xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
35 #include <linux/in.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
39 
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 
47 #include "hyperv_net.h"
48 
49 #define RING_SIZE_MIN	64
50 #define RETRY_US_LO	5000
51 #define RETRY_US_HI	10000
52 #define RETRY_MAX	2000	/* >10 sec */
53 
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56 
57 static unsigned int ring_size __ro_after_init = 128;
58 module_param(ring_size, uint, 0444);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init;
61 
62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
63 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
64 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
65 				NETIF_MSG_TX_ERR;
66 
67 static int debug = -1;
68 module_param(debug, int, 0444);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 
71 static LIST_HEAD(netvsc_dev_list);
72 
73 static void netvsc_change_rx_flags(struct net_device *net, int change)
74 {
75 	struct net_device_context *ndev_ctx = netdev_priv(net);
76 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
77 	int inc;
78 
79 	if (!vf_netdev)
80 		return;
81 
82 	if (change & IFF_PROMISC) {
83 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
84 		dev_set_promiscuity(vf_netdev, inc);
85 	}
86 
87 	if (change & IFF_ALLMULTI) {
88 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
89 		dev_set_allmulti(vf_netdev, inc);
90 	}
91 }
92 
93 static void netvsc_set_rx_mode(struct net_device *net)
94 {
95 	struct net_device_context *ndev_ctx = netdev_priv(net);
96 	struct net_device *vf_netdev;
97 	struct netvsc_device *nvdev;
98 
99 	rcu_read_lock();
100 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
101 	if (vf_netdev) {
102 		dev_uc_sync(vf_netdev, net);
103 		dev_mc_sync(vf_netdev, net);
104 	}
105 
106 	nvdev = rcu_dereference(ndev_ctx->nvdev);
107 	if (nvdev)
108 		rndis_filter_update(nvdev);
109 	rcu_read_unlock();
110 }
111 
112 static int netvsc_open(struct net_device *net)
113 {
114 	struct net_device_context *ndev_ctx = netdev_priv(net);
115 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
116 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
117 	struct rndis_device *rdev;
118 	int ret = 0;
119 
120 	netif_carrier_off(net);
121 
122 	/* Open up the device */
123 	ret = rndis_filter_open(nvdev);
124 	if (ret != 0) {
125 		netdev_err(net, "unable to open device (ret %d).\n", ret);
126 		return ret;
127 	}
128 
129 	rdev = nvdev->extension;
130 	if (!rdev->link_state) {
131 		netif_carrier_on(net);
132 		netif_tx_wake_all_queues(net);
133 	}
134 
135 	if (vf_netdev) {
136 		/* Setting synthetic device up transparently sets
137 		 * slave as up. If open fails, then slave will be
138 		 * still be offline (and not used).
139 		 */
140 		ret = dev_open(vf_netdev);
141 		if (ret)
142 			netdev_warn(net,
143 				    "unable to open slave: %s: %d\n",
144 				    vf_netdev->name, ret);
145 	}
146 	return 0;
147 }
148 
149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 {
151 	unsigned int retry = 0;
152 	int i;
153 
154 	/* Ensure pending bytes in ring are read */
155 	for (;;) {
156 		u32 aread = 0;
157 
158 		for (i = 0; i < nvdev->num_chn; i++) {
159 			struct vmbus_channel *chn
160 				= nvdev->chan_table[i].channel;
161 
162 			if (!chn)
163 				continue;
164 
165 			/* make sure receive not running now */
166 			napi_synchronize(&nvdev->chan_table[i].napi);
167 
168 			aread = hv_get_bytes_to_read(&chn->inbound);
169 			if (aread)
170 				break;
171 
172 			aread = hv_get_bytes_to_read(&chn->outbound);
173 			if (aread)
174 				break;
175 		}
176 
177 		if (aread == 0)
178 			return 0;
179 
180 		if (++retry > RETRY_MAX)
181 			return -ETIMEDOUT;
182 
183 		usleep_range(RETRY_US_LO, RETRY_US_HI);
184 	}
185 }
186 
187 static int netvsc_close(struct net_device *net)
188 {
189 	struct net_device_context *net_device_ctx = netdev_priv(net);
190 	struct net_device *vf_netdev
191 		= rtnl_dereference(net_device_ctx->vf_netdev);
192 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
193 	int ret;
194 
195 	netif_tx_disable(net);
196 
197 	/* No need to close rndis filter if it is removed already */
198 	if (!nvdev)
199 		return 0;
200 
201 	ret = rndis_filter_close(nvdev);
202 	if (ret != 0) {
203 		netdev_err(net, "unable to close device (ret %d).\n", ret);
204 		return ret;
205 	}
206 
207 	ret = netvsc_wait_until_empty(nvdev);
208 	if (ret)
209 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
210 
211 	if (vf_netdev)
212 		dev_close(vf_netdev);
213 
214 	return ret;
215 }
216 
217 static inline void *init_ppi_data(struct rndis_message *msg,
218 				  u32 ppi_size, u32 pkt_type)
219 {
220 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
221 	struct rndis_per_packet_info *ppi;
222 
223 	rndis_pkt->data_offset += ppi_size;
224 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
225 		+ rndis_pkt->per_pkt_info_len;
226 
227 	ppi->size = ppi_size;
228 	ppi->type = pkt_type;
229 	ppi->internal = 0;
230 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
231 
232 	rndis_pkt->per_pkt_info_len += ppi_size;
233 
234 	return ppi + 1;
235 }
236 
237 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
238  * packets. We can use ethtool to change UDP hash level when necessary.
239  */
240 static inline u32 netvsc_get_hash(
241 	struct sk_buff *skb,
242 	const struct net_device_context *ndc)
243 {
244 	struct flow_keys flow;
245 	u32 hash, pkt_proto = 0;
246 	static u32 hashrnd __read_mostly;
247 
248 	net_get_random_once(&hashrnd, sizeof(hashrnd));
249 
250 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
251 		return 0;
252 
253 	switch (flow.basic.ip_proto) {
254 	case IPPROTO_TCP:
255 		if (flow.basic.n_proto == htons(ETH_P_IP))
256 			pkt_proto = HV_TCP4_L4HASH;
257 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
258 			pkt_proto = HV_TCP6_L4HASH;
259 
260 		break;
261 
262 	case IPPROTO_UDP:
263 		if (flow.basic.n_proto == htons(ETH_P_IP))
264 			pkt_proto = HV_UDP4_L4HASH;
265 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
266 			pkt_proto = HV_UDP6_L4HASH;
267 
268 		break;
269 	}
270 
271 	if (pkt_proto & ndc->l4_hash) {
272 		return skb_get_hash(skb);
273 	} else {
274 		if (flow.basic.n_proto == htons(ETH_P_IP))
275 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
276 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
277 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
278 		else
279 			hash = 0;
280 
281 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
282 	}
283 
284 	return hash;
285 }
286 
287 static inline int netvsc_get_tx_queue(struct net_device *ndev,
288 				      struct sk_buff *skb, int old_idx)
289 {
290 	const struct net_device_context *ndc = netdev_priv(ndev);
291 	struct sock *sk = skb->sk;
292 	int q_idx;
293 
294 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
295 			      (VRSS_SEND_TAB_SIZE - 1)];
296 
297 	/* If queue index changed record the new value */
298 	if (q_idx != old_idx &&
299 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
300 		sk_tx_queue_set(sk, q_idx);
301 
302 	return q_idx;
303 }
304 
305 /*
306  * Select queue for transmit.
307  *
308  * If a valid queue has already been assigned, then use that.
309  * Otherwise compute tx queue based on hash and the send table.
310  *
311  * This is basically similar to default (__netdev_pick_tx) with the added step
312  * of using the host send_table when no other queue has been assigned.
313  *
314  * TODO support XPS - but get_xps_queue not exported
315  */
316 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
317 {
318 	int q_idx = sk_tx_queue_get(skb->sk);
319 
320 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
321 		/* If forwarding a packet, we use the recorded queue when
322 		 * available for better cache locality.
323 		 */
324 		if (skb_rx_queue_recorded(skb))
325 			q_idx = skb_get_rx_queue(skb);
326 		else
327 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
328 	}
329 
330 	return q_idx;
331 }
332 
333 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
334 			       struct net_device *sb_dev,
335 			       select_queue_fallback_t fallback)
336 {
337 	struct net_device_context *ndc = netdev_priv(ndev);
338 	struct net_device *vf_netdev;
339 	u16 txq;
340 
341 	rcu_read_lock();
342 	vf_netdev = rcu_dereference(ndc->vf_netdev);
343 	if (vf_netdev) {
344 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
345 
346 		if (vf_ops->ndo_select_queue)
347 			txq = vf_ops->ndo_select_queue(vf_netdev, skb,
348 						       sb_dev, fallback);
349 		else
350 			txq = fallback(vf_netdev, skb, NULL);
351 
352 		/* Record the queue selected by VF so that it can be
353 		 * used for common case where VF has more queues than
354 		 * the synthetic device.
355 		 */
356 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
357 	} else {
358 		txq = netvsc_pick_tx(ndev, skb);
359 	}
360 	rcu_read_unlock();
361 
362 	while (unlikely(txq >= ndev->real_num_tx_queues))
363 		txq -= ndev->real_num_tx_queues;
364 
365 	return txq;
366 }
367 
368 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
369 		       struct hv_page_buffer *pb)
370 {
371 	int j = 0;
372 
373 	/* Deal with compund pages by ignoring unused part
374 	 * of the page.
375 	 */
376 	page += (offset >> PAGE_SHIFT);
377 	offset &= ~PAGE_MASK;
378 
379 	while (len > 0) {
380 		unsigned long bytes;
381 
382 		bytes = PAGE_SIZE - offset;
383 		if (bytes > len)
384 			bytes = len;
385 		pb[j].pfn = page_to_pfn(page);
386 		pb[j].offset = offset;
387 		pb[j].len = bytes;
388 
389 		offset += bytes;
390 		len -= bytes;
391 
392 		if (offset == PAGE_SIZE && len) {
393 			page++;
394 			offset = 0;
395 			j++;
396 		}
397 	}
398 
399 	return j + 1;
400 }
401 
402 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
403 			   struct hv_netvsc_packet *packet,
404 			   struct hv_page_buffer *pb)
405 {
406 	u32 slots_used = 0;
407 	char *data = skb->data;
408 	int frags = skb_shinfo(skb)->nr_frags;
409 	int i;
410 
411 	/* The packet is laid out thus:
412 	 * 1. hdr: RNDIS header and PPI
413 	 * 2. skb linear data
414 	 * 3. skb fragment data
415 	 */
416 	slots_used += fill_pg_buf(virt_to_page(hdr),
417 				  offset_in_page(hdr),
418 				  len, &pb[slots_used]);
419 
420 	packet->rmsg_size = len;
421 	packet->rmsg_pgcnt = slots_used;
422 
423 	slots_used += fill_pg_buf(virt_to_page(data),
424 				offset_in_page(data),
425 				skb_headlen(skb), &pb[slots_used]);
426 
427 	for (i = 0; i < frags; i++) {
428 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
429 
430 		slots_used += fill_pg_buf(skb_frag_page(frag),
431 					frag->page_offset,
432 					skb_frag_size(frag), &pb[slots_used]);
433 	}
434 	return slots_used;
435 }
436 
437 static int count_skb_frag_slots(struct sk_buff *skb)
438 {
439 	int i, frags = skb_shinfo(skb)->nr_frags;
440 	int pages = 0;
441 
442 	for (i = 0; i < frags; i++) {
443 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
444 		unsigned long size = skb_frag_size(frag);
445 		unsigned long offset = frag->page_offset;
446 
447 		/* Skip unused frames from start of page */
448 		offset &= ~PAGE_MASK;
449 		pages += PFN_UP(offset + size);
450 	}
451 	return pages;
452 }
453 
454 static int netvsc_get_slots(struct sk_buff *skb)
455 {
456 	char *data = skb->data;
457 	unsigned int offset = offset_in_page(data);
458 	unsigned int len = skb_headlen(skb);
459 	int slots;
460 	int frag_slots;
461 
462 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
463 	frag_slots = count_skb_frag_slots(skb);
464 	return slots + frag_slots;
465 }
466 
467 static u32 net_checksum_info(struct sk_buff *skb)
468 {
469 	if (skb->protocol == htons(ETH_P_IP)) {
470 		struct iphdr *ip = ip_hdr(skb);
471 
472 		if (ip->protocol == IPPROTO_TCP)
473 			return TRANSPORT_INFO_IPV4_TCP;
474 		else if (ip->protocol == IPPROTO_UDP)
475 			return TRANSPORT_INFO_IPV4_UDP;
476 	} else {
477 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
478 
479 		if (ip6->nexthdr == IPPROTO_TCP)
480 			return TRANSPORT_INFO_IPV6_TCP;
481 		else if (ip6->nexthdr == IPPROTO_UDP)
482 			return TRANSPORT_INFO_IPV6_UDP;
483 	}
484 
485 	return TRANSPORT_INFO_NOT_IP;
486 }
487 
488 /* Send skb on the slave VF device. */
489 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
490 			  struct sk_buff *skb)
491 {
492 	struct net_device_context *ndev_ctx = netdev_priv(net);
493 	unsigned int len = skb->len;
494 	int rc;
495 
496 	skb->dev = vf_netdev;
497 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
498 
499 	rc = dev_queue_xmit(skb);
500 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
501 		struct netvsc_vf_pcpu_stats *pcpu_stats
502 			= this_cpu_ptr(ndev_ctx->vf_stats);
503 
504 		u64_stats_update_begin(&pcpu_stats->syncp);
505 		pcpu_stats->tx_packets++;
506 		pcpu_stats->tx_bytes += len;
507 		u64_stats_update_end(&pcpu_stats->syncp);
508 	} else {
509 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
510 	}
511 
512 	return rc;
513 }
514 
515 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
516 {
517 	struct net_device_context *net_device_ctx = netdev_priv(net);
518 	struct hv_netvsc_packet *packet = NULL;
519 	int ret;
520 	unsigned int num_data_pgs;
521 	struct rndis_message *rndis_msg;
522 	struct net_device *vf_netdev;
523 	u32 rndis_msg_size;
524 	u32 hash;
525 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
526 
527 	/* if VF is present and up then redirect packets
528 	 * already called with rcu_read_lock_bh
529 	 */
530 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
531 	if (vf_netdev && netif_running(vf_netdev) &&
532 	    !netpoll_tx_running(net))
533 		return netvsc_vf_xmit(net, vf_netdev, skb);
534 
535 	/* We will atmost need two pages to describe the rndis
536 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
537 	 * of pages in a single packet. If skb is scattered around
538 	 * more pages we try linearizing it.
539 	 */
540 
541 	num_data_pgs = netvsc_get_slots(skb) + 2;
542 
543 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
544 		++net_device_ctx->eth_stats.tx_scattered;
545 
546 		if (skb_linearize(skb))
547 			goto no_memory;
548 
549 		num_data_pgs = netvsc_get_slots(skb) + 2;
550 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
551 			++net_device_ctx->eth_stats.tx_too_big;
552 			goto drop;
553 		}
554 	}
555 
556 	/*
557 	 * Place the rndis header in the skb head room and
558 	 * the skb->cb will be used for hv_netvsc_packet
559 	 * structure.
560 	 */
561 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
562 	if (ret)
563 		goto no_memory;
564 
565 	/* Use the skb control buffer for building up the packet */
566 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
567 			FIELD_SIZEOF(struct sk_buff, cb));
568 	packet = (struct hv_netvsc_packet *)skb->cb;
569 
570 	packet->q_idx = skb_get_queue_mapping(skb);
571 
572 	packet->total_data_buflen = skb->len;
573 	packet->total_bytes = skb->len;
574 	packet->total_packets = 1;
575 
576 	rndis_msg = (struct rndis_message *)skb->head;
577 
578 	/* Add the rndis header */
579 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
580 	rndis_msg->msg_len = packet->total_data_buflen;
581 
582 	rndis_msg->msg.pkt = (struct rndis_packet) {
583 		.data_offset = sizeof(struct rndis_packet),
584 		.data_len = packet->total_data_buflen,
585 		.per_pkt_info_offset = sizeof(struct rndis_packet),
586 	};
587 
588 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
589 
590 	hash = skb_get_hash_raw(skb);
591 	if (hash != 0 && net->real_num_tx_queues > 1) {
592 		u32 *hash_info;
593 
594 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
595 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
596 					  NBL_HASH_VALUE);
597 		*hash_info = hash;
598 	}
599 
600 	if (skb_vlan_tag_present(skb)) {
601 		struct ndis_pkt_8021q_info *vlan;
602 
603 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
604 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
605 				     IEEE_8021Q_INFO);
606 
607 		vlan->value = 0;
608 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
609 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
610 				VLAN_PRIO_SHIFT;
611 	}
612 
613 	if (skb_is_gso(skb)) {
614 		struct ndis_tcp_lso_info *lso_info;
615 
616 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
617 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
618 					 TCP_LARGESEND_PKTINFO);
619 
620 		lso_info->value = 0;
621 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
622 		if (skb->protocol == htons(ETH_P_IP)) {
623 			lso_info->lso_v2_transmit.ip_version =
624 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
625 			ip_hdr(skb)->tot_len = 0;
626 			ip_hdr(skb)->check = 0;
627 			tcp_hdr(skb)->check =
628 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
629 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
630 		} else {
631 			lso_info->lso_v2_transmit.ip_version =
632 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
633 			ipv6_hdr(skb)->payload_len = 0;
634 			tcp_hdr(skb)->check =
635 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
636 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 		}
638 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
639 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
640 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
641 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
642 			struct ndis_tcp_ip_checksum_info *csum_info;
643 
644 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
645 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
646 						  TCPIP_CHKSUM_PKTINFO);
647 
648 			csum_info->value = 0;
649 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
650 
651 			if (skb->protocol == htons(ETH_P_IP)) {
652 				csum_info->transmit.is_ipv4 = 1;
653 
654 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
655 					csum_info->transmit.tcp_checksum = 1;
656 				else
657 					csum_info->transmit.udp_checksum = 1;
658 			} else {
659 				csum_info->transmit.is_ipv6 = 1;
660 
661 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
662 					csum_info->transmit.tcp_checksum = 1;
663 				else
664 					csum_info->transmit.udp_checksum = 1;
665 			}
666 		} else {
667 			/* Can't do offload of this type of checksum */
668 			if (skb_checksum_help(skb))
669 				goto drop;
670 		}
671 	}
672 
673 	/* Start filling in the page buffers with the rndis hdr */
674 	rndis_msg->msg_len += rndis_msg_size;
675 	packet->total_data_buflen = rndis_msg->msg_len;
676 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
677 					       skb, packet, pb);
678 
679 	/* timestamp packet in software */
680 	skb_tx_timestamp(skb);
681 
682 	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
683 	if (likely(ret == 0))
684 		return NETDEV_TX_OK;
685 
686 	if (ret == -EAGAIN) {
687 		++net_device_ctx->eth_stats.tx_busy;
688 		return NETDEV_TX_BUSY;
689 	}
690 
691 	if (ret == -ENOSPC)
692 		++net_device_ctx->eth_stats.tx_no_space;
693 
694 drop:
695 	dev_kfree_skb_any(skb);
696 	net->stats.tx_dropped++;
697 
698 	return NETDEV_TX_OK;
699 
700 no_memory:
701 	++net_device_ctx->eth_stats.tx_no_memory;
702 	goto drop;
703 }
704 
705 /*
706  * netvsc_linkstatus_callback - Link up/down notification
707  */
708 void netvsc_linkstatus_callback(struct net_device *net,
709 				struct rndis_message *resp)
710 {
711 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
712 	struct net_device_context *ndev_ctx = netdev_priv(net);
713 	struct netvsc_reconfig *event;
714 	unsigned long flags;
715 
716 	/* Update the physical link speed when changing to another vSwitch */
717 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
718 		u32 speed;
719 
720 		speed = *(u32 *)((void *)indicate
721 				 + indicate->status_buf_offset) / 10000;
722 		ndev_ctx->speed = speed;
723 		return;
724 	}
725 
726 	/* Handle these link change statuses below */
727 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
728 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
729 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
730 		return;
731 
732 	if (net->reg_state != NETREG_REGISTERED)
733 		return;
734 
735 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
736 	if (!event)
737 		return;
738 	event->event = indicate->status;
739 
740 	spin_lock_irqsave(&ndev_ctx->lock, flags);
741 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
742 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
743 
744 	schedule_delayed_work(&ndev_ctx->dwork, 0);
745 }
746 
747 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
748 					     struct netvsc_channel *nvchan)
749 {
750 	struct napi_struct *napi = &nvchan->napi;
751 	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
752 	const struct ndis_tcp_ip_checksum_info *csum_info =
753 						nvchan->rsc.csum_info;
754 	struct sk_buff *skb;
755 	int i;
756 
757 	skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
758 	if (!skb)
759 		return skb;
760 
761 	/*
762 	 * Copy to skb. This copy is needed here since the memory pointed by
763 	 * hv_netvsc_packet cannot be deallocated
764 	 */
765 	for (i = 0; i < nvchan->rsc.cnt; i++)
766 		skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
767 
768 	skb->protocol = eth_type_trans(skb, net);
769 
770 	/* skb is already created with CHECKSUM_NONE */
771 	skb_checksum_none_assert(skb);
772 
773 	/*
774 	 * In Linux, the IP checksum is always checked.
775 	 * Do L4 checksum offload if enabled and present.
776 	 */
777 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
778 		if (csum_info->receive.tcp_checksum_succeeded ||
779 		    csum_info->receive.udp_checksum_succeeded)
780 			skb->ip_summed = CHECKSUM_UNNECESSARY;
781 	}
782 
783 	if (vlan) {
784 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
785 
786 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
787 				       vlan_tci);
788 	}
789 
790 	return skb;
791 }
792 
793 /*
794  * netvsc_recv_callback -  Callback when we receive a packet from the
795  * "wire" on the specified device.
796  */
797 int netvsc_recv_callback(struct net_device *net,
798 			 struct netvsc_device *net_device,
799 			 struct netvsc_channel *nvchan)
800 {
801 	struct net_device_context *net_device_ctx = netdev_priv(net);
802 	struct vmbus_channel *channel = nvchan->channel;
803 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
804 	struct sk_buff *skb;
805 	struct netvsc_stats *rx_stats;
806 
807 	if (net->reg_state != NETREG_REGISTERED)
808 		return NVSP_STAT_FAIL;
809 
810 	/* Allocate a skb - TODO direct I/O to pages? */
811 	skb = netvsc_alloc_recv_skb(net, nvchan);
812 
813 	if (unlikely(!skb)) {
814 		++net_device_ctx->eth_stats.rx_no_memory;
815 		rcu_read_unlock();
816 		return NVSP_STAT_FAIL;
817 	}
818 
819 	skb_record_rx_queue(skb, q_idx);
820 
821 	/*
822 	 * Even if injecting the packet, record the statistics
823 	 * on the synthetic device because modifying the VF device
824 	 * statistics will not work correctly.
825 	 */
826 	rx_stats = &nvchan->rx_stats;
827 	u64_stats_update_begin(&rx_stats->syncp);
828 	rx_stats->packets++;
829 	rx_stats->bytes += nvchan->rsc.pktlen;
830 
831 	if (skb->pkt_type == PACKET_BROADCAST)
832 		++rx_stats->broadcast;
833 	else if (skb->pkt_type == PACKET_MULTICAST)
834 		++rx_stats->multicast;
835 	u64_stats_update_end(&rx_stats->syncp);
836 
837 	napi_gro_receive(&nvchan->napi, skb);
838 	return NVSP_STAT_SUCCESS;
839 }
840 
841 static void netvsc_get_drvinfo(struct net_device *net,
842 			       struct ethtool_drvinfo *info)
843 {
844 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
845 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
846 }
847 
848 static void netvsc_get_channels(struct net_device *net,
849 				struct ethtool_channels *channel)
850 {
851 	struct net_device_context *net_device_ctx = netdev_priv(net);
852 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
853 
854 	if (nvdev) {
855 		channel->max_combined	= nvdev->max_chn;
856 		channel->combined_count = nvdev->num_chn;
857 	}
858 }
859 
860 static int netvsc_detach(struct net_device *ndev,
861 			 struct netvsc_device *nvdev)
862 {
863 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
864 	struct hv_device *hdev = ndev_ctx->device_ctx;
865 	int ret;
866 
867 	/* Don't try continuing to try and setup sub channels */
868 	if (cancel_work_sync(&nvdev->subchan_work))
869 		nvdev->num_chn = 1;
870 
871 	/* If device was up (receiving) then shutdown */
872 	if (netif_running(ndev)) {
873 		netif_tx_disable(ndev);
874 
875 		ret = rndis_filter_close(nvdev);
876 		if (ret) {
877 			netdev_err(ndev,
878 				   "unable to close device (ret %d).\n", ret);
879 			return ret;
880 		}
881 
882 		ret = netvsc_wait_until_empty(nvdev);
883 		if (ret) {
884 			netdev_err(ndev,
885 				   "Ring buffer not empty after closing rndis\n");
886 			return ret;
887 		}
888 	}
889 
890 	netif_device_detach(ndev);
891 
892 	rndis_filter_device_remove(hdev, nvdev);
893 
894 	return 0;
895 }
896 
897 static int netvsc_attach(struct net_device *ndev,
898 			 struct netvsc_device_info *dev_info)
899 {
900 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
901 	struct hv_device *hdev = ndev_ctx->device_ctx;
902 	struct netvsc_device *nvdev;
903 	struct rndis_device *rdev;
904 	int ret;
905 
906 	nvdev = rndis_filter_device_add(hdev, dev_info);
907 	if (IS_ERR(nvdev))
908 		return PTR_ERR(nvdev);
909 
910 	if (nvdev->num_chn > 1) {
911 		ret = rndis_set_subchannel(ndev, nvdev);
912 
913 		/* if unavailable, just proceed with one queue */
914 		if (ret) {
915 			nvdev->max_chn = 1;
916 			nvdev->num_chn = 1;
917 		}
918 	}
919 
920 	/* In any case device is now ready */
921 	netif_device_attach(ndev);
922 
923 	/* Note: enable and attach happen when sub-channels setup */
924 	netif_carrier_off(ndev);
925 
926 	if (netif_running(ndev)) {
927 		ret = rndis_filter_open(nvdev);
928 		if (ret)
929 			return ret;
930 
931 		rdev = nvdev->extension;
932 		if (!rdev->link_state)
933 			netif_carrier_on(ndev);
934 	}
935 
936 	return 0;
937 }
938 
939 static int netvsc_set_channels(struct net_device *net,
940 			       struct ethtool_channels *channels)
941 {
942 	struct net_device_context *net_device_ctx = netdev_priv(net);
943 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
944 	unsigned int orig, count = channels->combined_count;
945 	struct netvsc_device_info device_info;
946 	int ret;
947 
948 	/* We do not support separate count for rx, tx, or other */
949 	if (count == 0 ||
950 	    channels->rx_count || channels->tx_count || channels->other_count)
951 		return -EINVAL;
952 
953 	if (!nvdev || nvdev->destroy)
954 		return -ENODEV;
955 
956 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
957 		return -EINVAL;
958 
959 	if (count > nvdev->max_chn)
960 		return -EINVAL;
961 
962 	orig = nvdev->num_chn;
963 
964 	memset(&device_info, 0, sizeof(device_info));
965 	device_info.num_chn = count;
966 	device_info.send_sections = nvdev->send_section_cnt;
967 	device_info.send_section_size = nvdev->send_section_size;
968 	device_info.recv_sections = nvdev->recv_section_cnt;
969 	device_info.recv_section_size = nvdev->recv_section_size;
970 
971 	ret = netvsc_detach(net, nvdev);
972 	if (ret)
973 		return ret;
974 
975 	ret = netvsc_attach(net, &device_info);
976 	if (ret) {
977 		device_info.num_chn = orig;
978 		if (netvsc_attach(net, &device_info))
979 			netdev_err(net, "restoring channel setting failed\n");
980 	}
981 
982 	return ret;
983 }
984 
985 static bool
986 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
987 {
988 	struct ethtool_link_ksettings diff1 = *cmd;
989 	struct ethtool_link_ksettings diff2 = {};
990 
991 	diff1.base.speed = 0;
992 	diff1.base.duplex = 0;
993 	/* advertising and cmd are usually set */
994 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
995 	diff1.base.cmd = 0;
996 	/* We set port to PORT_OTHER */
997 	diff2.base.port = PORT_OTHER;
998 
999 	return !memcmp(&diff1, &diff2, sizeof(diff1));
1000 }
1001 
1002 static void netvsc_init_settings(struct net_device *dev)
1003 {
1004 	struct net_device_context *ndc = netdev_priv(dev);
1005 
1006 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1007 
1008 	ndc->speed = SPEED_UNKNOWN;
1009 	ndc->duplex = DUPLEX_FULL;
1010 
1011 	dev->features = NETIF_F_LRO;
1012 }
1013 
1014 static int netvsc_get_link_ksettings(struct net_device *dev,
1015 				     struct ethtool_link_ksettings *cmd)
1016 {
1017 	struct net_device_context *ndc = netdev_priv(dev);
1018 
1019 	cmd->base.speed = ndc->speed;
1020 	cmd->base.duplex = ndc->duplex;
1021 	cmd->base.port = PORT_OTHER;
1022 
1023 	return 0;
1024 }
1025 
1026 static int netvsc_set_link_ksettings(struct net_device *dev,
1027 				     const struct ethtool_link_ksettings *cmd)
1028 {
1029 	struct net_device_context *ndc = netdev_priv(dev);
1030 	u32 speed;
1031 
1032 	speed = cmd->base.speed;
1033 	if (!ethtool_validate_speed(speed) ||
1034 	    !ethtool_validate_duplex(cmd->base.duplex) ||
1035 	    !netvsc_validate_ethtool_ss_cmd(cmd))
1036 		return -EINVAL;
1037 
1038 	ndc->speed = speed;
1039 	ndc->duplex = cmd->base.duplex;
1040 
1041 	return 0;
1042 }
1043 
1044 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1045 {
1046 	struct net_device_context *ndevctx = netdev_priv(ndev);
1047 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1048 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1049 	int orig_mtu = ndev->mtu;
1050 	struct netvsc_device_info device_info;
1051 	int ret = 0;
1052 
1053 	if (!nvdev || nvdev->destroy)
1054 		return -ENODEV;
1055 
1056 	/* Change MTU of underlying VF netdev first. */
1057 	if (vf_netdev) {
1058 		ret = dev_set_mtu(vf_netdev, mtu);
1059 		if (ret)
1060 			return ret;
1061 	}
1062 
1063 	memset(&device_info, 0, sizeof(device_info));
1064 	device_info.num_chn = nvdev->num_chn;
1065 	device_info.send_sections = nvdev->send_section_cnt;
1066 	device_info.send_section_size = nvdev->send_section_size;
1067 	device_info.recv_sections = nvdev->recv_section_cnt;
1068 	device_info.recv_section_size = nvdev->recv_section_size;
1069 
1070 	ret = netvsc_detach(ndev, nvdev);
1071 	if (ret)
1072 		goto rollback_vf;
1073 
1074 	ndev->mtu = mtu;
1075 
1076 	ret = netvsc_attach(ndev, &device_info);
1077 	if (ret)
1078 		goto rollback;
1079 
1080 	return 0;
1081 
1082 rollback:
1083 	/* Attempt rollback to original MTU */
1084 	ndev->mtu = orig_mtu;
1085 
1086 	if (netvsc_attach(ndev, &device_info))
1087 		netdev_err(ndev, "restoring mtu failed\n");
1088 rollback_vf:
1089 	if (vf_netdev)
1090 		dev_set_mtu(vf_netdev, orig_mtu);
1091 
1092 	return ret;
1093 }
1094 
1095 static void netvsc_get_vf_stats(struct net_device *net,
1096 				struct netvsc_vf_pcpu_stats *tot)
1097 {
1098 	struct net_device_context *ndev_ctx = netdev_priv(net);
1099 	int i;
1100 
1101 	memset(tot, 0, sizeof(*tot));
1102 
1103 	for_each_possible_cpu(i) {
1104 		const struct netvsc_vf_pcpu_stats *stats
1105 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1106 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1107 		unsigned int start;
1108 
1109 		do {
1110 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1111 			rx_packets = stats->rx_packets;
1112 			tx_packets = stats->tx_packets;
1113 			rx_bytes = stats->rx_bytes;
1114 			tx_bytes = stats->tx_bytes;
1115 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1116 
1117 		tot->rx_packets += rx_packets;
1118 		tot->tx_packets += tx_packets;
1119 		tot->rx_bytes   += rx_bytes;
1120 		tot->tx_bytes   += tx_bytes;
1121 		tot->tx_dropped += stats->tx_dropped;
1122 	}
1123 }
1124 
1125 static void netvsc_get_pcpu_stats(struct net_device *net,
1126 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1127 {
1128 	struct net_device_context *ndev_ctx = netdev_priv(net);
1129 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1130 	int i;
1131 
1132 	/* fetch percpu stats of vf */
1133 	for_each_possible_cpu(i) {
1134 		const struct netvsc_vf_pcpu_stats *stats =
1135 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1136 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1137 		unsigned int start;
1138 
1139 		do {
1140 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1141 			this_tot->vf_rx_packets = stats->rx_packets;
1142 			this_tot->vf_tx_packets = stats->tx_packets;
1143 			this_tot->vf_rx_bytes = stats->rx_bytes;
1144 			this_tot->vf_tx_bytes = stats->tx_bytes;
1145 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1146 		this_tot->rx_packets = this_tot->vf_rx_packets;
1147 		this_tot->tx_packets = this_tot->vf_tx_packets;
1148 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1149 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1150 	}
1151 
1152 	/* fetch percpu stats of netvsc */
1153 	for (i = 0; i < nvdev->num_chn; i++) {
1154 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1155 		const struct netvsc_stats *stats;
1156 		struct netvsc_ethtool_pcpu_stats *this_tot =
1157 			&pcpu_tot[nvchan->channel->target_cpu];
1158 		u64 packets, bytes;
1159 		unsigned int start;
1160 
1161 		stats = &nvchan->tx_stats;
1162 		do {
1163 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1164 			packets = stats->packets;
1165 			bytes = stats->bytes;
1166 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1167 
1168 		this_tot->tx_bytes	+= bytes;
1169 		this_tot->tx_packets	+= packets;
1170 
1171 		stats = &nvchan->rx_stats;
1172 		do {
1173 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1174 			packets = stats->packets;
1175 			bytes = stats->bytes;
1176 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1177 
1178 		this_tot->rx_bytes	+= bytes;
1179 		this_tot->rx_packets	+= packets;
1180 	}
1181 }
1182 
1183 static void netvsc_get_stats64(struct net_device *net,
1184 			       struct rtnl_link_stats64 *t)
1185 {
1186 	struct net_device_context *ndev_ctx = netdev_priv(net);
1187 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1188 	struct netvsc_vf_pcpu_stats vf_tot;
1189 	int i;
1190 
1191 	if (!nvdev)
1192 		return;
1193 
1194 	netdev_stats_to_stats64(t, &net->stats);
1195 
1196 	netvsc_get_vf_stats(net, &vf_tot);
1197 	t->rx_packets += vf_tot.rx_packets;
1198 	t->tx_packets += vf_tot.tx_packets;
1199 	t->rx_bytes   += vf_tot.rx_bytes;
1200 	t->tx_bytes   += vf_tot.tx_bytes;
1201 	t->tx_dropped += vf_tot.tx_dropped;
1202 
1203 	for (i = 0; i < nvdev->num_chn; i++) {
1204 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1205 		const struct netvsc_stats *stats;
1206 		u64 packets, bytes, multicast;
1207 		unsigned int start;
1208 
1209 		stats = &nvchan->tx_stats;
1210 		do {
1211 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1212 			packets = stats->packets;
1213 			bytes = stats->bytes;
1214 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1215 
1216 		t->tx_bytes	+= bytes;
1217 		t->tx_packets	+= packets;
1218 
1219 		stats = &nvchan->rx_stats;
1220 		do {
1221 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1222 			packets = stats->packets;
1223 			bytes = stats->bytes;
1224 			multicast = stats->multicast + stats->broadcast;
1225 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1226 
1227 		t->rx_bytes	+= bytes;
1228 		t->rx_packets	+= packets;
1229 		t->multicast	+= multicast;
1230 	}
1231 }
1232 
1233 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1234 {
1235 	struct net_device_context *ndc = netdev_priv(ndev);
1236 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1237 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1238 	struct sockaddr *addr = p;
1239 	int err;
1240 
1241 	err = eth_prepare_mac_addr_change(ndev, p);
1242 	if (err)
1243 		return err;
1244 
1245 	if (!nvdev)
1246 		return -ENODEV;
1247 
1248 	if (vf_netdev) {
1249 		err = dev_set_mac_address(vf_netdev, addr);
1250 		if (err)
1251 			return err;
1252 	}
1253 
1254 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1255 	if (!err) {
1256 		eth_commit_mac_addr_change(ndev, p);
1257 	} else if (vf_netdev) {
1258 		/* rollback change on VF */
1259 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1260 		dev_set_mac_address(vf_netdev, addr);
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 static const struct {
1267 	char name[ETH_GSTRING_LEN];
1268 	u16 offset;
1269 } netvsc_stats[] = {
1270 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1271 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1272 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1273 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1274 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1275 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1276 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1277 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1278 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1279 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1280 }, pcpu_stats[] = {
1281 	{ "cpu%u_rx_packets",
1282 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1283 	{ "cpu%u_rx_bytes",
1284 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1285 	{ "cpu%u_tx_packets",
1286 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1287 	{ "cpu%u_tx_bytes",
1288 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1289 	{ "cpu%u_vf_rx_packets",
1290 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1291 	{ "cpu%u_vf_rx_bytes",
1292 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1293 	{ "cpu%u_vf_tx_packets",
1294 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1295 	{ "cpu%u_vf_tx_bytes",
1296 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1297 }, vf_stats[] = {
1298 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1299 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1300 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1301 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1302 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1303 };
1304 
1305 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1306 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1307 
1308 /* statistics per queue (rx/tx packets/bytes) */
1309 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1310 
1311 /* 4 statistics per queue (rx/tx packets/bytes) */
1312 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1313 
1314 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1315 {
1316 	struct net_device_context *ndc = netdev_priv(dev);
1317 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1318 
1319 	if (!nvdev)
1320 		return -ENODEV;
1321 
1322 	switch (string_set) {
1323 	case ETH_SS_STATS:
1324 		return NETVSC_GLOBAL_STATS_LEN
1325 			+ NETVSC_VF_STATS_LEN
1326 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1327 			+ NETVSC_PCPU_STATS_LEN;
1328 	default:
1329 		return -EINVAL;
1330 	}
1331 }
1332 
1333 static void netvsc_get_ethtool_stats(struct net_device *dev,
1334 				     struct ethtool_stats *stats, u64 *data)
1335 {
1336 	struct net_device_context *ndc = netdev_priv(dev);
1337 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1338 	const void *nds = &ndc->eth_stats;
1339 	const struct netvsc_stats *qstats;
1340 	struct netvsc_vf_pcpu_stats sum;
1341 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1342 	unsigned int start;
1343 	u64 packets, bytes;
1344 	int i, j, cpu;
1345 
1346 	if (!nvdev)
1347 		return;
1348 
1349 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1350 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1351 
1352 	netvsc_get_vf_stats(dev, &sum);
1353 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1354 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1355 
1356 	for (j = 0; j < nvdev->num_chn; j++) {
1357 		qstats = &nvdev->chan_table[j].tx_stats;
1358 
1359 		do {
1360 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1361 			packets = qstats->packets;
1362 			bytes = qstats->bytes;
1363 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1364 		data[i++] = packets;
1365 		data[i++] = bytes;
1366 
1367 		qstats = &nvdev->chan_table[j].rx_stats;
1368 		do {
1369 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1370 			packets = qstats->packets;
1371 			bytes = qstats->bytes;
1372 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1373 		data[i++] = packets;
1374 		data[i++] = bytes;
1375 	}
1376 
1377 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1378 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1379 				  GFP_KERNEL);
1380 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1381 	for_each_present_cpu(cpu) {
1382 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1383 
1384 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1385 			data[i++] = *(u64 *)((void *)this_sum
1386 					     + pcpu_stats[j].offset);
1387 	}
1388 	kvfree(pcpu_sum);
1389 }
1390 
1391 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1392 {
1393 	struct net_device_context *ndc = netdev_priv(dev);
1394 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1395 	u8 *p = data;
1396 	int i, cpu;
1397 
1398 	if (!nvdev)
1399 		return;
1400 
1401 	switch (stringset) {
1402 	case ETH_SS_STATS:
1403 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1404 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1405 			p += ETH_GSTRING_LEN;
1406 		}
1407 
1408 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1409 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1410 			p += ETH_GSTRING_LEN;
1411 		}
1412 
1413 		for (i = 0; i < nvdev->num_chn; i++) {
1414 			sprintf(p, "tx_queue_%u_packets", i);
1415 			p += ETH_GSTRING_LEN;
1416 			sprintf(p, "tx_queue_%u_bytes", i);
1417 			p += ETH_GSTRING_LEN;
1418 			sprintf(p, "rx_queue_%u_packets", i);
1419 			p += ETH_GSTRING_LEN;
1420 			sprintf(p, "rx_queue_%u_bytes", i);
1421 			p += ETH_GSTRING_LEN;
1422 		}
1423 
1424 		for_each_present_cpu(cpu) {
1425 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1426 				sprintf(p, pcpu_stats[i].name, cpu);
1427 				p += ETH_GSTRING_LEN;
1428 			}
1429 		}
1430 
1431 		break;
1432 	}
1433 }
1434 
1435 static int
1436 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1437 			 struct ethtool_rxnfc *info)
1438 {
1439 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1440 
1441 	info->data = RXH_IP_SRC | RXH_IP_DST;
1442 
1443 	switch (info->flow_type) {
1444 	case TCP_V4_FLOW:
1445 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1446 			info->data |= l4_flag;
1447 
1448 		break;
1449 
1450 	case TCP_V6_FLOW:
1451 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1452 			info->data |= l4_flag;
1453 
1454 		break;
1455 
1456 	case UDP_V4_FLOW:
1457 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1458 			info->data |= l4_flag;
1459 
1460 		break;
1461 
1462 	case UDP_V6_FLOW:
1463 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1464 			info->data |= l4_flag;
1465 
1466 		break;
1467 
1468 	case IPV4_FLOW:
1469 	case IPV6_FLOW:
1470 		break;
1471 	default:
1472 		info->data = 0;
1473 		break;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 static int
1480 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1481 		 u32 *rules)
1482 {
1483 	struct net_device_context *ndc = netdev_priv(dev);
1484 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1485 
1486 	if (!nvdev)
1487 		return -ENODEV;
1488 
1489 	switch (info->cmd) {
1490 	case ETHTOOL_GRXRINGS:
1491 		info->data = nvdev->num_chn;
1492 		return 0;
1493 
1494 	case ETHTOOL_GRXFH:
1495 		return netvsc_get_rss_hash_opts(ndc, info);
1496 	}
1497 	return -EOPNOTSUPP;
1498 }
1499 
1500 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1501 				    struct ethtool_rxnfc *info)
1502 {
1503 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1504 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1505 		switch (info->flow_type) {
1506 		case TCP_V4_FLOW:
1507 			ndc->l4_hash |= HV_TCP4_L4HASH;
1508 			break;
1509 
1510 		case TCP_V6_FLOW:
1511 			ndc->l4_hash |= HV_TCP6_L4HASH;
1512 			break;
1513 
1514 		case UDP_V4_FLOW:
1515 			ndc->l4_hash |= HV_UDP4_L4HASH;
1516 			break;
1517 
1518 		case UDP_V6_FLOW:
1519 			ndc->l4_hash |= HV_UDP6_L4HASH;
1520 			break;
1521 
1522 		default:
1523 			return -EOPNOTSUPP;
1524 		}
1525 
1526 		return 0;
1527 	}
1528 
1529 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1530 		switch (info->flow_type) {
1531 		case TCP_V4_FLOW:
1532 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1533 			break;
1534 
1535 		case TCP_V6_FLOW:
1536 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1537 			break;
1538 
1539 		case UDP_V4_FLOW:
1540 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1541 			break;
1542 
1543 		case UDP_V6_FLOW:
1544 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1545 			break;
1546 
1547 		default:
1548 			return -EOPNOTSUPP;
1549 		}
1550 
1551 		return 0;
1552 	}
1553 
1554 	return -EOPNOTSUPP;
1555 }
1556 
1557 static int
1558 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1559 {
1560 	struct net_device_context *ndc = netdev_priv(ndev);
1561 
1562 	if (info->cmd == ETHTOOL_SRXFH)
1563 		return netvsc_set_rss_hash_opts(ndc, info);
1564 
1565 	return -EOPNOTSUPP;
1566 }
1567 
1568 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1569 {
1570 	return NETVSC_HASH_KEYLEN;
1571 }
1572 
1573 static u32 netvsc_rss_indir_size(struct net_device *dev)
1574 {
1575 	return ITAB_NUM;
1576 }
1577 
1578 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1579 			   u8 *hfunc)
1580 {
1581 	struct net_device_context *ndc = netdev_priv(dev);
1582 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1583 	struct rndis_device *rndis_dev;
1584 	int i;
1585 
1586 	if (!ndev)
1587 		return -ENODEV;
1588 
1589 	if (hfunc)
1590 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1591 
1592 	rndis_dev = ndev->extension;
1593 	if (indir) {
1594 		for (i = 0; i < ITAB_NUM; i++)
1595 			indir[i] = rndis_dev->rx_table[i];
1596 	}
1597 
1598 	if (key)
1599 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1600 
1601 	return 0;
1602 }
1603 
1604 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1605 			   const u8 *key, const u8 hfunc)
1606 {
1607 	struct net_device_context *ndc = netdev_priv(dev);
1608 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1609 	struct rndis_device *rndis_dev;
1610 	int i;
1611 
1612 	if (!ndev)
1613 		return -ENODEV;
1614 
1615 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1616 		return -EOPNOTSUPP;
1617 
1618 	rndis_dev = ndev->extension;
1619 	if (indir) {
1620 		for (i = 0; i < ITAB_NUM; i++)
1621 			if (indir[i] >= ndev->num_chn)
1622 				return -EINVAL;
1623 
1624 		for (i = 0; i < ITAB_NUM; i++)
1625 			rndis_dev->rx_table[i] = indir[i];
1626 	}
1627 
1628 	if (!key) {
1629 		if (!indir)
1630 			return 0;
1631 
1632 		key = rndis_dev->rss_key;
1633 	}
1634 
1635 	return rndis_filter_set_rss_param(rndis_dev, key);
1636 }
1637 
1638 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1639  * It does have pre-allocated receive area which is divided into sections.
1640  */
1641 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1642 				   struct ethtool_ringparam *ring)
1643 {
1644 	u32 max_buf_size;
1645 
1646 	ring->rx_pending = nvdev->recv_section_cnt;
1647 	ring->tx_pending = nvdev->send_section_cnt;
1648 
1649 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1650 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1651 	else
1652 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1653 
1654 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1655 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1656 		/ nvdev->send_section_size;
1657 }
1658 
1659 static void netvsc_get_ringparam(struct net_device *ndev,
1660 				 struct ethtool_ringparam *ring)
1661 {
1662 	struct net_device_context *ndevctx = netdev_priv(ndev);
1663 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1664 
1665 	if (!nvdev)
1666 		return;
1667 
1668 	__netvsc_get_ringparam(nvdev, ring);
1669 }
1670 
1671 static int netvsc_set_ringparam(struct net_device *ndev,
1672 				struct ethtool_ringparam *ring)
1673 {
1674 	struct net_device_context *ndevctx = netdev_priv(ndev);
1675 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1676 	struct netvsc_device_info device_info;
1677 	struct ethtool_ringparam orig;
1678 	u32 new_tx, new_rx;
1679 	int ret = 0;
1680 
1681 	if (!nvdev || nvdev->destroy)
1682 		return -ENODEV;
1683 
1684 	memset(&orig, 0, sizeof(orig));
1685 	__netvsc_get_ringparam(nvdev, &orig);
1686 
1687 	new_tx = clamp_t(u32, ring->tx_pending,
1688 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1689 	new_rx = clamp_t(u32, ring->rx_pending,
1690 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1691 
1692 	if (new_tx == orig.tx_pending &&
1693 	    new_rx == orig.rx_pending)
1694 		return 0;	 /* no change */
1695 
1696 	memset(&device_info, 0, sizeof(device_info));
1697 	device_info.num_chn = nvdev->num_chn;
1698 	device_info.send_sections = new_tx;
1699 	device_info.send_section_size = nvdev->send_section_size;
1700 	device_info.recv_sections = new_rx;
1701 	device_info.recv_section_size = nvdev->recv_section_size;
1702 
1703 	ret = netvsc_detach(ndev, nvdev);
1704 	if (ret)
1705 		return ret;
1706 
1707 	ret = netvsc_attach(ndev, &device_info);
1708 	if (ret) {
1709 		device_info.send_sections = orig.tx_pending;
1710 		device_info.recv_sections = orig.rx_pending;
1711 
1712 		if (netvsc_attach(ndev, &device_info))
1713 			netdev_err(ndev, "restoring ringparam failed");
1714 	}
1715 
1716 	return ret;
1717 }
1718 
1719 static int netvsc_set_features(struct net_device *ndev,
1720 			       netdev_features_t features)
1721 {
1722 	netdev_features_t change = features ^ ndev->features;
1723 	struct net_device_context *ndevctx = netdev_priv(ndev);
1724 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1725 	struct ndis_offload_params offloads;
1726 
1727 	if (!nvdev || nvdev->destroy)
1728 		return -ENODEV;
1729 
1730 	if (!(change & NETIF_F_LRO))
1731 		return 0;
1732 
1733 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1734 
1735 	if (features & NETIF_F_LRO) {
1736 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1737 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1738 	} else {
1739 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1740 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1741 	}
1742 
1743 	return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1744 }
1745 
1746 static u32 netvsc_get_msglevel(struct net_device *ndev)
1747 {
1748 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1749 
1750 	return ndev_ctx->msg_enable;
1751 }
1752 
1753 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1754 {
1755 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1756 
1757 	ndev_ctx->msg_enable = val;
1758 }
1759 
1760 static const struct ethtool_ops ethtool_ops = {
1761 	.get_drvinfo	= netvsc_get_drvinfo,
1762 	.get_msglevel	= netvsc_get_msglevel,
1763 	.set_msglevel	= netvsc_set_msglevel,
1764 	.get_link	= ethtool_op_get_link,
1765 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1766 	.get_sset_count = netvsc_get_sset_count,
1767 	.get_strings	= netvsc_get_strings,
1768 	.get_channels   = netvsc_get_channels,
1769 	.set_channels   = netvsc_set_channels,
1770 	.get_ts_info	= ethtool_op_get_ts_info,
1771 	.get_rxnfc	= netvsc_get_rxnfc,
1772 	.set_rxnfc	= netvsc_set_rxnfc,
1773 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1774 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1775 	.get_rxfh	= netvsc_get_rxfh,
1776 	.set_rxfh	= netvsc_set_rxfh,
1777 	.get_link_ksettings = netvsc_get_link_ksettings,
1778 	.set_link_ksettings = netvsc_set_link_ksettings,
1779 	.get_ringparam	= netvsc_get_ringparam,
1780 	.set_ringparam	= netvsc_set_ringparam,
1781 };
1782 
1783 static const struct net_device_ops device_ops = {
1784 	.ndo_open =			netvsc_open,
1785 	.ndo_stop =			netvsc_close,
1786 	.ndo_start_xmit =		netvsc_start_xmit,
1787 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1788 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1789 	.ndo_set_features =		netvsc_set_features,
1790 	.ndo_change_mtu =		netvsc_change_mtu,
1791 	.ndo_validate_addr =		eth_validate_addr,
1792 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1793 	.ndo_select_queue =		netvsc_select_queue,
1794 	.ndo_get_stats64 =		netvsc_get_stats64,
1795 };
1796 
1797 /*
1798  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1799  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1800  * present send GARP packet to network peers with netif_notify_peers().
1801  */
1802 static void netvsc_link_change(struct work_struct *w)
1803 {
1804 	struct net_device_context *ndev_ctx =
1805 		container_of(w, struct net_device_context, dwork.work);
1806 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1807 	struct net_device *net = hv_get_drvdata(device_obj);
1808 	struct netvsc_device *net_device;
1809 	struct rndis_device *rdev;
1810 	struct netvsc_reconfig *event = NULL;
1811 	bool notify = false, reschedule = false;
1812 	unsigned long flags, next_reconfig, delay;
1813 
1814 	/* if changes are happening, comeback later */
1815 	if (!rtnl_trylock()) {
1816 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1817 		return;
1818 	}
1819 
1820 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1821 	if (!net_device)
1822 		goto out_unlock;
1823 
1824 	rdev = net_device->extension;
1825 
1826 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1827 	if (time_is_after_jiffies(next_reconfig)) {
1828 		/* link_watch only sends one notification with current state
1829 		 * per second, avoid doing reconfig more frequently. Handle
1830 		 * wrap around.
1831 		 */
1832 		delay = next_reconfig - jiffies;
1833 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1834 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1835 		goto out_unlock;
1836 	}
1837 	ndev_ctx->last_reconfig = jiffies;
1838 
1839 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1840 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1841 		event = list_first_entry(&ndev_ctx->reconfig_events,
1842 					 struct netvsc_reconfig, list);
1843 		list_del(&event->list);
1844 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1845 	}
1846 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1847 
1848 	if (!event)
1849 		goto out_unlock;
1850 
1851 	switch (event->event) {
1852 		/* Only the following events are possible due to the check in
1853 		 * netvsc_linkstatus_callback()
1854 		 */
1855 	case RNDIS_STATUS_MEDIA_CONNECT:
1856 		if (rdev->link_state) {
1857 			rdev->link_state = false;
1858 			netif_carrier_on(net);
1859 			netif_tx_wake_all_queues(net);
1860 		} else {
1861 			notify = true;
1862 		}
1863 		kfree(event);
1864 		break;
1865 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1866 		if (!rdev->link_state) {
1867 			rdev->link_state = true;
1868 			netif_carrier_off(net);
1869 			netif_tx_stop_all_queues(net);
1870 		}
1871 		kfree(event);
1872 		break;
1873 	case RNDIS_STATUS_NETWORK_CHANGE:
1874 		/* Only makes sense if carrier is present */
1875 		if (!rdev->link_state) {
1876 			rdev->link_state = true;
1877 			netif_carrier_off(net);
1878 			netif_tx_stop_all_queues(net);
1879 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1880 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1881 			list_add(&event->list, &ndev_ctx->reconfig_events);
1882 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1883 			reschedule = true;
1884 		}
1885 		break;
1886 	}
1887 
1888 	rtnl_unlock();
1889 
1890 	if (notify)
1891 		netdev_notify_peers(net);
1892 
1893 	/* link_watch only sends one notification with current state per
1894 	 * second, handle next reconfig event in 2 seconds.
1895 	 */
1896 	if (reschedule)
1897 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1898 
1899 	return;
1900 
1901 out_unlock:
1902 	rtnl_unlock();
1903 }
1904 
1905 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1906 {
1907 	struct net_device_context *net_device_ctx;
1908 	struct net_device *dev;
1909 
1910 	dev = netdev_master_upper_dev_get(vf_netdev);
1911 	if (!dev || dev->netdev_ops != &device_ops)
1912 		return NULL;	/* not a netvsc device */
1913 
1914 	net_device_ctx = netdev_priv(dev);
1915 	if (!rtnl_dereference(net_device_ctx->nvdev))
1916 		return NULL;	/* device is removed */
1917 
1918 	return dev;
1919 }
1920 
1921 /* Called when VF is injecting data into network stack.
1922  * Change the associated network device from VF to netvsc.
1923  * note: already called with rcu_read_lock
1924  */
1925 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1926 {
1927 	struct sk_buff *skb = *pskb;
1928 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1929 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1930 	struct netvsc_vf_pcpu_stats *pcpu_stats
1931 		 = this_cpu_ptr(ndev_ctx->vf_stats);
1932 
1933 	skb->dev = ndev;
1934 
1935 	u64_stats_update_begin(&pcpu_stats->syncp);
1936 	pcpu_stats->rx_packets++;
1937 	pcpu_stats->rx_bytes += skb->len;
1938 	u64_stats_update_end(&pcpu_stats->syncp);
1939 
1940 	return RX_HANDLER_ANOTHER;
1941 }
1942 
1943 static int netvsc_vf_join(struct net_device *vf_netdev,
1944 			  struct net_device *ndev)
1945 {
1946 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1947 	int ret;
1948 
1949 	ret = netdev_rx_handler_register(vf_netdev,
1950 					 netvsc_vf_handle_frame, ndev);
1951 	if (ret != 0) {
1952 		netdev_err(vf_netdev,
1953 			   "can not register netvsc VF receive handler (err = %d)\n",
1954 			   ret);
1955 		goto rx_handler_failed;
1956 	}
1957 
1958 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1959 					   NULL, NULL, NULL);
1960 	if (ret != 0) {
1961 		netdev_err(vf_netdev,
1962 			   "can not set master device %s (err = %d)\n",
1963 			   ndev->name, ret);
1964 		goto upper_link_failed;
1965 	}
1966 
1967 	/* set slave flag before open to prevent IPv6 addrconf */
1968 	vf_netdev->flags |= IFF_SLAVE;
1969 
1970 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1971 
1972 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1973 
1974 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1975 	return 0;
1976 
1977 upper_link_failed:
1978 	netdev_rx_handler_unregister(vf_netdev);
1979 rx_handler_failed:
1980 	return ret;
1981 }
1982 
1983 static void __netvsc_vf_setup(struct net_device *ndev,
1984 			      struct net_device *vf_netdev)
1985 {
1986 	int ret;
1987 
1988 	/* Align MTU of VF with master */
1989 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
1990 	if (ret)
1991 		netdev_warn(vf_netdev,
1992 			    "unable to change mtu to %u\n", ndev->mtu);
1993 
1994 	/* set multicast etc flags on VF */
1995 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1996 
1997 	/* sync address list from ndev to VF */
1998 	netif_addr_lock_bh(ndev);
1999 	dev_uc_sync(vf_netdev, ndev);
2000 	dev_mc_sync(vf_netdev, ndev);
2001 	netif_addr_unlock_bh(ndev);
2002 
2003 	if (netif_running(ndev)) {
2004 		ret = dev_open(vf_netdev);
2005 		if (ret)
2006 			netdev_warn(vf_netdev,
2007 				    "unable to open: %d\n", ret);
2008 	}
2009 }
2010 
2011 /* Setup VF as slave of the synthetic device.
2012  * Runs in workqueue to avoid recursion in netlink callbacks.
2013  */
2014 static void netvsc_vf_setup(struct work_struct *w)
2015 {
2016 	struct net_device_context *ndev_ctx
2017 		= container_of(w, struct net_device_context, vf_takeover.work);
2018 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2019 	struct net_device *vf_netdev;
2020 
2021 	if (!rtnl_trylock()) {
2022 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2023 		return;
2024 	}
2025 
2026 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2027 	if (vf_netdev)
2028 		__netvsc_vf_setup(ndev, vf_netdev);
2029 
2030 	rtnl_unlock();
2031 }
2032 
2033 /* Find netvsc by VF serial number.
2034  * The PCI hyperv controller records the serial number as the slot kobj name.
2035  */
2036 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2037 {
2038 	struct device *parent = vf_netdev->dev.parent;
2039 	struct net_device_context *ndev_ctx;
2040 	struct pci_dev *pdev;
2041 	u32 serial;
2042 
2043 	if (!parent || !dev_is_pci(parent))
2044 		return NULL; /* not a PCI device */
2045 
2046 	pdev = to_pci_dev(parent);
2047 	if (!pdev->slot) {
2048 		netdev_notice(vf_netdev, "no PCI slot information\n");
2049 		return NULL;
2050 	}
2051 
2052 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2053 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2054 			      pci_slot_name(pdev->slot));
2055 		return NULL;
2056 	}
2057 
2058 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2059 		if (!ndev_ctx->vf_alloc)
2060 			continue;
2061 
2062 		if (ndev_ctx->vf_serial == serial)
2063 			return hv_get_drvdata(ndev_ctx->device_ctx);
2064 	}
2065 
2066 	netdev_notice(vf_netdev,
2067 		      "no netdev found for vf serial:%u\n", serial);
2068 	return NULL;
2069 }
2070 
2071 static int netvsc_register_vf(struct net_device *vf_netdev)
2072 {
2073 	struct net_device_context *net_device_ctx;
2074 	struct netvsc_device *netvsc_dev;
2075 	struct net_device *ndev;
2076 	int ret;
2077 
2078 	if (vf_netdev->addr_len != ETH_ALEN)
2079 		return NOTIFY_DONE;
2080 
2081 	ndev = get_netvsc_byslot(vf_netdev);
2082 	if (!ndev)
2083 		return NOTIFY_DONE;
2084 
2085 	net_device_ctx = netdev_priv(ndev);
2086 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2087 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2088 		return NOTIFY_DONE;
2089 
2090 	/* if syntihetic interface is a different namespace,
2091 	 * then move the VF to that namespace; join will be
2092 	 * done again in that context.
2093 	 */
2094 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2095 		ret = dev_change_net_namespace(vf_netdev,
2096 					       dev_net(ndev), "eth%d");
2097 		if (ret)
2098 			netdev_err(vf_netdev,
2099 				   "could not move to same namespace as %s: %d\n",
2100 				   ndev->name, ret);
2101 		else
2102 			netdev_info(vf_netdev,
2103 				    "VF moved to namespace with: %s\n",
2104 				    ndev->name);
2105 		return NOTIFY_DONE;
2106 	}
2107 
2108 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2109 
2110 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2111 		return NOTIFY_DONE;
2112 
2113 	dev_hold(vf_netdev);
2114 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2115 	return NOTIFY_OK;
2116 }
2117 
2118 /* VF up/down change detected, schedule to change data path */
2119 static int netvsc_vf_changed(struct net_device *vf_netdev)
2120 {
2121 	struct net_device_context *net_device_ctx;
2122 	struct netvsc_device *netvsc_dev;
2123 	struct net_device *ndev;
2124 	bool vf_is_up = netif_running(vf_netdev);
2125 
2126 	ndev = get_netvsc_byref(vf_netdev);
2127 	if (!ndev)
2128 		return NOTIFY_DONE;
2129 
2130 	net_device_ctx = netdev_priv(ndev);
2131 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2132 	if (!netvsc_dev)
2133 		return NOTIFY_DONE;
2134 
2135 	netvsc_switch_datapath(ndev, vf_is_up);
2136 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2137 		    vf_is_up ? "to" : "from", vf_netdev->name);
2138 
2139 	return NOTIFY_OK;
2140 }
2141 
2142 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2143 {
2144 	struct net_device *ndev;
2145 	struct net_device_context *net_device_ctx;
2146 
2147 	ndev = get_netvsc_byref(vf_netdev);
2148 	if (!ndev)
2149 		return NOTIFY_DONE;
2150 
2151 	net_device_ctx = netdev_priv(ndev);
2152 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2153 
2154 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2155 
2156 	netdev_rx_handler_unregister(vf_netdev);
2157 	netdev_upper_dev_unlink(vf_netdev, ndev);
2158 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2159 	dev_put(vf_netdev);
2160 
2161 	return NOTIFY_OK;
2162 }
2163 
2164 static int netvsc_probe(struct hv_device *dev,
2165 			const struct hv_vmbus_device_id *dev_id)
2166 {
2167 	struct net_device *net = NULL;
2168 	struct net_device_context *net_device_ctx;
2169 	struct netvsc_device_info device_info;
2170 	struct netvsc_device *nvdev;
2171 	int ret = -ENOMEM;
2172 
2173 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2174 				VRSS_CHANNEL_MAX);
2175 	if (!net)
2176 		goto no_net;
2177 
2178 	netif_carrier_off(net);
2179 
2180 	netvsc_init_settings(net);
2181 
2182 	net_device_ctx = netdev_priv(net);
2183 	net_device_ctx->device_ctx = dev;
2184 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2185 	if (netif_msg_probe(net_device_ctx))
2186 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2187 			   net_device_ctx->msg_enable);
2188 
2189 	hv_set_drvdata(dev, net);
2190 
2191 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2192 
2193 	spin_lock_init(&net_device_ctx->lock);
2194 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2195 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2196 
2197 	net_device_ctx->vf_stats
2198 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2199 	if (!net_device_ctx->vf_stats)
2200 		goto no_stats;
2201 
2202 	net->netdev_ops = &device_ops;
2203 	net->ethtool_ops = &ethtool_ops;
2204 	SET_NETDEV_DEV(net, &dev->device);
2205 
2206 	/* We always need headroom for rndis header */
2207 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2208 
2209 	/* Initialize the number of queues to be 1, we may change it if more
2210 	 * channels are offered later.
2211 	 */
2212 	netif_set_real_num_tx_queues(net, 1);
2213 	netif_set_real_num_rx_queues(net, 1);
2214 
2215 	/* Notify the netvsc driver of the new device */
2216 	memset(&device_info, 0, sizeof(device_info));
2217 	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2218 	device_info.send_sections = NETVSC_DEFAULT_TX;
2219 	device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2220 	device_info.recv_sections = NETVSC_DEFAULT_RX;
2221 	device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2222 
2223 	nvdev = rndis_filter_device_add(dev, &device_info);
2224 	if (IS_ERR(nvdev)) {
2225 		ret = PTR_ERR(nvdev);
2226 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2227 		goto rndis_failed;
2228 	}
2229 
2230 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2231 
2232 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2233 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2234 	 * all subchannels to show up, but that may not happen because
2235 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2236 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2237 	 * the device lock, so all the subchannels can't be processed --
2238 	 * finally netvsc_subchan_work() hangs for ever.
2239 	 */
2240 	rtnl_lock();
2241 
2242 	if (nvdev->num_chn > 1)
2243 		schedule_work(&nvdev->subchan_work);
2244 
2245 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2246 	net->features = net->hw_features |
2247 		NETIF_F_HIGHDMA | NETIF_F_SG |
2248 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2249 	net->vlan_features = net->features;
2250 
2251 	netdev_lockdep_set_classes(net);
2252 
2253 	/* MTU range: 68 - 1500 or 65521 */
2254 	net->min_mtu = NETVSC_MTU_MIN;
2255 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2256 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2257 	else
2258 		net->max_mtu = ETH_DATA_LEN;
2259 
2260 	ret = register_netdevice(net);
2261 	if (ret != 0) {
2262 		pr_err("Unable to register netdev.\n");
2263 		goto register_failed;
2264 	}
2265 
2266 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2267 	rtnl_unlock();
2268 	return 0;
2269 
2270 register_failed:
2271 	rtnl_unlock();
2272 	rndis_filter_device_remove(dev, nvdev);
2273 rndis_failed:
2274 	free_percpu(net_device_ctx->vf_stats);
2275 no_stats:
2276 	hv_set_drvdata(dev, NULL);
2277 	free_netdev(net);
2278 no_net:
2279 	return ret;
2280 }
2281 
2282 static int netvsc_remove(struct hv_device *dev)
2283 {
2284 	struct net_device_context *ndev_ctx;
2285 	struct net_device *vf_netdev, *net;
2286 	struct netvsc_device *nvdev;
2287 
2288 	net = hv_get_drvdata(dev);
2289 	if (net == NULL) {
2290 		dev_err(&dev->device, "No net device to remove\n");
2291 		return 0;
2292 	}
2293 
2294 	ndev_ctx = netdev_priv(net);
2295 
2296 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2297 
2298 	rtnl_lock();
2299 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2300 	if (nvdev)
2301 		cancel_work_sync(&nvdev->subchan_work);
2302 
2303 	/*
2304 	 * Call to the vsc driver to let it know that the device is being
2305 	 * removed. Also blocks mtu and channel changes.
2306 	 */
2307 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2308 	if (vf_netdev)
2309 		netvsc_unregister_vf(vf_netdev);
2310 
2311 	if (nvdev)
2312 		rndis_filter_device_remove(dev, nvdev);
2313 
2314 	unregister_netdevice(net);
2315 	list_del(&ndev_ctx->list);
2316 
2317 	rtnl_unlock();
2318 
2319 	hv_set_drvdata(dev, NULL);
2320 
2321 	free_percpu(ndev_ctx->vf_stats);
2322 	free_netdev(net);
2323 	return 0;
2324 }
2325 
2326 static const struct hv_vmbus_device_id id_table[] = {
2327 	/* Network guid */
2328 	{ HV_NIC_GUID, },
2329 	{ },
2330 };
2331 
2332 MODULE_DEVICE_TABLE(vmbus, id_table);
2333 
2334 /* The one and only one */
2335 static struct  hv_driver netvsc_drv = {
2336 	.name = KBUILD_MODNAME,
2337 	.id_table = id_table,
2338 	.probe = netvsc_probe,
2339 	.remove = netvsc_remove,
2340 	.driver = {
2341 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2342 	},
2343 };
2344 
2345 /*
2346  * On Hyper-V, every VF interface is matched with a corresponding
2347  * synthetic interface. The synthetic interface is presented first
2348  * to the guest. When the corresponding VF instance is registered,
2349  * we will take care of switching the data path.
2350  */
2351 static int netvsc_netdev_event(struct notifier_block *this,
2352 			       unsigned long event, void *ptr)
2353 {
2354 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2355 
2356 	/* Skip our own events */
2357 	if (event_dev->netdev_ops == &device_ops)
2358 		return NOTIFY_DONE;
2359 
2360 	/* Avoid non-Ethernet type devices */
2361 	if (event_dev->type != ARPHRD_ETHER)
2362 		return NOTIFY_DONE;
2363 
2364 	/* Avoid Vlan dev with same MAC registering as VF */
2365 	if (is_vlan_dev(event_dev))
2366 		return NOTIFY_DONE;
2367 
2368 	/* Avoid Bonding master dev with same MAC registering as VF */
2369 	if ((event_dev->priv_flags & IFF_BONDING) &&
2370 	    (event_dev->flags & IFF_MASTER))
2371 		return NOTIFY_DONE;
2372 
2373 	switch (event) {
2374 	case NETDEV_REGISTER:
2375 		return netvsc_register_vf(event_dev);
2376 	case NETDEV_UNREGISTER:
2377 		return netvsc_unregister_vf(event_dev);
2378 	case NETDEV_UP:
2379 	case NETDEV_DOWN:
2380 		return netvsc_vf_changed(event_dev);
2381 	default:
2382 		return NOTIFY_DONE;
2383 	}
2384 }
2385 
2386 static struct notifier_block netvsc_netdev_notifier = {
2387 	.notifier_call = netvsc_netdev_event,
2388 };
2389 
2390 static void __exit netvsc_drv_exit(void)
2391 {
2392 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2393 	vmbus_driver_unregister(&netvsc_drv);
2394 }
2395 
2396 static int __init netvsc_drv_init(void)
2397 {
2398 	int ret;
2399 
2400 	if (ring_size < RING_SIZE_MIN) {
2401 		ring_size = RING_SIZE_MIN;
2402 		pr_info("Increased ring_size to %u (min allowed)\n",
2403 			ring_size);
2404 	}
2405 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2406 
2407 	ret = vmbus_driver_register(&netvsc_drv);
2408 	if (ret)
2409 		return ret;
2410 
2411 	register_netdevice_notifier(&netvsc_netdev_notifier);
2412 	return 0;
2413 }
2414 
2415 MODULE_LICENSE("GPL");
2416 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2417 
2418 module_init(netvsc_drv_init);
2419 module_exit(netvsc_drv_exit);
2420