fill_pg_buf(virt_to_page(hdr), 417 offset_in_page(hdr), 418 len, &pb[slots_used]); 419 420 packet->rmsg_size = len; 421 packet->rmsg_pgcnt = slots_used; 422 423 slots_used += fill_pg_buf(virt_to_page(data), 424 offset_in_page(data), 425 skb_headlen(skb), &pb[slots_used]); 426 427 for (i = 0; i < frags; i++) { 428 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 429 430 slots_used += fill_pg_buf(skb_frag_page(frag), 431 frag->page_offset, 432 skb_frag_size(frag), &pb[slots_used]); 433 } 434 return slots_used; 435 } 436 437 static int count_skb_frag_slots(struct sk_buff *skb) 438 { 439 int i, frags = skb_shinfo(skb)->nr_frags; 440 int pages = 0; 441 442 for (i = 0; i < frags; i++) { 443 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 444 unsigned long size = skb_frag_size(frag); 445 unsigned long offset = frag->page_offset; 446 447 /* Skip unused frames from start of page */ 448 offset &= ~PAGE_MASK; 449 pages += PFN_UP(offset + size); 450 } 451 return pages; 452 } 453 454 static int netvsc_get_slots(struct sk_buff *skb) 455 { 456 char *data = skb->data; 457 unsigned int offset = offset_in_page(data); 458 unsigned int len = skb_headlen(skb); 459 int slots; 460 int frag_slots; 461 462 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 463 frag_slots = count_skb_frag_slots(skb); 464 return slots + frag_slots; 465 } 466 467 static u32 net_checksum_info(struct sk_buff *skb) 468 { 469 if (skb->protocol == htons(ETH_P_IP)) { 470 struct iphdr *ip = ip_hdr(skb); 471 472 if (ip->protocol == IPPROTO_TCP) 473 return TRANSPORT_INFO_IPV4_TCP; 474 else if (ip->protocol == IPPROTO_UDP) 475 return TRANSPORT_INFO_IPV4_UDP; 476 } else { 477 struct ipv6hdr *ip6 = ipv6_hdr(skb); 478 479 if (ip6->nexthdr == IPPROTO_TCP) 480 return TRANSPORT_INFO_IPV6_TCP; 481 else if (ip6->nexthdr == IPPROTO_UDP) 482 return TRANSPORT_INFO_IPV6_UDP; 483 } 484 485 return TRANSPORT_INFO_NOT_IP; 486 } 487 488 /* Send skb on the slave VF device. */ 489 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 490 struct sk_buff *skb) 491 { 492 struct net_device_context *ndev_ctx = netdev_priv(net); 493 unsigned int len = skb->len; 494 int rc; 495 496 skb->dev = vf_netdev; 497 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 498 499 rc = dev_queue_xmit(skb); 500 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 501 struct netvsc_vf_pcpu_stats *pcpu_stats 502 = this_cpu_ptr(ndev_ctx->vf_stats); 503 504 u64_stats_update_begin(&pcpu_stats->syncp); 505 pcpu_stats->tx_packets++; 506 pcpu_stats->tx_bytes += len; 507 u64_stats_update_end(&pcpu_stats->syncp); 508 } else { 509 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 510 } 511 512 return rc; 513 } 514 515 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 516 { 517 struct net_device_context *net_device_ctx = netdev_priv(net); 518 struct hv_netvsc_packet *packet = NULL; 519 int ret; 520 unsigned int num_data_pgs; 521 struct rndis_message *rndis_msg; 522 struct net_device *vf_netdev; 523 u32 rndis_msg_size; 524 u32 hash; 525 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 526 527 /* if VF is present and up then redirect packets 528 * already called with rcu_read_lock_bh 529 */ 530 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 531 if (vf_netdev && netif_running(vf_netdev) && 532 !netpoll_tx_running(net)) 533 return netvsc_vf_xmit(net, vf_netdev, skb); 534 535 /* We will atmost need two pages to describe the rndis 536 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 537 * of pages in a single packet. If skb is scattered around 538 * more pages we try linearizing it. 539 */ 540 541 num_data_pgs = netvsc_get_slots(skb) + 2; 542 543 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 544 ++net_device_ctx->eth_stats.tx_scattered; 545 546 if (skb_linearize(skb)) 547 goto no_memory; 548 549 num_data_pgs = netvsc_get_slots(skb) + 2; 550 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 551 ++net_device_ctx->eth_stats.tx_too_big; 552 goto drop; 553 } 554 } 555 556 /* 557 * Place the rndis header in the skb head room and 558 * the skb->cb will be used for hv_netvsc_packet 559 * structure. 560 */ 561 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 562 if (ret) 563 goto no_memory; 564 565 /* Use the skb control buffer for building up the packet */ 566 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 567 FIELD_SIZEOF(struct sk_buff, cb)); 568 packet = (struct hv_netvsc_packet *)skb->cb; 569 570 packet->q_idx = skb_get_queue_mapping(skb); 571 572 packet->total_data_buflen = skb->len; 573 packet->total_bytes = skb->len; 574 packet->total_packets = 1; 575 576 rndis_msg = (struct rndis_message *)skb->head; 577 578 /* Add the rndis header */ 579 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 580 rndis_msg->msg_len = packet->total_data_buflen; 581 582 rndis_msg->msg.pkt = (struct rndis_packet) { 583 .data_offset = sizeof(struct rndis_packet), 584 .data_len = packet->total_data_buflen, 585 .per_pkt_info_offset = sizeof(struct rndis_packet), 586 }; 587 588 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 589 590 hash = skb_get_hash_raw(skb); 591 if (hash != 0 && net->real_num_tx_queues > 1) { 592 u32 *hash_info; 593 594 rndis_msg_size += NDIS_HASH_PPI_SIZE; 595 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 596 NBL_HASH_VALUE); 597 *hash_info = hash; 598 } 599 600 if (skb_vlan_tag_present(skb)) { 601 struct ndis_pkt_8021q_info *vlan; 602 603 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 604 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 605 IEEE_8021Q_INFO); 606 607 vlan->value = 0; 608 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 609 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 610 VLAN_PRIO_SHIFT; 611 } 612 613 if (skb_is_gso(skb)) { 614 struct ndis_tcp_lso_info *lso_info; 615 616 rndis_msg_size += NDIS_LSO_PPI_SIZE; 617 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 618 TCP_LARGESEND_PKTINFO); 619 620 lso_info->value = 0; 621 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 622 if (skb->protocol == htons(ETH_P_IP)) { 623 lso_info->lso_v2_transmit.ip_version = 624 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 625 ip_hdr(skb)->tot_len = 0; 626 ip_hdr(skb)->check = 0; 627 tcp_hdr(skb)->check = 628 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 629 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 630 } else { 631 lso_info->lso_v2_transmit.ip_version = 632 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 633 ipv6_hdr(skb)->payload_len = 0; 634 tcp_hdr(skb)->check = 635 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 636 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 637 } 638 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 639 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 640 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 641 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 642 struct ndis_tcp_ip_checksum_info *csum_info; 643 644 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 645 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 646 TCPIP_CHKSUM_PKTINFO); 647 648 csum_info->value = 0; 649 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 650 651 if (skb->protocol == htons(ETH_P_IP)) { 652 csum_info->transmit.is_ipv4 = 1; 653 654 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 655 csum_info->transmit.tcp_checksum = 1; 656 else 657 csum_info->transmit.udp_checksum = 1; 658 } else { 659 csum_info->transmit.is_ipv6 = 1; 660 661 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 662 csum_info->transmit.tcp_checksum = 1; 663 else 664 csum_info->transmit.udp_checksum = 1; 665 } 666 } else { 667 /* Can't do offload of this type of checksum */ 668 if (skb_checksum_help(skb)) 669 goto drop; 670 } 671 } 672 673 /* Start filling in the page buffers with the rndis hdr */ 674 rndis_msg->msg_len += rndis_msg_size; 675 packet->total_data_buflen = rndis_msg->msg_len; 676 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 677 skb, packet, pb); 678 679 /* timestamp packet in software */ 680 skb_tx_timestamp(skb); 681 682 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 683 if (likely(ret == 0)) 684 return NETDEV_TX_OK; 685 686 if (ret == -EAGAIN) { 687 ++net_device_ctx->eth_stats.tx_busy; 688 return NETDEV_TX_BUSY; 689 } 690 691 if (ret == -ENOSPC) 692 ++net_device_ctx->eth_stats.tx_no_space; 693 694 drop: 695 dev_kfree_skb_any(skb); 696 net->stats.tx_dropped++; 697 698 return NETDEV_TX_OK; 699 700 no_memory: 701 ++net_device_ctx->eth_stats.tx_no_memory; 702 goto drop; 703 } 704 705 /* 706 * netvsc_linkstatus_callback - Link up/down notification 707 */ 708 void netvsc_linkstatus_callback(struct net_device *net, 709 struct rndis_message *resp) 710 { 711 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 712 struct net_device_context *ndev_ctx = netdev_priv(net); 713 struct netvsc_reconfig *event; 714 unsigned long flags; 715 716 /* Update the physical link speed when changing to another vSwitch */ 717 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 718 u32 speed; 719 720 speed = *(u32 *)((void *)indicate 721 + indicate->status_buf_offset) / 10000; 722 ndev_ctx->speed = speed; 723 return; 724 } 725 726 /* Handle these link change statuses below */ 727 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 728 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 729 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 730 return; 731 732 if (net->reg_state != NETREG_REGISTERED) 733 return; 734 735 event = kzalloc(sizeof(*event), GFP_ATOMIC); 736 if (!event) 737 return; 738 event->event = indicate->status; 739 740 spin_lock_irqsave(&ndev_ctx->lock, flags); 741 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 742 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 743 744 schedule_delayed_work(&ndev_ctx->dwork, 0); 745 } 746 747 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 748 struct netvsc_channel *nvchan) 749 { 750 struct napi_struct *napi = &nvchan->napi; 751 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 752 const struct ndis_tcp_ip_checksum_info *csum_info = 753 nvchan->rsc.csum_info; 754 struct sk_buff *skb; 755 int i; 756 757 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 758 if (!skb) 759 return skb; 760 761 /* 762 * Copy to skb. This copy is needed here since the memory pointed by 763 * hv_netvsc_packet cannot be deallocated 764 */ 765 for (i = 0; i < nvchan->rsc.cnt; i++) 766 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]); 767 768 skb->protocol = eth_type_trans(skb, net); 769 770 /* skb is already created with CHECKSUM_NONE */ 771 skb_checksum_none_assert(skb); 772 773 /* 774 * In Linux, the IP checksum is always checked. 775 * Do L4 checksum offload if enabled and present. 776 */ 777 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 778 if (csum_info->receive.tcp_checksum_succeeded || 779 csum_info->receive.udp_checksum_succeeded) 780 skb->ip_summed = CHECKSUM_UNNECESSARY; 781 } 782 783 if (vlan) { 784 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT); 785 786 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 787 vlan_tci); 788 } 789 790 return skb; 791 } 792 793 /* 794 * netvsc_recv_callback - Callback when we receive a packet from the 795 * "wire" on the specified device. 796 */ 797 int netvsc_recv_callback(struct net_device *net, 798 struct netvsc_device *net_device, 799 struct netvsc_channel *nvchan) 800 { 801 struct net_device_context *net_device_ctx = netdev_priv(net); 802 struct vmbus_channel *channel = nvchan->channel; 803 u16 q_idx = channel->offermsg.offer.sub_channel_index; 804 struct sk_buff *skb; 805 struct netvsc_stats *rx_stats; 806 807 if (net->reg_state != NETREG_REGISTERED) 808 return NVSP_STAT_FAIL; 809 810 /* Allocate a skb - TODO direct I/O to pages? */ 811 skb = netvsc_alloc_recv_skb(net, nvchan); 812 813 if (unlikely(!skb)) { 814 ++net_device_ctx->eth_stats.rx_no_memory; 815 rcu_read_unlock(); 816 return NVSP_STAT_FAIL; 817 } 818 819 skb_record_rx_queue(skb, q_idx); 820 821 /* 822 * Even if injecting the packet, record the statistics 823 * on the synthetic device because modifying the VF device 824 * statistics will not work correctly. 825 */ 826 rx_stats = &nvchan->rx_stats; 827 u64_stats_update_begin(&rx_stats->syncp); 828 rx_stats->packets++; 829 rx_stats->bytes += nvchan->rsc.pktlen; 830 831 if (skb->pkt_type == PACKET_BROADCAST) 832 ++rx_stats->broadcast; 833 else if (skb->pkt_type == PACKET_MULTICAST) 834 ++rx_stats->multicast; 835 u64_stats_update_end(&rx_stats->syncp); 836 837 napi_gro_receive(&nvchan->napi, skb); 838 return NVSP_STAT_SUCCESS; 839 } 840 841 static void netvsc_get_drvinfo(struct net_device *net, 842 struct ethtool_drvinfo *info) 843 { 844 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 845 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 846 } 847 848 static void netvsc_get_channels(struct net_device *net, 849 struct ethtool_channels *channel) 850 { 851 struct net_device_context *net_device_ctx = netdev_priv(net); 852 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 853 854 if (nvdev) { 855 channel->max_combined = nvdev->max_chn; 856 channel->combined_count = nvdev->num_chn; 857 } 858 } 859 860 static int netvsc_detach(struct net_device *ndev, 861 struct netvsc_device *nvdev) 862 { 863 struct net_device_context *ndev_ctx = netdev_priv(ndev); 864 struct hv_device *hdev = ndev_ctx->device_ctx; 865 int ret; 866 867 /* Don't try continuing to try and setup sub channels */ 868 if (cancel_work_sync(&nvdev->subchan_work)) 869 nvdev->num_chn = 1; 870 871 /* If device was up (receiving) then shutdown */ 872 if (netif_running(ndev)) { 873 netif_tx_disable(ndev); 874 875 ret = rndis_filter_close(nvdev); 876 if (ret) { 877 netdev_err(ndev, 878 "unable to close device (ret %d).\n", ret); 879 return ret; 880 } 881 882 ret = netvsc_wait_until_empty(nvdev); 883 if (ret) { 884 netdev_err(ndev, 885 "Ring buffer not empty after closing rndis\n"); 886 return ret; 887 } 888 } 889 890 netif_device_detach(ndev); 891 892 rndis_filter_device_remove(hdev, nvdev); 893 894 return 0; 895 } 896 897 static int netvsc_attach(struct net_device *ndev, 898 struct netvsc_device_info *dev_info) 899 { 900 struct net_device_context *ndev_ctx = netdev_priv(ndev); 901 struct hv_device *hdev = ndev_ctx->device_ctx; 902 struct netvsc_device *nvdev; 903 struct rndis_device *rdev; 904 int ret; 905 906 nvdev = rndis_filter_device_add(hdev, dev_info); 907 if (IS_ERR(nvdev)) 908 return PTR_ERR(nvdev); 909 910 if (nvdev->num_chn > 1) { 911 ret = rndis_set_subchannel(ndev, nvdev); 912 913 /* if unavailable, just proceed with one queue */ 914 if (ret) { 915 nvdev->max_chn = 1; 916 nvdev->num_chn = 1; 917 } 918 } 919 920 /* In any case device is now ready */ 921 netif_device_attach(ndev); 922 923 /* Note: enable and attach happen when sub-channels setup */ 924 netif_carrier_off(ndev); 925 926 if (netif_running(ndev)) { 927 ret = rndis_filter_open(nvdev); 928 if (ret) 929 return ret; 930 931 rdev = nvdev->extension; 932 if (!rdev->link_state) 933 netif_carrier_on(ndev); 934 } 935 936 return 0; 937 } 938 939 static int netvsc_set_channels(struct net_device *net, 940 struct ethtool_channels *channels) 941 { 942 struct net_device_context *net_device_ctx = netdev_priv(net); 943 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 944 unsigned int orig, count = channels->combined_count; 945 struct netvsc_device_info device_info; 946 int ret; 947 948 /* We do not support separate count for rx, tx, or other */ 949 if (count == 0 || 950 channels->rx_count || channels->tx_count || channels->other_count) 951 return -EINVAL; 952 953 if (!nvdev || nvdev->destroy) 954 return -ENODEV; 955 956 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 957 return -EINVAL; 958 959 if (count > nvdev->max_chn) 960 return -EINVAL; 961 962 orig = nvdev->num_chn; 963 964 memset(&device_info, 0, sizeof(device_info)); 965 device_info.num_chn = count; 966 device_info.send_sections = nvdev->send_section_cnt; 967 device_info.send_section_size = nvdev->send_section_size; 968 device_info.recv_sections = nvdev->recv_section_cnt; 969 device_info.recv_section_size = nvdev->recv_section_size; 970 971 ret = netvsc_detach(net, nvdev); 972 if (ret) 973 return ret; 974 975 ret = netvsc_attach(net, &device_info); 976 if (ret) { 977 device_info.num_chn = orig; 978 if (netvsc_attach(net, &device_info)) 979 netdev_err(net, "restoring channel setting failed\n"); 980 } 981 982 return ret; 983 } 984 985 static bool 986 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 987 { 988 struct ethtool_link_ksettings diff1 = *cmd; 989 struct ethtool_link_ksettings diff2 = {}; 990 991 diff1.base.speed = 0; 992 diff1.base.duplex = 0; 993 /* advertising and cmd are usually set */ 994 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 995 diff1.base.cmd = 0; 996 /* We set port to PORT_OTHER */ 997 diff2.base.port = PORT_OTHER; 998 999 return !memcmp(&diff1, &diff2, sizeof(diff1)); 1000 } 1001 1002 static void netvsc_init_settings(struct net_device *dev) 1003 { 1004 struct net_device_context *ndc = netdev_priv(dev); 1005 1006 ndc->l4_hash = HV_DEFAULT_L4HASH; 1007 1008 ndc->speed = SPEED_UNKNOWN; 1009 ndc->duplex = DUPLEX_FULL; 1010 1011 dev->features = NETIF_F_LRO; 1012 } 1013 1014 static int netvsc_get_link_ksettings(struct net_device *dev, 1015 struct ethtool_link_ksettings *cmd) 1016 { 1017 struct net_device_context *ndc = netdev_priv(dev); 1018 1019 cmd->base.speed = ndc->speed; 1020 cmd->base.duplex = ndc->duplex; 1021 cmd->base.port = PORT_OTHER; 1022 1023 return 0; 1024 } 1025 1026 static int netvsc_set_link_ksettings(struct net_device *dev, 1027 const struct ethtool_link_ksettings *cmd) 1028 { 1029 struct net_device_context *ndc = netdev_priv(dev); 1030 u32 speed; 1031 1032 speed = cmd->base.speed; 1033 if (!ethtool_validate_speed(speed) || 1034 !ethtool_validate_duplex(cmd->base.duplex) || 1035 !netvsc_validate_ethtool_ss_cmd(cmd)) 1036 return -EINVAL; 1037 1038 ndc->speed = speed; 1039 ndc->duplex = cmd->base.duplex; 1040 1041 return 0; 1042 } 1043 1044 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1045 { 1046 struct net_device_context *ndevctx = netdev_priv(ndev); 1047 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1048 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1049 int orig_mtu = ndev->mtu; 1050 struct netvsc_device_info device_info; 1051 int ret = 0; 1052 1053 if (!nvdev || nvdev->destroy) 1054 return -ENODEV; 1055 1056 /* Change MTU of underlying VF netdev first. */ 1057 if (vf_netdev) { 1058 ret = dev_set_mtu(vf_netdev, mtu); 1059 if (ret) 1060 return ret; 1061 } 1062 1063 memset(&device_info, 0, sizeof(device_info)); 1064 device_info.num_chn = nvdev->num_chn; 1065 device_info.send_sections = nvdev->send_section_cnt; 1066 device_info.send_section_size = nvdev->send_section_size; 1067 device_info.recv_sections = nvdev->recv_section_cnt; 1068 device_info.recv_section_size = nvdev->recv_section_size; 1069 1070 ret = netvsc_detach(ndev, nvdev); 1071 if (ret) 1072 goto rollback_vf; 1073 1074 ndev->mtu = mtu; 1075 1076 ret = netvsc_attach(ndev, &device_info); 1077 if (ret) 1078 goto rollback; 1079 1080 return 0; 1081 1082 rollback: 1083 /* Attempt rollback to original MTU */ 1084 ndev->mtu = orig_mtu; 1085 1086 if (netvsc_attach(ndev, &device_info)) 1087 netdev_err(ndev, "restoring mtu failed\n"); 1088 rollback_vf: 1089 if (vf_netdev) 1090 dev_set_mtu(vf_netdev, orig_mtu); 1091 1092 return ret; 1093 } 1094 1095 static void netvsc_get_vf_stats(struct net_device *net, 1096 struct netvsc_vf_pcpu_stats *tot) 1097 { 1098 struct net_device_context *ndev_ctx = netdev_priv(net); 1099 int i; 1100 1101 memset(tot, 0, sizeof(*tot)); 1102 1103 for_each_possible_cpu(i) { 1104 const struct netvsc_vf_pcpu_stats *stats 1105 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1106 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1107 unsigned int start; 1108 1109 do { 1110 start = u64_stats_fetch_begin_irq(&stats->syncp); 1111 rx_packets = stats->rx_packets; 1112 tx_packets = stats->tx_packets; 1113 rx_bytes = stats->rx_bytes; 1114 tx_bytes = stats->tx_bytes; 1115 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1116 1117 tot->rx_packets += rx_packets; 1118 tot->tx_packets += tx_packets; 1119 tot->rx_bytes += rx_bytes; 1120 tot->tx_bytes += tx_bytes; 1121 tot->tx_dropped += stats->tx_dropped; 1122 } 1123 } 1124 1125 static void netvsc_get_pcpu_stats(struct net_device *net, 1126 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1127 { 1128 struct net_device_context *ndev_ctx = netdev_priv(net); 1129 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1130 int i; 1131 1132 /* fetch percpu stats of vf */ 1133 for_each_possible_cpu(i) { 1134 const struct netvsc_vf_pcpu_stats *stats = 1135 per_cpu_ptr(ndev_ctx->vf_stats, i); 1136 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1137 unsigned int start; 1138 1139 do { 1140 start = u64_stats_fetch_begin_irq(&stats->syncp); 1141 this_tot->vf_rx_packets = stats->rx_packets; 1142 this_tot->vf_tx_packets = stats->tx_packets; 1143 this_tot->vf_rx_bytes = stats->rx_bytes; 1144 this_tot->vf_tx_bytes = stats->tx_bytes; 1145 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1146 this_tot->rx_packets = this_tot->vf_rx_packets; 1147 this_tot->tx_packets = this_tot->vf_tx_packets; 1148 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1149 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1150 } 1151 1152 /* fetch percpu stats of netvsc */ 1153 for (i = 0; i < nvdev->num_chn; i++) { 1154 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1155 const struct netvsc_stats *stats; 1156 struct netvsc_ethtool_pcpu_stats *this_tot = 1157 &pcpu_tot[nvchan->channel->target_cpu]; 1158 u64 packets, bytes; 1159 unsigned int start; 1160 1161 stats = &nvchan->tx_stats; 1162 do { 1163 start = u64_stats_fetch_begin_irq(&stats->syncp); 1164 packets = stats->packets; 1165 bytes = stats->bytes; 1166 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1167 1168 this_tot->tx_bytes += bytes; 1169 this_tot->tx_packets += packets; 1170 1171 stats = &nvchan->rx_stats; 1172 do { 1173 start = u64_stats_fetch_begin_irq(&stats->syncp); 1174 packets = stats->packets; 1175 bytes = stats->bytes; 1176 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1177 1178 this_tot->rx_bytes += bytes; 1179 this_tot->rx_packets += packets; 1180 } 1181 } 1182 1183 static void netvsc_get_stats64(struct net_device *net, 1184 struct rtnl_link_stats64 *t) 1185 { 1186 struct net_device_context *ndev_ctx = netdev_priv(net); 1187 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1188 struct netvsc_vf_pcpu_stats vf_tot; 1189 int i; 1190 1191 if (!nvdev) 1192 return; 1193 1194 netdev_stats_to_stats64(t, &net->stats); 1195 1196 netvsc_get_vf_stats(net, &vf_tot); 1197 t->rx_packets += vf_tot.rx_packets; 1198 t->tx_packets += vf_tot.tx_packets; 1199 t->rx_bytes += vf_tot.rx_bytes; 1200 t->tx_bytes += vf_tot.tx_bytes; 1201 t->tx_dropped += vf_tot.tx_dropped; 1202 1203 for (i = 0; i < nvdev->num_chn; i++) { 1204 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1205 const struct netvsc_stats *stats; 1206 u64 packets, bytes, multicast; 1207 unsigned int start; 1208 1209 stats = &nvchan->tx_stats; 1210 do { 1211 start = u64_stats_fetch_begin_irq(&stats->syncp); 1212 packets = stats->packets; 1213 bytes = stats->bytes; 1214 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1215 1216 t->tx_bytes += bytes; 1217 t->tx_packets += packets; 1218 1219 stats = &nvchan->rx_stats; 1220 do { 1221 start = u64_stats_fetch_begin_irq(&stats->syncp); 1222 packets = stats->packets; 1223 bytes = stats->bytes; 1224 multicast = stats->multicast + stats->broadcast; 1225 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1226 1227 t->rx_bytes += bytes; 1228 t->rx_packets += packets; 1229 t->multicast += multicast; 1230 } 1231 } 1232 1233 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1234 { 1235 struct net_device_context *ndc = netdev_priv(ndev); 1236 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1237 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1238 struct sockaddr *addr = p; 1239 int err; 1240 1241 err = eth_prepare_mac_addr_change(ndev, p); 1242 if (err) 1243 return err; 1244 1245 if (!nvdev) 1246 return -ENODEV; 1247 1248 if (vf_netdev) { 1249 err = dev_set_mac_address(vf_netdev, addr); 1250 if (err) 1251 return err; 1252 } 1253 1254 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1255 if (!err) { 1256 eth_commit_mac_addr_change(ndev, p); 1257 } else if (vf_netdev) { 1258 /* rollback change on VF */ 1259 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1260 dev_set_mac_address(vf_netdev, addr); 1261 } 1262 1263 return err; 1264 } 1265 1266 static const struct { 1267 char name[ETH_GSTRING_LEN]; 1268 u16 offset; 1269 } netvsc_stats[] = { 1270 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1271 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1272 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1273 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1274 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1275 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1276 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1277 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1278 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1279 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1280 }, pcpu_stats[] = { 1281 { "cpu%u_rx_packets", 1282 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1283 { "cpu%u_rx_bytes", 1284 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1285 { "cpu%u_tx_packets", 1286 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1287 { "cpu%u_tx_bytes", 1288 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1289 { "cpu%u_vf_rx_packets", 1290 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1291 { "cpu%u_vf_rx_bytes", 1292 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1293 { "cpu%u_vf_tx_packets", 1294 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1295 { "cpu%u_vf_tx_bytes", 1296 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1297 }, vf_stats[] = { 1298 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1299 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1300 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1301 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1302 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1303 }; 1304 1305 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1306 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1307 1308 /* statistics per queue (rx/tx packets/bytes) */ 1309 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1310 1311 /* 4 statistics per queue (rx/tx packets/bytes) */ 1312 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1313 1314 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1315 { 1316 struct net_device_context *ndc = netdev_priv(dev); 1317 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1318 1319 if (!nvdev) 1320 return -ENODEV; 1321 1322 switch (string_set) { 1323 case ETH_SS_STATS: 1324 return NETVSC_GLOBAL_STATS_LEN 1325 + NETVSC_VF_STATS_LEN 1326 + NETVSC_QUEUE_STATS_LEN(nvdev) 1327 + NETVSC_PCPU_STATS_LEN; 1328 default: 1329 return -EINVAL; 1330 } 1331 } 1332 1333 static void netvsc_get_ethtool_stats(struct net_device *dev, 1334 struct ethtool_stats *stats, u64 *data) 1335 { 1336 struct net_device_context *ndc = netdev_priv(dev); 1337 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1338 const void *nds = &ndc->eth_stats; 1339 const struct netvsc_stats *qstats; 1340 struct netvsc_vf_pcpu_stats sum; 1341 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1342 unsigned int start; 1343 u64 packets, bytes; 1344 int i, j, cpu; 1345 1346 if (!nvdev) 1347 return; 1348 1349 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1350 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1351 1352 netvsc_get_vf_stats(dev, &sum); 1353 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1354 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1355 1356 for (j = 0; j < nvdev->num_chn; j++) { 1357 qstats = &nvdev->chan_table[j].tx_stats; 1358 1359 do { 1360 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1361 packets = qstats->packets; 1362 bytes = qstats->bytes; 1363 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1364 data[i++] = packets; 1365 data[i++] = bytes; 1366 1367 qstats = &nvdev->chan_table[j].rx_stats; 1368 do { 1369 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1370 packets = qstats->packets; 1371 bytes = qstats->bytes; 1372 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1373 data[i++] = packets; 1374 data[i++] = bytes; 1375 } 1376 1377 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1378 sizeof(struct netvsc_ethtool_pcpu_stats), 1379 GFP_KERNEL); 1380 netvsc_get_pcpu_stats(dev, pcpu_sum); 1381 for_each_present_cpu(cpu) { 1382 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1383 1384 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1385 data[i++] = *(u64 *)((void *)this_sum 1386 + pcpu_stats[j].offset); 1387 } 1388 kvfree(pcpu_sum); 1389 } 1390 1391 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1392 { 1393 struct net_device_context *ndc = netdev_priv(dev); 1394 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1395 u8 *p = data; 1396 int i, cpu; 1397 1398 if (!nvdev) 1399 return; 1400 1401 switch (stringset) { 1402 case ETH_SS_STATS: 1403 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1404 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1405 p += ETH_GSTRING_LEN; 1406 } 1407 1408 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1409 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1410 p += ETH_GSTRING_LEN; 1411 } 1412 1413 for (i = 0; i < nvdev->num_chn; i++) { 1414 sprintf(p, "tx_queue_%u_packets", i); 1415 p += ETH_GSTRING_LEN; 1416 sprintf(p, "tx_queue_%u_bytes", i); 1417 p += ETH_GSTRING_LEN; 1418 sprintf(p, "rx_queue_%u_packets", i); 1419 p += ETH_GSTRING_LEN; 1420 sprintf(p, "rx_queue_%u_bytes", i); 1421 p += ETH_GSTRING_LEN; 1422 } 1423 1424 for_each_present_cpu(cpu) { 1425 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1426 sprintf(p, pcpu_stats[i].name, cpu); 1427 p += ETH_GSTRING_LEN; 1428 } 1429 } 1430 1431 break; 1432 } 1433 } 1434 1435 static int 1436 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1437 struct ethtool_rxnfc *info) 1438 { 1439 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1440 1441 info->data = RXH_IP_SRC | RXH_IP_DST; 1442 1443 switch (info->flow_type) { 1444 case TCP_V4_FLOW: 1445 if (ndc->l4_hash & HV_TCP4_L4HASH) 1446 info->data |= l4_flag; 1447 1448 break; 1449 1450 case TCP_V6_FLOW: 1451 if (ndc->l4_hash & HV_TCP6_L4HASH) 1452 info->data |= l4_flag; 1453 1454 break; 1455 1456 case UDP_V4_FLOW: 1457 if (ndc->l4_hash & HV_UDP4_L4HASH) 1458 info->data |= l4_flag; 1459 1460 break; 1461 1462 case UDP_V6_FLOW: 1463 if (ndc->l4_hash & HV_UDP6_L4HASH) 1464 info->data |= l4_flag; 1465 1466 break; 1467 1468 case IPV4_FLOW: 1469 case IPV6_FLOW: 1470 break; 1471 default: 1472 info->data = 0; 1473 break; 1474 } 1475 1476 return 0; 1477 } 1478 1479 static int 1480 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1481 u32 *rules) 1482 { 1483 struct net_device_context *ndc = netdev_priv(dev); 1484 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1485 1486 if (!nvdev) 1487 return -ENODEV; 1488 1489 switch (info->cmd) { 1490 case ETHTOOL_GRXRINGS: 1491 info->data = nvdev->num_chn; 1492 return 0; 1493 1494 case ETHTOOL_GRXFH: 1495 return netvsc_get_rss_hash_opts(ndc, info); 1496 } 1497 return -EOPNOTSUPP; 1498 } 1499 1500 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1501 struct ethtool_rxnfc *info) 1502 { 1503 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1504 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1505 switch (info->flow_type) { 1506 case TCP_V4_FLOW: 1507 ndc->l4_hash |= HV_TCP4_L4HASH; 1508 break; 1509 1510 case TCP_V6_FLOW: 1511 ndc->l4_hash |= HV_TCP6_L4HASH; 1512 break; 1513 1514 case UDP_V4_FLOW: 1515 ndc->l4_hash |= HV_UDP4_L4HASH; 1516 break; 1517 1518 case UDP_V6_FLOW: 1519 ndc->l4_hash |= HV_UDP6_L4HASH; 1520 break; 1521 1522 default: 1523 return -EOPNOTSUPP; 1524 } 1525 1526 return 0; 1527 } 1528 1529 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1530 switch (info->flow_type) { 1531 case TCP_V4_FLOW: 1532 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1533 break; 1534 1535 case TCP_V6_FLOW: 1536 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1537 break; 1538 1539 case UDP_V4_FLOW: 1540 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1541 break; 1542 1543 case UDP_V6_FLOW: 1544 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1545 break; 1546 1547 default: 1548 return -EOPNOTSUPP; 1549 } 1550 1551 return 0; 1552 } 1553 1554 return -EOPNOTSUPP; 1555 } 1556 1557 static int 1558 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1559 { 1560 struct net_device_context *ndc = netdev_priv(ndev); 1561 1562 if (info->cmd == ETHTOOL_SRXFH) 1563 return netvsc_set_rss_hash_opts(ndc, info); 1564 1565 return -EOPNOTSUPP; 1566 } 1567 1568 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1569 { 1570 return NETVSC_HASH_KEYLEN; 1571 } 1572 1573 static u32 netvsc_rss_indir_size(struct net_device *dev) 1574 { 1575 return ITAB_NUM; 1576 } 1577 1578 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1579 u8 *hfunc) 1580 { 1581 struct net_device_context *ndc = netdev_priv(dev); 1582 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1583 struct rndis_device *rndis_dev; 1584 int i; 1585 1586 if (!ndev) 1587 return -ENODEV; 1588 1589 if (hfunc) 1590 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1591 1592 rndis_dev = ndev->extension; 1593 if (indir) { 1594 for (i = 0; i < ITAB_NUM; i++) 1595 indir[i] = rndis_dev->rx_table[i]; 1596 } 1597 1598 if (key) 1599 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1600 1601 return 0; 1602 } 1603 1604 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1605 const u8 *key, const u8 hfunc) 1606 { 1607 struct net_device_context *ndc = netdev_priv(dev); 1608 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1609 struct rndis_device *rndis_dev; 1610 int i; 1611 1612 if (!ndev) 1613 return -ENODEV; 1614 1615 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1616 return -EOPNOTSUPP; 1617 1618 rndis_dev = ndev->extension; 1619 if (indir) { 1620 for (i = 0; i < ITAB_NUM; i++) 1621 if (indir[i] >= ndev->num_chn) 1622 return -EINVAL; 1623 1624 for (i = 0; i < ITAB_NUM; i++) 1625 rndis_dev->rx_table[i] = indir[i]; 1626 } 1627 1628 if (!key) { 1629 if (!indir) 1630 return 0; 1631 1632 key = rndis_dev->rss_key; 1633 } 1634 1635 return rndis_filter_set_rss_param(rndis_dev, key); 1636 } 1637 1638 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1639 * It does have pre-allocated receive area which is divided into sections. 1640 */ 1641 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1642 struct ethtool_ringparam *ring) 1643 { 1644 u32 max_buf_size; 1645 1646 ring->rx_pending = nvdev->recv_section_cnt; 1647 ring->tx_pending = nvdev->send_section_cnt; 1648 1649 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1650 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1651 else 1652 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1653 1654 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1655 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1656 / nvdev->send_section_size; 1657 } 1658 1659 static void netvsc_get_ringparam(struct net_device *ndev, 1660 struct ethtool_ringparam *ring) 1661 { 1662 struct net_device_context *ndevctx = netdev_priv(ndev); 1663 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1664 1665 if (!nvdev) 1666 return; 1667 1668 __netvsc_get_ringparam(nvdev, ring); 1669 } 1670 1671 static int netvsc_set_ringparam(struct net_device *ndev, 1672 struct ethtool_ringparam *ring) 1673 { 1674 struct net_device_context *ndevctx = netdev_priv(ndev); 1675 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1676 struct netvsc_device_info device_info; 1677 struct ethtool_ringparam orig; 1678 u32 new_tx, new_rx; 1679 int ret = 0; 1680 1681 if (!nvdev || nvdev->destroy) 1682 return -ENODEV; 1683 1684 memset(&orig, 0, sizeof(orig)); 1685 __netvsc_get_ringparam(nvdev, &orig); 1686 1687 new_tx = clamp_t(u32, ring->tx_pending, 1688 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1689 new_rx = clamp_t(u32, ring->rx_pending, 1690 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1691 1692 if (new_tx == orig.tx_pending && 1693 new_rx == orig.rx_pending) 1694 return 0; /* no change */ 1695 1696 memset(&device_info, 0, sizeof(device_info)); 1697 device_info.num_chn = nvdev->num_chn; 1698 device_info.send_sections = new_tx; 1699 device_info.send_section_size = nvdev->send_section_size; 1700 device_info.recv_sections = new_rx; 1701 device_info.recv_section_size = nvdev->recv_section_size; 1702 1703 ret = netvsc_detach(ndev, nvdev); 1704 if (ret) 1705 return ret; 1706 1707 ret = netvsc_attach(ndev, &device_info); 1708 if (ret) { 1709 device_info.send_sections = orig.tx_pending; 1710 device_info.recv_sections = orig.rx_pending; 1711 1712 if (netvsc_attach(ndev, &device_info)) 1713 netdev_err(ndev, "restoring ringparam failed"); 1714 } 1715 1716 return ret; 1717 } 1718 1719 static int netvsc_set_features(struct net_device *ndev, 1720 netdev_features_t features) 1721 { 1722 netdev_features_t change = features ^ ndev->features; 1723 struct net_device_context *ndevctx = netdev_priv(ndev); 1724 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1725 struct ndis_offload_params offloads; 1726 1727 if (!nvdev || nvdev->destroy) 1728 return -ENODEV; 1729 1730 if (!(change & NETIF_F_LRO)) 1731 return 0; 1732 1733 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1734 1735 if (features & NETIF_F_LRO) { 1736 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1737 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1738 } else { 1739 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1740 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1741 } 1742 1743 return rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1744 } 1745 1746 static u32 netvsc_get_msglevel(struct net_device *ndev) 1747 { 1748 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1749 1750 return ndev_ctx->msg_enable; 1751 } 1752 1753 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1754 { 1755 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1756 1757 ndev_ctx->msg_enable = val; 1758 } 1759 1760 static const struct ethtool_ops ethtool_ops = { 1761 .get_drvinfo = netvsc_get_drvinfo, 1762 .get_msglevel = netvsc_get_msglevel, 1763 .set_msglevel = netvsc_set_msglevel, 1764 .get_link = ethtool_op_get_link, 1765 .get_ethtool_stats = netvsc_get_ethtool_stats, 1766 .get_sset_count = netvsc_get_sset_count, 1767 .get_strings = netvsc_get_strings, 1768 .get_channels = netvsc_get_channels, 1769 .set_channels = netvsc_set_channels, 1770 .get_ts_info = ethtool_op_get_ts_info, 1771 .get_rxnfc = netvsc_get_rxnfc, 1772 .set_rxnfc = netvsc_set_rxnfc, 1773 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1774 .get_rxfh_indir_size = netvsc_rss_indir_size, 1775 .get_rxfh = netvsc_get_rxfh, 1776 .set_rxfh = netvsc_set_rxfh, 1777 .get_link_ksettings = netvsc_get_link_ksettings, 1778 .set_link_ksettings = netvsc_set_link_ksettings, 1779 .get_ringparam = netvsc_get_ringparam, 1780 .set_ringparam = netvsc_set_ringparam, 1781 }; 1782 1783 static const struct net_device_ops device_ops = { 1784 .ndo_open = netvsc_open, 1785 .ndo_stop = netvsc_close, 1786 .ndo_start_xmit = netvsc_start_xmit, 1787 .ndo_change_rx_flags = netvsc_change_rx_flags, 1788 .ndo_set_rx_mode = netvsc_set_rx_mode, 1789 .ndo_set_features = netvsc_set_features, 1790 .ndo_change_mtu = netvsc_change_mtu, 1791 .ndo_validate_addr = eth_validate_addr, 1792 .ndo_set_mac_address = netvsc_set_mac_addr, 1793 .ndo_select_queue = netvsc_select_queue, 1794 .ndo_get_stats64 = netvsc_get_stats64, 1795 }; 1796 1797 /* 1798 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1799 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1800 * present send GARP packet to network peers with netif_notify_peers(). 1801 */ 1802 static void netvsc_link_change(struct work_struct *w) 1803 { 1804 struct net_device_context *ndev_ctx = 1805 container_of(w, struct net_device_context, dwork.work); 1806 struct hv_device *device_obj = ndev_ctx->device_ctx; 1807 struct net_device *net = hv_get_drvdata(device_obj); 1808 struct netvsc_device *net_device; 1809 struct rndis_device *rdev; 1810 struct netvsc_reconfig *event = NULL; 1811 bool notify = false, reschedule = false; 1812 unsigned long flags, next_reconfig, delay; 1813 1814 /* if changes are happening, comeback later */ 1815 if (!rtnl_trylock()) { 1816 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1817 return; 1818 } 1819 1820 net_device = rtnl_dereference(ndev_ctx->nvdev); 1821 if (!net_device) 1822 goto out_unlock; 1823 1824 rdev = net_device->extension; 1825 1826 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1827 if (time_is_after_jiffies(next_reconfig)) { 1828 /* link_watch only sends one notification with current state 1829 * per second, avoid doing reconfig more frequently. Handle 1830 * wrap around. 1831 */ 1832 delay = next_reconfig - jiffies; 1833 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1834 schedule_delayed_work(&ndev_ctx->dwork, delay); 1835 goto out_unlock; 1836 } 1837 ndev_ctx->last_reconfig = jiffies; 1838 1839 spin_lock_irqsave(&ndev_ctx->lock, flags); 1840 if (!list_empty(&ndev_ctx->reconfig_events)) { 1841 event = list_first_entry(&ndev_ctx->reconfig_events, 1842 struct netvsc_reconfig, list); 1843 list_del(&event->list); 1844 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1845 } 1846 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1847 1848 if (!event) 1849 goto out_unlock; 1850 1851 switch (event->event) { 1852 /* Only the following events are possible due to the check in 1853 * netvsc_linkstatus_callback() 1854 */ 1855 case RNDIS_STATUS_MEDIA_CONNECT: 1856 if (rdev->link_state) { 1857 rdev->link_state = false; 1858 netif_carrier_on(net); 1859 netif_tx_wake_all_queues(net); 1860 } else { 1861 notify = true; 1862 } 1863 kfree(event); 1864 break; 1865 case RNDIS_STATUS_MEDIA_DISCONNECT: 1866 if (!rdev->link_state) { 1867 rdev->link_state = true; 1868 netif_carrier_off(net); 1869 netif_tx_stop_all_queues(net); 1870 } 1871 kfree(event); 1872 break; 1873 case RNDIS_STATUS_NETWORK_CHANGE: 1874 /* Only makes sense if carrier is present */ 1875 if (!rdev->link_state) { 1876 rdev->link_state = true; 1877 netif_carrier_off(net); 1878 netif_tx_stop_all_queues(net); 1879 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1880 spin_lock_irqsave(&ndev_ctx->lock, flags); 1881 list_add(&event->list, &ndev_ctx->reconfig_events); 1882 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1883 reschedule = true; 1884 } 1885 break; 1886 } 1887 1888 rtnl_unlock(); 1889 1890 if (notify) 1891 netdev_notify_peers(net); 1892 1893 /* link_watch only sends one notification with current state per 1894 * second, handle next reconfig event in 2 seconds. 1895 */ 1896 if (reschedule) 1897 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1898 1899 return; 1900 1901 out_unlock: 1902 rtnl_unlock(); 1903 } 1904 1905 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1906 { 1907 struct net_device_context *net_device_ctx; 1908 struct net_device *dev; 1909 1910 dev = netdev_master_upper_dev_get(vf_netdev); 1911 if (!dev || dev->netdev_ops != &device_ops) 1912 return NULL; /* not a netvsc device */ 1913 1914 net_device_ctx = netdev_priv(dev); 1915 if (!rtnl_dereference(net_device_ctx->nvdev)) 1916 return NULL; /* device is removed */ 1917 1918 return dev; 1919 } 1920 1921 /* Called when VF is injecting data into network stack. 1922 * Change the associated network device from VF to netvsc. 1923 * note: already called with rcu_read_lock 1924 */ 1925 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 1926 { 1927 struct sk_buff *skb = *pskb; 1928 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 1929 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1930 struct netvsc_vf_pcpu_stats *pcpu_stats 1931 = this_cpu_ptr(ndev_ctx->vf_stats); 1932 1933 skb->dev = ndev; 1934 1935 u64_stats_update_begin(&pcpu_stats->syncp); 1936 pcpu_stats->rx_packets++; 1937 pcpu_stats->rx_bytes += skb->len; 1938 u64_stats_update_end(&pcpu_stats->syncp); 1939 1940 return RX_HANDLER_ANOTHER; 1941 } 1942 1943 static int netvsc_vf_join(struct net_device *vf_netdev, 1944 struct net_device *ndev) 1945 { 1946 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1947 int ret; 1948 1949 ret = netdev_rx_handler_register(vf_netdev, 1950 netvsc_vf_handle_frame, ndev); 1951 if (ret != 0) { 1952 netdev_err(vf_netdev, 1953 "can not register netvsc VF receive handler (err = %d)\n", 1954 ret); 1955 goto rx_handler_failed; 1956 } 1957 1958 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 1959 NULL, NULL, NULL); 1960 if (ret != 0) { 1961 netdev_err(vf_netdev, 1962 "can not set master device %s (err = %d)\n", 1963 ndev->name, ret); 1964 goto upper_link_failed; 1965 } 1966 1967 /* set slave flag before open to prevent IPv6 addrconf */ 1968 vf_netdev->flags |= IFF_SLAVE; 1969 1970 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 1971 1972 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 1973 1974 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 1975 return 0; 1976 1977 upper_link_failed: 1978 netdev_rx_handler_unregister(vf_netdev); 1979 rx_handler_failed: 1980 return ret; 1981 } 1982 1983 static void __netvsc_vf_setup(struct net_device *ndev, 1984 struct net_device *vf_netdev) 1985 { 1986 int ret; 1987 1988 /* Align MTU of VF with master */ 1989 ret = dev_set_mtu(vf_netdev, ndev->mtu); 1990 if (ret) 1991 netdev_warn(vf_netdev, 1992 "unable to change mtu to %u\n", ndev->mtu); 1993 1994 /* set multicast etc flags on VF */ 1995 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE); 1996 1997 /* sync address list from ndev to VF */ 1998 netif_addr_lock_bh(ndev); 1999 dev_uc_sync(vf_netdev, ndev); 2000 dev_mc_sync(vf_netdev, ndev); 2001 netif_addr_unlock_bh(ndev); 2002 2003 if (netif_running(ndev)) { 2004 ret = dev_open(vf_netdev); 2005 if (ret) 2006 netdev_warn(vf_netdev, 2007 "unable to open: %d\n", ret); 2008 } 2009 } 2010 2011 /* Setup VF as slave of the synthetic device. 2012 * Runs in workqueue to avoid recursion in netlink callbacks. 2013 */ 2014 static void netvsc_vf_setup(struct work_struct *w) 2015 { 2016 struct net_device_context *ndev_ctx 2017 = container_of(w, struct net_device_context, vf_takeover.work); 2018 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2019 struct net_device *vf_netdev; 2020 2021 if (!rtnl_trylock()) { 2022 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2023 return; 2024 } 2025 2026 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2027 if (vf_netdev) 2028 __netvsc_vf_setup(ndev, vf_netdev); 2029 2030 rtnl_unlock(); 2031 } 2032 2033 /* Find netvsc by VF serial number. 2034 * The PCI hyperv controller records the serial number as the slot kobj name. 2035 */ 2036 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2037 { 2038 struct device *parent = vf_netdev->dev.parent; 2039 struct net_device_context *ndev_ctx; 2040 struct pci_dev *pdev; 2041 u32 serial; 2042 2043 if (!parent || !dev_is_pci(parent)) 2044 return NULL; /* not a PCI device */ 2045 2046 pdev = to_pci_dev(parent); 2047 if (!pdev->slot) { 2048 netdev_notice(vf_netdev, "no PCI slot information\n"); 2049 return NULL; 2050 } 2051 2052 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2053 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2054 pci_slot_name(pdev->slot)); 2055 return NULL; 2056 } 2057 2058 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2059 if (!ndev_ctx->vf_alloc) 2060 continue; 2061 2062 if (ndev_ctx->vf_serial == serial) 2063 return hv_get_drvdata(ndev_ctx->device_ctx); 2064 } 2065 2066 netdev_notice(vf_netdev, 2067 "no netdev found for vf serial:%u\n", serial); 2068 return NULL; 2069 } 2070 2071 static int netvsc_register_vf(struct net_device *vf_netdev) 2072 { 2073 struct net_device_context *net_device_ctx; 2074 struct netvsc_device *netvsc_dev; 2075 struct net_device *ndev; 2076 int ret; 2077 2078 if (vf_netdev->addr_len != ETH_ALEN) 2079 return NOTIFY_DONE; 2080 2081 ndev = get_netvsc_byslot(vf_netdev); 2082 if (!ndev) 2083 return NOTIFY_DONE; 2084 2085 net_device_ctx = netdev_priv(ndev); 2086 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2087 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2088 return NOTIFY_DONE; 2089 2090 /* if syntihetic interface is a different namespace, 2091 * then move the VF to that namespace; join will be 2092 * done again in that context. 2093 */ 2094 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2095 ret = dev_change_net_namespace(vf_netdev, 2096 dev_net(ndev), "eth%d"); 2097 if (ret) 2098 netdev_err(vf_netdev, 2099 "could not move to same namespace as %s: %d\n", 2100 ndev->name, ret); 2101 else 2102 netdev_info(vf_netdev, 2103 "VF moved to namespace with: %s\n", 2104 ndev->name); 2105 return NOTIFY_DONE; 2106 } 2107 2108 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2109 2110 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2111 return NOTIFY_DONE; 2112 2113 dev_hold(vf_netdev); 2114 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2115 return NOTIFY_OK; 2116 } 2117 2118 /* VF up/down change detected, schedule to change data path */ 2119 static int netvsc_vf_changed(struct net_device *vf_netdev) 2120 { 2121 struct net_device_context *net_device_ctx; 2122 struct netvsc_device *netvsc_dev; 2123 struct net_device *ndev; 2124 bool vf_is_up = netif_running(vf_netdev); 2125 2126 ndev = get_netvsc_byref(vf_netdev); 2127 if (!ndev) 2128 return NOTIFY_DONE; 2129 2130 net_device_ctx = netdev_priv(ndev); 2131 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2132 if (!netvsc_dev) 2133 return NOTIFY_DONE; 2134 2135 netvsc_switch_datapath(ndev, vf_is_up); 2136 netdev_info(ndev, "Data path switched %s VF: %s\n", 2137 vf_is_up ? "to" : "from", vf_netdev->name); 2138 2139 return NOTIFY_OK; 2140 } 2141 2142 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2143 { 2144 struct net_device *ndev; 2145 struct net_device_context *net_device_ctx; 2146 2147 ndev = get_netvsc_byref(vf_netdev); 2148 if (!ndev) 2149 return NOTIFY_DONE; 2150 2151 net_device_ctx = netdev_priv(ndev); 2152 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2153 2154 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2155 2156 netdev_rx_handler_unregister(vf_netdev); 2157 netdev_upper_dev_unlink(vf_netdev, ndev); 2158 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2159 dev_put(vf_netdev); 2160 2161 return NOTIFY_OK; 2162 } 2163 2164 static int netvsc_probe(struct hv_device *dev, 2165 const struct hv_vmbus_device_id *dev_id) 2166 { 2167 struct net_device *net = NULL; 2168 struct net_device_context *net_device_ctx; 2169 struct netvsc_device_info device_info; 2170 struct netvsc_device *nvdev; 2171 int ret = -ENOMEM; 2172 2173 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2174 VRSS_CHANNEL_MAX); 2175 if (!net) 2176 goto no_net; 2177 2178 netif_carrier_off(net); 2179 2180 netvsc_init_settings(net); 2181 2182 net_device_ctx = netdev_priv(net); 2183 net_device_ctx->device_ctx = dev; 2184 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2185 if (netif_msg_probe(net_device_ctx)) 2186 netdev_dbg(net, "netvsc msg_enable: %d\n", 2187 net_device_ctx->msg_enable); 2188 2189 hv_set_drvdata(dev, net); 2190 2191 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2192 2193 spin_lock_init(&net_device_ctx->lock); 2194 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2195 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2196 2197 net_device_ctx->vf_stats 2198 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2199 if (!net_device_ctx->vf_stats) 2200 goto no_stats; 2201 2202 net->netdev_ops = &device_ops; 2203 net->ethtool_ops = ðtool_ops; 2204 SET_NETDEV_DEV(net, &dev->device); 2205 2206 /* We always need headroom for rndis header */ 2207 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2208 2209 /* Initialize the number of queues to be 1, we may change it if more 2210 * channels are offered later. 2211 */ 2212 netif_set_real_num_tx_queues(net, 1); 2213 netif_set_real_num_rx_queues(net, 1); 2214 2215 /* Notify the netvsc driver of the new device */ 2216 memset(&device_info, 0, sizeof(device_info)); 2217 device_info.num_chn = VRSS_CHANNEL_DEFAULT; 2218 device_info.send_sections = NETVSC_DEFAULT_TX; 2219 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE; 2220 device_info.recv_sections = NETVSC_DEFAULT_RX; 2221 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE; 2222 2223 nvdev = rndis_filter_device_add(dev, &device_info); 2224 if (IS_ERR(nvdev)) { 2225 ret = PTR_ERR(nvdev); 2226 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2227 goto rndis_failed; 2228 } 2229 2230 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 2231 2232 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2233 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2234 * all subchannels to show up, but that may not happen because 2235 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2236 * -> ... -> device_add() -> ... -> __device_attach() can't get 2237 * the device lock, so all the subchannels can't be processed -- 2238 * finally netvsc_subchan_work() hangs for ever. 2239 */ 2240 rtnl_lock(); 2241 2242 if (nvdev->num_chn > 1) 2243 schedule_work(&nvdev->subchan_work); 2244 2245 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2246 net->features = net->hw_features | 2247 NETIF_F_HIGHDMA | NETIF_F_SG | 2248 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2249 net->vlan_features = net->features; 2250 2251 netdev_lockdep_set_classes(net); 2252 2253 /* MTU range: 68 - 1500 or 65521 */ 2254 net->min_mtu = NETVSC_MTU_MIN; 2255 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2256 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2257 else 2258 net->max_mtu = ETH_DATA_LEN; 2259 2260 ret = register_netdevice(net); 2261 if (ret != 0) { 2262 pr_err("Unable to register netdev.\n"); 2263 goto register_failed; 2264 } 2265 2266 list_add(&net_device_ctx->list, &netvsc_dev_list); 2267 rtnl_unlock(); 2268 return 0; 2269 2270 register_failed: 2271 rtnl_unlock(); 2272 rndis_filter_device_remove(dev, nvdev); 2273 rndis_failed: 2274 free_percpu(net_device_ctx->vf_stats); 2275 no_stats: 2276 hv_set_drvdata(dev, NULL); 2277 free_netdev(net); 2278 no_net: 2279 return ret; 2280 } 2281 2282 static int netvsc_remove(struct hv_device *dev) 2283 { 2284 struct net_device_context *ndev_ctx; 2285 struct net_device *vf_netdev, *net; 2286 struct netvsc_device *nvdev; 2287 2288 net = hv_get_drvdata(dev); 2289 if (net == NULL) { 2290 dev_err(&dev->device, "No net device to remove\n"); 2291 return 0; 2292 } 2293 2294 ndev_ctx = netdev_priv(net); 2295 2296 cancel_delayed_work_sync(&ndev_ctx->dwork); 2297 2298 rtnl_lock(); 2299 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2300 if (nvdev) 2301 cancel_work_sync(&nvdev->subchan_work); 2302 2303 /* 2304 * Call to the vsc driver to let it know that the device is being 2305 * removed. Also blocks mtu and channel changes. 2306 */ 2307 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2308 if (vf_netdev) 2309 netvsc_unregister_vf(vf_netdev); 2310 2311 if (nvdev) 2312 rndis_filter_device_remove(dev, nvdev); 2313 2314 unregister_netdevice(net); 2315 list_del(&ndev_ctx->list); 2316 2317 rtnl_unlock(); 2318 2319 hv_set_drvdata(dev, NULL); 2320 2321 free_percpu(ndev_ctx->vf_stats); 2322 free_netdev(net); 2323 return 0; 2324 } 2325 2326 static const struct hv_vmbus_device_id id_table[] = { 2327 /* Network guid */ 2328 { HV_NIC_GUID, }, 2329 { }, 2330 }; 2331 2332 MODULE_DEVICE_TABLE(vmbus, id_table); 2333 2334 /* The one and only one */ 2335 static struct hv_driver netvsc_drv = { 2336 .name = KBUILD_MODNAME, 2337 .id_table = id_table, 2338 .probe = netvsc_probe, 2339 .remove = netvsc_remove, 2340 .driver = { 2341 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2342 }, 2343 }; 2344 2345 /* 2346 * On Hyper-V, every VF interface is matched with a corresponding 2347 * synthetic interface. The synthetic interface is presented first 2348 * to the guest. When the corresponding VF instance is registered, 2349 * we will take care of switching the data path. 2350 */ 2351 static int netvsc_netdev_event(struct notifier_block *this, 2352 unsigned long event, void *ptr) 2353 { 2354 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2355 2356 /* Skip our own events */ 2357 if (event_dev->netdev_ops == &device_ops) 2358 return NOTIFY_DONE; 2359 2360 /* Avoid non-Ethernet type devices */ 2361 if (event_dev->type != ARPHRD_ETHER) 2362 return NOTIFY_DONE; 2363 2364 /* Avoid Vlan dev with same MAC registering as VF */ 2365 if (is_vlan_dev(event_dev)) 2366 return NOTIFY_DONE; 2367 2368 /* Avoid Bonding master dev with same MAC registering as VF */ 2369 if ((event_dev->priv_flags & IFF_BONDING) && 2370 (event_dev->flags & IFF_MASTER)) 2371 return NOTIFY_DONE; 2372 2373 switch (event) { 2374 case NETDEV_REGISTER: 2375 return netvsc_register_vf(event_dev); 2376 case NETDEV_UNREGISTER: 2377 return netvsc_unregister_vf(event_dev); 2378 case NETDEV_UP: 2379 case NETDEV_DOWN: 2380 return netvsc_vf_changed(event_dev); 2381 default: 2382 return NOTIFY_DONE; 2383 } 2384 } 2385 2386 static struct notifier_block netvsc_netdev_notifier = { 2387 .notifier_call = netvsc_netdev_event, 2388 }; 2389 2390 static void __exit netvsc_drv_exit(void) 2391 { 2392 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2393 vmbus_driver_unregister(&netvsc_drv); 2394 } 2395 2396 static int __init netvsc_drv_init(void) 2397 { 2398 int ret; 2399 2400 if (ring_size < RING_SIZE_MIN) { 2401 ring_size = RING_SIZE_MIN; 2402 pr_info("Increased ring_size to %u (min allowed)\n", 2403 ring_size); 2404 } 2405 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2406 2407 ret = vmbus_driver_register(&netvsc_drv); 2408 if (ret) 2409 return ret; 2410 2411 register_netdevice_notifier(&netvsc_netdev_notifier); 2412 return 0; 2413 } 2414 2415 MODULE_LICENSE("GPL"); 2416 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2417 2418 module_init(netvsc_drv_init); 2419 module_exit(netvsc_drv_exit); 2420